
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Biologically Plausible Control of Fast Reaching Movements Using Non-Traditional Cost 
Functions

Permalink
https://escholarship.org/uc/item/7s96g93r

Author
Gamble, Geoffrey

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7s96g93r
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Biologically Plausible Control of Fast Reaching Movements Using Non-Traditional
Cost Functions

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Geoffrey George Gamble

Committee in charge:

Professor Garrison Cottrell, Co-Chair
Professor Robert Hecht-Nielsen, Co-Chair
Professor Gert Cauwenberghs
Professor William Griswold
Professor David Kriegman

2016



Copyright

Geoffrey George Gamble, 2016

All rights reserved.



The Dissertation of Geoffrey George Gamble is approved and is

acceptable in quality and form for publication on microfilm and

electronically:

Co-Chair

Co-Chair

University of California, San Diego

2016

iii



DEDICATION

This work is dedicated to my parents, George and Judith Gamble, who have been
supportive of my endeavors, scientific and otherwise. I thank you for your
boundless patience, unwavering support and endless encouragement. I love you
very much.

iv



EPIGRAPH

The overwhelming majority of theories are rejected because they contain bad

explanations, not because they fail experimental tests.

David Deutsch

The truly privileged theories are not the ones referring to any particular scale of

size or complexity, nor the ones situated at any particular level of the predictive

hierarchy, but the ones that contain the deepest explanations.

David Deutsch

No great discovery was ever made without a bold guess.

Isaac Newton
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PREFACE

In Sir Isaac Newton’s seminal work, Philosophiae Naturalis Principia Mathe-

matica (The Mathematical Principles of Natural Philosophy, third edition), he made

a subtle but important point regarding his newly conceived laws of gravitation. He

states:

“Hitherto we have explained the phenomena of the heavens and of our sea

by the power of gravity, but have not yet assigned the cause of this power, I have

not been able to discover the cause of those properties of gravity from phenomena,

and I frame no hypotheses”.

The many translations of his work from Latin to other languages vary slightly

with their perceived meaning. Still, Newton, perhaps unwittingly, was emphasising

a new focus in science...A type of science that seeks to discover mathematical rules,

but in addition, places emphasis on discovering the underlying explanations of how

and why those rules exist. I call this distinction the “what happens” vs. “why

and how does this happen”. Newton freely admitted that, although he ascertained

mathematical rules that predicted the gravitational relationship between distance

and mass, which helped us to predict the motion of the planets and tides, he had

absolutely no understanding of why and how bodies of matter attract each other

in this way. He wondered why he could predict the gravitational forces between

particles, but could not understand why these forces exist.

My work follows in the vein of Sir Isaac Newton’s scientific principles. I

explore what happens with human movement (as described by mathematical rules)

and with these rules in mind, I attempt to move closer to explaining why and

how these movements occur. Ultimately, I demonstrate a new framework that

can be used to support the connection of these two concepts with regard to some

aspects of human movement. This effort places value on the explanation of observed

xiv



phenomena over their prediction, but still uses prediction as a justification for an

explanation. I find that discovering an explanation for a given phenomenon to be

much more satisfying than finding a formula for predicting some outcome without

understanding the underlying mechanisms. If you can explain, then you can predict,

in which case you have the best of both worlds.
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ABSTRACT OF THE DISSERTATION
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Optimal control has been used as a technique to uncover mathematical

principles which are observed regularly in the dynamics of human movement. We

present two new models of human reaching movements. While both are rooted
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and typical practices used in optimal control as applied to human movement. In

the first model, we use cost functions that measure various control signals via the

L∞ norm as opposed to the commonly used L2 norm. Doing so models human
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reaching movements as well as current approaches, but results in control signals

that can be reasoned about in terms of neural spikes and their timing. In the

second model, we change the organization of the terms within a single, multi-

term cost function by transforming it into many single-term cost functions. This

approach yields sub-optimal results with regard to cost, yet produces equal or

better results when applied to accuracy in modeling human reaching movements.

The traditional optimal control approach to modeling human movement assumes

that humans have an optimal design in terms of the anatomy and physiology of

their motor systems. This design is assumed to optimally minimize costs such as

energy consumption, or error while attaining a goal. However, it is more likely that

in changing environments/niches, humans and other animals are still evolving, and

therefore have not yet arrived at an optimal design. By reorganizing the terms of a

cost function in a cost-suboptimal way, while achieving high accuracy with regard

to modeling the movements, we challenge the basic premise of cost-optimality that

underlies optimal control based models of human movement. Additionally, this

reorganization of cost function terms into multiple cost functions results in multiple,

interacting control signals, making it possible to combine the these signals in ways

that resemble the connectivity of the human motor system, which contains a diverse

set of neural signals working in concert, each with its own character and purpose.

For this reason, we introduce a framework that generalizes these concepts, which

can be utilized for further modeling of human movement. The framework expands

upon traditional optimal control as applied to modeling human movements by

supporting multiple interacting control signals. This allows for experiments which

more closely resemble the neural architecture of the motor system, thereby making

it easier to reason about experimental results in terms of the construction of the

human motor system.
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Chapter 1

Introduction

1.1 The problem of understanding the neural

basis of motor control in animals

Animals move in a myriad of complex yet graceful ways, from a monkey

swinging from tree to tree, to an eagle soaring high in the sky, to a gymnast

artfully flipping and tumbling across a mat. Consider a cheetah in the savannah

pursuing a gazelle. Both animals are extremely nimble and extremely fast, each with

maximum speeds of nearly 100 km/h. In order for the cheetah to capture its prey,

and conversely for the gazelle to avoid capture, the animals must incorporate many

different types of information into the decisions they make during each moment

in order to achieve their respective goals. This information includes, but is not

limited to, their position, velocity, acceleration, rate of change in acceleration, as

well as their opponent’s set of dynamic variables, their surrounding environment

(e.g. obstacles in their paths). In addition, their internal states must also be

incorporated into their decision making, e.g. what they have learned from similar

past experiences, their sense of balance, and their sense of where their limbs

currently reside. All of these variables are somehow represented within the animals

via some neural substrates.

1
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1.1.1 Multiple neural signals in the animal motor system

Figuring out how these and other animals sense and encode these variables

into neural signals is only part of the problem. The signals from a given component

of their nervous systems combine with signals from other components, and may

influence many other components directly or indirectly. Many of these components

are very different from one another regarding their form and function. This

complicated, yet apparently well orchestrated symphony of neural signals somehow

drive hundreds of muscles in the animals to produce the incredibly adept movements

we observe.

1.1.2 Problem of relating biological computation to
traditional computation

Given the myriad of variables and the complexity of the system, how does

the nervous system perform the computations necessary to achieve these results?

It is generally accepted that the brain does not compute in a way that is reflected

in a modern computer based on the von Neumann architecture, and for all but

the simplest of organisms, it is not known how the above mentioned motor control

computations occur. As alluded to in section 1.1.1, there are a myriad of brain

structures/systems involved in motor control in some capacity. In humans, this

list includes (but is not limited to) the cortex, the cerebellum, various structures

in the brain stem, the spinal cord, and sensors in various locations (e.g. the inner

ear, muscles, and skin), that all relay state information back to the central nervous

system.

We have yet to come close to building a machine that can perform a breadth

of motor tasks at human level of proficiency. This fact is indicative of how far

we have to go in order to fully understand the human motor system in terms of
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anatomy and physiology. When we do build a machine that performs a small

subset of human-like motor tasks well, its architecture typically has very little to

do with the architecture of the human motor system (e.g. a mechanical arm at a

car assembly plant doesn’t reflect the control and architecture of the human arm).

Current robotic solutions may mimic human/animal movements in some respects,

and are extremely useful and cleverly designed, but typically do not inform us

about how the human motor system functions.

