
UC San Diego
UC San Diego Previously Published Works

Title
A correction for sample overlap in genome-wide association studies in a polygenic 
pleiotropy-informed framework.

Permalink
https://escholarship.org/uc/item/7s96s4xn

Journal
BMC genomics, 19(1)

ISSN
1471-2164

Authors
LeBlanc, Marissa
Zuber, Verena
Thompson, Wesley K
et al.

Publication Date
2018-06-01

DOI
10.1186/s12864-018-4859-7

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7s96s4xn
https://escholarship.org/uc/item/7s96s4xn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


LeBlanc et al. BMC Genomics  (2018) 19:494 
https://doi.org/10.1186/s12864-018-4859-7

METHODOLOGY ARTICLE Open Access

A correction for sample overlap in
genome-wide association studies in a
polygenic pleiotropy-informed framework
Marissa LeBlanc1*† , Verena Zuber2†, Wesley K. Thompson3, Ole A. Andreassen4,5, Schizophrenia and
Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium, Arnoldo Frigessi6

and Bettina Kulle Andreassen7

Abstract

Background: There is considerable evidence that many complex traits have a partially shared genetic basis, termed
pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several
traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping
subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one
trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr).

Results: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the
expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and
use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the
two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and
data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an
excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is
effective in that it restores proper control of the false discovery rate, at very little loss in power.

Conclusions: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping
samples in a statistical framework that is dependent on the joint distribution of the two GWAS.

Keywords: Data integration, Meta-analysis with shared subjects, Covariate-modulated false discovery rate,
Cross-phenotype association

Background
The past decade of genomic research has been shaped
by the advent of low-cost, high throughput technology,
enabling the examination of a large number of genetic
variants, i.e. single nucleotide polymorphisms (SNPs), via
the genome-wide association study (GWAS). The success
of the GWAS approach has been limited however because
SNPs identified by GWAS only capture a small fraction of
the total heritability for any given complex trait. There is
ongoing debate on how to detect this so-called ‘missing
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heritability’ [1, 2], including ideas based on integrating
GWAS data across two or more traits which may share a
polygenic signal (e.g. [3]). A shared polygenic signal may
exist for traits with strong diagnostic overlap and this has
motivated the formation of cross-trait GWAS consortia
such as the Psychiatric Genetics Consortium including
five psychiatric diseases, and the International Cancer
Genome Consortium that aims at finding oncogenes that
might drive cancer growth in different sites. Seemingly
unrelated phenotypes may also have a shared polygenic
signal if they partially share a common genetic basis,
termed pleiotropy [4]. Pleiotropic effects have been statis-
tically detected in cross-trait analysis of GWAS, including
schizophrenia and blood lipids [3], prostate cancer and
blood lipids [5], and psychiatric disorders [6].
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A major statistical challenge encountered when
integrating GWAS data across traits is the widespread
re-use of subjects between GWA studies, leading to
non-independent data sets. Power has been maximized
by increasing sample sizes, often in the hundreds of
thousands, via large meta-analysis conducted by world-
wide consortia for complex traits such as coronary artery
disease (CAD) [7], height [8] and blood pressure [9]. Sec-
ond, phenotype definitions have become more specific
and have moved towards endophenotypes (e.g. blood
lipids [10]), which are often measured on the same set
of individuals. This, together with the epidemiological
overlap of many common diseases, has led to the re-use
of subjects from one GWAS to another. For example,
control samples have been re-used for several different
case definitions, often by design. The Wellcome Trust
Case Control Consortium (WTCCC) [11] is one such
consortium adopting this strategy. As another example,
cases for one trait have been included in quantitative trait
studies (e.g. CAD [7] and blood lipids [10] and height [8]).

Addressing subject overlap is complicated by that fact
that GWAS data is most often made available in form of
summary statistics, i.e data over n samples is condensed
into one summary statistic per SNP. GWAS summary
statistics from studies with overlapping subjects cannot
be made independent by removing these subjects. Aside
from the issue of sample overlap, working on the summary
statistics level has many advantages. When a sufficient
statistic is used this summary statistic contains all the
information necessary for further inference. Also, it is
computationally efficient to work with summary statis-
tics simply because of the much smaller size compared
to the genotype data. This is especially relevant for the
integration of several genomic data sets. Importantly, in
contrast to genotype data, summary statistics cannot be
used to uniquely identify individuals. This allows easier
distribution and storage. As a consequence there are sev-
eral consortia, such as the DIAGRAM Consortium for
type 2 diabetes and the Global Blood Lipids Consortium,
that have summary statistics covering the whole genome
for free download on their homepage.

Lin and Sullivan [12] were the first to address the
methodological challenge of integrating GWAS with over-
lapping subjects. Their contribution focused on integrat-
ing case-control GWAS using a meta-analysis framework.
They do not provide a framework for integrating GWAS
coming from different types of outcome variables (e.g. a
case-control study and a quantitative trait study), nor do
they provide a solution that applies in general to different
statistical methodology. Han et al. [13] extend the Lin and
Sullivan approach for cases and controls to random effects
meta-analysis setting using a decoupling approach.

Two other approaches for meta-analysis of multiple
traits while accounting for sample overlap are presented

by [14, 15]. While these two approaches account for sam-
ple overlap in performing the meta-analysis, [16] intro-
duce a test statistic based on a similar derivation as Lin
and Sullivan that allows to test for overlapping samples
or relatives when performing quality control of summary
level data.

There is growing interest in statistical methods that uti-
lize the joint bivariate distribution of GWAS summary
statistics for two traits because, in the presence of a shared
polygenic signal, these methods may provide more power
than traditional GWAS methodology. One such method is
the covariate-modulated local false discovery rate (cmfdr)
proposed by Ferkingstad et al. [17] and recently revisited
and extended [18] where the fdr for the first study depends
on a covariate, for example the GWAS summary statistics
for a second pleiotropic trait.

Similarly, the tail-area based conditional false discovery
rate [3] needs the joint distribution of two sets of GWAS
summary statistics to identify SNPs with cross-phenotype
associations. These methods may be seriously impacted
by the spurious correlation due to overlap, but cannot be
corrected on a SNP-by-SNP basis. Liley and Wallace [19]
extend the conditional false discovery rate [3] to studies
with overlapping controls. Their extension is specific to
case-control studies and does not apply to the cmfdr or
any other bivariate method.

The aims of this paper are threefold. First, we want to
show the impact of overlap in samples on integrated analy-
ses of genetic studies. We show that it can induce spurious
correlation between the studies and thus seriously con-
found conclusions. Second, we expand on the work of Lin
and Sullivan [12] and quantify the spurious cross-trait cor-
relation due to overlap for both case-control studies and
studies with quantitative traits. And third, we propose a
correction based on a decorrelation transformation that
adjusts the joint distribution of two GWAS and allows
for the use of the corrected summary statistics in down-
stream analysis such as cmfdr. We demonstrate the impact
of overlap in samples and the success of our proposed cor-
rection on synthetic and GWAS data from the Psychiatric
Genetics Consortium (PGC).

Results
The impact of overlap in samples on the joint analysis of
two genomic data sets
The overlap of samples between two GWAS induces spu-
rious correlation in a bivariate analysis of the two data
sets. We illustrate this spurious correlation in a simulation
example. The simulation is based on two studies, 1 and 2,
with d = 100, 000 SNPs of a minor allele frequency (MAF)
drawn at random from the allele frequency distribution in
the 1000 Genomes Project [20]. Genotypes are generated
under the null model of no genetic association and accord-
ingly are drawn from a binomial distribution with 2 trials
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and probability of success equal to the MAF. Each study
has a continuous outcome that only depends on the error
term (normal with mean 0 and standard deviation of 1).
Study 1 and study 2 have nC = 5, 000 shared subjects
and nA = nB = 7, 500 unique subjects respectively. Thus
the total sample size per study is n1 = n2 = 12, 500. We
then conduct a standard GWAS analysis (univariate linear
regression, one SNP at a time) separately in study 1 and
study 2.

