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Abstract

Purpose—The aim of the study was to develop and validate machine learning models to predict 

the personalized risk of 30-day readmission with venous thromboembolism (VTE).

Design—This study was a retrospective, observational study.

Methods—We extracted and preprocessed the structured electronic health records from a single 

academic hospital. Then we developed and evaluated three prediction models using Logistic 

Regression, Balanced Random Forest, and Multilayer Perceptron.

Results—The study sample included 158,804 total admissions; among them, VTE positive cases 

were 2,080 admissions from 1,695 patients (1.31%). Based on the evaluation results, the Balanced 

Random Forest outperformed the other two risk prediction models.

Conclusion—This study delivered a high performing, validated risk prediction tool using 

machine learning and EHRs, to identify patients at high risk of VTE after discharge.

Clinical Relevance—The risk prediction model developed in this study can potentially guide 

treatment decisions for discharged patients for better patient outcomes.
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Introduction

Venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and 

pulmonary embolism (PE), is a serious cause of patient morbidity and mortality in hospitals, 

and associated with substantial economic burden (Weycker et al., 2018, Le Sage et al., 

2008). Moreover, the Centers for Disease Control and Prevention (CDC) has estimated that 

the number of people affected by VTE would increase each year (CDC, 2020). Findings 

indicate that more than 50% of VTEs are related to a recent hospitalization or surgery, and 

most of these do not occur until after discharge (Streiff et al., 2014). Kahn et al. (2013) 

suggest that these incidents are preventable, but fewer than half of hospitalized patients 

receive appropriate prevention. Ineffective prevention and management strategies for VTE 

after discharge can lead to readmission with VTE, which directly relates to patient harm and 

healthcare cost (Beckman et al., 2010).

Therefore, patients at risk for VTE should be carefully monitored even after discharge 

to prevent the readmissions with acute VTE. However, estimating the risk of VTE is 

challenging. The risk of VTE can be lowered by prophylactic anticoagulation therapy, 

but extended anticoagulation after hospital discharge can be associated with an increased 

risk of adverse event such as a major bleeding episode (Fahrni et al., 2015). There are 

existing risk assessment models for VTE (Spyropoulos et al., 2012; Hachey et al., 2016) 

– however, patients are assessed for VTE risk at the time of admission. To the best of our 

knowledge, these models are not developed for discharged patients and there are no standard 

procedures for assessing VTE risk when discharged. Hence, there is an imperative need for a 

prediction tool that accurately predicts the individualized risk for readmission with VTE for 

all hospitalized patients to provide improved discharge planning and transition of care.

Accurate identification of at-risk patients is critical to achieving more timely and proper 

intervention. Studies suggest that building prediction models using machine learning (ML) 

methods along with electronic health record (EHR) data can drive personalized medicine 

and improvement of quality of care (Miotto et al., 2016; Chen & Asch, 2017). The 

enormous volume of risk patient information captured in the EHR can be leveraged by 

the ML approach for identifying patients at risk for readmission with VTE. Prediction 

models can facilitate identification of patients at risk for hospital readmissions and identify 

relevant factors to potentially inform tailored interventions for those who might benefit most 

(Kansagara et al., 2011).

The primary goal of this study was to create a risk prediction tool for VTE management 

for discharged patients. More specifically, this study sought to develop and validate ML 

models to predict the personalized risk of 30-day readmission with VTE and determine 

whether further prophylactic anticoagulation is necessary for those patients. We utilized 

ML approaches such as Logistic Regression (LR), Balanced Random Forest (BRF), and 

Multilayer Perceptron (MLP). The dataset was divided into a training set and a validation 

set for model development and validation. The models were then evaluated using statistical 

measures.
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Methods

Data Sources

This was a retrospective study using de-identified structured patient data from the EHR used 

at a tertiary academic hospital. The data are stored in a research clinical data warehouse 

(CDW) and analyzed in a secure computing environment. The CDW was structured using 

the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), 

which enables standardized representation of patient information for efficient and high­

quality computing. The patient cohort analyzed for this study include adult patients (18 

years or older) who had been hospitalized and had at least one subsequent visit recorded 

in the EHR after the initial discharge, between January 1, 2009 and September 20, 2020, 

to exclude patients whose hospitalization was the only contact with this healthcare system. 