1.2 Why explore the mechanisms of the human

motor system?

1.2.1 Understanding our own construction

Hitherto, we have referred to the “human motor system” and the “animal

motor system”, henceforth, we may refer to the them as the “HMS” and “AMS”

respectively. Because this work focuses on human movement, if not specified

explicitly, we are referring to the HMS. Part of the motivation for studying the

HMS comes from an innate desire to understand one’s self. Understanding the HMS

will help us to understand our own construction in terms of both form and function.

The study of the HMS directly helps us to understand the most complicated system

in the known universe, the human brain, hence helps us towards understanding the

nature of thought.

More immediately, the study and understanding of the HMS will help to

uncover the causes (and potential cures) of various motor diseases e.g. Parkinson’s

disease and amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease). In this

work, we address the very real possibility that models of movement presented here

are very likely to be able to detect motor irregularities leading to early detection

and treatment. Additionally, such an understanding may provide the means to aid
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ongoing efforts to create limb replacements which are controlled naturally by the

nervous system, helping those with birth defects or catastrophic injury.

1.2.2 Human-like robots

Understanding the HMS will bring us to the doorstep of creating human-

like robots. This notion does not refer to “thinking machines”, but instead, well

programmed machines that possess the graceful motor skills needed to navigate

complex terrains that are typically accessible only to humans. The benefits of

such an accomplishment are many...These robots might be capable of carrying out

dangerous tasks that currently only humans are adept at, but risk their safety in

order to perform (e.g. mining, or deep sea and planetary exploration). Additionally,

menial yet intricate tasks could be offloaded to these robots (e.g. sewing or iPad

assembly), allowing global economies to become more efficient, while the need

for child labor and dangerous factory conditions might be reduced or eliminated.

Finally, as developed nations face aging populations, human-like robots might

possess the gentle touch needed to assist the elderly, prolonging their quality of

life. Similar to the AMSs mentioned earlier in section 1.1.1, these robots would

likely require multiple motor and sensory signals that interact with each other in

complex ways in order to achieve the varied movements that animals are capable

of. Modeling the complex interaction of multiple signals of different types is one of

the motivations for this work. We discuss a unique approach to this problem in

section 5.1.
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1.3 What is optimal control and how is it ap-

plied to the exploration of motor systems

function?

“Optimal control” has been used to find solutions to diverse problems in

many fields (e.g. equity trading, [2], spacecraft control, [3], and factory control

[4]). These applications of optimal control relate to the engineering of a solution to

a problem that is “better”, in some sense, than any other solution....Perhaps the

optimal solution is more accurate, more reliable, more productive, or faster than

other solutions based on standard engineering techniques, which commonly rely

upon the cunning, ability, and intuition of the engineer.

In this work, we, and others that will be discussed, do not use optimal

control to solve traditional engineering problems. Instead, we seek the underlying

principles that govern human movement. In a sense, we use optimal control to

reverse engineer the motor system by taking educated guesses at what principles

the “engineer” (evolution) may have used to guide its “decisions” when crafting

the AMS. A hallmark of this work is that we provide a path which gives the pure

mathematics of optimal control a more plausible mapping to actual neural function

when compared to other optimal control approaches, thus, getting a step closer to

the goal of reverse engineering the AMS.

Optimal control is a broad topic with many facets, a small subset of these are

used in this work. We have chosen to adapt approaches which have been successful

in the past at modeling human movements, while at the same time, questioning

their fundamental assumptions.

In this chapter, we will discuss the high level concepts necessary for the

uninitiated reader to follow the rest of the work, and why optimality principles
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may, or may not, underly the way in which the HMS has evolved. More detailed

aspects of optimal control will be discussed as needed in the following chapters.

1.3.1 Optimal control concepts relevant to this work

Loosely speaking, a “controller” produces a “control signal” to drive a

system to some desired state while satisfying a set of constraints. For example, the

controller of a self driving car might seek to get from point A to point B. One of

the constraints on the controller might limit the maximum speed of the car to 80

mph. The controller would then send a “control signal” to the accelerator to move

towards point B without violating the constraint of not surpassing 80 mph.1

Consider a human that wants to move her hand from point A to point B .

An infinite number of trajectories exist that will deliver the hand from one point

to the other, see figure 1.1. There are also infinite permutations of sequences of

muscle activations that could lead to the hand reaching its destination. However,

when performing these movements, the (properly functioning) HMS selects a very

small subset of these trajectories and muscle activation permutations. The HMS

routinely selects highly predictable and stereotypical paths for reaching movements.

The same is true for other related types of movements, e.g. catching a baseball [5].

How and why does the HMS select this small subset of movement trajectories from

an infinite pool of choices? This is known as the “redundancy problem” [6]. This

phenomenon leads us to believe that the nervous system has somehow evolved to

select a set of very specific solutions from an infinite pool of possibilities. These

selections are, presumably, optimally advantageous to humans. If they were not, it

is reasoned, evolutionary pressures would have arrived at some other solution that

is optimally advantageous. This redundancy problem, along with its solution, that

1A more detailed discussion of control signals will follow.
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Figure 1.1. A depiction of the so called “redundancy problem” of movement.
An infinite number of possible pathways exist between an starting position and
desired ending position. Furthermore, an infinite number of velocity, acceleration,
etc. profiles exist along the positional path.

evolution has “selected” an optimal trajectory for movements, in part, led to the

application of optimal control theory for modeling human movement.

An optimal control problem consists of several parts...Informally defined as:

1. System: a mathematical model representing some real world system, e.g. the

moving parts of a factory, or the dynamics of stock trading. The system

dictates how a control signal changes system state and the outputs outputs

of the system.

2. Control signal constraints : a set of permissible control signals (inputs) to the

system. E.g. the set of possible control signals to a factory arm might be

constrained to direct the arm within a limited range of motion.

3. Output constraints: a set of permissable outputs from the system. Each

acceptable output in the set can specify either an exact value, or a range of

values. E.g. fuel consumption for a flight from Las Vegas to San Diego must
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be below x gallons of fuel. These can also be thought of as the “goals” of the

optimization problem.

4. Objective function: a measure of cost/reward performance of the permissible

control signals , allowing the assessment of the “optimal” control signal.

The solution to an optimal control problem is a controller that produces a

control signal within the control signal constraint set (item 2), that achieves the

desired output, specified in the output constraints (item 3), with the lowest cost

(or highest reward) as defined by the objective function (item 4).

In the 1970’s and 1980’s, we began to see the application of optimal control

principles to the study of the HMS [7, 8, 9, 10]. Works that followed, which will be

discussed, continued to build upon the concept that the HMS conforms to optimal

control principles.

The notion of optimality is (perhaps obviously) central to the field of optimal

control. In this context, “optimal” means finding the single, best possible solution

to a problem, given a definition of its cost (which is to be minimized) and/or

reward (which is to be maximized), and its constraint sets. The concept of finding

the single, best approach to achieve a goal amongst potentially infinite solutions,

at least on the surface, appears to be a perfect resolution to the aforementioned

redundancy problem of animal movement. Amongst a sea of possibilities, one

trajectory and muscle activation pattern will be selected for some motor task

and its constraints. Inherently, this approach maintains the assumption that this

solution (chosen trajectory and muscle activation) should somehow be optimal for

animals in some way, and that animal movement movement has evolved to achieve

optimality in some way.

Additionally, keeping in mind the concepts of cost and reward as they
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relate to evolutionary pressures, it seems natural to apply optimal control to the

animal motor system, which evolved under various evolutionary pressures (costs

and rewards) such as minimizing energy consumption, maximizing the attainment

of scarse resources (e.g. food), and reproducing maximally. Optimal control has the

potential to elucidate biological mysteries because it gives us tools that mimic the

process of evolution by finding optimal solutions under the penalty of costs/rewards

and failure to meet goals. Several examples of these approaches will be discussed.

