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A B S T R A C T

The modal characteristics of structures are usually computed disregarding any interaction with the soil. This
paper presents a finite element-perfectly matched layers model to compute the modal characteristics of 2D and
3D coupled soil-structure systems while taking fully into account dynamic soil-structure interaction. The
methodology can facilitate the interpretation of experimentally identified modal characteristics by assessing the
importance of dynamic soil-structure interaction.

1. Introduction

The modal characteristics of structures are usually computed with
finite element models disregarding any interaction with the soil. These
modal characteristics can differ from the ones identified by means of
experimental modal analysis [1]. Finite element updating is used to
reduce the discrepancy between numerically predicted and experi-
mentally identified modal characteristics by appropriately calibrating
model parameters [2]. Dynamic soil-structure interaction (SSI) affects
the modal characteristics due to the more flexible support conditions
and the dissipation of energy in the soil [3]. Disregarding dynamic SSI
might result in poor correspondence between numerical and experi-
mental modal characteristics. Effects from dynamic SSI might be erro-
neously lumped to structural parameters during finite element up-
dating, leading to model errors adversely affecting accurate prediction
of structural vibration. Dynamic SSI can be accounted for by using
coupled finite element-boundary element (FE-BE) formulations [4] or
finite element formulations in conjunction with absorbing boundary
conditions (ABC) [5] or perfectly matched layers (PML) [6]. In these
models, the influence of the semi-infinite extent of the soil is explicitly
taken into account by allowing the radiation of elastodynamic waves.

The computation of the modal characteristics of these coupled soil-
structure models requires the solution of non-linear eigenvalue pro-
blems which are more challenging to solve than the generalized ei-
genvalue problem. This paper presents a FE-PML model facilitating the
computation of the modal characteristics of 2D and 3D coupled soil-

structure systems. These results can support the interpretation of ex-
perimentally identified modal characteristics by quantifying the influ-
ence of dynamic SSI. Ultimately, the FE-PML model can be used in vi-
bration based finite element updating where both soil and structural
parameters are calibrated.

2. FE-PML model

Fig. 1 shows the FE-PML model used to compute the modal char-
acteristics of coupled soil-structure systems. The structure Ωb is partially
embedded in a stratified soil Ωs

e. The computational domain Ω is com-
posed by the generalized structure = ∪Ω Ω Ωr b s

e modeled with FE and
the PML buffer zone Ωp simulating the truncated unbounded soil at Σrp.

The virtual work equation for the generalized structure Ωr in the
frequency domain is:

 ̂ ̂ ̂ ̂∫ ∫ ∫ ∫+ = +Ω ω ρ Ω Γ ΓLv C Lu v u v t v t( ) ( )d (i ) d ^ d ^ d
Ω Ω Γ Σ

n nT 2 T T T
r r r

N rp

(1)

where u is the displacement vector, ̂ ̂ ̂ ̂= =ϵ γ γ γ Lu{ϵ̂ , ϵ̂ , ϵ̂ , , , }xx yy zz xy yz zx
T

is the strain vector, L is a matrix containing differential operators,
 ̂̂ ̂ ̂ ̂ ̂ ̂= =σ ϵσ σ σ σ σ σ C{ , , , , , }xx yy zz xy yz zx

T is the stress vector collecting the
elements of the symmetric stress tensor σij, C is the constitutive matrix,

ρ is the density, t̂
n
are applied tractions with n the unit outward normal

vector and ̂v is a kinematically admissible virtual displacement field on
Ω. A hat above a variable denotes its representation in the frequency
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domain. The last integral on the right hand-side is the interaction term
on Σrp with the PML buffer zone Ωp where the traction equilibrium

+ =
−

t t 0^ ^n n
r p holds.