Multiple hospitalizations of the same patient within this hospital were possible as long as 

they occurred >30 days after any previous hospitalization.

Predictor and Outcome Variables

The following structured data were extracted from the CDW for analysis: patient 

demographics (age, gender, race/ethnicity), diagnoses (ICD-9-CM/ICD-10-CM), procedures 

(CPT-4), medications (Anatomical Therapeutic Chemical classification 3rd level), Charlson 

Comorbidity score, medical history (ICD-9-CM/ICD-10-CM), surgical vs. medical patients, 

and length of inpatient stay.

As a way to improve computing efficiency, we grouped relevant diagnoses and medications 

into higher-level diagnosis groups and medication classes. For diagnoses and medical 

history, matching concepts of ICD-9-CM and ICD-10-CM codes were identified, and the 

first three characters of the ICD codes (e.g., Z83 from ICD-10-CM), i.e. the “categories” 

that describe the general type of the injury or disease, were used. Also, we used the 

third level of the Anatomical Therapeutic Chemical (ATC) classification codes that indicate 

the therapeutic/pharmacological subgroup. Charlson Comorbidity score was computed and 

appended to the final feature set using the diagnostic categories and weights (Sundararajan 

et al., 2004). A higher Charlson comorbidity score indicates a higher level of severity of 

the conditions (Charlson et al., 1994). Surgical patients referred to the those who received 

a surgical procedure during the inpatient stay (eligible CPT-4 codes are listed in Table S1), 

and medical patients were those who did not receive any surgical procedure during the 

inpatient stay.

The primary outcome variable was the 30-day readmission with acute DVT or PE (excluding 

pregnancy-related VTE). We used the ICD-9-CM and ICD-10-CM diagnosis codes for acute 

DVT, or PE as specified by the Agency for Healthcare Research and Quality (Table S2) 

(Secemsky et al. 2018). Any revisit with acute DVT or PE within ≤ 30 days of discharge, 

diagnoses at the time of revisit or within 24 hours of revisit, was considered as a VTE 

positive outcome. Any revisit that did not meet these criteria was considered as a VTE 

negative outcome. Since each patient can have multiple hospitalizations under different 

medical conditions and result in different consequences, we used each admission as a 

unit of analysis. Because the data are fully de-identified, this study was not considered 
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human subject research by the Institutional Review Board at the University and no informed 

consent was required.

Data Preprocessing and Feature Selection

To effectively train a prediction model, raw input data must be transformed into a format 

such that numerical models can readily recognize and compute. For example, the ranges 

of ages and length of inpatient stay are different. Such a differences can cause certain 

features to dominate the training process regardless of its actual importance/relevance. Thus, 

we applied simple min-max normalization to those features to avoid unintended weighting. 

Also, features with zero-variance (constant over every data point) were eliminated since it 

would only increase the computational cost and add no extra information to the model. A 

data point with missing features were dropped as well. Lastly, categorical features (such 

as race, ethnicity, and diagnosis code) were pivoted into binary features using one-hot 

encoding; the new binary feature corresponds to a single category which is assigned 1 if a 

data point belongs to the category, and 0 if not.

When constructing and evaluating prediction models, it is important that they are not built 

and tested on the same data sets for accuracy because such models may not be generalizable 

to unseen, real-world data sets. Therefore, a data set is often divided into two sets: a training 

set, which is a set of examples used to develop the prediction model; and a test set, which is 

unseen by the model during training and used to estimate the prediction performance of the 

model. In this study, we followed the norm of ML studies in healthcare to use 70% of the 

data for the training set and 30% for the test set.