Figure 1a and b show that p-values for study 1 and
for study 2 respectively follow a uniform distribution
as expected. Assume we are interested in selecting the
SNPs in study 2 on the basis of their significance in
study 1. Figure 1c shows the p-values of study 2 for
which the p-values in study 1 are smaller than 0.1.
Finally, Fig. 1d displays a stratified Q-Q plot that
plots the observed quantiles of the p-values of study 2
against the quantiles assumed under the null distribu-
tion. The strata are defined with respect to the p-values in
study 1. These stratified Q-Q plots offer an intuitive way

of visualizing dependencies between p-values of two dif-
ferent genetic studies. Despite being generated without
any genetic effects, we observe that the conditional dis-
tributions of p-values from study 2 given p-values in
study 1 show strong enrichment for small p-values with
respect to the second conditional phenotype. If we were
unaware that these simulations were conducted under the
null hypothesis, this leftward deflection of the stratified
Q-Q plot could be falsely interpreted as shared polygenic
pleiotropic signal. Clearly, in case of overlapping samples,
pleiotropic effects would be confounded with the spurious
effects due to sample overlap.

Estimating the correlation of two test statistics due to
overlap in samples
Details of this estimation are given in the “Methods”
section. Consider two studies, k = 1, 2, both with con-
tinuous outcomes, yki, i = 1, . . . , nk . Assume some sam-
ples are shared, so that we can split the set of samples
{1, . . . , nk} into two sets SC = {1, . . . , nc} and SA =

a

c d

b

Fig. 1 Simulated GWAS pairs with overlapping samples. Data was simulated for two quantitative trait GWAS with no genetic effects but overlap in
samples (each with n = 12, 500 including 5000 overlapping samples). d = 100, 000 SNPs were simulated under the null model (phenotype is
simulated independent from genotype). Panel a: the p-value distribution for trait 1; Panel b: the p-value distribution for trait 2; Panel c: The p-value
distribution for trait 2 given that the p-value in study 1 was less than 0.1; Panel d: quantile-quantile plot for the p-values in study 2, stratified by the
p-value in study 1
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{nc + 1, . . . , n1} for study 1 and similarily for study 2 with
SB = {nc + 1, . . . , n2}. SC are the shared samples and
SA and SB are the samples unique to study 1 and study 2
respectively. The full set for study 1 is S1 = SC ∪ SA and
for study 2 is S2 = SC ∪ SB. Denote with Xkig the random
genotypes for SNP g in sample i in study k, g = 1, 2, .., d,
where d is typically some large number (≈ 106). Simlarly,
denote with Xkjg the random genotypes in sample j.Then,
cor(X1ig , X2jg) = 1 if i ∈ SC for all SNPs g and we assume
cor(X1ig , X2jg) = 0 if i ∈ SA and j ∈ SB for all g.

Consider two regression models, one for each study for
one SNP g at a time, Y1i = α1g + β1gX1ig + ε1ig and
Y2j = α2g + β2gX2jg + ε2jg where i = 1, .., n1, j = 1, .., n2,
and we assume all errors ε to be independent from each
other and with zero mean. Under the null model (βkg = 0)
∀k, g, if SC was an empty set (i.e. no shared subjects), then
cor

(
β̂1g , β̂2g

)
= 0. But because of the shared samples

SC , ρ = cor
(
β̂1g , β̂2g

)
�= 0, the overlap between sam-

ples introduces a correlation of the regression parameters
which is only due to the overlap. Note, when analyzing
study 1 and study 2 separately the analysis is unbiased; the
bias due to overlap is only introduced in a joint analysis
where ρ �= 0 is neglected, as illustrated in Fig. 1.

Building on the work of Lin and Sullivan [12], we esti-
mate the correlation ρ due to overlap in samples under the
null model (βkg = 0) ∀k, g, using the correlation between
the maximum likelihood (ML) estimates for the regression
coefficients for SNP g denoted by β̂kg . The ML estimates
are asymptotically Gaussian distributed with mean equal
to the true coefficients βkg and variance equal to the
inverse Fisher information.

We are also interested in combined analysis of GWAS
summary statistics from other study designs, including
those analyzed in a case-control study. Therefore, in
the following we estimate ρ for three possible scenar-
ios with (Y1 and Y2 both quantitative; Y1 quantitative
and Y2 binary; Y1 and Y2 both binary, where Yk =
{Yk1, Yk2, . . . , Yknk } for k = 1, 2). The ML-based deriva-
tions (see “Methods” section) result in the following esti-
mated correlation due to sample overlap for each of the
three possible study design pairings:

1 Quantitative phenotype in both study 1 and study 2.
For each SNP g,

cor(β̂1g , β̂2g) ≈ nc√n1 · n2
cor(Y1, Y2) (1)

where nc is the number of overlapping samples in
study 1 and 2, n1 is the sample size of study 1, and n2
the sample size of study 2, respectively. Note that
under the null hypothesis of no SNP effect, this
correlation does not depend on the MAF and is the
same for every SNP. In this case the g subscript can

be dropped and cor
(
β̂1g , β̂2g

)
can instead be written

as cor
(
β̂1, β̂2

)
, and this simplified notation is used

from this point on.
2 Binary phenotype in study 1 and binary phenotype in

study 2

cor
(
β̂1, β̂2

)
≈ 1√n1

√n2
×

(
nc0

√
exp{α1 + α2} + nc1√

exp{α1 + α2}
)

(2)

where exp{α1 + α2} ≈ n11n21/n10n20 [12] and where
we denote the number of cases in study 1 and 2 as
n11 and n21 respectively, similarly n10 and n20 for the
number of controls in study 1 and 2 respectively, and
denote the overlap in controls by nc0 and in cases by
nc1.

3 Quantitative phenotype in study 1 and binary
phenotype in study 2

cor
(
β̂1, β̂2

)
≈ nc√n1 · n2

corpb(Y1, Y2) (3)

where corpb(Y1, Y2) equals the point-biserial
correlation coefficient.

Note that the estimates cor
(
β̂1, β̂2

)
in Eqs. 1 to 3 only

estimate the spurious correlation due to sample overlap.
This estimate differs from the total correlation between
the observed test statistics which captures both the true
correlation based on genetic architecture and the spurious
correlation induced by sample overlap.

Decorrelation using the correlation due to overlap
In this paper we propose a decorrelation step to adjust
the joint distribution of the summary statistics from two
GWAS having overlapping subjects. Construct a matrix z
consisting of two rows and d columns equal to the num-
ber of SNPs common to both studies, including the vector
of summary statistics (z-scores) for the first study, z1, in
the first row and the vector of z-scores for the second
study, z2, in the second row. The decorrelation transform
is defined as

zde-corr = C−1/2z (4)

where C is the 2 × 2 matrix with ones on its diagonal the
calculated correlation due to overlap on its off-diagonal.

In Fig. 2 we use the simulated data introduced in Fig. 1
and show how the proposed decorrelation step corrects
for the correlation due to overlap and removes the spuri-
ous enrichment. The p-values for study 2 conditional on
study 1 are equally distributed (Fig. 2c) and the inflation
of the enrichment is removed (Fig. 2d).
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a b

c d

Fig. 2 Simulated GWAS pairs with overlapping samples, after correction for sample overlap using the decor relation transform. Data before
correction is presented in Fig. 1. Data was simulated for two quantitative trait GWAS with no genetic effects but overlap in samples ((each with
n = 12, 500 including 5,000 overlapping samples). d = 100, 000 SNPs were simulated under the null model (phenotype is simulated independent
from genotype). The decor relation transformation proposed here was applied to the simulated summary statistics. Panel a: the p-value distribution
for trait 1; Panel b: the p-value distribution for trait 2; Panel c: The p-value distribution for trait 2 given that the p-value in study 1 was less than 0.1;
Panel d: quantile-quantile plot for the p-values in study 2, stratified by the p-value in study 1

Performance of proposed decorrelation step in a
covariate-modulated false discovery rate framework
We tested the performance of our proposed correction for
sample overlap in a covariate-modulated fdr (cmfdr) [18]
framework using a two-pronged approach. First, we quan-
tified the impact of sample overlap on the actual false dis-
covery proportion under different pleiotropic simulation
scenarios and with different amounts of sample overlap.
Second, we used individual-level (genotype-phenotype)
data from the Psychiatric Genetics Consortium (PGC),
which employed a shared control design for schizophre-
nia and bipolar disorder, to test our correction in a real
data setting. Since we had access to the individual-level
data, we were able to conduct a series of GWAS manipu-
lating the extent of overlapping controls and compare the
number of cmfdr-based “discoveries” to equally-powered
non-overlapping control sets.