In this work, we investigate how current optimal control approaches might

be augmented to better reflect the physical implementation of the HMS. We will

question whether or not the optimal control approach, in its modern form, is a

valid approach for understanding the HMS to begin with. We present evidence

that our new formulation of state of the art optimal control techniques may be

more accurate and more relevant when modeling human movement.

1.3.2 Open questions regarding the application of opti-
mal control to movement

As encouraging as the premise of using optimal control to investigate the

nature of the HMS may be, the state of the art has its failures and shortcomings.

The choice of cost functions used to determine an optimal solution is an example

of this. Many, seemingly unrelated cost functions can be used to model human

movement accurately, a litany of cost functions produce adequate results when

modeling human movement [11]. This leads to the question, which cost functions

were the true drivers behind the evolutionary process leading to the HMS?

Even if we knew the set of cost functions that molded the HMS via evo-

lution, how do the resultant control signals work together at a systems level? In

physiological terms, how do the different neural signals that control our motor
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system work together to drive our motor output? The current literature in this

field typically utilizes a single control signal, and ignores the fact that many neural

control signals of different types work together to achieve motor tasks in the AMS.

We address this shortcoming in this work in chapters 4 and 5.1.

At what level of abstraction should we model these systems in order to

understand the HMS? Current optimal control related approaches are nearly devoid

of any physiological or anatomical explanations of how the HMS is implemented.

In order to create machines that move with animal-like grace and precision and/or

to understand human motor deficits/illness, we need a model that informs us about

the construction of the HMS. We also address this shortcoming in this work.

1.3.3 Select neuroscientific discoveries leading to the con-
cept of “controllers” in the animal motor system

Despite hundreds of years of investigating the mechanisms of the AMS, we

have only a rudimentary understanding of how its neural mechanisms control the

skeletomuscular system to produce effective movement. In the late 1700’s, Italian

physician Luigi Galvani performed a series of seminal experiments which began

to elucidate this problem. He was able to actuate frogs’ leg muscles via electrical

stimulation. Clearly, this showed that electrical signals were capable of driving

muscle activation, at least in a very rudimentary manner. His experiments were at

the core of a the new field of “bioelectricity”, which studied electrical signals in the

nervous system [12]. Still, these experiments did not encapsulate the full meaning

of “control” in the modern sense, as there was no desired state for the frog’s nervous

system to achieve, nor were there constraints. However, it is easy to imagine that,

somewhere in the (living) frog, similar signals were emitted which drove the frog’s

motor system to achieve some goal, within certain physical limitations (which can
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be viewed as constraints).

Moving forward to the late 1800’s, we began to understand one of the most

basic tenets of mammalian motor control. Fritsch and Hitzig showed that electrical

stimulation to the motor cortex of dogs could elicit movement [13] (translated in

[14]). This movement was not random, instead they showed that stimulations of

select areas of the cortex repeatedly activated the same muscle or muscle groups.

Furthermore, these stimulations formed a mapping between certain areas of the

cortex with certain muscles. In a sense, they had found a neural controller , albeit

one that was distributed across many areas of the cortex (later to be considered the

motor cortex). It is worth reiterating that, like Galvani and his frog experiments,

these stimulations that drove motor functions were electrical signals. It appeared

that each area of this distributed system sent control signals to activate different

muscles. Again, we witness multiple signals from multiple sources having the ability

to control motor function, as first discussed in section 1.1.1.

1.4 General philosophy and scientific approach

that have guided this work

1.4.1 The importance of explanatory power

As mentioned in the preface, whether scientists are aware of their own

biases of not, they often have different goals when studying natural phenomena. A

scientist may choose to create a model that is predictive in nature. For example,

Newton’s laws of motion could be utilized to predict exactly when an apple will hit

the ground when falling from a tree. However, Newton lamented that his laws did

not explain how or why gravity affects the apple in the way that it does. His “law”

of gravity lacked an explanation of the observed phenomenon, and while Newton’s

laws were, and still are incredibly useful, he was left unsatisfied.
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Contrast Newton’s dissatisfaction regarding his theories with Einstein’s

formulation of general relativity, which posits that gravity is an effect of curved

space-time. Einstein offers a better explanation of why the apple falls from the

tree at a given rate. Mass reshapes the fabric of space. As an example, light is

not “bent” when it travels passed a massive star, it is simply travelling normally

along a curved surface. Planets are not “drawn” to the star they orbit, they are

are travelling via a trajectory through space that is warped around the mass of a

star. In the same way that a planet “falls” towards the Sun (hopefully in an orbit),

an apple is drawn towards the Earth due to warped space. Whether or not this

is the correct conception of gravitation, it is much more satisfying than Newton’s

purely mathematical account as it offers an explanation of how and why gravity

functions as it does.

An analogous situation exists in the literature of applying of optimal control

to the modeling of human movement. As will be demonstrated, the majority

of the applications of optimal control to the modeling of human movements are

purely mathematical in nature. They make only feeble efforts to explain how

these optimality principles are implemented in the nervous system (analogous to

the lack of explanation of how gravity is “implemented” in the universe). They

lack explanatory power. In this work, we do not claim that we can explain the

HMS. However, whenever possible, we attempt to offer some, plausible relationship

between the mathematics of optimal control, and the anatomy and physiology

of the HMS. In doing so, we hope that the techniques introduced here can be

used to model the nervous system more directly, thereby bringing us closer to an

understanding and explanation of how and why the HMS functions as it does.
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1.4.2 Bottom up vs. top down

In order to understand how optimal control purports to give us insight into

the HMS, and to understand the value it may provide, in this section we frame the

traditional approach from a different perspective, illustrate the mindset that has

guided this work, and give intuition regarding the scientific contributions this work

makes. Most techniques in engineering and science can be divided into two broad

categories. We refer to these as “bottom up” (also called inductive reasoning) and

“top down” (also known as deductive reasoning). Understanding the differences

between these two approaches will help the reader to appreciate the contributions

of this work. We give a loose definition of each approach here as they relate to

scientific investigation:

The bottom up approach can be thought of as having five steps, we give an

illustrative examples from a fictitious scientific problem regarding the ocean’s algae

population fluctuations.

1. Start with data collection on low level observations of some phenomenon,

assuming nothing regarding the nature of the data: At a certain latitude,

take samples of the temperatures of the world’s oceans, along with their algae

content, over several years.

2. Notice patterns, generalize based on observations, begin to be able to predict

future behavior based on past observations: Algae content peaks at during

the fall months.

3. Develop one or more hypotheses to explain the observations A) The ocean

temperature is optimal at this time for algae growth in certain regions B)

The temperature at this time is unfavorable for the main predator of algae,

allowing algae to proliferate.
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4. Test hypotheses A) Choose a different latitude which reaches this optimal

temperature at a different time of year, and see if that corresponds to the

algae population peak. B) Find an area of ocean where this predator doesn’t

exist, and see if the same pattern is observed

5. Finish by producing a theory based on which hypothesis (or hypotheses)

stand(s) up to the testing.

The top down approach can be thought of as having three steps. Again we

provide a illustrative examples.

1. Begin by proposing a general theory of how some process works, which has not

been validated by experimentation at this point: Guess that algae population

fluctuation is due to carbon emission.

2. Come up with specific disprovable hypotheses of what should happen if the

theory were true: There should exist a correlation between carbon levels in the

atmosphere from the pre-industrial period until now, and algae populations.

3. Observe and experiment in order to support or disprove the hypotheses

and by extension support or disprove the more general theory: Use the

sedimentary record to estimate the algae population dating back to pre-

industrial times. See what the correlation is between algae population and

the known atmospheric carbon level over the same time period.

4. Accept or reject the proposed theory based on the strength of experimental

evidence.

