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Trapping and Dark Current in Plasma-Based
Accelerators

C. B. Schroeder, E. Esarey, B. A. Shadwick, and W. P. Leemans

Center for Beam Physics, Lawrence Berkeley National LaooyaUniversity of California,
Berkeley, California, 94720 USA

Abstract. The trapping of thermal electrons in a nonlinear plasma weéeebitrary phase velocity
is investigated. The threshold plasma wave amplitude &pping plasma electrons is calculated,
thereby determining the fraction trapped and the expedieki clirrent in a plasma-based acceler-
ator. It is shown that the presence of a laser field (e.g.ptrgpin the self-modulated regime of
the laser wakefield accelerator) increases the trappiegltiotd. Implications for experimental and
numerical laser-plasma studies are discussed.

INTRODUCTION

Plasmas are capable of supporting large amplitude, spacgechbscillations with phase
velocities near the speed of light. Such plasma waves cgposularge electric fields,
up to hundreds of GV/m, and can be used to accelerate chaagedgs. High-intensity
lasers and charged particle beams have been proposed éxcitegion of plasma waves,
or wakefields, for plasma-based accelerators (for a rewes/Ref. [1]).

Laser-driven plasma-based accelerator experiments 22y typically operated in
the self-modulated regime of the laser wakefield accelei@&/FA). In this regime,
a long (compared to the plasma wavelength), high power lpskse propagating in
a dense 4 10'° cm~3) plasma drives a plasma wave through Raman scattering. The
plasma wave grows exponentially inside the laser pulsehe@d&aman scattering insta-
bility, until the growth saturates nonlinearly or electsdrecome trapped in the plasma
wave (subsequently damping the plasma wave). Such undledttoapping results in
the production of poor quality electron beams (e.g., witarri®0% energy spread).

Several methods of controlled triggering of the trappingpaékground plasma elec-
trons have been proposed for injecting electrons into thsmpéa wave for the production
of high quality electron beams [7—11]. All optical injeationethods [7, 8, 10], which
rely on laser-triggered local phase space mixing are ctiyréeing explored experi-
mentally and are promising candidates for the productiounlivdshort ¢ fs) electron
bunches.

Controlling the injection of background plasma electromi® ithe plasma wave is
critical to the design of plasma-based accelerators. ©nd#d trapping of background
plasma electrons can be considered a source of dark curréim iplasma accelerator
structure and is therefore undesirable for the productfdmgh quality electrons beams
[12]. In this paper we examine the trapping of thermal plagheatrons in a nonlinear
plasma wave (i.e., the accelerating field) and calculatéhfeshold field for trapping.



PLASMA WAVE EXCITATION

Wakefield generation in the nonlinear 1D regime can be exathby assuming that
the drive beam is nonevolving, i.e., the drive beam is a fonabf only the co-moving
coordinatet, = z— Vpt, wherevy < cis the phase velocity of the plasma wave. Using the
fluid momentum and continuity equations, the Poisson eguiafip/9&2 = k3(n/np —

1+ ny/ng) can be written as [13-15]
~1/2
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wherek, = wp/c is the plasma wavenumbaey,is the electrostatic potential normal-
ized tomc/e, Be = Ve /C, andny is the beam density (nonzero if the plasma wave is
excited by a particle beam driver). Hey% — 1+ a?/2 is the relativistic Lorentz fac-
tor associated with the electron quiver velocity in the ta#d, wherea? ~ 7.32 x
10 19\3[um]lo[W/cn?] is the normalized laser intensity for a linear polarizeetamilse,
with Ag = 21c/ Wy the laser wavelength ard the laser intensity. The 1D limit applies
to broad driverskpr | > 1, wherer | is the characteristic radial dimension of the drive
beam (laser or particle). Equation (1) is valid in the liffiYmc®) < 1 (i.e., nonrelativis-
tic plasma temperature). In this analysis we also assumd#azam loading effects are
small. Beam loading effects will occur when a large fractdthe electron distribution
becomes trapped in the plasma wave.