Simulated data
We simulated bivariate GWAS data under six different
simulation scenarios: first under the null model, where
genotype is independent from phenotype and then under
five different pleiotropic scenarios:

1 Null model, no effect
2 Positive pleiotropy A
3 Positive pleiotropy B
4 Positive pleiotropy C
5 Positive pleiotropy plus univariate effects
6 Positive and antagonistic pleiotropy,

where positive pleiotropy A, B and C differ in the extent
of polygenic structure.

We then used this simulated data to conduct synthetic
GWAS for paired studies with first no sample overlap and



LeBlanc et al. BMC Genomics  (2018) 19:494 Page 6 of 15

then again with sample overlap. For each study pair, we
calculated the cmfdr for the first GWAS using the sum-
mary statistics from the second GWAS as a covariate.
We did this both with and without our proposed correc-
tion for sample overlap and compared the false discovery
proportion (FDP), i.e. the number of false discoveries
divided by the total number of discoveries, before and
after correction and to the non-overlapping GWAS.

Simulation results The main purpose of the simulation
was to test the performance of our correction for sam-
ple overlap in a cmfdr framework with known null and
non-null SNPS under different pleiotropic and polygenic
scenarios and with different amounts of sample overlap.

Table 1 reports the mean false discovery proportion
(FDP), mean number of falsely rejected null hypotheses
(i.e. false positives (FP)) and mean number of correctly
rejected non-null hypotheses, (i.e. true positives (TP))
under different simulation scenarios with d = 100, 000
SNPs over independent 100 simulations based on a cmfdr
cutoff of 0.05 and using the summary statistics from study
2 as a covariate for study 1. This is reported for all six sim-
ulation scenarios. The null model simulation shows that,
in the absence of any true genetic association and with
non-overlapping samples, no SNPs reach the cmfdr cut-
off of 0.05. In contrast, when samples overlap, a mean of
245 SNPs are below the cutoff, and thus are false positives.
After applying our proposed correction to the GWAS with
overlapping samples, all cmfdr values are again above the
significance cutoff and no SNPs are deemed significant.
For the simulation scenarios involving pleiotropic effects,
400 of the 100,000 SNPs were non-null except for positive
pleiotropy B and C where 1200 and 2200 were non-null
respectively. For all pleiotropic scenarios, the FDP for the
analysis using the non-overlapping studies shows that the
fdr level is conservatively held, while the FDP for the over-
lapping set, greatly exceeds the desired level of fdr control.
After correction the overlapping studies using the pro-
posed decorrelation step, the fdr control is comparable to
the non-overlapping, independent studies.

We performed an extended simulation using the “posi-
tive pleiotropy A” scenario, where we varied the amount
of sample overlap. Table 2 and Fig. 3 give the FDP, TP and
FP and clearly show that the impact of sample overlap is
non-linear. The FDP increases at an increasing rate as the
number of overlapping samples increases. After applying
our correction for sample overlap to the overlapping stud-
ies, the fdr control is comparable to the non-overlapping,
independent studies for all levels of sample overlap. The
correction results in a small loss in power (TP), and this
loss in power is more severe as the overlap increases.

In practice it may be difficult to calculate the exact
overlap in samples or obtain an accurate estimate of
Cor(Y1, Y2) for continuous traits. We therefore tested the

robustness of our proposed correction to the correlation
used in the decorrelation step (Eq. 4). Using the positive
pleiotropy A scenario, where cor

(
β̂1, β̂2

)
= 0.4, we var-

ied the correlation value used in Eq. 4 from 0.3 to 0.5. We
find that our proposed correction is robust the the corre-
lation value used in the decorrelation step with fdr level
being conservatively held in all cases (Table 3).

Psychiatric Genetics Consortium (PGC) data with shared
controls
We used the PGC data [21, 22] to test the performance
of our proposed correction for sample overlap in a real
data setting, where we varied the amount of overlap in
the control group between the schizophrenia and bipo-
lar studies, corresponding to an expected correlation of
ρ =0, 0.09, 0.18, 0.27, 0.36, 0.45. Using this series of GWAS
summary statistics for bipolar disorder and schizophre-
nia, we calculated the cmfdr using the bipolar disor-
der summary statistics as the covariate for schizophre-
nia. The cmfdr calculations were done for both the raw
data and also for the data after correction for sample
overlap.

PGC results Which SNPs are null and which SNPs are
non-null is unknown, so it is not possible to count the
true and false positives. Instead, we can count the total
number of SNPs below a given cmfdr threshold (TP+FP),
and use the non-overlapping set as a reference point. In
this case, we used a threshold of 0.05 and called all SNPs
with a cmfdr below this threshold a discovery. Impor-
tantly, the number of controls is held constant across
the different amounts of sample overlap. This rules out
any differences in (TP+FP) that may be expected to due
differences in power. There were on average 255 discov-
eries for the analysis with no overlapping controls and
significantly more discoveries were made when samples
overlapped, as is evident by the non-overlapping confi-
dence intervals for the no overlapping controls scenario
versus all overlapping scenarios (Table 4). After correction
for sample overlap, the number of discoveries returned
to a more comparable level, usually falling just below
the number of discoveries made in the non-overlapping
analysis.

Discussion
There is an increasing interest in combining GWAS data
over multiple traits, often using data at the summary
statistics level. Here we have proposed a practical and
generally applicable approach for estimating the amount
of correlation in the test statistics for two GWASs hav-
ing overlapping subjects and having any type of out-
come variable. Using simulation studies assuming various
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Table 2 Mean false discovery proportion (FDP), mean number of falsely rejected null hypotheses out of 99,600, i.e. false positives (FP)
and mean number of correctly rejected non-null hypotheses out of 400 s, i.e. true positives (TP) over 100 simulation runs and a
covariate-modulated false discovery rate (cmfdr) cut-off of 0.05

# ρ Independent Overlapping Overlapping, corrected

0 0

FDP 5.96E-03 (4.99E-03, 6.92E-03) 5.92E-03 (4.97E-03, 6.88E-03) 6.03E-03 (5.07E-03,7.00E-03)
TP 268.55 (267.90, 269.90) 268.52 (267.18, 269.86) 268.59 (267.18, 269.86)
FP 1.62 (1.36, 1.88) 1.61 (1.35, 1.87) 1.64 (1.37, 1.91)

500 0.04
FDP 5.32E-03 (4.41E-03,6.22E-03) 5.58E-03 (4.58E-03,6.59E-03) 4.77E-03 (3.81E-03,5.73E-03)
TP 262.75 (261.58,263.92) 266.3 (264.99, 267.61) 260.47 (259.05, 261.61)
FP 1.41 (1.17, 1.65) 1.5 (1.23, 1.77,) 1.25 (1.00, 1.50)

1000 0.08
FDP 5.83E-03 (4.87E-03, 6.78E-03) 8.02E-03 (6.81E-03, 9.23E-03) 5.69E-03 (4.76E-03,6.63E-03)
TP 263.43 (262.08, 264.78) 271.85 (270.59, 273.11) 258.92 (257.57, 260.27)
FP 1.55 (1.29, 1.81) 2.21 (1.87, 2.55) 1.49 (1.24, 1.74)

1500 0.12
FDP 5.25E-03 (4.44E-03, 6.06E-03) 1.21E-02 (1.08E-03, 1.34E-02) 6.00E-03 (5.08E-03, 6.92E-03)
TP 263.67 (262.43, 264.91) 277.11 (275.82, 278.40) 257.79 (256.51, 259.07)
FP 1.4 (1.18, 1.62) 3.4 (3.02, 3.78) 1.56 (1.32, 1.80)

2000 0.16
FDP 4.42E-03 (3.61E-03, 5.22E-03) 1.77E-02 (1.61E-02, 1.92E-02) 4.06E-03 (3.26E-03, 4.86E-03)
TP 255.16 (253.98, 256.34) 274.18 (273.10, 275.26) 248.52 (247.27, 249.77)
FP 1.14 (0.93, 1.35) 4.96 (4.51, 5.41) 1.02 (0.82, 1.22)

2500 0.20
FDP 5.03E-03 (4.16E-03,5.90E-03) 3.64E-02 (3.38E-02, 3.91E-02) 5.20E-03 (4.28E-03, 6.12E-03)
TP 258.84 (257.51, 260.17) 288.47 (287.29, 289.65) 249.59 (248.22, 250.96)
FP 1.31 (1.08, 1.54) 10.98 (10.15, 11.81) 1.31 (1.08, 1.54)