Notice how the bottom up approach finishes by producing a theory while

the top down approach begins by postulating a theory. Both approaches attempt to
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validate a theory that should have a plausible explanation for the phenomenon it

addresses. Neuroscientific endeavors often take one or the other approach. Some

use the bottom up approach, starting at a low level and working “upwards”. This

approach may begin as low as the level of atoms, molecules, and physical forces,

or arbitrarily higher, e.g. individual neurons, networks of neurons, etc. These

approaches may include the modeling of spiking neuronal networks based on known

neuroanatomy. This type of endeavour has led to explanations (whether correct or

incorrect) of how small but relevant subsections of the nervous system may work

[15, 16, 17, 18], but hasn’t yet been able to work “up” to explaining the system as

a whole.

In contrast, we consider the use of optimal control to be a top-down approach,

as it starts by postulating a high level theory and, ideally, attempts to move toward

something that may help us explain the inner workings of the motor system at a

lower level (e.g. at the level of individual neurons). For example, one might start

by proposing a theory that the HMS has evolved to minimize energy consumption

while completing motor tasks. One then can come up with disprovable hypotheses

and experiment to confirm or refute them, thereby supporting or disproving the

theory. However we feel that the current state of the optimal control approach is

still at the high level theory and hypothesis testing stage and lacks explanatory

power with regard to the neural implementation of the motor system. Others have

stated that the next step in the optimal control approach is to extend the reach

of the explanations provided closer to the anatomical and physiological level (e.g.

[19]). With this directive in mind, in this work, we explore, test, and justify a

number of ideas which change the optimal control approach to modeling animal

movement in ways that bring us closer to modeling the neural implementation of

the motor system.



16

1.4.3 Questioning fundamental assumptions and practices
in the field of optimal control as applied to the
exploration of the HMS

Perhaps the most important concept guiding this work is the questioning of

the assumptions and standard practices used by researchers in this field. Science

typically builds upon itself, a concept wish is succinctly captured in Newton’s

famous quote, “If I have seen further it is by standing on the shoulders of gi-

ants”. However, there are times when a few of those scientific building blocks are

flawed. Reexamination of core assumptions can affect all science built upon those

assumptions.

Research leading up to this work involved a continuous exploratory process

in which we questioned core assumptions that scientists typically employ when

modeling human movements via optimal control. Altering these assumptions

sometimes led nowhere. However, in some cases, experimenting with altered

assumptions led to interesting and unexpected results. Chapters 3, 4, and 5.1

all address how questioning two basic assumptions of optimal control can lead to

fruitful results, which bring the discipline a step closer to providing explanations

that can be reasoned about in terms of anatomy and physiology of the human

motor system.

1.5 Overview of select chapters

Chapter 2: A simple control policy for achieving minimum jerk trajec-

tories.

Clearly, evolutionary forces impose some notion of cost or reward on the

organisms that survive and reproduce, as opposed to those that become extinct.

Organisms incurring high costs but low rewards are unlikely to succeed in an
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evolutionary sense. Optimal control directly models cost and reward. The question

becomes, how does one measure cost or reward? When finding an optimal solution

to a problem with some set of costs/rewards, over some time series, the 2-norm is

typically used as the de facto metric (as it is in many error related calculations),

and has led to cost functions which have been used to model human movement.

However, using different metrics to define cost leads us to very different results.

We will show the importance of using a different cost metric, the infinity-norm.

By comparing one of the canonical models of human reaching movements dubbed

“minimum jerk” ( “jerk” being the rate of change of acceleration, i.e. the third

derivative of position), in which error is measured by the 2-norm (as proposed

by Flash and Hogen [20]), against the same cost (minimum jerk) as measured

by the infinity-norm. We show that the choice of error measurement has drastic

implications with regard to the two models’ predictions of the control signals that

drive movements.

Chapter 3: Sparse signals for the control of human movements using

the infinity norm.

This chapter is an extension of our findings described in chapter 2, “A simple

control policy for achieving minimum jerk trajectories”. We expand our exploration

to optimal control strategies which minimize higher derivatives of human movement

position, namely, jerk, snap, and crackle, the third, fourth, and fifth derivatives

of position respectively. We again compare the these costs as measured by the

2-norm vs the infinity-norm. We argue that in all cases, minimization via the

infinity-norm produces a control signal reminiscent of a “bang-bang” control signal,

one of the simpler control strategies used to control mechanical systems. We extend

the previous work in chapter 2 by outlining a method for encoding this signal
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with sparse Dirac delta functions, which more closely resemble both individual

neural spikes, along with sudden bursts of neural neural activity from populations

of neurons.

Chapter 4: Suboptimal combinations of cost functions fit fast human

reaching movements as well as optimal combinations.

This chapter presents a generalized framework called the “Optimal Conflu-

ence Control Framework”, or OCCF. It defines the OCCF and begins to justify why

it can be useful in the modeling of human movements. We then demonstrate an

example of how to use the OCCF framework, which is a proof of concept that the

framework is effective. To date, when applying optimal control to the modeling of

human movements, a single control signal is used. This control signal is based upon

a single cost function, sometimes consisting of many cost terms. In contrast, the

HMS utilizes scores of signals interacting to produce muscle contractions resulting

in effective movement, a concept that the OCCF supports.

We question the use of a single cost function, and a single control signal

based on that function. There is a reason that a single, multi-term cost function,

which generates a single control signal, is used universally. It is because this

formulation is mathematically guaranteed to be “optimal” in terms of costs, the

notion of which is the bedrock of optimal control.

Instead, we espouse the use of multiple cost functions, each evaluated

separately from the others, which result in multiple control signals. This approach

is not optimal in terms of minimizing costs, but can more closely mirror anatomy

and physiology of the HMS than the traditional, single function, single control signal

method. We offer a simple example of this approach and compare the differences

in efficacy between this and traditional approaches when modeling human reaching
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movements.

Chapter 5: Conclusions, conjectures, and scientific contributions.

In this chapter, we explore anatomical and physiological reasons why our

modification of traditional optimal control techniques holds promise to become a

valuable tool when reverse engineering and reasoning about the HMS. We provide

an overarching framework that, we argue, should be used in place of the existing

paradigm. We offer examples from neuroscience which show that the traditional

optimal control approach, keeping in mind its top down strategy, has no hope of

explaining the HMS at a level “lower” than it already has...That is, the current

paradigm has reached the end of its explanatory power. It is for these reasons we

have explored the mechanisms necessary for the new paradigm offered in this work.



Chapter 2

A simple control policy for achiev-
ing minimum jerk trajectories

Point-to-point fast hand movements, often referred to as ballistic movements,

are a class of movements characterized by straight paths and bell-shaped velocity

profiles. In this paper we propose a bang-bang optimal control policy that can

achieve such movements. This optimal control policy is accomplished by minimizing

the L∞ norm of the jerk profile of ballistic movements with known initial position,

final position, and duration of movement. We compare the results of this control

policy with human motion data recorded with a manipulandum. We propose

that such bang-bang control policies are inherently simple for the central nervous

system to implement and also minimize wear and tear on the bio-mechanical

system. Physiological experiments support the possibility that some parts of the

central nervous system use bang-bang control policies. Furthermore, while many

computational neural models of movement control have used a bang-bang control

policy without justification, our study shows that the use of such policies is not

only convenient, but optimal.

20
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2.1 Introduction

The process of evolution drives species to differentiate to produce some

competitive advantage. Just as it is easy to observe that evolution has lead to a

great many modes of locomotion [21], it can be assumed that evolution has had

effects on the control of behavior by the nervous system. Under this assumption,

we can then ask which attributes of the nervous system’s control policy might have

adapted to provide a competitive advantage. It is reasonable to assume that a

bio-mechanical system evolves to find an optimal control policy by optimizing over

some cost or reward function. In this paper, we suggest a new cost function and

discuss the control policy this cost function dictates.

