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Seeing the vibrational breathing of a single molecule through time-resolved coherent

anti-Stokes Raman scattering

Steven Yampolsky,1 Dmitry A. Fishman,1 Shirshendu Dey,1 Eero Hulkko,1, a) Mayukh

Banik,1 Eric O. Potma,1 and Vartkess A. Apkarian1

Department of Chemistry, University of California, Irvine, CA 92697,

USA

(Dated: 21 February 2014)

The motion of chemical bonds within molecules can be observed in real time, in the

form of vibrational wavepackets prepared and interrogated through ultrafast nonlin-

ear spectroscopy. Such nonlinear optical measurements are commonly performed on

large ensembles of molecules, and as such, are limited to the extent that ensemble

coherence can be maintained. Here, we describe vibrational wavepacket motion on

single molecules, recorded through time-resolved, surface-enhanced, coherent anti-

Stokes Raman scattering. The required sensitivity to detect the motion of a single

molecule, under ambient conditions, is achieved by equipping the molecule with a

dipolar nano-antenna (a gold dumbbell). In contrast with measurements in ensem-

bles, the vibrational coherence on a single molecule does not dephase. It develops

phase fluctuations with characteristic statistics. We present the time evolution of

discretely sampled statistical states, and highlight the unique information content in

the characteristic, early-time probability distribution function of the signal.

a)Nanoscience Center, Department of Chemistry, P. O. Box 35, FI-40014, University of Jyväskylä, Finland

1

ar
X

iv
:1

40
2.

49
04

v1
  [

ph
ys

ic
s.

ch
em

-p
h]

  2
0 

Fe
b 

20
14



The demonstration of optically detected single molecules under cryogenic conditions,

through absorption1 and soon afterward through fluorescence2, can be recognized as

the nascence of single molecule spectroscopy (SMS). The field was further propelled by

demonstrations of SMS under ambient conditions, through near-field3 and far-field op-

tical microscopy.4,5 The most common approach in SMS is the use of chromophores

that strongly couple to light, to detect light-matter interactions through a variety of

methods:6 absorption,1,7 resonant Raman,8 fluorescence induced through linear2 or non-

linear absorption,9 photo-thermal effect,10 being examples. The principle aim of SMS is

to interrogate individual molecular properties rather than averages of the vast ensembles

typically probed in molecular spectroscopy. Ensemble averaging eliminates outliers, such as

the tail of the Boltzmann distribution where most of chemistry hides.

The incoherent spectroscopy of chromophores mainly addresses environmental fluctua-

tions that occur on timescales longer than the measurement time.11 On timescales of ms and

longer over which signals are accumulated, SMS is well matched to track bio-molecular trans-

formations, such as enzymatic activity and protein folding.12,13 The femtosecond-picosecond

scale over which bonds move, break and form, poses a greater challenge. An important

advance in this regard is the recent series of ultrafast pump-probe measurements using

phase-locked pulse pairs,14–17 in which vibrational wavepackets and coherent manipulation

of quantum bits were demonstrated on single molecules. The information content of these

measurements, however, is limited by electronic dephasing that occurs on timescales shorter

than vibrational periods of motion. This characteristic of chromophores is implicit in their

structureless and broad absorption spectra.

Raman spectroscopy avoids electronic dephasing considerations since it does not require

evolution in real electronic states. As such, time-resolved coherent Raman spectroscopy is

ideally suited to capture the motion of molecules in their ground electronic state. Although

Raman is a feeble effect, it can be greatly amplified through plasmonic antennae,18 namely

through the surface enhanced Raman scattering (SERS) effect.19,20 Following the initial

demonstrations of single molecule sensitivity,21,22 SM-SERS has rapidly developed23, with

ultimate sub-molecular spatial resolution recently achieved at the plasmonic junction of a

scanning tunneling microscope.24

The sensitivity in SM-SERS derives from enhanced local fields concentrated at junc-

tions of metallic nano-structures. It is not clear whether the principles of SERS can be
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directly translated to the ultrafast time domain. Molecules subject to field gradients may

migrate due to optical forces, and at incident intensities of 1010 W/cm2 reached in ultra-

short laser pulses, nanoparticles melt, change shape and even fragment.25 Surface-enhanced

coherent anti-Stokes Raman scattering26–31 and stimulated Raman scattering32 has been

demonstrated using fs lasers in frequency domain measurements on SERS-active ensembles.