3000 0.24
FDP 5.08E-03 (4.18E-03, 5.97E-03) 7.08E-02 (6.74E-02,7.42E-02) 6.32E-03 (5.41E-03, 7.22E.03)
TP 261.65 (260.32, 262.98) 300.52 (299.39, 301.65) 250.14 (248.75, 251.53)
FP 1.34 (1.10, 1.58) 23.03 (21.83, 24.23) 1.6 (1.37, 1.83)

3500 0.28
FDP 4.24E-03 (3.52E-03, 4.96E-03) 1.25E-01 (1.21E-01, 1.30E-01) 5.57E-03 (4.74E-03, 6.40E-03)
TP 268.5 (267.37, 269.63) 315.07 (314.00, 316.14) 256.42 (255.08, 257.76)
FP 1.15 (0.95, 1.35) 45.42 (43.46, 47.38) 1.44 (1.23, 1.65)

4000 0.32
FDP 3.62E-03 (2.84E-03, 4.41E-03) 1.98E-01 (1.93E-01, 2.03E-01) 4.74E-03 (3.91E-03, 5.56E-03)
TP 262.39 (261.27, 263.51) 316.5 (315.46, 317.54) 249.16 (247.94, 250.38)
FP 0.96 (0.75, 1.17) 78.65 (76.05, 81.25) 1.19 (0.98, 1.40)

4500 0.36
FDP 4.81E-03 (3.99E-03, 5.63E-03) 2.89E-01 (2.83E-01, 2.94E-01) 5.49E-03 (4.54E-03, 6.44E-03)
TP 259.29 (258.16, 260.42) 319.99 (319.04, 320.94) 245.16 (243.92, 246.40)
FP 1.26 (1.04, 1.48) 130.41 (127.08, 133.74) 1.36 (1.12, 1.60)

5000 0.40
FDP 5.44E-03 (4.57E-03, 6.31E-03) 3.98E-01 (3.92E-01, 4.04E-01) 6.79E-03 (5.78E-03, 7.80E-03)
TP 262.26 (261.02, 263.50) 334.25 (333.28, 335.22) 245.02 (243.66, 246.38)
FP 1.44 (1.21, 1.67) 222.52 (216.73, 228.31) 1.68 (1.43, 1.93)

Here d = 100, 000 SNPs were simulated, of which 400 were non-null in both study 1 and study 2, i.e., the positive pleiotropy senario. The test statistics for study 2 were used
as a covariate for study 1 for the covariate-modulated fdr. For each simulation, we divided the simulated subjects into the following GWAS pairs: Independent, independent
GWASs with no overlap (each with n = 10, 000), Overlapping, uncorrected, overlapping GWAS with (each with including between 0 and 5000 overlapping subjects) and
Overlapping, corrected, the GWAS with overlapping subjects after correction for sample overlap. Data is presented as mean (95% confidence interval)
#, number overlapping. ρ , correlation due to overlap

genetic architecture models, we have quantified the mag-
nitude of the effect of sample overlap on the covariate-
modulated fdr and have shown that sample overlap can

greatly increase the false discovery proportion (FDP). Our
proposed correction for sample overlap, which is an effi-
cient prewhitening transformation, restores the FDP to a
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Fig. 3 Mean false discovery proportion (FDP) versus the correlation due to sample overlap over 100 simulation runs and a covariate-modulated false
discovery rate (cmfdr) cut-off of 0.05. Here d = 100, 000 SNPs were simulated, of which 400 were non-null in both study 1 and study 2, i.e., have
positive pleiotropic effects. The test statistics for study 2 were used as a covariate for study 1

comparable level to simulated scenarios with no sample
overlap. Using data for bipolar disorder and schizophre-
nia from the Psychiatric Genetics Consortium, we show
that increasing numbers of shared controls result in an
increased number of “discoveries”, but these so-called dis-
coveries are most likely false positives and indicate a loss
of proper control of the false discovery rate.

Statistical methods for integrating GWAS data at the
summary statistic level are well established. Examples of
such methods are Fisher’s method [23], inverse-variance
meta-analysis [23], the conjunctional false discovery rate
[3], the covariate-modulated fdr [18] and Mendelian ran-
domization [24]. These methods universally assume inde-
pendent samples. Violation of this assumption will result

in increased Type 1 error and biased effect estimates
[24]. Lin and Sullivan [12] were the first to recognize this
importance of the sample overlap problem in the context
of cross-trait analysis of GWAS data. Their work is
focused on correcting for sample overlap for case-control
studies in the context of fixed-effects meta-analysis test
statistics. Under the null hypothesis of no genetic effects,
they derived the correlation between the maximum likeli-
hood estimates for the logistic regression coefficients for
a given SNP in study 1 and study 2 when there are par-
tially overlapping subjects in case-control studies. Here we
use the same approach to derive the correlation for a case-
control GWAS paired with a quantitative trait GWAS, or
for 2 quantitative trait GWASs. The spurious correlation

Table 3 Robustness of the proposed correction

True correlation Plug-in correlation TP FP FDP

0.4 0.3 261.16 (260.27, 262.85) 2.42 (2.12, 2.71) 0.0091 (0.0080, 0.0102)

0.4 0.35 252.20 (250.92, 253.48) 1.56 (1.32, 1.80) 0.0061 (0.0052, 0.0070)

0.4 0.375 247.78 (246.79, 249.06) 1.48 (1.22, 1.73) 0.0059 (0.0049, 0.0069)

0.4 0.4 243.59 (242.31, 244.879) 1.40 (1.17, 1.63) 0.0057 (0.0048, 0.0066)

0.4 0.425 238.72 (237.42, 240.02) 1.60 (1.38, 1.82) 0.0066 (0.0057, 0.0075)

0.4 0.45 235.11 (233.88, 236.34) 1.96 (1.72, 2.20) 0.0082 (0.0072, 0.0092)

0.4 0.5 234.81 (233.57, 236.04) 1.96 (1.72, 2.20) 0.0082 (0.0072, 0.0092)

For the “positive pleiotropy A” scenario the correlation due to overlap is 0.4. Here we varied the correlation value in the de-correlation step from 0.3 to 0.5. TP, true positives;
FP false positives, FDP, false discovery proportion
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Table 4 Psychiatric Genetics Consortium data, with varying amounts of overlapping controls

#Overlapping Correlation #Discoveries, raw #Discoveries, adjusted

0 0 255.3 (239.8,270.8) 256.5 (239.7,273.3)

2000 0.09 322.3 (310.1,334.5) 206.5 (190.1, 222.9)

4000 0.18 479 (437.4,520.6) 194.5 (172.8, 216.2)

6000 0.27 827.6 (762.1, 893.1) 186.4 (162.9, 209.9

8000 0.36 1442.7 (1325.2, 1560.2) 188.9 (156.8, 221.0)

10000 0.45 2985.7 (2785.6, 3185.8) 212.7 (181.3, 244.1)

The test statistics for bipolar disorder were used as a covariate for schizophrenia in the covariate-modulated fdr (cmfdr). SNPs having a cmfdr <0.05 were called as
discoveries. Data is presented as mean (95% confidence interval)

due to sample overlap is derived under the null and quan-
tifies the correlation which is solely induced by sample
overlap and independent of any genetic effect. Others
have recognized that the number of overlapping sam-
ples is not always known and have proposed methods for
estimating the correlation due to overlap using summary
statistics alone [14, 25]. These methods could be used for
quantitative trait GWASs where in practice the correla-
tion of the two phenotypes (Cor(Y1, Y 2)) may be difficult
to estimate. Our simulations show that our proposed cor-
rection is robust with respect to the assumed correlation
due to overlap. Further, the impact of Cor(Y1, Y 2) on the
correlation due to overlap increases as the extent of over-
lap increases. In these cases it may be feasible to request
an estimate of Cor(Y1, Y 2) from the relevant GWAS con-
sortium. Regardless of which method is used to derive the
correlation induced by sample overlap, here we propose a
general framework to account for this spurious correlation
in a simple and yet efficient preprocessing step. Spuri-
ous correlation between test statistics can be introduced
not only by sample overlap, but also by including rela-
tives in both studies. This results in an effective number
of overlapping samples a concept introduced in [16]. Our
approach can be easily extended to account for the effec-
tive number of overlapping samples in replacing nc by the
effective number of overlapping samples.