How the CNS implements a control policy to achieve movements is not

understood. Areas of cortex send axons to the spinal cord and generate move-

ments when stimulated, which has led many to believe that cortical structures

are responsible for most aspects of movement control [22, 23, 24]. Determining

the exact parameters by which the cortex is able to alter behavior has proved

to be difficult. Many experiments have correlated cortical activity with various

aspects of a behavior [22, 25, 23, 24]. For example, Graziano’s work [26] implies

that the cortical description of a behavior may be limited to a high level goal state

representation. Other evidence shows that the spinal cord plays a key role in the

generation of behaviors [27, 28].

One method used to understand the nature of movements is to reduce

them to simpler components. For this study we limit ourselves to examining

simple, ballistic point-to-point reaching movements. Simple movements might

be considered to make up a basis set of which more complicated movements are

composed [29, 30, 31]. By studying these simple movements, we may be able to
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gain insight into the control of more complex movements such as curved movements

defined by via points [20] or paths [32]. Furthermore, it has been observed that this

class of movements consistently follows bell-shaped velocity profiles [33, 20]. This

observation suggests that there exists a set of constraints placed on the dynamic

system by a controller. Because this set of constraints exists across a range of

movements, it can be said that these movements result from a common control

policy. We show here that the observable invariant parameters of movement suggest

a neural control policy which is corroborated by neurophysiological experiments. *

There have been several attempts to mathematically model human point-to-point

movements of an end effector (the hand) [20, 32, 34]. A key study of this type

is [20]. Flash and Hogan began their work on modeling movement by observing

that short duration, straight line reaching movements (ballistic movements) exhibit

a stereotypical bell-shaped velocity profile. Their work resulted in a model that

was exceptionally good at reproducing the trajectory of a movement given the

limited information of initial position, final position, and movement duration. This

model was achieved by finding the trajectory that minimized the L2 norm of the

3rd derivative of the position trajectory. The 3rd derivative of position is known

primarily as “jerk”, but is also known as “shock”, “jolt”, “surge” or “lurch”. We

henceforth refer to their model minimizing the L2 norm of jerk as MJ2.

Although the MJ2 is exceptionally good at reproducing trajectories from

limited constraints, it remains unclear how the central nervous system would

generate these trajectories. Various other models have been proposed that minimize

other derivatives of position such as acceleration [35]. This recent work by Ben-

Itzhak and Karniel has produced a model that not only generates accurate point-

to-point movements but also suggests a control policy by which the CNS could be

generating such movements. The work presented here expands upon those findings
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and suggests an alternative model that presents a simple control policy the CNS

may implement.

We propose an optimal control policy for achieving ballistic movements

based on minimizing the jerk of the trajectory of the end effector. We formulate

the problem as an optimal control problem wherein the jerk is treated as the

control signal. Our model minimizes the L∞ norm of the jerk and shows that the

optimal control policy is of a “bang-bang” type controller, a policy which simply

switches a system between two states [36]. The appeal of such controllers is that

they are inherently simple to implement. Furthermore, minimizing the L∞ norm

minimizes the maximum allowable jerk for the system, which can reduce wear and

tear. Henceforth, we refer to our proposed model as MJ∞.

Flash and Hogan also solved for the trajectory that minimizes jerk, however

their cost function utilizes the L2 norm. While such a cost function yields bell-

shaped velocity profiles and position profiles as observed in humans, the jerk profiles

given by the model are not a simple bang-bang type controller. Ben-Itzhak and

Karniel developed a model (MACC) that also yields accurate trajectories. In

contrast to MJ2 model, their model implies a simple bang-bang controller. They

arrive at this model by minimizing the L2 norm of the acceleration with a free

parameter constraining the maximum allowable jerk. While they show that their

model improves error significantly, we argue that their usage of a free parameter

is not needed and adds unnecessary complexity. The model presented here still

yields a bang-bang control policy but is less complex in that no free parameter is

required.

This paper is divided into the following sections. In section 2, we describe our

model used to describe realistic human movements as well as provide justification

for it’s biological importance. Next, in section 3, we explain the process by which
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the human movement data were collected and parsed for proper analysis and

comparison. In Section 4 we discuss the results of the data comparison with our

model, MJ∞, and the MJ2 model. The last section discusses the importance of

this work and draws conclusions about the insights provided by modeling human

movement.

2.2 Model description

The reasons the central nervous system minimizes the jerk of movements

are not immediately apparent. Mechanical systems have maximum tolerances

related to various dynamic variables (velocity, acceleration, jerk, etc.). Beyond

these tolerance levels, components of the system may begin to fail. Biological

systems are mechanical systems and therefore also have thresholds that, when

exceeded, may lead to damage such as ligaments and muscles tearing or bones

breaking. Jerk is one of the dynamic variables that bears directly on the well-being

of a mechanical system. Mechanical engineers and roboticists have recognized the

benefits of minimizing jerk and have incorporated this concept into their systems

[37, 38, 39, 40]. Optimizing animal movement by minimizing jerk is beneficial in

that it can reduce stress on the mechanical components of the body.

It is not obvious what function of the instantaneous jerk should be minimized

to match biological observation. The L2 norm (as used in the MJ2 model) measures

the summation of squared jerk over the course of the movement while the L∞

norm (as used in the MJ∞ model) minimizes the maximum jerk value over the

course of the movement. While the L2 norm metric penalizes high jerk values, it

does not explicitly force the system to keep the maximum instantaneous jerk as

low as possible. In the jerk profile figure shown in Figure 2.1, notice that near

time t=0 and t=1 second, the jerk resulting from the MJ2 model far exceeds
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Figure 2.1. Dynamic profiles of reaching movements corresponding to the L2

norm based control policy and L∞ norm based control policy are shown in red and
blue respectively.

the maximum jerk over the entire movement by the MJ∞ model. In contrast to

the L2 norm metric, limiting the maximum instantaneous magnitude of jerk via

an L∞ norm cost function reduces the possibility of the movement passing some

critical jerk threshold, after which damage to the body may occur. This intuitive

rationale helps justify why evolution may have minimized the maximum magnitude

of instantaneous jerk (L∞ norm) during a movement rather than the sum of squared

jerk over the course of a movement (L2 norm).
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2.2.1 Minimizing jerk as a control variable

In this section we formulate the problem of minimizing the jerk of a ballistic

point-to-point movement as a control problem where the control signal is the jerk,

the initial and final positions are known, and the duration of movement is also

known. For ease of notation, here we restrict our problem formulation to one

dimension and note that extensions to higher dimensions are straight-forward. The

control signal seeking a minimum jerk trajectory x(t) is formulated as follows:

minimize
u(t)

‖ u(t) ‖p

subject to ẋ(t) = Ax(t) +Bu(t)

(2.1)

where A =


0 1 0

0 0 1

0 0 0

, B =


0

0

1

, x(t) =


x(t)

ẋ(t)

ẍ(t)

, u(t) =
...
x (t), and where ‖ · ‖p

denotes the Lp norm.

The solution to equation 2.1 will determine the optimal control policy u(t).

The selection of the Lp norm can result in vastly different control policies. For

1 ≤ p < 2, the control policy will result in physiologically unrealistic movements

and as a result these types of control policies are not discussed here. Instead we

will pay close attention to cases where p = 2 and p =∞. For p = 2, we have the

following policy as described in the following theorem:

Theorem 1 1. The solution to equation 2.1 with p = 2 is a straight line trajectory

given by the following control policy:

u(t) =
...
x (t) = (xf − xi)

(
360

T 5
t2 − 360

T 4
t+

60

T 3

)
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where xi is the initial hand position at time t = 0 and xf is the final hand position

at time t = T .