And although a time-resolved, surface enhanced Raman Scattering (tr-SECARS) measure-

ment has been reported in a colloidal ensemble, the unique capabilities of coherent Raman

techniques to capture the evolution of vibrational wave packets33,34 has yet to be demon-

strated in the single molecule limit. Here, we report this realization.

Through tr-CARS studies on individual nano-dumbbells, we capture the vibrational mo-

tion of single molecules in real-time, and we highlight the unique information content of

time-resolved measurements in the single molecule limit. Rather than pure dephasing, co-

herences develop phase noise due to discrete sampling statistics, familiar from quantum

optics.35 We show that the probability distribution function (PDF) of the noise accumu-

lated during early time evolution can be used to uniquely distinguish between one, versus

two, versus many-molecule response.

The experiments are carried out on trans 1,2-bis-(4-pyridyl) ethylene (BPE) molecules

attached to gold nano-dumbbells encapsulated in porous silica shells (Fig. 1a). That single

molecule sensitivity can be reached through SERS at the junction between two gold nano-

spheres, has been catalogued in the literature on this and related systems36–38 including

the direct isotopologue test of single molecule response.39,40 We do not have direct knowl-

edge of the location or coverage of the molecules, which are adsorbed on the gold spheres

prior to encapsulation. However, signatures of single molecule behavior are evident in the

spectral fluctuations observed in sequentially recorded SERS spectra on individual nanos-

tructures. We see meandering Raman trajectories, dramatic intensity fluctuations, and the

appearance of lines that cannot be explained through dipolar Raman alone (Supplementary

Information). These observations parallel a prior study on silver nano-dumbbells, where

it was shown that the tensor nature of Raman scattering is in full force in SM-SERS and

that spectral variations accompany changes in the relative orientation between molecule and

local field, and the latter evolve due to structural changes of the irradiated junction.41

The spectrum shown in Fig. 1 is from a relatively stationary SERS trajectory, obtained

at an incident intensity of 30 µW/µm2. Remarkably, the SERS linewidths are significantly
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broader than those in the ensemble spectrum of solid BPE. We will focus on the strong C=C

stretching modes near 1600 cm−1 which arise from mixing between the ethylinic stretch

and the pyridine ring breathing modes of BPE.44 These lines have Lorentzian profiles with

FWHM of 5 cm−1 in solid BPE, but appear as Gaussians of FWHM ∼15 cm−1 on the dumb-

bell (Fig.1d). SERS trajectories recorded at a rate of 1 spectrum/2s show resolution-limited

lines of FWHM = 4 cm−1 inside the envelope (Supplementary Information). Consistent

with recent tip enhanced Raman measurements at cryogenic temperatures, it is clear that

intrinsic SERS linewidths (limited by vibrational dissipation) are much sharper. Evidently,

the broad Gaussian envelopes represent inhomogeneous distributions sampled by spectral

diffusion, and both optical forces and local heating can be expected to contribute to the

observed spectral distribution. The latter effect appears to be greatly reduced under pulsed

irradiation conditions of the ultrafast tr-CARS measurements.