Conclusions
Our goal was to provide a more general solution to the
problem of cross-trait integration of GWAS that could be
applied to statistical methods depending on the joint dis-
tribution of 2 GWASs. It is a practical approach in that it
is easy to implement and results in transformed test statis-
tics that can be used in different data integration methods.
We show that in a cmfdr setting, our correction properly
maintains fdr control.

Here we have contributed to the growing body of evi-
dence showing that sample overlap needs to be taken into
account when integrating data across different traits. We
have shown that our flexible and adaptable adjustment for
sample overlap works well as shown with both simulation
and with real data in the context of the cmfdr.

Methods
Derivation of the estimates for correlation due to overlap
The correlation due to overlap in samples is derived from
the correlation of the maximum likelihood (ML) estimates
of the regression coefficients between two studies under
the assumption of no genetic effect. We focus on one
regression per SNP g and include the intercept and no
other covariates. Focusing first on quantitative outcomes,
consider two linear regressions, for one SNP g (we drop
the index g), Yk = αk +βkXk + εk . We assume all errors εk
to be independent from each other and with zero mean.

Lin and Sullivan [12] show that for two case con-
trol studies the covariance between the ML esti-
mates of the logistic regression coefficients from study
1 and 2 can be approximated as Cov

(
β̂1, β̂2

)
≈

I−1
1 (β1)Cov(U1(β1), U2(β2))I−1

2 (β2) where Uk and Ik are
the score function and Fisher’s information with respect
to βk . We use the above to further define the following
correlation:

Cor
(
β̂1, β̂2

)
≈ I−1/2

1 (β1)Cov(U1(β1), U2(β2))I−1/2
2 (β2).

(5)

It is now straightforward to expand this result to include
quantitative trait studies using the ML estimates from
linear regression.

For linear regression the score function with respect to
βk is given by U(βk) = 1

σ 2
k

∑
i∈Sk

(yki −(αk +βkxki))xki and

the Fisher information is given by I(βk) = 1
σ 2

k

∑
i∈Sk

xkixki.
Similarly for logistic regression the score func-
tion with respect to βk is given by U(βk) =∑

i∈Sk

(
yki − exp{αk+βkxki}

1+exp{αk+βkxki}
)

xki and the Fisher informa-

tion is given by I(βk) = ∑
i∈Sk

exp{αk+βkxki}
(1+exp{αk+βkxki})2 xkixki.

We make the following assumptions:

1 Yk is independent of Xk , that is we assume the null
model where there is no genetic effect in the data and
βk = 0 for all SNPs, k = 1, 2.

2 The overlapping samples have the same genotype in
each study x1i = x2i for i ∈ SC for all SNPs.
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3 Construct a variable H defined as H = E
(
XkXT

k
)
.

We can estimate H under the null hypothesis and
the following three estimates of H are approximately
equal n−1

1
∑

i∈S1 x1ix1i ≈ n−1
2

∑
i∈S2 x2ix2i ≈ n−1

C∑
i∈SC

x1ix2i.

In case-control studies we assume y1i = y2i for
i ∈ SC (in other words cases in study 1 are cases
in study 2). Thus Cor(Y1, Y2) = 1 for the over-
lapping samples in case-control studies. For quantita-
tive phenotypes we assume that we are able to derive
appropriate estimates for Cor(Y1, Y2) from epidemiology
studies.

Correction for overlapping samples in studies with
quantitative traits
In Eq. (5) we use the score function and the Fisher infor-
mation derived in the linear regression model and arrive
at

Cor(β̂1, β̂2) ≈
⎛
⎝ 1

σ 2
1

∑
i∈S1

x1ix1i

⎞
⎠

−1/2

× 1
σ 2

1

1
σ 2

2

1
nc

∑
i∈SC

(y1i − α1)(y2i − α2)x1ix2i

×
⎛
⎝ 1

σ 2
2

∑
i∈S2

x2ix2i

⎞
⎠

−1/2

. (6)

Assumption 2 allows us to replace the sums
over xki with H so Cor

(
β̂1, β̂2

)
≈ (n1H)−1/2 ×

1
σ1

1
σ2

H
∑

i∈SC

(y1i − α1)(y2i − α2) × (n2H)−1/2, which sim-

plifies to Cor
(
β̂1, β̂2

)
≈ 1√n1

√n2
×

∑
i∈SC

(y1i−α1)(y2i−α2)

σ1·σ2
.

Multiplying by nc/nc we get: Cor
(
β̂1, β̂2

)
≈

nc√n1
√n2

×
1

nc
∑

i∈SC
(y1i−α1)(y2i−α2)

σ1·σ2
. When individual level data

is available, this can be computed directly. But when only
summary statistics are available, the correlation can be
approximated as

Cor
(
β̂1, β̂2

)
≈ nc√n1

√n2
× Cor(Y1, Y2), (7)

where in practice we need to estimate Cor(Y1, Y2) exter-
nally. A plot of Eq. 7 is given in Additional file 1:
Figure S1.

Correction for overlapping samples in case-control studies
When the data refer to two case-controls studies we give
the result previously derived by Lin and Sullivan [12]. Let
nc0 denote the number of overlap in controls in study 1
and 2, and nc1 denote the number of overlap for cases.

First we derive Cov(U1(β1), U2(β2)) using the score func-
tion from logistic regression, and the fact that yki = 0 for
cases and yki = 1 for controls

Cov(U1(β1), U2(β2)) = 1
nC

∑

i∈SC

x1ix2i

×
⎧⎨
⎩

∑

i∈SC0

(
0− exp{α1}

1+exp{α1}
)(

0− exp{α2}
1 + exp{α2}

)

+
∑

i∈SC1

(
1− exp{α1}

1 + exp{α1}
)(

1− exp{α2}
1+exp{α2}

)⎫⎬
⎭ .

(8)

It is easy to show that the right hand side of 8 is equal to
1

(1+exp{α1})(1+exp{α2})
{

nc0 exp{(α1+α2)}+nc1
} 1

nc

∑
i∈SC

x1ix2i.

According to assumption 2 we can introduce H
to obtain Cov(U1(β1), U2(β2)) = 1

(1+exp{α1})(1+exp{α2}){
nc0 exp{(α1 + α2)} + nc1

}
H . In logistic regression under

the null model there is a connection between the intercept
and the log odds exp{αk} = nkc0

nk
/
(

1 − nkc0
nk

)
= nkc0/nkc1.

From Eq. 5, it follows that

Cor
(
β̂1, β̂2

)
≈ 1√n1

√n2
×

(
nc0

√
exp{α1 + α2} + nc1√

exp{α1 + α2}
)

.

(9)

Correction for overlapping samples with one quantitative
trait study and case control study
Finally, we consider one Y1 quantitative and Y2 binary. In
Eq. (5) we use the score function and the Fisher infor-
mation derived in both the logistics and linear regression
model and arrive at

Cor
(
β̂1, β̂2

)
≈

⎛
⎝ 1

σ 2
1

∑
i∈S1

x1ix1i

⎞
⎠

−1/2

× 1
σ 2

1

1
n12

∑
i∈SC

(y1i − (α1))(y2i − p2)x1ix2i

×
⎛
⎝p2(1 − p2)

∑
i∈S2

x2ix2i

⎞
⎠

−1/2

, (10)

where p2 is the proportion of cases in the case control
study. Substituting in H, Cor

(
β̂1, β̂2

)
≈

(
1
σ 2

1
n1H

)−1/2 ×
1
σ 2

1
H

∑
i∈SC

(y1i−α1)(y2i−p2)×(p2(1−p2)n2H)−1/2. This can

be approximated as Cor
(
β̂1, β̂2

)
≈ nc√n1·n2

Corpb(Y1, Y2),
where Corpb(Y1, Y2) is the point-biserial correlation coef-
ficient which needs to be estimated externally when only
summary statistics are available.
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Decorrelation
The focus here is correcting the bivariate distribution of
GWAS test statistics for the correlation due to sample
overlap. The test statistics may come from case-control
studies or studies on quantitative traits. We also assume
that the effect direction is known and that the sum-
mary statistics are given as Wald statistics, i.e. β̂k/se

(
β̂k

)
,

where se
(
β̂k

)
is the standard error for the regression coef-

ficient of every SNP g, where as before we drop g from
the notation. For large samples, Wald statistics approxi-
mately follow a standard normal distribution and as such
are interpretable as z-scores.