Complex coordinate stretching is applied inside the PML buffer zone
Ωp in order to artificially attenuate the elastodynamic waves [6,7]. For
a coordinate s, representing the x, y or z coordinate, the stretched co-
ordinate s͠ is defined as:

̂∫ ∫ ∫= + = + +s s λ s s s α s s
ω

α s s( )d ( )d 1
i

( )d͠
s

s

s

s

s

s
o s o 0s 1s

o

t

o

t

o

t

(2)

where so and st delimit the origin and the termination of the PML buffer
zone in the direction of the coordinate s and ̂λ s( )s is the stretch function
with α s( )0s and α s( )1s polynomial functions controlling the attenuation
of the evanescent and propagating waves inside the PML buffer zone
[8]. Introducing the complex coordinate stretching (2), the equilibrium
equation of the PML buffer zone Ωp is:

 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂+ + =σλ λ λ λ λ λ ω ρλ λ λ ΩL L L u( ) (i ) iny z x x z y x y z x y z
T T T 2

p (3)

where the differential operators Lx , Ly and Lz are defined as:
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Similarly, the kinematic equation of the PML buffer zone in stretched
coordinates, using ̂ =ϵ σD with D the compliance matrix, is:

 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + +σλ λ λ λ λ λ λ λ λ ΩD L L L u( ) inx y z y z x x z y x y z p (5)

The mixed formulation of Fathi et al. [9] is used for the modeling of
the PML buffer zone Ωp where both displacements and stresses are re-
tained as independent variables. The equilibrium Eq. (3) and the ki-
nematic Eq. (5) are treated independently. The integral form of the

equilibrium Eq. (3) is obtained by considering a kinematically ad-
missible virtual displacement field ̂v on Ω, integrating by parts the
terms depending on σ and applying the divergence theorem:

 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂
̂

∫ ∫
∫

+ + +

=
−

σλ λ λ λ λ λ Ω ω ρλ λ λ Ω

Γ

L v L v L v v u

v t

( ) d (i ) d

^ d

Ω y z x x z y x y z Ω x y z

Σ

n

T 2 T

T

p p

rp (6)

where the integral on the right hand-side is the interaction term with
the generalized structure Ωr. The integral form of the kinematic Eq. (5)
is obtained by considering a virtual stress field ̂τ on Ω:

 ̂ ̂̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂∫ ∫+ + − =τ τ σλ λ λ λ λ λ Ω λ λ λ ΩL L L u D( ) d d 0
Ω y z x x z x y z Ω x y z

T
y

T
p p

(7)

The dynamic SSI problem is formulated by taking into account the
equilibrium of tractions on the interface Σrp. Adding Eqs. (1) and (6)
yields:

 
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
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T

2 T T
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p
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N (8)

The combined integral Eqs. (7) and (8) describe the dynamic re-
sponse of the coupled soil-structure system. A standard Galerkin pro-
cedure is followed in the FE implementation. The displacement field u
and the virtual displacement field ̂v are approximated as  ≃u N uu and

̂ ̂≃v N vu with Nu a matrix containing globally defined shape functions.
Similarly, the stress field σ and the virtual stress field ̂τ are approxi-
mated as  ≃σ σNσ and ̂ ̂≃τ τNσ . Since Eqs. (7) and (8) hold for any
kinematically admissible virtual displacement field ̂v and virtual stress
field ̂τ , the following system of equations is obtained:
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where the block matrices are defined as follows:

̂
̂ ̂ ̂

∫ ∫
∫

= +

+
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ω ρλ λ λ Ω

S LN C LN N N

N N
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2
u
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r r

p (10)

̂ ̂ ̂ ̂ ̂ ̂ ̂∫= + +λ λ λ λ λ λ ΩS L N L N L N N( ) dσσ Ω y z x x z y x y zu u u u
T

p (11)

̂ ̂ ̂ ̂∫= − λ λ λ ΩS N DN dσ σσσ Ω x y z
T

p (12)

The system of Eqs. (9) is factorized into a rational form. In order to
improve the conditioning of the system and preserve its symmetry,
auxiliary stress variables = − σωβŝ (i ) 1 are introduced and the last row
of the system is multiplied by ωβi where the scaling factor β depends on
the stiffness and inertial parameters of the FE-PML model:

̂ ̂
̂ ̂

̂⎡

⎣
⎢

⎤

⎦
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⎧
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u
s
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i

i (i ) ^
σ

σ σσ

uu u

u
T 2 2 (13)

The polynomial products ̂ ̂ωλ λi y z, ̂ ̂ωλ λi x z, ̂ ̂ωλ λi x y and ̂ ̂ ̂ω λ λ λ(i ) x y z
2 that

now appear in Eq. (13) can be written as:

̂ ̂ = + + +

= + +

−

−
−

ωλ λ ω α α α α α α ωα α

ω d d ωd

i (i ) i
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y z y z y z y z y z