We performed a feature selection from the training set to avoid overfitting and to decrease 

computational memory requirements. Feature selection provides insights about a set of 

relevant features associated with the outcome. A full set of features were tested to assess 

predictive value using a classifier called BRF model (Chen et al. 2004). Similar to 

conventional Random Forest (RF) models, a trained BRF model provides feature importance 

for each feature wherein a higher value means more relevance to the prediction accuracy. 

These feature importance values can be used as thresholds to select relevant features for the 

model, and in our study, we used the mean of the feature importance as the cut-off criterion. 

That is, if a feature’s relevance score is lower than overall average, then the feature was 

dropped. Once the features were selected from the training set, they were applied to the test 

set for further validation.

Prediction Model Development

We trained and compared the performance of three prediction models using LR, BRF, and 

MLP. Since the unbalanced classes in our dataset might lower the predictive power of 

the model, the class weighting approach, which is popularly used in highly imbalanced 

distributions (Japkowicz & Stephen, 2002), was utilized for the LR and MLP models as a to 

countermeasures. This method was not applied to the BRF model because the BRF model 

automatically adjusts imbalanced conditions by using a balanced down-sampling approach. 

The class weighting approach refers to the classification method that uses misclassification 

costs as a penalty to correct class imbalance; the goal is to minimize the total cost (Ling & 
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Sheng, 2011). Mostly, the rarer class is regarded as positive class; misclassifying an actual 

positive as a negative entails a much higher cost than misclassifying an actual negative as 

a positive. In the class weighting approach, any given instance should be classified into the 

class that has the minimum expected cost. This principle prevents a instance from being 

classified as a false negative.

Logistic regression.—Logistic regression uses a set of independent features to model 

the dichotomous classes. Logistic regression builds a model to predict the odds of an 

event’s occurrence using an odds ratio (OR). The ORs show the magnitude of each feature’s 

contribution to the outcome variable.

Balanced Random Forest.—The BRF model is based on the RF approach using 

balanced down-sampled data to avoid poor performance for predicting the minority class 

(Chen et al., 2004; Lemaître et al., 2017). The RF model constructs a large number 

of individual decision trees at training and operates as an ensemble for more accurate 

prediction. A decision tree uses recursive data separation to construct a tree for the purpose 

of improving predictive accuracy. Each individual tree outputs a class prediction, and the 

class with the most votes becomes the RF model’s prediction.

Multilayer Perceptron.—An MLP is a robust, supervised learning algorithm and a class 

of feedforward artificial neural network used to solve complex classification problems (Pal 

& Mitra, 1992). An MLP model has a minimum of three layers of nodes: an input layer, a 

hidden layer, and an output layer. Except for the input nodes, each node is a perceptron that 

uses a nonlinear activation function which enables an MLP model to fit complex distribution 

of data.

Data from the CDW, stored in Microsoft SQL Server 2016 (Seattle, WA), were extracted 

and managed using a structured query language (SQL). Python software v.3.8.3 was used 

for 1) data preprocessing, 2) prediction model development for logistic regression (Scikit­

learn v0.23.1), balanced random forest (imbalanced-learn v0.7.0), and multilayer perceptron 

(TensorFlow 2.3.0), and 3) evaluation of prediction models. The raw CSV file from SQL 

query was transformed to numerical multidimensional array, then split into training and 

test set using Scikit-learn utility functions. Scikit-learn v0.23.1 library in Python was used 

to optimize hyperparameters of the prediction methods. Also, Keras module inside the 

TensorFlow 2.3.0 was utilized to build the neural network.

Performance Metrics

Discrimination ability is often used to assess the quality of a classification model (Witten et 

al., 2011). Commonly used measures of discrimination are area under the receiver operating 

characteristic (AUROC) curve, sensitivity, and specificity (Beck & Shultz, 1986). The 

AUROC curve is used to evaluate and compare the overall model performance (Witten et 

al., 2011). It ranges from 0.5 to 1, with higher values suggesting better overall performance. 

