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Statistics to Create the Perfect Bracket

Using Statistics to Create the

Perfect March Madness Bracket
Sarah Downs

1 Introduction

The goal of this project is to analyze data from NCAA Division One Men's 

basketball teams during the regular season to predict how they will perform 

during the National Championships, colloquially known as March Madness. I 

use a data set that ranks teams according to their Pomeroy College 

Basketball Ratings1. These ratings give in depth basketball statistics for each 

year from 2002 until present and use several different measures to help 

quantify how good or bad a team is. My analysis will take three parts: single 

linear analysis, multiple linear analysis, and polynomial regression. I start by 

attempting to do a single linear analysis on the data from the year 2016, first

using Adjusted Offensive Efficiency as the predictor and then using Adjusted 

Defensive Efficiency as the predictor. Next, I attempt a multiple linear 

analysis and find that by using both the Adjusted Offensive Efficiency and 

Adjusted Defensive Efficiency, the predictions greatly improve, but still are 

not perfect. Finally, I attempt polynomial regression using Adjusted Offensive

Efficiency as the predictor. After running each of these methods, I found that 

none of these can predict the perfect bracket, however the multiple linear 

1 https://kenpom.com/
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regression is able to perform surprisingly well, making the correct final 

ranking predictions approximately 62.33% of the time.

2 Data

For the purposes of my study, I will be analyzing data from the years 

2016, 2017, and 2018. In each of these years, there were 351 teams that 

played and are thus being analyzed. While there more years of data 

available, I chose to model only these three years for the sake of simplicity 

and the fact that the data set was already large enough that I can assume 

that adding in another year of data will not greatly change the outcomes. 

Additionally, as the years go by, the average player continually improves, so 

if there is a change in the important factors in the data it might be due to 

this and not actually representative of what the data and the teams look and 

play like today. There are twenty predictors in the data set. Though my 

methods to not use all twenty predictors, are still important to understand 

and are thus defined in the table below. 

Variable Variable 

Name

What it is

Rank Rank This is the teams ranking for each 

season. For all previous seasons 

(2002-2018) this matches with who 

won the National Championship, so 1

was the winner of the Championship,

2
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2 was the second place, etc. For 

2019 the National Championship has

not occurred yet so this is largely 

based on their Win-Loss Record as 

well as other factors that will be later

discussed.
Team Team This is the team's name.
Conf Conference This is the conference that the team 

plays in. There are 32 conferences in

total that play, each with between 9 

and 38 teams. To advance to the 

National Championships, a team 

must either win their conference or 

be granted an invitation to play 

known as an "at-large berth"2 which 

are granted based on how the teams

performed throughout the regular 

season.
AdjEM Adjusted 

Efficiency 

Margin

This is the difference between a 

team's offensive and defensive 

efficiency. "It represents the number 

of points the team would be 

expected to outscore the average D-I

team over 100 possessions and it 

2 https://kenpom.com/blog/ratings-glossary/
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has the advantage of being a linear 

measure."3 This is essentially the 

difference between how good a 

team's defense and offense is giving 

a full picture of how the team is 

overall.
AdjO Adjusted 

Offensive 

Efficiency

The "estimate of the offensive 

efficiency (points scored per 100 

possessions) a team would have 

against the average D-I defense."4 

This helps to measure how good a 

team's offense is. 
AdjO_Rank Adjusted 

Offensive 

Efficiency 

Ranking

This gives the ranking of teams with 

the highest to lowest adjusted 

offensive efficiency. The team 

ranked 1 will then be considered to 

have the best offense, with their 

offense being considered worse as 

the ranking drops.
AdjD Adjusted 

Defensive 

Efficiency

The "estimate of the defensive 

efficiency (points allowed per 100 

possessions) a team would have 

against the average D-I offense."5 

3 https://kenpom.com/blog/ratings-glossary/
4 https://kenpom.com/blog/ratings-glossary/
5 https://kenpom.com/blog/ratings-glossary/