Proof. This was originally shown by [20]

The control policy corresponding to the above theorem has been shown to

fit human data very well [20]. The next theorem shows that if the L∞ norm of jerk

is minimized (i.e, p =∞) in equation 2.1 then we have a bang-bang control policy:

Theorem 2: Bang-bang Control Theorem. The solution to equation 2.1 with

p = ∞ is a straight line trajectory given by the following control policy:

u(t) =
...
x (t) =


J 0 ≤ t < T/4

−J T/4 ≤ t < 3T/4

J 3T/4 ≤ t ≤ T

(2.2)

with J = 32
xf−xi

T 3 where xi is the initial hand position at time t = 0 and xf is the

final hand position at time t = T .

Proof. This was originally shown by [38]

Ben-Itzhak and Karniel [35] proposed a similar bang-bang control policy

for achieving ballistic point-to-point movements. Their control policy minimizes

acceleration and also places a threshold on the jerk of the trajectory. This threshold

is a free parameter in their model that controls the amount of allowable jerk. Here

we show that achieving a bang-bang control policy can be done without introducing

any free parameters simply by minimizing jerk as measured by the infinity-norm.
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Figure 2.2. The boxes labeled A, B and C are “targets” which appeared on
a screen in front of the subjects. The triangle at the end of the subject’s arm
represents the subject’s hand and the manipulandum he is moving. The subject
moves his hand between two of the points within a specified time window. The
three targets allow for six distinct movement types indicated by the six arrows.
The subject receives visual feedback indicating if he or she has successfully reached
a target and if he or she has done so within the allotted time window (diagram
adapted from [35]).

2.3 Methods

The human arm movement data used in this study for comparison with our

model were provided by Amir Karniel at the Ben Gurion University of the Negev,

the same data he and Ben-Itzhak used in their 2008 paper outlining their model

of fast arm reaching movements [35]. The data originated from a 2002 paper by

Karniel and Mussa-Ivaldi [41] investigating the nervous system’s ability to adapt

to perturbations. An abbreviated description of the data collection techniques is

given below. For a complete description, see [41].

Seated subjects held a robotic manipulandum which was restricted to two

dimensional movements corresponding to the horizontal plane of the subjects. They

watched a screen which displayed the position of their hand (and the manipulandum)

in relation to three positional markers A, B and C. The markers were positioned to

form an equilateral triangle (see Figure 2.2). The subjects were instructed to move
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Figure 2.3. A typical recording of the position profile. The oscillatory behavior
at the end of the movement corresponds to the overshoot and correctional effects
described in the text and are discarded since they are not part of the ballistic
portion of the movement. The units of time and position are not relevant and are
not shown.

the on-screen representation of the manipulandum from one target to another. The

distance between the targets was 10cm. This motion was to occur within one third

of a second, ±50ms. Feedback was given to the subjects indicating if they had

reached the target and if they did so within the appropriate time window. Position

profiles were recorded for all six possible movement types for five subjects over

the course of four days. The original data included a subset of trials in which the

arm was perturbed during movement from one marker to another. This subset

was excluded from our analysis. Only unperturbed movements were analyzed. See

Figure 4.2 for an example of a typical movement.

The data included uninteresting aspects such as near stationary positional

information before a subject began moving and after a subject reached his or

her goal and stopped moving. Various methods have been used for movement

onset detection [42, 43, 44]. Unfortunately, there is no consensus regarding which

technique is best for choosing the relevant portion of a movement as the definition

of what is relevant may change from study to study or from one movement type to

another. We employ a simple method to determine the start and end times of each
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movement. We start by finding the onset of the movement. To do so, we compute

the energy of a moving window of five time steps over the velocity profile from a

given trial:

E =
5∑

i=1

v2[i] (2.3)

where v[i] is the velocity of the manipulandum at time step i of the current window.

The window starts at the beginning of the recorded data of a trial (time steps 1-5)

and moves forward in one time step increments (e.g. 2-6, 3-7, etc). If E is not

greater than a threshold, δ, the window continues moving forward and the test is

repeated.

When the window moves over a portion of the velocity profile where the

manipulandum is both stationary and close to the starting position (i.e. before the

movement begins), E is low. As the window moves over a portion of the velocity

profile which is increasing, E becomes greater. We define the starting time of the

movement to be the beginning time step of the window at the first window position

where E ≥ δ.

Finding the time at which the ballistic portion of the movement ends is

difficult due to corrective movements made by the subjects after they reach their

target, e.g. the correction of perceived target overshoot. Recall that we are only

interested in ballistic movements. The corrective portions of the movement fall

outside the ballistic portion of the movement. We define the middle (T/2) and end

(T ) times of a movement in the same way as done in [35]. End effector velocity

profiles for ballistic point-to-point movements are known to have a symmetric bell

shape [33, 20]. In order to determine the end time of the movement, we first define

the middle position of the movement (T/2) to be the point of maximum velocity, i.e.

the top of the symmetric bell. We then simply double this value to find the end
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time T .

Like other methods, this heuristic technique is not guaranteed to find the

ideal onset and end of the recorded movements. Both the MJ2 and MJ∞ models

assume an initial and final position at which velocity is zero. For this reason, it

is appropriate to filter the trials, keeping those for which our start/end detection

algorithm has chosen points which most closely meet the zero velocity start and

end point assumptions of the models. By definition these are the only trials that

are relevant to the models.

Since none of the trials have exactly zero velocity start and end points, some

degree of tolerance must be allowed. Furthermore, some metric must be employed

to define the degree of closeness to zero velocity for a given start/end point. We

define close to zero velocity for start and end points on a trial by trial basis by

computing a ratio between the velocities in question and the peak velocity:

c =
vs + ve

2vp
(2.4)

Where c is a unitless indicator of closeness to zero, vs is starting velocity, ve is

the ending velocity and vp is the peak velocity of the movement. Applying this

metric to all trials yields a distribution between 0 and 1 (see Figure 2.4). As the c

value gets closer to zero, the corresponding trial increasingly conforms to the zero

start and end assumptions of the MJ2 and MJ∞ models and is therefore more

appropriate for comparison against the models. We included all trials with a c value

less than the harmonic mean of the entire distribution. That is, we favored trials

which most closely conform to the assumptions of the models while still leaving

enough trials to properly gauge statistical significance. The use of the harmonic

mean as a level of tolerance of deviation from zero velocity is somewhat arbitrary.
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Figure 2.4. Histogram of the ratio of average starting and stopping velocities to
peak velocity for each trial. Ideally, the trials should have start and end velocities
as close to rest as possible in order to conform to both models’ assumptions.

What is important is that the trials with large c values (that do not conform to

the models’ assumptions) are discarded while keeping enough trials to maintain

statistical significance. In all, our filtered data set included 406 movement trials.

2.4 Results

To assess the performance of the minimum L2 norm jerk model (MJ2) in

comparison to the minimum L∞ norm jerk model (MJ∞), we compute the time-

series mean-squared error between the model’s predicted position trajectory with

the human subject’s trajectory. Our intention is to show that MJ∞’s much simpler

control policy can fit data at a high accuracy. In fact, we show that our model

significantly exceeds the accuracy of the MJ2 model for this data set. Formally,

the mean-squared error is computed as follows:

MSEk =
1

tk

tk∑
i=1

(xk[i]− pk[i])2 (2.5)

where k refers to the trial, tk the number of samples for the kth trial, xk is the

model position profile for the kth trial, and pk is the recorded data position data
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Figure 2.5. Bars A - E show the comparison of the average MSE of position
profiles predicted by MJ2 and MJ∞ vs. human trial data along with standard error
bars. Error units are m× 10−4. “All Subjects” is an aggregate of the trials in A-E.
The MJ∞ model performs better than the MJ2 model in all cases. The results
for A, B, E are significant with p < 0.05 by a Wilcoxon rank-sum test. The “All
Subjects” aggregate results are extremely significant with p < 0.001 by a Wilcoxon
rank-sum test. This test was utilized due to the non-normality of the data as is
typically done in this situation [35].

for the kth trial.