Sensitivity, which is also called a recall or true positive rate, refers to the ability of a test 

to be positive when the condition is actually present. Specificity measures the proportion of 

true negatives that are correctly identified as negative. Both sensitivity and specificity ranges 
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from 0 to 1, and it is considered the higher, the better. In this study, parameters of the models 

were tuned to enhance the AUROC curve and to optimize sensitivity in particular, since the 

objective was to maximize the capture of patients with a positive outcome.

The predictive accuracy of each model was also evaluated with 10-fold cross-validation, 

a standard way to validate the performance of ML models (Witten et al., 2011). In this 

process, the data are divided randomly into 10 approximately equal partitions; each partition 

is then used for testing, while the remainder is used for training.

Results

Sample Characteristics

After excluding the data points that had missing values from 171,136 admissions identified, 

the final sample included a total of 158,804 admissions associated with 92,481 distinct 

patients from January 1, 2009 to September 20, 2020. Among them, VTE positive cases 

(30-day readmission with acute DVT or PE) included 2,080 admissions of 1,695 patients 

(1.31%); and VTE negative cases (not admitted at all within 30 days) included 156,724 

admissions of 90,786 patients.

Table 1 reports the basic characteristics of the study sample. The VTE positive group was 

older (mean: 55.4 years old; SD: 16.6) than the VTE negative group (mean: 52.0; SD: 18.8). 

The VTE positive group had a higher percentage of males (50.7%) compared to the VTE 

negative group (47.2%); and higher percentages of White and non-Hispanic (72.9% and 

63.8%, respectively) compared to the VTE negative group (69.0% and 61.5%, respectively). 

Average length of stay during the initial hospitalization was 6.2 days among VTE positive 

patients, versus 5.4 days among VTE negative patients. The most prevalent primary 

diagnosis for the VTE positive group was “symptoms and signs involving circulatory and 

respiratory systems” (61.2%); whereas for the VTE negative group it was hypertensive 

diseases (45.5%). Antithrombotic agents were the second most commonly administrated 

medication for the VTE positive group, prescribed for 85.6% of the patients. By contrast, 

this medication was only administrated for 65.1% of the patients in the VTE negative 

group, ranked the fifth among the prevalently used medications during hospitalization. 

The major commonly performed procedure across both groups was cardiovascular system­

related procedures. The most prevalent medical history for both groups was diseases of the 

circulatory system, but the percentages were different (VTE positive group: 40.6%; VTE 

negative group: 14.4%). The VTE positive groups had a higher comorbidity score (mean: 

4.4; SD: 4.7) than the VTE negative group (mean: 3.4; SD: 4.7). Both groups had higher 

percentages of medical patients than surgical patients (13%), with the VTE positive group 

had a relatively lower percent of surgical patients (10%, versus 13.4% for the VTE negative 

group).

Data Preprocessing and Feature Selection

The BRF model was tested for feature selection with an AUC=0.84 and testing accuracy 

of 78.2%. Based on the model output, 189 features were included in the final analysis 

from a total of 641 candidate features. The ten selected features with the highest feature 
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importance are presented in Figure 1. These include: 1) Diseases of veins, lymphatic vessels 

and lymph nodes, 2) Pulmonary heart disease and diseases of pulmonary circulation, 3) 

Noninvasive vascular diagnostic studies, 4) Age at the initial inpatient visit, 5) Personal 

history of diseases of the circulatory system, 6) Charlson Comorbidity score, 7) Length of 

the initial inpatient stay, 8) Antithrombotic Agents, 9) Symptoms and signs involving the 

circulatory and respiratory systems, and 10) Diagnostic radiology.

Prediction Model Development

Three prediction models were developed using LR, BRF, and MLP. As mentioned earlier, 

only the LR and MLP models used the class weighting approach to counter the imbalanced 

classes since the BRF model automatically balances the skewed classes. For the LR model, 

we used standard implementation from the Scikit-learn library in Python. We used L2-norm 

for the penalty with L-BFGS optimizer with enough number of iterations to full converge 

under the given tolerance (0.0001).