Thus, our final data-set is a matrix z consisting of two
rows and d columns equal to the number of SNPs com-
mon to both studies, including the vector of z-scores for
the first study, z1, in the first row and the vector of z-scores
for the second study, z2, in the second row.

To correct for the overlap in samples and to remove the
spurious correlation from the data we use a decorrela-
tion transformation as described by [26] . The transform
is defined as

zde-corr = C−1/2z (11)

where C is the 2 × 2 empirical correlation matrix of z,
with r = cor(z1, z2) on its off-diagonal. Note this is dif-
ferent from the Mahalanobis transform, which uses the
covariance matrix in Eq. 11 instead of the correlation
matrix C. After the transformation, the correlation matrix
of zde-corr is a diagonal matrix. Importantly this transfor-
mation maximizes the correlation between the original
data and the transformed data and is thus the most suit-
able transformation as it has the least impact on the data
when performing pre-whitening [26].

Suppose that we want to decorrelate the test statis-
tics of quantitative trait studies 1 and 2 but only for the
amount of correlation due to sample sharing. Under the
null hypothesis that a certain SNP g has no effect on the
outcome in both studies, we know that cor

(
β̂1, β̂2

)
is

given by Eq. 1 and this correlation is purely induced by
sample sharing. We want to correct exactly for this spuri-
ous correlation. It can be shown that for sufficiently large
n1 and n2 cor

(
β̂1, β̂2

)
≈ cor(z1, z2). Then under the null

hypothesis we should correct z with

Cadj =
(

1 nc√n1·n2
cor(Y1, Y2)

nc√n1·n2
cor(Y1, Y2) 1

)
(12)

assuming the yk are quantitative traits. Alternatively, C
could be calculated using the methods of [25] or [14] if
lacking explicit information on the number of overlapping
subjects.

Simulation study
Simulation of genotype and phenotype For all scenar-
ios, we simulated d = 100, 000 independent SNPs with
a MAF drawn at random from the observed distribution
of MAF from the 1000 Genomes Project. The quantita-
tive trait outcomes, Y1 (study 1 outcome) and Y2 (study
2 outcome), were simulated for n = 20, 000 individuals,
n1 = n2 = 10, 000 individuals per study.

The six simulation scenarios differ in the simulation of
the outcomes. For the null model, we simulate Y1 and Y2
as described in the example in the “Methods” section.

For all other simulation scenarios, Y1 and Y2 are depen-
dent on both the error term and a given subset of SNPs.
For the “positive pleiotropy A” scenario, the signal involves
SNPs that are non-null for both Y1 and Y2. We set 400
regression parameters not equal to zero (β = 0.1 for 100
SNPs, β = −0.1 for 100 SNPs, β = 0.15 for 100 SNPs, and
β = −0.15 for 100 SNPs) with the same effect strength
and direction on Y1 and Y2. This gives 400 non-null
SNPs and 99,600 null SNPs for both study 1 and study 2.
Similarly for the “positive pleiotropy B” scenario, we
increase the polygenicity and set 1200 regression param-
eters not equal to zero (β = 0.1 for 100 SNPs, β = −0.1
for 100 SNPs, β = 0.07 for 500 SNPs, and β = −0.07
for 500 SNPs) with the same effect strength and direction
on Y1 and Y2. For the “positive pleiotropy C” scenario,
we increase the polygenicity again and set 2200 regres-
sion parameters not equal to zero (β = 0.1 for 100 SNPs,
β = −0.1 for 100 SNPs, β = 0.05 for 1000 SNPs, and
β = −0.05 for 1000 SNPs) with the same effect strength
and direction on Y1 and Y2.

For the “positive pleiotropy plus univariate effects in
study 1” scenario, we introduce positive pleiotropy by set-
ting 200 regression parameters not equal to zero (β = 0.1
for 100 SNPs, β = −0.1 for 100 SNPs) with the same
effect strength and direction on Y1 and Y2. Additionally,
we add a signal for 200 SNPs that is only present in study
1 (β = 0.15 for 100 SNPs, β = −0.15 for 100 SNPs). In the
final simulation scenario, we generate “positive and antag-
onistic pleiotropy” by setting 200 regression parameters
not equal to zero (β = 0.1 for 100 SNPs, β = −0.1 for 100
SNPs) with the same effect strength and direction on Y1
and Y2, and additionally, we add 200 SNPs with opposing
effect directions for study 1 and study 2 (β1 = 0.15 and
β2 = 0.15 for 100 SNPs, β1 = −0.15 and β2 = 0.15 for
100 SNPs).

Generation of independent and overlapping studies
For each simulation scenario, we computed GWAS sum-
mary statistics for the ideal case of two studies with no
overlap in samples. We refer to these as independent stud-
ies. Additionally, for each simulation scenario, we gen-
erated summary statistics for studies with nc = 5000
overlapping samples. In practice, we did this by randomly
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assigning 2500 subjects from study 1 to be included into
study 2, and vice versa, resulting in n1 = n2 = 12, 500.
These studies are referred to as the overlapping studies.
Since the overlapping studies have more power than the
independent studies, we also simulated independent stud-
ies with n1 = n2 = 12, 500 and refer to this as the
independent studies with equal power.

In order to look at the effect of various amounts
of sample overlap, we did an extended simulation
using the “positive pleiotropy A” scenario, where the
number of overlapping samples ranged from 500 to
5000, in steps of 500. In practice, we did this by
randomly assigning 250, 500, 750, 1000, . . . , 2500 subjects
from study 1 to be included into study 2, and vice
versa. Thus the total overlap in samples adds up to
nc = 500, 1000, 1500, 2000, . . . , 5000 subjects, and the
sample size per group is n1 = n2 = 10250, 10500,
10750, 1100, . . . , 12500.

In practice the correlation due to overlap may be subject
to some estimation error. In order test the robustness of
the proposed correction, we varied the correlation value
used in the de-correlation step for the "positive pleiotropy
A” scenario. For this simulation, the correlation due to
overlap is 0.4 but we varied the correlation value in the
de-correlation step from 0.3 to 0.5.

Generation of GWAS test statistics and covariate
modulated fdr For each simulation scenario, separately
for each of study 1 and 2 (“independent”) and again for
each of study 1 and 2 (“overlapping”), we computed for
each of the d = 100, 000 SNP we computed a univariate
linear regression and estimate the effect size of each SNP
by the z-score defined as regression coeffiecient divided
by its standard deviation. These z-scores are the final
summary statistics used in further analysis. The summary
statistics were then used to calculate the cmfdr for study 1
using the study 2 summary statistics as the covariate. This
was done first for the independent studies and then again
using the overlapping studies. The summary statistics for
the overlapping studies were then corrected using Eqs. 11
and 12 (“corrected”). The number of true positives (TP),
false positives (FP) and the false discovery proportion (FD
P) were calculated using a cmfdr cutoff of 0.05.

For each of the simulation scenarios described above,
we performed 100 replicates and report the average TP, FP
and FDP for the following three settings

1 independent study 1 and 2
2 uncorrected overlapping study 1 and 2
3 overlapping study 1 and 2 with the proposed

correction

We define true positives as those SNPs where we introduced
effects into the simulation, i.e. known non-null SNPs.

Psychiatric genetics consortium application
Data description We were granted access to the raw
genotype data for bipolar disorder cases, schizophrenia
cases and controls from the Psychiatric Genetics Con-
sortium (PGC) [21, 22]. The relevant institutional review
boards or ethics committees approved the research proto-
col of the individual GWAS included in the PGC sample
and all participants provided written informed consent.
We used the PGC data to test the performance of our
proposed correction for sample overlap in a real data
setting, where we varied the amount of overlap in the
control group between the schizophrenia and bipolar
studies.

The data consists of n = 9379 schizophrenia cases,
n = 6990 bipolar disorder cases and n = 21, 153 shared
controls. Imputed genotypes in dosage format were avail-
able genome-wide, but we limited our analysis to 260,703
SNPs with MAF ≥ 0.05 on chromosomes 1, 2 and 3 due
to computational time. Using this dataset, we randomly
selected 10,000 controls for schizophrenia, and then ran-
domly selected 10,000 controls for bipolar disorder, of
which 0, 2000, 4000, 6000, 8000 or 10000 were drawn
from the schizophrenia controls, corresponding to an
expected correlation of ρ = 0, 0.09, 0.18, 0.27, 0.36, 0.45
respectively between the GWAS summary statistics for
bipolar disorder and schizophrenia. We repeated each of
these conditions 10 times. We then conducted a standard
GWAS for each of the 120 datasets (6 amounts of overlap
* 2 types of cases * 10 repetitions) by conducting logistic
regression in Plink (v1.07), adjusting for population strati-
fication using the first two principle components. We then
took the summary statistics from each GWAS and entered
them pairwise into the cmfdr using the bipolar disor-
der summary statistics as the covariate for schizophre-
nia. The cmfdr calculations were done for both the raw
data and also for the data after correction for sample
overlap.