Figure 2.5 shows the comparison of the average MSE trajectories between

MJ2 and MJ∞. MJ∞ has a smaller MSE in all cases. We therefore can conclude

that the trajectory estimates of MJ∞ are just as good or significantly better than

those of MJ2. Furthermore, their control policies differ significantly and we suspect

that the simple control policy (the bang-bang controller of MJ∞) would be favored

by a biological system.

The MACC (Minimum Acceleration Criterion with Constraints) model

proposed by Ben-Itzhak and Karniel [35] also implies a simple bang-bang controller,

however, their approach requires a free parameter that places a cap on the maximum

allowable jerk (manifested as a constraint on the control signal). Although changing

this parameter can change the switching times of the bang-bang controller, it is not

clear how to select an appropriate value for this parameter. Ben-Itzhak and Karniel
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Figure 2.6. Overlay of MJ∞ model with human movement data of a single trial.

choose the value for this parameter by performing a grid search and selecting the

best value that fit the data for each trial. Even though they showed that using

this method of selecting the parameter value results in trajectories that have MSE

significantly smaller than the MJ2, these results depend upon the model’s ability

to tune this parameter on a trial by trial basis. This may explain the improvement

over other models they have used for comparison. While it is feasible for the CNS

to implement additional parameters, free parameters add unnecessary complexity

for achieving bang-bang control. It is worth noting that while our model does not

require any free parameters, it is a special, but important, case of the MACC model

where the free parameter is chosen such that the infinity-norm of the jerk profile is

minimized and hence is equivalent to the MJ∞ jerk profile.

Our suggestion of a bang-bang control policy is based upon the fact that

minimizing jerk with an L∞ norm measure results in a two state jerk profile. Since

the jerk is an observable characteristic of the movement, experimental data should

be able to confirm the true nature of the jerk profile. Unfortunately, numerical

computations of jerk by derivative approximation (as done in this paper) amplify

noise inherent in the original recording. This makes drawing direct conclusions

about the nature of the jerk profile difficult (see jerk approximation in Figure 2.6).
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To overcome this difficulty we decided to evaluate the error of the models with

respect to the positional data. Future work on this hypothesis should include

recordings of acceleration, which should reduce noise amplification and possibly

make the true jerk profile apparent.

2.5 Discussion and future work

In this work, we studied an optimal control policy for achieving point-

to-point ballistic movements using the minimum-jerk criterion. We focused on

minimizing the L∞ norm of jerk (MJ∞) to achieve a simple bang-bang control

policy as opposed to using the L2 norm (MJ2). We compared the two policies with

human motion data recorded with a manipulandum and showed that the MJ∞

outperforms the MJ2 at predicting ballistic human arm movements.

Determining the precise contributions of the various components of the CNS

to the control of movement is difficult, since observations of the motor system’s

neural activity in behaving animals are hard to obtain. However, measurements of

external motor behavior are much easier to record. It is natural then to attempt to

leverage the movement data we have to explain what the control policy used by the

CNS may be. Since the movements were performed by well trained individuals in an

unperturbed workspace it is reasonable to assume that feedback due to movement

errors would be minimal. Furthermore, experimental studies on deafferented animals

have demonstrated that trajectory planning for fast point-to-point movements is

not disrupted [45] and that proprioceptive or cutaneous feedback is not necessary

for the execution of such movements. Because of the lack of feedback involved

with these movements, we can model these movements as a feed forward control

problem.

With this in mind, our proposed optimal control problem was solved once,
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and the solution was used for each trial (as done in [20]). We remind the reader

that we are not proposing that the biological system is performing an optimization

computation each time a movement occurs. Instead, we are suggesting that evolution

has already performed the optimization process via some cost function and arrived

at a neuromechanical system (the human body) with a construction intrinsically

built to minimize jerk.

The selection of a cost function to optimize is crucial and can result in

vastly different control policies. If we assume a cost function that evolution has

used to optimize animal movement, we can extrapolate a corresponding control

policy. In addition, we can draw inferences regarding the nature of the biological

mechanisms that might implement such a system. Since minimizing the L∞ norm of

jerk results in a bang-bang control policy, we can hypothesize that simple two-state

step functions are utilized to control a biomechanical system. These two-state step

functions are desirable because binary control is simple.

In addition, utilizing two-state control policies have been shown to be

effective in computational models of movement. Recent computational models of

spinomuscular control require only step functions representing supraspinal inputs in

order to drive a network to achieve human like movements [46, 47]. Other models

have shown that central pattern generators can be driven via step inputs [48].

Similarly, on/off control policies have been observed both in vivo and in

vitro in multiple vertebrates. Complex movements such as walking can be activated

by gross on/off stimulation of groups of neurons in the brain stem or the spinal

cord. The experiments reported in [28] induced various patterns of locomotion in a

spinally transected cat by administering a simple step-like electrical stimulation

of the lower region of the cat’s spinal cord. The experiments in [49] showed that

fictive locomotor patterns could be induced with the use of step-like excitation
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to either the brain stem or spinal cord of mice. Classes of neurons in the brain

stem and lumbar regions of the spinal cord of the mice were genetically engineered

to contain channelrhodopsin light gated ion channels. Using this technique, light

stimulation (or lack thereof) served as an on/off switch for the genetically modified

motor system neurons. Gross “on” stimulation to either the brain stem or the

lumbar region of the spinal cord activated a class of neurons in those regions and

induced fictive locomotion patterns. The gross “on” stimulation was a control

signal driving the generation of locomotor patterns.

The computational and animal experiments explained above indicate that

one or more bang-bang type controllers may exist somewhere in the nervous system.

It is still an open question as to how and where their neural implementations exist.

The evidence cited here suggests that these controllers may exists in supraspinal

centers [26, 46], within the spinal cord [27, 28], or both in the brain stem and

spinal cord [49]. Furthermore, it is plausible that populations of bursting neurons

could implement a bang-bang control signal [50]. This minimum jerk-based bang-

bang control signal could then be converted to a signal representing any lower

order derivative (acceleration, velocity, etc) via integration of the signal. Certain

populations of neurons are known to perform functions akin to time integration [51].

Integration of a neural signal encoding velocity would lead to a signal encoding

position as happens in the occular-motor system [52, 53]. We stress that these

suggestions for our control policy’s neural implementation are merely hypotheses

backed by neuro-scientific evidence.

We suggest several important extensions to this work. As discussed earlier, to

gauge a more accurate jerk profile than that attained by numerical approximations

of higher derivatives, we propose using a manipulandum device where the jerk

profile can be recorded directly with high bit precision. As shown in Figure 1
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the jerk profile that we propose has step-like features and discontinuities. If the

jerk profile of human arm reaching movements has such features, then care must

be taken to acquire and digitize the jerk signal appropriately. Only then can we

effectively compare the MJ∞ jerk profile with the acquired jerk profile from human

subjects.

Another interesting extension would be to investigate how well MJ∞ models

curved movements as done by MJ2 and other models [32, 54]. Although the MJ∞

performs very well at modeling straight point-to-point ballistic movements, and

it is likely to perform well with curved movements, it is possible that more exotic

control policies might be needed to explain more complex movements. With this in

mind, we plan on making simultaneous use of multiple control policies by switching

between them or blending them depending on the nature of the task at hand. In

addition, to achieve a model that replicates a wider array of human movements

(such as perturbed movements), future research directions should extend this feed-

forward model to include feedback (environmental and proprioceptive). Finally, to

acquire a deeper understanding of the central nervous system, we propose modeling

ballistic movements with neuronal networks in order to test the control signal

schemes outlined in this work and their potential neural implementations.
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Chapter 3

Sparse signals for the control of
human movements using the infin-
ity norm

This chapter is an extension of the previous chapter, building upon its

conclusions and extending its explanatory power. We expand the argument that

minimizing the L∞ norm of the effort term when optimizing a control problem

results in control signals that have a physiological interpretation.