The BRF and MLP models require a set of hyperparameters that need to be tuned for 

optimal performance. In this study, the hyperparameters were tuned with 10-fold cross­

validation for given parameter ranges to maximize sensitivity. For the layers in the MLP 

model, we used Rectified Linear Unit (ReLU) for the activation function in order to learn the 

non-linear distribution of the data, and Dropout layers for the regularization, which helps to 

prevent overfitting (Nair and Hinton, 2010; Srivastava et al., 2014). The number of epochs, 

learning rate, number of layers, neurons per layer, and dropout parameter in the MLP model 

were treated as hyperparameters for the tuning. We used 100 epochs with early stopping, the 

learning rate of 0.0002, two hidden layers with 50 neurons each, and a Dropout rate of 0.5. 

For the RBF model, the number of trees and the maximum depth of a tree were tuned. We 

found that 33 maximum depth and 630 trees were optimal for our data.

Performance Evaluation

Predictive performance was evaluated using the AUROC curve, sensitivity, and specificity 

(Table 2). In this study, the AUROC curve and sensitivity had a higher priority in evaluation 

to measure the overall performance and the true positive rate to maximize the recall of VTE 

positive cases. We also evaluated the balance between the sensitivity and specificity. The 

BRF model outperformed the other two models, showing the highest AUROC curve (0.84) 

and sensitivity (0.74). Although the LR model showed the highest specificity (0.84), its 

sensitivity was the lowest (0.69). Therefore, our results show that the BRF model has the 

best performance for VTE risk prediction for our study based on the predetermined criteria.

Discussion

Reducing hospital readmissions, particularly those related to post-discharge VTE, is critical 

to improving discharge planning and transition of care. To date, risk prediction tools that 

can identify patients at risk for developing VTE after discharge are lacking. This study 

developed a high-performing, validated risk prediction tool using an RF model derived from 

real-world evidence—the rich data from EHR—to identify patients at risk of VTE after 

discharge, potentially guiding treatment decisions for community-discharged patients for 
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better patient outcomes. We believe that such a model, when deployed in a clinical setting, 

has great potential to improve the quality of health care delivery and positively affect patient 

health, as demonstrated in many other related diseases areas (Shameer et al., 2017).

The results of this work also showed that the VTE positive group had several predisposition 

factors for developing post-discharge VTE such as older age, higher comorbidity, longer 

length of stay, higher percentages of circulatory and respiratory symptoms, and a higher 

percentage of veins, lymphatic vessels, and lymph nodes disease. The VTE positive group 

stayed in the hospital longer on average (6.2 days) than the VTE negative group (5.4 

days), supporting the existing evidence that the VTE events are associated with an increased 

length of stay (Amin et al., 2019). Having a lower percentage of surgical patients for the 

VTE positive group can be explained by VTE prophylaxis. VTE prophylaxis is essential in 

managing surgical procedures; most surgical patients receive prophylactic anticoagulation 

therapy during hospitalization; some even after discharge. Therefore, the risk prediction 

model developed in this study can be implemented in real clinical settings to guide the 

decision on dose or duration of prophylactic anticoagulation treatment. The most prevalent 

diagnosis for the VTE positive group was symptoms and signs involving circulatory and 

respiratory systems (61.2%), which are known risk factors for VTE (Anderson & Spencer, 

2003). It is possible that having VTE during an inpatient stay affected the VTE development 

after discharge: the antithrombotic agents were frequently used among the VTE positive 

groups (85.6%) compared to the VTE negative group which may be attributable to the fact 

that the former had higher percentages of VTE diagnosis during the inpatient stay and thus 

had more prescriptions of antithrombotic agents. The prediction model developed in this 

study can support personalized treatment decisions for this group of patients who are at risk 

for hospital acquired VTE at discharge: if a patient is at risk for 30-day readmission with 

VTE, then appropriate prophylactic anticoagulant can be ordered at discharge to prevent the 

readmission. The most prevalent medical history was diseases of the circulatory system for 

both groups, with the VTE positive group having a much higher percentage (40% vs. 14%). 