The axial electric field of the wake is given By = —Eq0@/0&, whereEg = cmewp /€.
In the linear regimeEmax < Ep, whereEmayx is the maximum amplitude of the axial
electric field of the plasma wave, the plasma wave is a simipilessidal oscillation with
frequencywy, and a phase velocity, determined by the driver, e.@= @ cogky¢) with
@ < 1. WhenEnax 2 Ep, the plasma wave becomes nonlinear and Eqg. (1) indicates tha
the electric field departs from a simple sinusoidal form dregeriod of the nonlinear
plasma wave increases as the amplitude increases [16-18].

Analysis of EqQ. (1) indicates that the electrostatic patgtscillates betwee@min <
¢ < @nax and the axial electric field oscillates betweeBmax < E < Emax. The values
@min and@max are given by

R a 1/2

(pmax/min =y.—1+ Erznax/Zi B¢ [(VJ_ + Erznax/z)2 - yﬁ_} / ) (2)
where Emax = Emax/Eo and the+ give @nax and @min, respectively. Equation (2) is
valid providedy, is slowly varying compared to, (e.g., a laser driver in the long
pulse, self-modulated regime) and for the plasma wave dethie driver. Behind the
driver, y; = 1 and@naymin = Efmax/2 % BoEmax(1 + EZax/4Y2. In the linear regime
Pmax/min = :l:B(IJ Emax- _ _ _

The cold plasma fluid equations break down when the plasmaitgiebecomes
singular, i.e., from the Poisson equatid@t,/0¢ — «. From Eq. (1) this occurs at
Y. = Yo(1+ @). Hence the minimum potential satisfi@sin = Y. /Yo — 1, and Eq. (2)
implies

1/2
Ews = [2v. (o —1)]/* o, (3)



whereEws is the cold relativistic wavebreaking field including effeof a laser field
[19, 20]. Equation (3) is a generalization to the Akhiezet Bolovin cold wavebreaking
result [21] that includes the presence of a laser pulse.drséif-modulated LWFA, the
plasma wave is driven by an instability (e.g., Raman forvanattering) inside the laser
pulse. For relativistic laser pulsea £ 1), Eq. (3) indicates that the maximum field
achievable is significantly larger inside the laser field paned to the region behind the
drive laser (where? = 0 andy, = 1). For highly-relativistic laser intensities>> 1,
the cold wavebreaking field scalesBgs /Eo ~ (2y, Vp)Y/? ~ 2714 (wp/wp) Y ?a. Here
we have assumed the phase velocity of the plasma wave isxap@ately equal to the
nonlinear group velocity of the lasgg ~ [y, (Y. +1)/2]%%wo/wp [22].

TRAPPING OF THERMAL ELECTRONS

The dynamics of an electron in the presence of an electroglasma wave (wakefield)
and a laser pulse is described in the 1D limit by the Hamiéiomn the co-moving frame

H(UE) = (v} +12) 2 —Bpu—a(E) , (4)

where@is the plasma wave space charge potential given by Eq. (d)y erthe electron
momentum normalized tsac The Hamiltonian is time independent and therefore a
constant of motiorH (u,§) = constant. Equation (4) describes trapped and untrapped
orbits, and the separatrix orbit separating the trappediatrdpped orbits is given by

Hs=HU=Y1Y$B¢,& = &min) = Y.L /Yo — Pmin » (5)

where@min = @&min) is the minimum wake potential and is related to the peak accel
ating electric field of the wave by Eq. (2).

Consider a plasma electron with initial velocikyand normalized momentuuain the
absence of any fields (i.e., before the passage of the dmeexcitation of the plasma
wave,y, = 1 and@ = 0). The orbit of the electron will be defined by the Hamiltania
given by

He = (14 f)"% — Byt (6)

Note that, for an initially cold plasma; = 0 andH; = Hcqig = 1 for all plasma electrons.
Trapping of the electron will occur when the orbit defined bg Hamiltonian Eq. (6)
coincides with a trapped orbit, defined by the separatrixt &f. (5), namely, when
H; < Hs. SolvingH; = Hgyields in the minimum initial electron momentum for trapgin
in the plasma wave,

U = YoBo (YL — YoPmin) — Yo [(VJ_ — Yo®min)°— 1] 2 : 7)

where@min IS given by Eq. (2). Equations (7) and (2) can be solved forpisak field
required for the onset of particle trapping as a functiorefihitial electron momentum:

Efax=2v1 (Yo — 1) +2v2¢{ (1—Hy) — By [(1—Ht>2+2<1—Ht>vL/V¢]” 2} . ®



whereH; is given by Eq. (6). In the limit of an initially cold plasmua= 0, H; = Heoig=1
and Eq. (8) reduces to Eq. (3), i.e., trapping occurs onlyhatwavebreaking field
Emax: EWB/EO-

For a plasma consisting of electrons with nonrelativistitial momenta (; < 1),
Eq.(8) reduces to

Efax=2Y. (Yo — 1) + 25 Bo {ut ~ | (Byw)*+ 2Bouy /¥ | 1/2} NG

Equation (9) determines the maximum plasma wave field befe@enset of trapping
for a plasma at a given initial temperature. For examplégdfglasma momentum distri-
bution is nonrelativistic and initially a waterbag distrtton, then the maximum initial
momentum is given by the normalized temperature (width efvislocity distribution)
of the plasmay < (2T /mc)¥/2. Typically the temperature of plasmas used in short-
pulse Iaszer-plasma interaction experiments is of the mtlafew 10s of eV [23, 24], or
U ~ 107<.

The fraction of electrons trapped in the plasma wave can bguated for a given
initial momentum distribution of the plasma electrons. Example, assuming an initial
Gaussian velocity distribution of the plasma electronsiwamperaturd defined by the
root-mean square (rms) velocity spre@d /m)1/2, with (2T /m)¥/? « ¢, the fraction of

trapped electrons is
1 Ut
frap== |[1—Eff| ———— | | , 10
trap 2[ (2 T/m@)] ( )

wherel is given by Eq. (7). Note that only electrons with momentaha tirection
of the phase velocity of the plasma wave are trapped. Figwgieotvs the fraction of
trapped electrons versus the initial temperature of a Gauggasma electron velocity
distribution for three different nonlinear plasma wave a‘mﬂesEmaX: 1.5, Emax= 2,
andEmax = 2.5, withyy = 10 andy, = 1. The total number of trapped electrons (i.e.,
dark current in the plasma accelerator) can be estimated Eq. (10). For example,
for a plasma density ofig = 10*° cm™3, driver transverse size af, = 10 um, and
accelerator length of 1 mm, a trapping fraction fgfp = 102 indicates~ 1 nC of
trapped charge. This trapping calculation neglects beadihg, which will be valid
provided the wakefield of the trapped electrons is much ntian the plasma wave,
Or Nirap/No < |@|, Whereny,p is the density of the trapped electron bunch.

L aser-driven plasma wave

A plasma wave driven by a laser-plasma interaction will heapbase velocity approx-
imately equal to the group velocity of the laser pulse, tgfycyy ~ wo/wp ~ 10-100
for laser propagation in an underdense plasma. Without salditional heating mech-
anism, laboratory plasmas used for LWFA experiments havgpéeatures of the or-
der of T ~ 10 eV [23-25]. Therefore laser-driven plasma-based atelks satisfy
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FIGURE 1. Fraction of trapped electrorfgap [EQ. (10)] versus the initial temperature of a Gaussian
plasma electron velocity distributidn(keV) for three dlfferent nonlinear plasma wave amplituBgg, =
1.5, Emax = 2, andEmax = 2.5, with Yo =10 andy, =

U < 1/yp < 1. In this limit, Eq. (9) reduces to

2 Beve)? 12 Beve (o — 1)
) Te-pt T e 4

Equation (11) contains the cold relativistic wavebrealdietfl (generalized to include
the influence of the laser field) with the lowest order coroes owing to the plasma
temperature (initial electron momentum). Temperatureiced the trapping threshold
from the cold wavebreaking limit.

For a flat-top laser pulse, the excited plasma wave amplitaddoe evaluated analyti-
cally in terms of elliptic integrals [18]. For the optlmalsbr pulse length, the field behind
the laser pulse driver is given Bmax = ( (Y2 —1)/y.. Therefore the threshold laser in-

tensity for trapping behind the laser pulse is giveraBy= B2+ (B o+ 4E20%2,
whereEmax(Ys, U ) is given by Eq. (9) withy, = 1.