1
1 1 0 1 1 0 0 0

1
1 0 1 (14)

̂ ̂ = + + +

= + +

−

−
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ωλ λ ω α α α α α α ωα α

ω f f ωf

i (i ) i
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1
1 0 1 (15)

Fig. 1. FE-PML model.
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Using Eqs. (10)–(12) and (14)–(17), the system of equations (13) is
factorized as:
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where the block matrices are defined as follows:

∫ ∫= +ρ Ω c ρ ΩM N N N Nd d
Ω Ωuu u
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u 2 u

T
u

r p (19)
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T
u

r p (20)

∫= = −c ρ Ω jK N N d ( 1, 1)j Ω juu, u
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u
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∫= + +

= −

β d f g Ω

j

K L N L N L N N( ) d

( 1, 0, 1)

σj Ω j x j y j zus, u u u
T

p

(22)

∫= − = −β c Ω jK N DN d ( 1, 0, 1, 2)σ σj Ω jss,
2 T

p (23)

Although the FE-PML formulation is rather involved, the final form of
the system matrices (19)–(23) is simple and can be easily implemented
in existing finite element codes with minimum intervention. The system
of Eqs. (18) corresponds to the following rational form:

 ̂⎡
⎣

+ + + ⎤
⎦

=∼∼ ∼ ∼
ω

ω ωD K C M u f1
i

i (i )2
(24)

For 2D problems in the kl-plane the polynomial products of ̂ωλi k, ̂ωλi l

and ̂ ̂ω λ λ(i ) k l
2 in Eq. (13) are quadratic and the matrix ∼D drops from the

system of equations. In this case, Eqs. (21)–(23) apply for ≥j 0 with the
stretch function parameters α s0 and α s1 of the non-active coordinate s
equal to one.

3. Solution of the eigenvalue problem

The modal characteristics of the coupled soil-structure system are
obtained by solving the rational eigenproblem:

⎡
⎣⎢

+ + + ⎤
⎦⎥

=∼∼ ∼ ∼ ψ
λ

λ λD K C M 01
m

m m m
2

(25)

where �∈λm and �∈ψm
n = …m n( 1, ,3 ) with n the number of de-

grees of freedom in the FE-PML model. In the 2D case, the rational
eigenproblem (25) simplifies to a quadratic eigenproblem with �∈ψm

n

= …m n( 1, ,2 ).
The eigenproblem (25) is transformed into a larger linear matrix

pencil which has the same eigenvalues as the original problem. Eq. (25)
can be related to the generalized eigenvalue problem by defining the
auxiliary vectors =χ ψλm m m1 , =χ ψm m2 and =χ ψ λ/m m m3 . Rearran-
ging Eq. (25) and using these auxiliary vectors, the following linear
matrix pencil λR( ) can be used [10]:
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where �∈λm and �= = ∈∼ψ χ χ χ ψ ψ ψλ λ{ , , } { , , / }m m m m m m m m m
T

1
T

2
T

3
T T T T 3n. In

a similar way, defining the auxiliary vectors =χ ψm m1 and
=χ ψλm m m2 , the following linear matrix pencil λQ( ) can be used in the

2D case [11]:
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where �∈λm and �= = ∈∼ψ χ χ ψ ψλ{ , } { , }m m m m m m
T

1
T

2
T T T 2n.

A compact rational Krylov (CoRK) eigensolver is used [12]. This
eigensolver exploits the Kronecker structure below the first block row of
the linearization pencils (26) and (27) and involves only matrix and
vector operations of the original non-linear dimension n instead of n3
for (26) and n2 for (27) [13]. In the case of large-scale problems, the
extra memory and orthogonalization cost due to the linearization of the
original eigenproblem becomes negligible. Since only a subset of the
eigenpairs ψλ( , )m m of the coupled soil-structure system is usually of
interest, the search of eigenvalues can be limited to the neighborhood
of a few fixed base structure eigenfrequencies ωrs (Fig. 2a).