4



Statistics to Create the Perfect Bracket

This helps to measure how good a 

team's defense is.
AdjD_rank Adjusted 

Defensive 

Efficiency 

Ranking

This gives the ranking of teams with 

the highest to lowest adjusted 

defensive efficiency. The team 

ranked 1 will then be considered to 

have the best defense, with their 

defense being considered worse as 

the ranking drops.
AdjT Adjusted 

Tempo

The "estimate of the tempo 

(possessions per 40 minutes) a team

would have against the team that 

wants to play at an average D-I 

tempo."6 This tells how often the 

team has possession of the ball.
AdjT_Rank Adjusted 

Tempo Ranking

This gives the ranking of teams with 

the highest to lowest adjusted 

tempo. The team ranked 1 will then 

have the highest average 

possessions per game while the 

team ranked the lowest will have the

lowest average possessions per 

game.
Luck Luck This measures the difference 

6 https://kenpom.com/blog/ratings-glossary/
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between a team's winning 

percentage and what is expected 

from its game efficiencies. 

"Essentially, a team involved in a lot 

of close games should not win (or 

lose) all of them. Those that do will 

be viewed as lucky (or unlucky)."7

Luck_Rank Luck Ranking This is the ranking of teams with the 

most to least luck. A ranking of 1 

means that the team had the most 

luck in their season, and a worse 

ranking means they had worse luck 

throughout the season.
SoS_AdjEM Strength of 

Schedule 

Adjusted 

Efficiency 

Margin

This is the efficiency margin adjusted

to consider the strength of schedule 

that a team has. This makes it easier

to "minimize the effect of outliers"8 

as it considers teams that had easier

schedules than others. If a team 

plays mainly tough teams then this 

rating isn’t as sensitive to the quality

of the bad teams it plays. On the 

other side of this, if a team plays 

7 https://kenpom.com/blog/ratings-glossary/
8 https://kenpom.com/blog/ratings-glossary/
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mainly easy teams it will not have a 

large effect.
SoS_AdjEM_Rank Strength of 

Schedule 

Adjusted 

Efficiency 

Margin Ranking

This gives the ranking of teams with 

the highest to lowest adjusted 

efficiency margin.

SoS_OppO Strength of 

Schedule 

Adjusted 

Offensive 

Efficiency

This is the Adjusted Offensive 

Efficiency with Strength of Schedule 

considered to better help make it, so

outliers do not affect the data as 

strongly.
SoS_OppO_Rank Strength of 

Schedule 

Adjusted 

Offensive 

Efficiency Rank

This gives the ranking of teams with 

the highest to lowest adjusted 

offensive efficiency. The team with 

the best offense will be ranked 1 and

teams with worse offenses will be 

ranked lower.
SoS_OppD Strength of 

Schedule 

Adjusted 

Defensive 

Efficiency

This is the Adjusted Defensive 

Efficiency with Strength of Schedule 

considered to better help make it, so

outliers do not affect the data as 

strongly.
SoS_OppD_Rank Strength of 

Schedule 

Adjusted 

This gives the ranking of teams with 

the highest to lowest adjusted 

defensive efficiency. The team with 

7
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Defensive 

Efficiency Rank

the best defense will be ranked 1 

and teams with worse defenses will 

be ranked lower.
NCSOS_AdjEm Non-Conference

Strength of 

Schedule 

Adjusted 

Efficiency 

Margin

This is the efficiency margin adjusted

to consider the strength of schedule 

for non-conference games. This 

considers how teams do at 

invitationals, showcases, and other 

games where teams can play other 

teams from outside their own 

conference.
NCSOS_AdjEM_Ra

nk

Non-Conference

Strength of 

Schedule 

Adjusted 

Efficiency 

Margin Rank

This is the ranking of teams with the 

highest to lowest non-conference 

strength of schedule adjusted 

efficiency margin.