Additional file

Additional file 1: Plot of correlation due to overlap versus quantitative
trait correlation. Supplemental Figure 1. Plot of the correlation due to
overlap for two quantative traits as a function of percent sample overlap
and the correlation of the traits (Cor(Y1, Y2)). Here we assume the sample
sizes for the two GWASs are equal. The See Eq. 7. (PDF 40 kb)
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OD́ushlaine, F. Anthony OŃeill, Sang-Yun Oh, Ann Olincy, Line Olsen, Jim Van
Os, Psychosis Endophenotypes International Consortium, Christos Pantelis,
George N. Papadimitriou, Sergi Papiol, Elena Parkhomenko, Michele T. Pato,
Tiina Paunio, Milica Pejovic-Milovancevic, Diana O. Perkins, Olli Pietilainen,
Jonathan Pimm, Andrew J. Pocklington, John Powell, Alkes Price, Ann E. Pulver,
Shaun M. Purcell, Digby Quested, Henrik B. Rasmussen, Abraham Reichenberg,
Mark A. Reimers, Alexander L. Richards, Joshua L. Roffman, Panos Roussos,
Douglas M. Ruderfer, Veikko Salomaa, Alan R. Sanders, Ulrich Schall, Christian R.
Schubert, Thomas G. Schulze, Sibylle G. Schwab, Edward M. Scolnick, Rodney J.
Scott, Larry J. Seidman, Jianxin Shi, Engilbert Sigurdsson, Teimuraz Silagadze,
Jeremy M. Silverman, Kang Sim, Petr Slominsky, Jordan W. Smoller,
Hon-Cheong So, Chris C. A. Spencer, Eli A. Stahl, Hreinn Stefansson, Stacy
Steinberg, Elisabeth Stogmann, Richard E. Straub, Eric Strengman, Jana
Strohmaier, T. Scott Stroup, Mythily Subramaniam, Jaana Suvisaari, Dragan M.
Svrakic, Jin P. Szatkiewicz, Erik Soderman, Srinivas Thirumalai, Draga Toncheva,
Paul A.Tooney, Sarah Tosato, Juha Veijola, John Waddington, Dermot Walsh,
Dai Wang, Qiang Wang, Bradley T. Webb, Mark Weiser, Dieter B. Wildenauer,
Nigel M. Williams,Stephanie Williams, Stephanie H. Witt, Aaron R. Wolen, Emily
H. M. Wong, Brandon K. Wormley, Jing Qin Wu, Hualin Simon Xi, Clement C.
Zai, Xuebin Zheng, Fritz Zimprich, Naomi R. Wray, Kari Stefansson, Peter M.
Visscher, Wellcome Trust Case-Control Consortium 2, Rolf Adolfsson, Ole A.
Andreassen, Douglas H. R. Blackwood, Elvira Bramon, Joseph D. Buxbaum,
Anders D. Borglum, Sven Cichon, Ariel Darvasi, Enrico Domenici, Hannelore
Ehrenreich, Tonu Esko, Pablo V. Gejman, Michael Gill, Hugh Gurling, Christina
M. Hultman, Nakao Iwata, Assen V. Jablensky, Erik G. Jonsson, Kenneth S.
Kendler, George Kirov, Jo Knight, Todd Lencz, Douglas F. Levinson, Qingqin S.
Li, Jianjun Liu, Anil K. Malhotra, Steven A. McCarroll, Andrew McQuillin, Jennifer
L. Moran, Preben B. Mortensen, Bryan J. Mowry, Markus M. Nothen, Roel A.
Ophoff, Michael J. Owen, Aarno Palotie, Carlos N. Pato, Tracey L. Petryshen,
Danielle Posthuma, Marcella Rietschel, Brien P. Riley, Dan Rujescu, Pak C. Sham,
Pamela Sklar, David St Clair, Daniel R. Weinberger, Jens R. Wendland, Thomas
Werge, Mark J. Daly, Patrick F. Sullivan and Michael C. OD́onovan.
We acknowledge the following collaborators from the Bipolar Disorder
Working Group of the Psychiatric Genomics Consortium: Mark Daly, Marcella
Rietschel, Nicholas Craddock, John I. Nurnberger, Michael Gill, Keith Matthews,
Jana Strohmaier, Devin Absher, Huda Akil, Adebayo Anjorin, Lena Backlund,
Judith A. Badner, Jack D. Barchas, Thomas B. Barrett, Nick Bass, Michael Bauer,
Frank Bellivier, Sarah E. Bergen, Wade Berrettini, Douglas Blackwood,
Cinnamon S. Bloss, Michael Boehnke, Gerome Breen, William E. Bunner, Margit
Burmeister, William Byerley, Sian Caesar, Kim Chambert, David W. Craig,

Richard Day, Howard J. Edenberg, Amanda Elkin, Bruno Etain, Manuel A.
Ferreira, I. Nicol Ferrier, Matthew Flickinger, Tatiana Foroud, Christine Fraser,
Louise Frisen, Elliot S. Gershon, Katherine Gordon-Smith, Elaine K. Green,
Tiffany A. Greenwood, Detelina Grozeva, Weihua Guan, Marian L. Hamshere,
Martin Hautzinger. Maria Hipolito, Stephane Jamain, Edward G. Jones, Radhika
Kandaswamy, John R. Kelsoe, James L. Kennedy, Daniel L. Koller, Phoenix Kwan,
Mikael Landen, Niklas Langstrom, Mark Lathrop, Jacob Lawrence, Marion
Leboyer, Phil H. Lee, Jun Li, Chunyu Liu, Falk W. Lohoff, Pamela B. Mahon,
Melvin G. McInnis, Rebecca McKinney, Francis J McMahon, Andrew McQuillin,
Sandra Meier,Fan Meng, Manuel Mettheisen, Philip B Mitchell, Jennifer Moran,
Gunnar Morken, Thomas W. Muhleisen, Walter J. Muir, Richard M. Myers,
Caroline M. Nievergelt, Vishwajit Nimgaonkar, Evaristus A. Nwulia, Urban Osby,
Benjamin S. Pickard, Peter Propping, Emma Quinn, Soumya Raychaudhuri,
John Rice, Martin Schalling, Alan F. Schatzberg, Peter R. Schofield, Nicholas J.
Schork, Johannes Schumacher, Markus M. Schwarz, Ed Scolnick, Laura J. Scott,
Paul D. Shilling, Erin N. Smith, David St. Clair, John Strauss, Szabocls Szelinger,
Robert C. Thompson, John B. Vincent, Stanley J. Watson, Thomas F. Wienker,
Richard Williamson, Stephanie H. Witt, Adam Wright, Wei Xu, Allan H. Young,
Peter P. Zandi, Peng Zhang, Sebastian Zollner, Anne E Farmer, Lisa Jones, Ian
Jones, William B. Lawson, Susanne Lucae, Nicholas G. Martin, Peter McGuffin,
Alan W. McLean, Grant W. Montgomery, Pierandrea Muglia, Bertram
Muller-Myhsok, James B. Potash, William A. Scheftner, Federica Tozzi, William
H. Coryell, Shaun M. Purcell, Ole A. Andreassen, Srdjan Djurovic, Morten
Mattingsdal, Danyu Lin, Valentina Moskvina, David A. Collier, Aiden Corvin,
Frank Dudbridge, Hugh Gurling, Peter A. Holmans, Christina M. Hultman,
George K. Kirov, Paul Lichtenstein, Kevin A. McGhee, Ingrid Melle, Derek W.
Morris, Ivan Nikolov, Colm O’Dushlaine, Michael J. Owen, Hannes Petursson,
Douglas Ruderfer, Engilbert Sigurdsson, Pamela Sklar, Kari Stefansson, Michael
C. O’Donovan, Andrew McIntosh, Rene Breuer, Josef Frank, Stefan Herms,
Wolfgang Maier, Manuel Mattheisen, Markus M Nothen, Michael Steffens, Jens
Treutlein, Sven Cichon, Franziska Degenhardt, Thomas G. Schulze.