This may indicate that a prior VTE incidence increases the likelihood of VTE development 

after discharge from a later hospitalization.

As we enter a precision health era where many individual variables are taken into account 

for disease prevention and health promotion (Ashley, 2016), there is a growing need 

for nursing researchers and healthcare providers to provide more personalized care by 

discovering new insights from the large data captured in EHRs. The secondary use of 

EHR data, particularly for risk prediction, provides meaningful guidelines using real-world 

evidence for improving quality of care and patient safety while lowering cost. The use of 

EHR data and big data analytics for research in nursing, the nation’s largest healthcare 

profession, could enhance the visibility of nursing care and knowledge generation.

There are several limitations to this study. The EHR data were from a single academic 

medical center; therefore, whether the findings can be generalized to other institutions 

and other clinical settings require further validation. To overcome this limitation, external 

validation can be carried out as future work at additional sites with different patient 

populations and providers. Further, the data set analyzed in this study was imbalanced, 

and the VTE positive group was relatively small (1.31%) compared to the size of the VTE 
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negative group. Although imbalanced data were corrected and an alternative approach was 

used, future work involving more VTE positive patients would be needed to improve the 

model validity.

Conclusion

This study developed and validated a high-performing risk prediction model using machine 

learning and EHRs, to identify at-risk patients for 30-day readmissions with VTE. With 

the complicated nature of estimating the risk of VTE after discharge, it is necessary 

to precisely predict the likelihood of individualized outcome for each patient. The risk 

prediction model developed in this study provides a personalized decision support tool that 

can be implemented in real clinical settings with the potential for producing better patient 

outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Feature Importance from the Balanced Random Forest Model
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Table 1.

Sample Characteristics

Total (n=158,804) 30-day VTE positive 
readmission (n=2,080)

30-day VTE negative 
readmission (n=156,724)

Distinct number of patients 92,481 1,695 90,786

Age at the time of initial visit, y, 
mean (SD)

52.1 (18.8) 55.4 (16.6) 52.0 (18.8)

Gender, n (%)

Male 75,005 (47.2%) 1,055 (50.7%) 73,950 (47.2%)

Female 83,726 (52.7%) 1,023 (49.2%) 82,703 (52.8%)

Unknown 73 (0.1%) 2 (0.1%) 71 (0.0%)

Race, n (%)

White 109,700 (69.1%) 1,516 (72.9%) 108,184 (69.0%)

Asian 21,686 (13.7%) 219 (10.5%) 21,467 (13.7%)

Black 5,468 (3.4%) 113 (5.4%) 5,355 (3.4%)

Other Race 20,810 (13.1%) 228 (11.0%) 20,582 (13.1%)

Unknown 1,140 (0.7%) 4 (0.2%) 1,136 (0.7%)

Ethnicity, n (%)

Hispanic 53,355 (33.6%) 650 (31.3%) 52,705 (33.6%)

Non-Hispanic 97,780 (61.6%) 1,329 (63.9%) 96,451 (61.5%)

Unknown 7,669 (4.8%) 101 (4.9%) 7,568 (4.8%)

Length of initial inpatient stay, 
days, mean (SD)

5.4 (8.0) 6.2 (7.9) 5.4 (8.0)

Prevalent Diagnoses 1 Hypertensive diseases
(72,449, 45.6%)

Symptoms and signs involving 
circulatory and respiratory 
systems
(1,273, 61.2%)

Hypertensive diseases
(71,372, 45.5%)

2 Metabolic disorders
(70,308, 44.3%)

Hypertensive diseases
(1,077, 51.8%)

Metabolic disorders
(69,236, 44.2%)

3 General symptoms and signs
(68,530, 43.2%)

General symptoms and signs
(1,072, 51.5%)

General symptoms and signs
(67,458, 43.0%)

4 Symptoms and signs involving 
circulatory and respiratory 
systems
(68,312, 43.0%)

Metabolic disorders
(1,072, 51.5%)