3 Simple Linear Analysis

My first attempt at finding a correlation in the data is to take a simple 

linear approach. Using Rank as the response, and different variables as 

predictors, I would like to see if there are any variables that have a strong 

relation with the data and are able to explain a large amount of the data. 

Before attempting to do this though, I will plot the data to see if there 

8
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appears to be any obvious correlations. The result of this can be seen below 

in Figure 1. Here a strong correlation can be seen in the plots where the data

takes a very linear form, whereas weaker correlations appear more 

scattered. 

From this, the strongest relationships appear to occur between Rank and

AdjEM, Rank and AdjO, and Rank and AdjD. There are other variables that 

also show some relationship to Rank, such as SoS_AdjEM, SoS_OppO, and 

SoS_OppD. Somewhat surprisingly to me, Luck does not appear to have a 

correlation between rank, whereas I thought there would be some factor of a 

team continually being lucky and succeeding. With all of this in mind, I will 

start my analysis of the different variables. 

9
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Figure 1
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3.1 Adjusted Offensive Efficiency

Based on Figure 1, Adjusted Offensive Efficiency very clearly seems to 

have a linear relationship to a team's ranking, so I will start by delving into 

this.

As seen in the above analysis, the value for the multiple R-squared and 

Adjusted R-squared are 0.7618 and 0.7616 respectively, both of which are 

better predictors the higher the value is. This is better than I expected a 

single factor could predict the ranking because there are so many different 

variables that factor into how well a team plays. However, the Residual 

standard error (RSE) is 49.5, which is high, while this is a value that is a 

better predictor when lower. Additionally, below can be seen the plot of Rank

11
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vs AdjO with its line of best fit going through it.
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The line does appear to follow the general trend of the data, but there 

are very large residuals, or differences between the expected and predicted 

position. The plot of these residuals can be seen below:

13
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The above plot of residuals makes it clear that while using a single 

variable can generally predict some of the outcomes correctly, a linear fit 

with this variable is not the right approach. This plot can also help to explain 

why the RSE had such a high value.

To test the accuracy of this model for comparison's sake, I ran code 

which can be seen in Figure 2. I then created a second vector named rank 

ordered and sorted this vector from least to greatest. Finally, I created a 

third vector named correct which was the difference between rank and rank 

14
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order. All zero entries in the correct vector will indicate that a team's rank 

was predicted properly, while any non-zero entries indicate that the ranking 

was predicted incorrectly. 

Figure 2

As seen in Figure 3, this model only correctly predicted 6 of the team's 

ranking for 2018, or 1.7%. This poor accuracy is not surprising though so to 

the large residuals and poor results of both the RSE and R-squared values.  

3.2Adjusted Defensive Efficiency

Similarly to Adjusted Offensive Efficiency, Adjusted Defensive Efficiency 

seemed as it there could be some correlation between the data, so I will now 

run the same process as in section 3.1 to see if this is a better predictor. 

15
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Here it can be seen that the values for multiple R-squared and Adjusted 

R-squared are 0.7229 and 0.7227 respectively. This is a bit worse than the R-

squared values of the Offense. Additionally the RSE rose to 53.39. This leads 

me to believe that a team’s defense is not as good of a linear predictor of its 

ranking, as compared to its offense. This makes sense in that fact that while 

a team does need a good defense in order to make it so the opposing team 

cannot score on them, they cannot win without having a strong offense, 

making it so this quality is often seen more in teams that succeed. 

Additionally, if a team's offense is strong enough, then the team will likely 

hold possession of the ball for the majority of the game making it so their 

defense isn't needed as much in the game. 

16
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As done in section 3.1, I plot the line of best fit, seen above. Again the 

line follows the general trend of the data, but there are still very large 

residuals. Due to this fact, the residuals plot can be seen below. 

18
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This once again leads me to believe that a simple linear approach is not 

the right method to predict the final ranking of teams. This can be further 

proved by running the code from Figure 2 to test how accurate it is on our 

known results from past years:

19
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Running this shows that the accuracy of this model is slightly worse than 

that of the offensive, predicting only 1.1% of outcomes correctly. 