Funding
Verena Zuber is supported by the Wellcome Trust and the Royal Society (Grant
Number 204623/Z/16/Z) and the UK Medical Research Council (Grant Number
MC_UU_00002/7).

Availability of data and materials
For simulated data: The datasets used and/or analysed during the current
study are available from the corresponding author on reasonable request.
For the Psychiatric Genetics Consortium (PGC) data: The data that support the
findings of this study are available from the PGC but restrictions apply to the
availability of these data, which were used under license for the current study,
and so are not publicly available. Data are however available from the authors
upon reasonable request and with permission of the PGC.

Authors’ contributions
ML, VZ: conception and design, data simulation, analysis and interpretation
and manuscript writing. BKA and AF: conception and design, interpretation
and manuscript writing. WKT: interpretation and manuscript writing. OAA:
data access, interpretation and manuscript writing. The Schizophrenia and
Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium:
data access. All authors have read and approved the manuscript.

Ethics approval and consent to participate
We did not collect any new samples for this study. The Psychiatric Genetics
Consortium data used here has been previously published [21, 22] and was
collected in accordance with ethical regulations in the partner countries and
as defined in original research publications (For schizophrenia see the
Supplement of [21] and for bipolar disorder see the supplement of [22]) The
lead PI of each sample warranted that their protocol was approved by their
local Ethical Committee. All subjects provided written informed consent.
There were nearly 50 ethics committees that approved the contributed
samples and these are listed in the Supplements of the original publications.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.



LeBlanc et al. BMC Genomics  (2018) 19:494 Page 15 of 15

Author details
1Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo
universitetssykehus HF, Sogn Arena, PB 4950 Nydalen, 0424 Oslo, Norway.
2MRC Biostatistics Unit, University of Cambridge, MRC Biostatistics Unit,
Cambridge Institute of Public Health, Robinson Way, CB2 0SR Cambridge,
United Kingdom. 3Department of Psychiatry, University of California, San
Diego, 9500 Gilman Drive, MC 0603, 92093-0603 La Jolla, CA, USA.
4NORMENT-KG Jebsen Centre for Psychosis Research, Institute of Clinical
Medicine, University of Oslo, P.O. Box 1039 Blindern, N-0315 Oslo, Norway.
5Division of Mental Health and Addiction, Oslo University Hospital HF, Ullevaal
Hospital, building 49,P.O. Box 4956 Nydalen, N-0424 Oslo, Norway. 6Oslo
Centre for Biostatistics and Epidemiology, University of Oslo and Oslo
University Hospital, Oslo universitetssykehus HF, Sogn Arena, PB 4950 Nydalen,
0424 Oslo, Norway. 7Department of Research, Cancer Registry of Norway, P.O.
box 5313 Majorstuen, N-0304 Oslo, Norway.

Received: 23 December 2017 Accepted: 6 June 2018

References
1. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, H. NJ. Missing

heritability and strategies for finding the underlying causes of complex
disease. Nat Rev Genet. 2010;11:446–50.

2. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, Robinson MR,
Perry JR, Nolte IM, van Vliet-Ostaptchouk JV, et al. Genetic variance
estimation with imputed variants finds negligible missing heritability for
human height and body mass index. Nature genetics. 2015.

3. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M,
Kelsoe JR, Kendler KS, et al. Improved detection of common variants
associated with schizophrenia and bipolar disorder using
pleiotropy-informed conditional false discovery rate. PLoS Genet.
2013;9:1003455.

4. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in
complex traits: challenges and strategies. Nat Rev Genet. 2013;14:483–95.

5. Andreassen OA, Zuber V, Thompson WK, Schork AJ, Betella F, Djurovic S,
the PRACTICAL Consortium, et al. Identifying common genetic variants in
blood pressure due to polygenic pleiotropy with associated phenotypes.
Int J Epidemiol. 2014;43(4):1205–14.

6. Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach
to prioritizing GWAS results by integrating pleiotropy and annotation.
PLoS Genet. 2014;10(11):1004787.

7. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR,
Ingelsson E, et al. Large-scale association analysis identifies new risk loci
for coronary artery disease. Nat. Genet. 2013;45(1):25–33.

8. Allen HL, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ,
et al. Hundreds of variants clustered in genomic loci and biological
pathways affect human height. Nature. 2010;467(7317):832–8.

9. for Blood Pressure Genome-Wide Association Studies IC, et al. Genetic
variants in novel pathways influence blood pressure and cardiovascular
disease risk. Nature. 2011;478(7367):103–9.

10. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S,
Ganna A, et al. Discovery and refinement of loci associated with lipid
levels. Nat. Genet. 2013;45(11):1274–83.

11. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A,
Kwiatkowski DP, et al. Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls. Nature.
2007;447(7145):661–78.

12. Lin DY, Sullivan PF. Meta-analysis of genome-wide association studies
with overlapping subjects. Am J Hum Genet. 2009;85:862–72.

13. Han B, Duong D, Sul JH, de Bakker PI, Eskin E, Raychaudhuri S. A general
framework for meta-analyzing dependent studies with overlapping
subjects in association mapping. Human molecular genetics. 2016;049.

14. Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, Smith JA,
et al. Meta-analysis of correlated traits via summary statistics from gwass
with an application in hypertension. Am J Hum Genet. 2015;96(1):21–36.

15. Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, Tier B,
Savin K, Hayes BJ, Goddard ME. A multi-trait, meta-analysis for detecting
pleiotropic polymorphisms for stature, fatness and reproduction in beef
cattle. PLoS genetics. 2014;10(3):1004198.

16. Chen G-B, Lee SH, Robinson MR, Trzaskowski M, Zhu Z-X, Winkler TW,
Day FR, Croteau-Chonka DC, Wood AR, Locke AE, et al. Across-cohort qc

analyses of gwas summary statistics from complex traits. Eur J Hum
Genet. 2017;25(1):137.

17. Ferkingstad E, Frigessi A, Rue H, Thorleifsson G, Kong A. Unsupervised
empirical bayesian multiple testing with external covariates. Ann Appl
Stat. 2008;714–35.

18. Zablocki RW, Schork AJ, Levine RA, Andreassen OA, Dale AM,
Thompson WK. Covariate-modulated local false discovery rate for
genome-wide association studies. Bioinformatics. 2014;30(15):2098–104.

19. Liley J, Wallace C. A pleiotropy-informed bayesian false discovery rate
adapted to a shared control design finds new disease associations from
gwas summary statistics. PLoS genetics. 2015;11(2):1004926.

20. Consortium GP, et al. A global reference for human genetic variation.
Nature. 2015;526(7571):68.

21. of the Psychiatric Genomics Consortium SWG, et al. Biological insights
from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):
421–7.

22. Group PGCBDW, et al. Large-scale genome-wide association analysis of
bipolar disorder identifies a new susceptibility locus near odz4. Nat Genet.
2011;43(10):977–83.

23. Evangelou E, Ioannidis JP. Meta-analysis methods for genome-wide
association studies and beyond. Nat Rev Genet. 2013;14(6):379–89.

24. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in
two-sample mendelian randomization. Genet Epidemiol. 2016;40(7):
597–608.

25. Province MA, Borecki IB. A correlated meta-analysis strategy for data
mining ‘omic’scans. In: Pac Symp Biocomput, vol. 18. 2013. p. 236–246.
World Scientific.

26. Kessy A, Lewin A, Strimmer K. Optimal whitening and decorrelation. Am
Stat. 2017;just-accepted.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background 
	 Results
	The impact of overlap in samples on the joint analysis of two genomic data sets
	Estimating the correlation of two test statistics due to overlap in samples
	Decorrelation using the correlation due to overlap
	 Performance of proposed decorrelation step in a covariate-modulated false discovery rate framework
	Simulated data
	Simulation results

	Psychiatric Genetics Consortium (PGC) data with shared controls
	PGC results



	Discussion
	Conclusions
	Methods
	Derivation of the estimates for correlation due to overlap
	Correction for overlapping samples in studies with quantitative traits
	Correction for overlapping samples in case-control studies
	Correction for overlapping samples with one quantitative trait study and case control study
	Decorrelation
	Simulation study
	Simulation of genotype and phenotype
	Generation of independent and overlapping studies
	Generation of GWAS test statistics and covariate modulated fdr


	Psychiatric genetics consortium application
	Data description


	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References