The tr-CARS measurements are carried out on drop cast particles on a 15 nm thick sil-

icon nitride substrate. After SEM mapping and SERS characterization, the particles are

transferred to a femtosecond laser scanning CARS microscope. The imaging system is in-

terfaced with a tunable femtosecond laser (80 MHz repetition rate), which provides the

pump (λpu = 714 nm), Stokes (λst = 809 nm) and probe (λpr = 714 nm) pulses for the

electronically non-resonant CARS process illustrated in Figure 2a. The difference frequency

between the coincident pump and Stokes pulses, ωpu − ωst = 1640 cm−1, is selected to ex-

cite the superposition of bright modes that fall under the spectral bandwidth (Fig. 2a),

to prepare the second order wavepacket, φ(2) =
∑
ν aν |ν〉. The evolving vibrational coher-

ence
∣∣∣φ(2)(t)

〉 〈
φ(0)(t)

∣∣∣ is then interrogated with the time-delayed probe pulse, and detected

through the anti-Stokes shifted photons. Care is taken to minimize the average illumination

intensity to below 20 µW/µm2 to avoid photo-damage.

The CARS image of a distribution of particles is presented in Fig. 2b. The nanoparticles

are readily imaged through the electronic CARS response of the metal surface plasmon.42,43

The variation in their intensities is readily associated with the distribution of orientations

relative to the linear polarization of the excitation. The molecular CARS response is distin-

guished by its dependence on the delay of the probe pulse and vibrational resonance (Fig.

2c,d). Beyond 0.2 ps, the instantaneous electronic response of the plasmon reduces to a con-

stant background over which the modulated molecular contribution appears. The spectrally

resolved tr-CARS signals illustrate that when the difference frequency, ωpu − ωst = 1800

4



cm−1, is detuned from the molecular resonance, only the constant background of two-beam

electronic CARS remains. On resonance, a periodically modulated signal is seen. The pe-

riod, τ ∼ 1 ps, corresponds to the beat between the pair of bright modes separated by

∼ 35 cm−1 (Fig. 1d). In the presented case in Fig. 2c, the signal suddenly drops. The

particle becomes SERS inactive, while its TEM shows an intact dumbbell (Fig. 2b, inset).

The measurement sequence suggests that the loss of signal is due to the separation between

molecule and hot spot. This common occurrence limits the tolerable exposure time, therefore

sampling statistics, of measurements.

Significant variation is seen in tr-CARS signals recorded on individual dumbbells. Exam-

ples are shown in Fig. 3a. When all three pulses coincide, at τ = 0, dramatic interferometric

fluctuations are observed, which are blanked out in the figure. At negative delay, when the

probe precedes the preparation pulses, the time independent two-beam electronic CARS

signal of the metal antenna is seen. The fluctuations at negative time establish the noise

floor over which the molecular response appears upon passing τ = 0 (Fig. 3a, orange and

gray curves). No identifiable molecular response is seen from the SERS inactive structure

(Fig. 3a, green curve). Modulation with identifiable periodicity is only seen at positive

time, and only on SERS active particles. The CARS signal shows identical features when

simultaneously detected in the forward (gray curve) and backward (orange curve) scatter-

ing directions, indicating that the oscillation of the signal is an intrinsic response of the

dumbbell-molecule system, independent of detector noise. These signals were acquired with

incident peak intensities that reach ∼ 1010 W/cm2. Under these irradiation conditions, we

find surprisingly little change to the dumbbell. Detailed TEM imaging reveals that pre-

irradiated dumbbells show a clear junction gap of < 2 nm between nano-spheres (Fig. 3b),

while post irradiation images show the formation of a neck between spheres (see Fig. 3c,d).

Although it is unclear at what stage of the illumination this morphological change occurs,

the dumbbells remain largely intact and the CARS signal remains remarkably stable during

the 1 hr duration of the measurement.