3.3Luck

Out of curiosity I wanted to see if there was any correlation at all 

between luck and rank, and if luck could reliably be used to measure how 

well a team performs. Based on the original graph, it could be predicted that 

luck will not be an accurate predictor of outcome. 

Unsurprisingly, Luck was found to be an insignificant value, with a very 

large RSE and R-squared values of almost 0. Based on this result, I will not 

run any further analysis on Luck as a predictor and will instead move onto 

other variables and methods. 

3.4Other Variables

The adjusted offensive and defensive efficiencies are both clearly seen to

be the most linear predictors, and as seen in sections 3.1 and 3.2, they are 

not able to explain the variance in the data and therefore will be poor 

predictors of a team's ranking at the end of the season. Knowing this, I feel 

20
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like it is safe to move on without testing the other variables, as I suspect 

they will only prove to show weaker correlations than the ones already seen.

4 Simple Linear Analysis

Since a simple linear model proved not to be the correct approach path 

to model my data, I will now attempt a multiple linear analysis. Starting off, I 

wanted to see which variables are most important to be used, and how many

I should be using to optimize my model. To do this I performed a Best Subset

Selection. This method takes into account a variety of predictors and tells 

the user which ones are best to predict the outcome. The results of this can 

be seen below:

Here it can be seen that when only using one predictor, it is best to use 

Adjusted Offense, and with two it is best to use Adjusted Offense and 

Adjusted Defense. Neither of these surprise me as they both seemed to be 

the most linear data and the strongest correlated. However what did surprise

me though is the inclusion of Luck when using three predictors. When 
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analyzing Luck as a single linear predictor, is seemed completely unrelated 

to a team’s ranking, therefore it's inclusion either means one of two things. 

The first is that when combining all of these terms Luck somehow does play 

a role that I am unable to explain. The second is that there is a sharp drop off

in the RSE and R squared values after the second term. To figure out which 

of these it is, I will need to compare the Residual Sum of Squares, Adjusted 

R-Squared, Cp/AIC, and BIC to see how many variables should be used, all of 

which can be seen below in Figure 4. For these tests, the best number of 

predictors can be seen by finding the minimum of the Residual Sum of 

Squares, Cp/AIC, and BIC, or the maximum of the Adjusted R-Squared.

22



Statistics to Create the Perfect Bracket

Figure 4
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Based on the above analysis, the optimal number of predictors is 2. 

Therefore the predictors that will be used for the model for the remainder of 

this section will be the Adjusted Offense and the Adjusted Defense. Running 

a simple analysis of these data sets provides the following information: 

By using these two predictors rather than just one, the model has greatly

increased. Now the RSE is only 18.78, which is still higher than I want to 

make a perfect bracket but is much improved from the models produced 

earlier. Similarly the Multiple R-squared and Adjusted R-squared values are 

0.9658 and 0.9657 which are immensely improved upon from before.

4.1Prediction Accuracy

Knowing the optimal number of predictors, and what these predictors 

are, I will begin testing and implementing this model to see when used on 

one specific year, how many of the team's rankings it can properly predict.

To find how many of the 351 were predicted accurately for the year 

2016, I used the following code which input the predicted values into a 

vector named rank.

24
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This code follows the same method as was run in the simple linear 

analysis. This leads to the following results which are produced.

From this I was able to see that 149 of the 351 teams, or 42%, were 

correctly predicted for the year 2016. Considering the different variables that

go into a team's rank, this is better than I expected this would be, but it still 

doesn't have very high odds and seems like there should be a better 

method. This is also a prediction for how many teams ranking it predicted 

out of all 351 teams, whereas March Madness only looks at the top 68 teams.