Iémaxﬁ [ZVJ_ (th -1

High phase velocity plasma wave

For high phase velocity wavef¢ ~ 1) such thatyy(1—H¢) > 1 (e.g., a plasma
Wave in a warm plasma driven by an ultra-relativistic petleeam), Eq. (8) reduces to
E2ax~ Y2/ (1—H) — 2y, + (1—Ht). For a nonrelativistic plasma temperatuge< 1

in the high phase velocity limitgu > 1), this result reduces to

Emax ™ VJ_/Utl/z . (12)

As indicated by Eq. (12), the field amplitude required foppiag in this limit g u > 1)
scales af,, 0 T-* assuming a waterbag velocity distribution (which is the sam
scaling as the wavebreaking field derived by Katsouleas amwl [#6] and Rosenzweig
[27] in this limit).
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FIGURE 2. Fraction of trapped electronfap versus the initial temperature of a Gaussian plasma
electron velocity distributior (keV) for three different nonlinear plasma wave amplituégsx = 1.5,
Ema)(: 2, andEmaX: 25, W|th V¢, - 10 andYJ_ - 1

SUMMARY AND DISCUSSION

The threshold electric field for trapping background plasstextrons in a nonlinear
plasma wave was derived. This result determines the fractfdoackground plasma
electrons trapped in the wave and, therefore, the expeat&cdrrent in a plasma-based
accelerator. Reduction of dark current is critical for proehg high-quality electron
beams in an accelerator. The trapping calculation inclikdegbresence of a laser field,
allowing application of this analysis to the self-moduthtegime of the LWFA. It was
found that the presence of the laser field increases themggpeshold and reduces the
fraction of trapped electrons.

In addition to plasma-based accelerator design, the etmlitrapping thresholds can
have implications for the interpretation of numerical stésdof trapping (or the de-
tailed electron phase space structure). Kinetic effects,(particle trapping) in short-
pulse laser-plasma interactions is often simulated nwakyi using particle-in-cell
(PIC) models. A well-known linear numerical instability geenerated by the spatial
grid in the PIC algorithm [28]. Owing to this numerical insility, the temperature
of the plasma will grow until the Debye leng#tp is of the order of the size of the
grid spacingAz, where the Debye length ¥ = (T /4rmge?)Y/? or, in practical units,
Ap[cm] ~ 740,/T[eV]/no[cm~3]. This unphysical self-heating of the plasma in a PIC
simulation results in a temperature given by ~ Az. For typical short-pulse laser-
plasma interaction parameters, plasma dengjty= 10° cm~3 and laser wavelength
Ao = 1pm, a spatial grid oAz= Ap/10 results in numerical self-heatingTa,m~ 2 keV.
Although this temperature is two orders of magnitude latban plasma temperatures
measured in the laboratory [23, 24], it is nonreIativis'l’f,i,(;.m/mc,2 < 1, and therefore
does not greatly influence the fluid response of the plasmai[25 the collective hy-
drodynamic fluid response will be well-approximated by th@ Blgorithm for these pa-
rameters. However, the detailed phase space structureaaticlgotrapping effects (i.e.,
kinetic effects) will be poorly approximated at these urgibgl plasma temperatures.
For example, Fig. (2) shows the fraction of electrons trappgsus plasma temperature




for several nonlinear plasma wave amplituf@gy = 1.5, Emax = 2, andEmax = 2.5,
with yp = 10 andy, = 1. For laboratory plasma temperatures (e.g., 10s of eV}hess

1 part in 16 plasma electrons are trapped, while for 2 keV (i.e., the ysjgal self-
heating temperature in PIC using a grid&¥ = A\o/10) over 10% of the electrons are
trapped for a plasma wave of amplitulgax = 2. One approach to reduce numerical
self-heating in PIC simulations is refining the spatial gkdr the laser-plasma parame-
tersng = 10*° cm~3 andAg = 1 um, a spatial grid oAz < \p/10? is required to reduce
the self-heating tdnym < 10 eV.
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