Examples of time traces that are characteristic to tr-CARS in the single BPE molecule

limit are shown in Fig. 4, along with the signal of the ensemble of solid BPE recorded

under identical conditions. The contrast is striking. The ensemble signal decays in 1 ps

(Fig. 4a), while the depth of modulation of the single dumbbell signals persists for the 10

ps duration of the measurement (Fig. 4b,c). The ensemble signal, given by the third-order
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polarization33:

S(τ) =
∫
dt
∣∣∣〈P (3)(τ)

〉∣∣∣2 (1)

reduces to the damped quantum beats of the prepared vibrational coherence:

S(τ) ∝
∑
ν,ν′

aνaν′ cos(ων − ων′)e−(γν+γν′ )τ (2)

with phenomenological dephasing rates γν,ν′ that arise from the ensemble averaging indicated

by the angle brackets in (1). The same information is contained in the Raman spectrum of

the bulk (Fig. 4a inset), which in the absence of electronic resonances, is given by the same

third-order response.33 Consequently, the tr-CARS signal can be retrieved by the windowed

Fourier transform of the Raman spectrum, as shown in Figure 4a. The broad Lorentzian

profile of the Raman lines leads to rapid exponential dephasing of the signal in time. This

is clearly not the case for signals recorded on the dumbbell. Given the much broader SERS

spectrum (Fig. 4a, inset), the CARS signal would have been expected to decay even faster

than the ensemble, on 0.3 ps time scale. Instead, the depth of modulation of the tr-CARS

signal from the dumbbell (Fig. 4b) persists for the duration of the measured time delay τ

= 10 ps. A vibrational superposition of four states, given by the stick spectrum in Fig. 4a,

emulates the signal with good fidelity. The main beat is that of the two breathing modes

separated by 35 cm−1 (ω = 1647 cm−1, 1612 cm−1). The higher frequency beat is reproduced

by the inclusion of lines at ω = 1580 cm−1, which are seen in the transient SERS spectrum

from the same dumbbell (Fig. 4a, inset); and the splitting between the two modes of 5 cm−1

reproduces the slow modulation of the signal envelope. The main features of the signal are

satisfactorily reproduced. Although alternate interpretations may be given, what is clear

is that there is no evidence of dephasing. If more than one molecule contributes to the

signal, then their collective spectral distribution must remain within ∼ 0.3 cm−1 for the 1 hr

duration of the measurement. This seems unlikely. The signal is best described as tr-CARS

in the single molecule limit.

To be more definitive about the single molecule origin of a signal, it is necessary to track

the wavepacket motion until the onset of quantifiable noise. An example is provided by the

tr-SECARS signal of Fig. 4c. Note that each experimental point of the time trace is the

average of 50 measurements, taken with ∼ 2µs dwell time per pixel at 1 s intervals; and we

estimate a total of 5 - 10 signal photons detected per point. The total accumulation time is

∼ 1 hr for the full trace. Spectral fluctuations during the measurement intervals generate
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phase noise. Thus, the discretely sampled normalized signal at a given delay time τ can be

generally described as:

S(τ)n,m =
1

M

M∑
m=1

∣∣∣∣∣ 1

N

N∑
n=1

1

V

V∑
ν=1

aνe
−i(〈ων〉+δν,m,n)τ

∣∣∣∣∣
2

(3)

in which M is the number of realized measurements (photons), N is the number of molecules,

〈ων〉 is the mean wavenumber of vibrational mode ν and δν is its stochastic fluctuation around

the mean. As suggested by the Gaussian profiles of SERS lines (Fig. 1), δν derives from a

normal distribution N(0, σ) with zero mean and variance σ given by the spectral width of

the vibrational lines. The phase fluctuation grows with delay time τ , such that at στ >> 2π

the random phase δτ is uniformly distributed over the full [−π, π] interval. In this limit, the

probability distribution of observable signal amplitudes reduces to a normal distribution,

with a characteristic mean:

〈S(τ > 2π/σ)〉 =
1

NV
(4)

It is the summation over the coherence terms inside the square in (3), over N molecules and

V modes, that leads to dephasing: 〈S(τ)〉 → 0 for large N and V . For a single molecule

and a superposition of two states, the expected value is:

〈S(τ > π/σ)〉 =
1

2
for N = 1, V = 2 (5)

Note, in a given measurement, the stochastic phase leads to a random value of the normalized

sinusoidal signal S(τ) ∈ [1, 0], with mean 〈S(τ)〉 = 1/2 and variance 1/
√
M given by

averaging over the M realizations. This assumes no correlation in spectral fluctuations δν

between different modes. In the other extreme, assuming fully correlated fluctuations, the

signal retains full coherence. This can be clearly seen by considering the superposition of

two states on a single molecule:

S(τ) =
1

2
+

1

2M

M∑
m=1

cos(〈ων − ων′〉 τ + (δν − δν′)mτ) (6)

If in each realization, m, the fluctuation is correlated, δν − δν′ = 0, the signal does not

dephase.