If we take this into account, we now get the following:

This tells a few things. First, I find it important to note that the 

accuracy greatly increases to predicting 61% of the games correctly. This 

means that the model is getting worse as a team is ranked lower. I 

25
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hypothesize that this is since as teams get worse, the numerical differences 

between each team are much smaller and that this data set does not do a 

good enough job capturing the differences between these teams. This is 

something that I would like to further explore to see if different data sets will 

improve this prediction accuracy, especially regarding worse teams. To make

sure this isn't only true of 2016, I will now run this with data from 2017 and 

2018 to make sure it is predicting at a similar rate.

For 2017, the calculations can be seen below:

For 2017, it is found that the accuracy for the entire league was 44% 

but for the top 64 teams it was about 63%.

For 2018, the calculations can be seen below:

For 2018 it is found that the accuracy for the entire league was 43% 

but for the top 64 teams it was about 63%.

26
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Therefore the multiple linear regression can predict the correct 

outcome of NCAA basketball approximately 43% of the time with regards to 

the whole league, and more importantly, approximately 62.33% of the time 

for the top 64 teams which is the number of teams participating in March 

Madness.

5 Polynomial Regression

In hopes of bettering the prediction rate of the linear model, I will now 

implement polynomial regression.

5.1Adjusted Offensive Efficiency

I began by creating five different polynomial regression models using 

Rank and the outcome and Adjusted Offense as the predictor. To see which 

of these is the best, I looked at the analysis of variance, or ANOVA. This 

allows the null hypothesis to be tested and helps to suggest which 

polynomial regression is the most accurate.

27
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Looking at this, only the linear, quadratic, and quintic models have 

values that suggest sufficiency. I will test the cubic and quintic models using 

2018 data here as I have already tested the linear model.

Starting by running analysis on the quadratic model, the following is 

outputted:

The quadratic model has Residual Standard Error and R-squared values 

that are comparable to that of the linear model, so I did not expect majorly 

improved performance. This was a correct assumption as it only correctly 

predicted six of the rankings correctly.

Now running the same analysis on the quintic model, the following is 

outputted: 

28
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This quintic model did just as bad as the quadratic model, also it only 

predicted six of the rankings correctly.

5.2Adjusted Defensive Efficiency

After how inaccurate the polynomial regression using adjusted offense 

was, I wanted to test defense to see if it was just as bad. I ran the ANOVA 

again as seen below, and it once again suggests using the quadratic and 

quintic models.

29
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Now I will use this information to test the models using 2018 data and 

see how accurate they are.

Starting with the quadratic model, the following is outputted:

The quadratic model is inaccurate, as it correctly predicts 0 of the 

rankings. Moving onto the quantum model:
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These models ran worse than the polynomial regression using adjusted 

offense, as both were unable to predict a single team's ranking correctly.

6 Conclusion

The implications of this study are that I will now be able to better predict 

who will win in March Madness. Additionally, it may mean that others are 

able to use this or similar techniques to work toward creating the perfect 

bracket. While this model is not perfect, I believe that using this along with 

my own knowledge of basketball and my judgement about how teams will 

play, can make it so my bracket will be better than ever. The biggest 

difficulty I faced with regards to this study was the sheer amount of data and

parsing through it and deciding what to and not to use initially. Before 
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settling on this data set, there were many other data sets that offered similar

statistics but used different measures. Even once I settled on this set, the 

fact that there were twenty different predictors to have to go through and 

analyze was intimidating. If I were to continue this investigation, I would like 

to further explore other predictors, and get more information from Ken 

Pomeroy about how he creates the numbers that go with each predictor. By 

further understanding how the predictors are derived it would help me to see

if there is something in particular that drives the correlation, and if that can 

be manipulated to make the model even more accurate.

At the end of the day I am very happy with my study. It performed much 

better than I imagined. Going into the project, I picked this topic because it 

interested me, but I expected to find nothing, making it so the accuracy that 

I was able to find seems amazing. This is a topic that has taken the attention 

of statisticians and sports fans alike and being able to say that I have some 

inside information on how it works is something I am very proud of.
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