Symptoms and signs involving 
circulatory and respiratory 
systems
(67,039, 42.8%)

5 Symptoms and signs involving 
digestive system and abdomen
(61,626, 38.8%)

Diseases of veins, lymphatic 
vessels and lymph nodes, not 
elsewhere classified
(1,018, 48.9%)

Symptoms and signs involving 
digestive system and abdomen
(60,709, 38.7%)

Prevalent Medications 1 Solution additives
(133,839, 84.3%)

Solution additives
(1,917, 92.2%)

Solution additives
(131,922, 84.2%)

2 Drugs for constipation
(127,394, 80.2%)

Antithrombotic agents
(1,780, 85.6%)

Drugs for constipation
(125,775, 80.3%)

3 Other analgesics and 
antipyretics
(124,735, 78.5%)

Drugs for constipation
(1,619, 77.8%)

Other analgesics and 
antipyretics
(123,215, 78.6%)

4 Opioids
(112,503, 70.8%)

Other analgesics and 
antipyretics
(1,520, 73.1%)

Opioids
(111,005, 70.8%)
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Total (n=158,804) 30-day VTE positive 
readmission (n=2,080)

30-day VTE negative 
readmission (n=156,724)

5 Antithrombotic agents
(103,392, 65.1%)

Opioids
(1,498, 72.0%)

Potassium
(102,247, 65.2%)

Prevalent Procedures 1 Cardiovascular system related 
procedure
(128,638, 81.0%)

Cardiovascular system related 
procedure
(1,888, 90.8%)

Cardiovascular system related 
procedure
(126,750, 80.9%)

2 Hospital inpatient services
(112,109, 70.6%)

Hospital inpatient services
(1,804, 86.7%)

Hospital inpatient services
(110,305, 70.4%)

3 Diagnostic radiology
(112,085, 70.6%)

Diagnostic radiology
(1,802, 86.6%)

Diagnostic radiology
(110,283, 70.4%)

4 Emergency department services
(94,540, 59.5%)

Pulmonary procedures
(1,535, 73.8%)

Emergency department services
(93,165, 59.4%)

5 Pulmonary procedures
(88,314, 55.6%)

Emergency department services
(1,375, 66.1%)

Pulmonary procedures
(86,779, 55.4%)

Prevalent Medical 
History

1 Diseases of the circulatory 
system
(23,473, 14.8%)

Diseases of the circulatory 
system
(845, 40.6%)

Diseases of the circulatory 
system
(22,628, 14.4%)

2 Other specified personal risk 
factors, not elsewhere classified
(19,525, 12.3%)

Other specified personal risk 
factors, not elsewhere classified
(365, 17.5%)

Other specified personal risk 
factors, not elsewhere classified
(19,160, 12.2%)

3 Other specified conditions
(17,569, 11.1%)

Other specified conditions
(190, 9.1%)

Other specified conditions
(17.379, 11.1%)

4 Pedal cycle driver injured in 
collision with car
(6,663, 4.2%)

Pedal cycle driver injured in 
collision with car
(112, 5.4%)

Pedal cycle driver injured in 
collision with car
(6,551, 4.2%)

5 Malignant neoplasm of 
digestive organs
(6,551, 4.1%)

Malignant neoplasm of digestive 
organs
(107, 5.1%)

Malignant neoplasm of 
digestive organs
(6,444, 4.1%)

Charlson Comorbidity Score, mean 
(SD)

3.4 (4.7) 4.4 (4.7) 3.4 (4.7)

Surgical patients (%) 21,265 (13.4%) 215 (10.3%) 21,050 (13.4%)

Medical patients (%) 137,539 (86.6%) 1,865 (89.7%) 135,674 (86.6%)

J Nurs Scholarsh. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Park et al. Page 14

Table 2.

Prediction Model Evaluation

AUROC curve Sensitivity Specificity

Logistic Regression * 0.83 0.69 0.84

Multilayer Perceptron * 0.83 0.71 0.80

Balanced Random Forest 0.84 0.74 0.80

*
Class weighting added
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