More generally, in an open system, spectral fluctuations are stochastic. The expected

signal for a single quantum beat (V = 2), on a single molecule (N = 1), and M = 5 realiza-

tions sampled from a normal distribution (δν − δν′) ∈ N (0, σ = 1.5 cm−1) is illustrated in
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Fig. 4c (green curve). The assumption of two molecules produces a different trace at long

delays, since in this case 〈S(τ > π/σ)〉 → 1/4 (Fig. 4d). Despite the stochastic nature of the

trajectories, it is possible to assign the prepared superposition to the vibrational coherence

of the two states that dominate the ensemble response, albeit with a spectral distribution

that is significantly narrower than observed SERS linewidths. We learn that there is sig-

nificant correlation between the two C=C modes. This highlights an important difference

between CARS and Raman that becomes pronounced in the single molecule limit. Through

the squared third-order polarization in Eq. (1), CARS measures the cross-correlation of fluc-

tuations between modes (6), while linewidths in Raman measure the dephasing of individual

modes.

Stochastic trajectories can be rigorously compared through their statistics. Unique as-

signments are possible through the probability distribution functions (PDF), namely, the

histograms of the time traces shown in the right panel of Figure 4. In the evolution interval

0 < τ < 2π/σ, the observable distributions and the expected values in signal amplitude

are oscillatory functions that obey phasor statistics.45 The characteristic PDFs can be gen-

erated numerically, as shown in Fig 5. By inspection, the histogram of the signal (of the

time trace in Fig. 4c) can be uniquely assigned to a single vibrational beat of a single

molecule. Moreover, based on the indicated first two moments of the PDFs, the spectral

co-variance, σ = 1.5 cm−1, can be directly bracketed. The comparison between experi-

mental PDF and the numerical characteristic distributions can be quantified through the

nonparametric Kolmogorov-Smirnov (KS) test.46 Based on the KS-distance between cumu-

lative distributions, it is possible to establish that the PDF (N = 1, V = 2, σ = 1.5 cm−1)

is the best match to the experiment, and that the experiment obeys the single molecule,

single beat statistics with 99% likelihood. More generally, the figure illustrates that the

information content in time dependent measurements of coherences in the single molecule

limit is contained in the correlated probability densities of phase and amplitude variations.

While Eq. (3) yields to rigorous statistical analysis, the principle of key relevance to the

present is that a single molecule cannot dephase but develops characteristic phase noise. In

contrast, multiple molecules in a multi-mode coherence rapidly dephase (see Fig. 5). The

early time PDF of the signal yields a statistically meaningful distinction between one versus

two versus many molecules when a small number of states is prepared and interrogated.

Experimentally, we observe all possible variations: some traces reflect single molecule be-
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havior, others indicate the presence of a few to many molecules. Examples are shown in the

supplementary material, along with their KS analysis.

In summary, through the persistent vibrational coherence on a single nano-antenna (Fig.