The eigenpairs ψλ( , )m m might correspond to modes of the coupled
soil-structure system or non-physical modes of the PML. The real part of
the eigenvalues λm is always negative for modes of the coupled soil-
structure system ensuring that energy can only be dissipated within the
system. These modes can be sorted into modes of the superstructure
which tend to have small to moderate damping and modes of the
generalized structure which generally are heavily damped. The former
modes are of interest. The non-physical modes of the PML might have
eigenvalues with positive real part. These are related to the stability
issue of most PML formulations in the time domain. The cut-off fre-
quency of these modes depends on the PML stretch function formula-
tion. In order to assure that these modes lie well outside the frequency
range of interest, the PML formulation can be verified by computing the
fundamental solutions of the soil Ωs

e in the frequency range of interest
and examining their agreement with known solutions [14].

Fig. 2. (a) The eigensolver searches for eigenvalues ○( ) of the
coupled soil-structure system in the neighborhood of the fixed
base structure eigenfrequencies ωi rs ×( ). (b) Definition of the MCF
in Eq. (29). The × marks correspond to the modal displacements
ψkm of the superstructure. When a mode shape ψm is (virtually)

real, all the elements ψkm are located on a line.
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The eigenpairs ψλ( , )m m occur in complex conjugate pairs for real-
valued matrices ∼D, ∼K, ∼C and ∼M (i.e. systems without hysteretic
damping) and underdamped modes. The eigenfrequencies �∈ω mr and
modal damping ratios �∈ξm are computed from the corresponding
eigenvalues as:

= = −ω λ ξ λ
λ

| | and Re( )
| |m m m

m

m
r (28)

Fig. 2b shows how the phase coherence of a complex-valued mode
shape ψm can be quantified by using the modal collinearity factor (MCF)
[15]:

= −
A
A

MCF 1m
m

m

p

c (29)

where A mc is the circular area in the complex plane that is defined by
the modal displacement ψkm of the superstructure with the largest
magnitude and A mp is the convex area in the complex plane that enfolds
all the modal displacements ψkm of the superstructure. The MCF takes
values from 0 to 1 with a value close to 1 indicating a (virtually) real
mode.

4. Example

The methodology is demonstrated by computing the modal char-
acteristics of the Europroteas test structure (Fig. 3a) which was speci-
fically designed to study dynamic SSI [16]. The structure is assumed to
rest at the surface of a halfspace with shear wave velocity =C 130 m/ss ,
Poisson's ratio =ν 0.43 and density =ρ 2050 kg/m3. The eigen-
frequencies of the first lateral and torsional mode of the undamped
fixed base model of the structure are =f 9.42 Hzs1 and =f 12.66 Hzs2 ,
respectively. The modal characteristics of the Europroteas test structure
are affected by dynamic SSI with eigenfrequency shifting to sig-
nificantly lower values and increased modal damping due to the ra-
diation of elastodynamic waves in the soil. The corresponding eigen-
frequencies and modal damping ratios considering dynamic SSI are

=f 5.19 Hzr1 , =ξ 0.0211 and =f 11.53 Hzr2 , =ξ 0.0312 . Figs. 3b and c
show the related mode shapes ψ1 and ψ2 with =MCF 0.991 and

=MCF 0.982 , which indicate virtually real modes. The experimentally
identified eigenfrequencies and (total) modal damping ratios are

= −f * 4.1 4.3 Hzr1 , = −ξ * 0.030 0.0341
t for the two lateral modes and

=f * 9.67 Hzr2 , =ξ * 0.0082
t for the torsional mode [17]. The numerically

predicted modal characteristics f mr and ξm do not match perfectly the
experimentally identified ones f *mr and ξ *m

t . However, they are a sig-
nificant improvement when compared to the modal characteristics of
the fixed base model. If dynamic SSI is disregarded in finite element
updating, its effects will be eventually lumped to structural parameters,
adversely affecting the accuracy of the updated model. The modal

characteristics of the Europroteas test structure considering dynamic
SSI can be employed in vibration based finite element updating where
both soil and structural parameters are updated.

5. Conclusions

This paper presents a FE-PML model to compute the modal char-
acteristics of 2D and 3D coupled soil-structure systems. The model is
developed using a mixed formulation for the PML where both dis-
placements and stresses are retained as independent variables. The re-
sulting eigenproblem, which has a rational form in 3D problems and a
quadratic form in 2D problems, is solved using a compact rational
Krylov eigensolver. The FE-PML model can be used to assess the in-
fluence of dynamic SSI on experimentally identified modal character-
istics with potential application in vibration based finite element up-
dating where both soil and structural parameters are calibrated.
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