4b,c) we presented the first real-time record of vibrational wavepacket motion at the single

molecule level, under ambient conditions. To reach single molecule sensitivity, we employed

the surface enhanced Raman effect in the time domain, at the plasmonic junction of gold

nanospheres. We demonstrated the viability of antennaed molecules under ultrafast irradia-

tion, and introduced time-resolved, surface enhanced CARS as a tool to interrogate molecu-

lar motions in the single molecule limit. We should note that as a four-wave mixing (FWM)

process, CARS belongs to one of the more flexible multi-dimensional NLO schemes.33 It has

the attributes of Raman scattering in its generality, and under SERS conditions, dramatic

E8-enhancements are to be expected. As a coherent scattering process, tr-CARS allows the

selective preparation and interrogation of superposition states, with time resolution limited

by the laser pulses. Complete quantum state reconstruction is possible through PDFs in

electronically resonant FWM,47 and it has previously been recognized that quantum logic

can be mapped on the preparation, evolution and measurement steps of FWM.48–50 The ma-

nipulation of truly quantum information becomes accessible in the single molecule limit. The

present experimental demonstration of coherent wave-packets sustained on single molecules,

paves the way toward such applications.
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FIG. 1. (a) Sketch of the dumbbell-shaped gold nano-structures with adhered BPE molecules and

encapsulated in a silica shell. Strong SERS response is expected from BPE molecules in the hotspot

between the gold nano-spheres. (b) TEM of a single dumbbell structure. (c) Comparison of SERS

spectrum from a single dumbbell, Raman spectrum from bulk, and DFT calculation of the Raman

spectrum of BPE. (d) Comparison of SERS spectrum and bulk Raman spectrum in the vicinity of

1600 cm−1.
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FIG. 2. (a) Jablonski diagram of the tr-CARS process, with the time delay τ between the

pump/Stokes pair and the probe pulse indicated. (b) CARS image of isolated dumbbell struc-

tures. The inset shows the CARS image of a single dumbbell and the corresponding TEM image.

(c) Spectrally resolved tr-CARS of a single dumbbell acquired on resonance at ωpu − ωSt = 1640

cm−1 (left) and acquired off-resonance at ωpu − ωSt = 1800 cm−1 (right). Note that the clear

quantum beats disappear when tuned off-resonance.
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FIG. 3. (a) tr-CARS of individual dumbbell structures, including a SERS-active structure (orange

and gray curve), and a SERS-inactive structure (green curve). The orange curve is the back-

scattered CARS and the gray curve is the simultaneously measured forward scattered CARS. (b)

TEM of a dumbbell before optical illumination shows a clear gap between the two spheres. (c,d)

Examples of TEM images of dumbbells after SERS optical experiments show formation of a neck

between the spheres.
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FIG. 4. (a) tr-CARS of bulk BPE (brown curve) along with the windowed Fourier transform

of the bulk Raman spectrum (gray curve). The inset shows the bulk Raman spectrum (pink)

and a transient SERS spectrum recorded on the same dumbbell on which tr-CARS trace (b) was

obtained. (b) tr-CARS trace of a single structure (brown curve) shows distinct quantum beats.

The gray curve is a simulation of the tr-CARS response based on the stick spectrum in the inset of

(a). (c) tr-CARS of another isolated nano-structure (brown curve) showing periodic oscillations at

early time followed by phase noise at longer time. The gray curve is a simulation based on equation

(6) for a single molecule with M = 5 and σ = 1.5 cm−1. (d) Comparison between one-molecule

(green) and two-molecule (blue) simulated signals. The right panels show the PDF and their first

moments derived from the corresponding temporal traces in the panels to the left.
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FIG. 5. Probability distribution functions (PDF) calculated for different realizations of the number

of molecules (N), the number of modes (V ) and the variance of the spectral fluctuations (σ). The

first two moments of the distributions are indicated in each panel. The panel to the right gives

the PDF for the tr-CARS trace shown in Figure 4c. The experimental PDF (brown bars), and

its two moments, uniquely match the simulated PDF for N = 1, V = 2 and σ = 1.50 cm−1 (blue

bars). The experimental cumulative distribution function (CDF; brown dots, top right) and the

theoretical CDF for the simulated PDF (blue line) are also indicated. The Kolmogorov-Smirnov

(KS) test reveals a a maximum distance of d = 0.157 between the experimental and theoretical

CDFs, translating into a 99% likelihood that the data represents the evolution of a statistical

two-state superposition on a single molecule.
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