Optimal control models have been successful tools in describing many aspects

of human movements. While such models have a sound theoretical foundation,

the interpretation of such models with regard to the neuronal implementation of

the human motor system, or how robotic systems might be implemented to mimic

human movement, is not clear. One of the most important aspects of optimal

control policies is the notion of cost ...We offer a mathematical method to transform

the current methodologies found in the literature from their traditional form by

changing the method by which cost is assessed. In doing so we show how sparsity can

be introduced into current approaches that currently use continuous control signals.

We assess cost using the L∞ norm. This influences the optimization process to

produce optimal control signals which can be represented by a small amount of Dirac
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delta functions, instead of continuous control signals. In recent years sparsity has

played an important role in theoretical neuroscience for information processing (such

as vision). Typically, sparsity is imposed by introducing a cardinality constraint

or penalty (measured or approximated by the one-norm). In this work, however,

to obtain sparse control signals, the L∞ norm is used as a penalty on the control

signal, which is then encoded with Dirac delta functions. We show that, for a

basic physical system, a point mass can be moved between two points in a way

that resembles human fast reaching movements. Despite the sparse nature of the

control signal, the movements that result are continuous and smooth. These control

signals are simpler than their non-sparse counterparts, yet yield comparable if not

better results when applied towards modeling human fast reaching movements. In

addition, such sparse control signals, consisting of Dirac delta functions have a

neuronal interpretation as a sequence of spikes, giving this approach a biological

interpretation. Actual neuronal implementations are clearly more complex, as they

may consist of large numbers of neurons. However, this work shows, in principle,

that sparsely encoded control signals are a plausible implementation for the control

of fast reaching movements. The presented method could easily be scaled up to

arbitrarily large numbers of duplicates, thus representing larger numbers of spikes.

We show how leading techniques for modeling human movements can easily be

adjusted in order to introduce sparsity, and thus the biological interpretation and

the simplified information content of the control signal.

3.1 Introduction

Optimal control theory has provided a great deal of insight with regard to

developing mathematical models that describe human movements (for example,

[20, 55, 56, 57, 58]). These works, amongst many others, have shown that humans
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move with strategies that can be described/driven by various control signals1 and

related cost functions to model movement. However, as [19] points out, while the

development of optimal control models has given mathematical insights into the

properties of human movements, and perhaps the costs that forged our motor

system via evolution, the connection to the neuronal implementation of the motor

system is not clear. In contrast to these models, we show that a novel penalty

on a control signal results in signals which can be represented more simply, and

that have more plausible biological interpretations, while maintaining the ability to

model human movements accurately.

To demonstrate the utility of sparse optimal control signals for human

movements, we will compare two versions of a class of problems called “minimum

effort” control problems, which attempt to minimize the “size” or “effort” of the

control signal when modeling human movements, as explained in [59]. In the first,

and more traditional version, the effort to be minimized is defined as the L2 norm

of the control signal over some time course within which a movement is completed.

The goal is to minimize that signal. One of the first, and most famous of this

family of models is the “minimum jerk” control policy, proposed originally by Flash

and Hogan [20]. The Flash and Hogan control strategy models human reaching

movements, and uses jerk (the third derivative of position) as a control signal,

and minimizes that signal to the extent allowed by a well defined reaching task.

Intuitively, most are more familiar with thinking of acceleration as a control signal

(e.g. pressing the accelerator in a car controls the speed). In the Flash and Hogan

case, jerk is the derivative of acceleration, so it “controls” the acceleration in the

same way acceleration “controls” velocity. Because jerk is the minimized control

1Control signals are to be described in more depth later, but for now it is a signal that controls
elements of a system.
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signal, we refer to jerk as the “effort term”. Because they attempt to minimize their

control signal, this as a minimum effort problem, and is referred to as “minimum

jerk”.

Work since Flash and Hogan has considered different cost functions as

the effort term as defined above, such as minimizing torque over the course of

a movement [60], or minimizing torque change (derivative of torque) over the

movement [55, 61]. Other works have added more terms to the a cost function

but have maintained an effort term. Additions to the effort term include end-

point stability (how much adjustment is needed once the target area of a reaching

movement is breached) or end-point accuracy (how close to the target when the

reaching movement ends) [58]. Such extensions, however, have not lead to any

insights into the neuronal implementation of control signals in the CNS, nor do

they simplify the nature of the control signal.

We will show that using the L∞ norm instead of the L2 norm for measuring

and penalizing the “effort” of the control signal results in signals that can be

encoded sparsely via Dirac delta functions. There exists a family of models where

this technique is applicable, specifically, because they all employ an “effort” term.

Practically, the sparsification of signals generated by this family of optimal control

models might be useful in a robotic system in order to achieve human like-movement.

Due to the simplicity (sparsity) of the resulting signal, implementations of human-

like robotic control may be easier to comprehend and construct.

Models of reaching movements leading to this work were considered in

[35, 62, 63]. These works referred to their signals as “bang-bang” or “intermittent”

(see [64, 65] for more on intermittent control). However, the control signals were

not sparse, rather, they were square wave continuous. Other types of motor

control such as standing and keeping balance have been modeled via intermittent
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control, notably, two such models are compared in [66]. Here, we demonstrate a

mathematical relationship that can convert non-sparsity to sparsity with regard

to the control signal. This relationship is related to the metric used to measure

the control signal (i.e. how is the effort measured?), but more importantly a

sparse encoding of the signal via Dirac delta functions. We also show that sparse

optimal control signals model real human arm movements with high accuracy, thus

supporting sparse optimal control signals as a plausible control strategy used by a

human’s biological system. We emphasize that, using sparse signals in the cases

shown here has no downside in terms of model performance, but has the benefits

of a simpler encoding of the control signal, a biological interpretation in terms of

neural spike timing, and potentially, a simpler control strategy which may be useful

in robotics...All of these qualities are absent from non-sparse signals.

3.1.1 Optimal Control Overview

In this section we give an overview of optimal control theory and highlight

two optimal control problems: the minimum-time and the minimum-effort control

problems. Our overview is meant as means to establish common notation and

terminology. For a more in depth overview, see [36, 19]. Optimal control theory

is an application of optimization theory to the control of a dynamic system. In

optimization theory, we seek to find an element in a domain that minimizes (or

maximizes) a criterion (also referred to as an objective), while satisfying a constraint

set. When the elements in the intersection of the domain and constraint sets are

functions, the criterion is typically referred to as an objective functional or a cost

functional, whereas when the elements are points in a vector space, the criterion is

referred to as an objective function or a cost function. In optimal control, we seek

an optimal controller (typically a function of time if the system is continuous or
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a vector if the system is discrete) that has certain constraints (for example, the

controller is limited by a specified amount of power or resources) that minimizes a

criterion.

We describe dynamic systems as a set of first-order differential equations:

ẋ(t) = a(x(t),u(t), t). (3.1)

x(t) is referred to as the “state” of the system, u(t) is the controller of the system,

and a(·, ·, t) is, in general, a non-linear time dependent function describing the

dynamics of the state as determined by the state and controller at time t. We

assume that the initial state x(t0) and initial time is known. Often the dynamic

system is assumed to be linear time-invariant (LTI) and can be expressed as

ẋ(t) = Ax(t) + Bu(t). (3.2)

Given the dynamic system of equation 3.1 and an initial state x(t0), we seek

a control signal u(t) to transfer the system to a desired state in a finite time. In

practice, the control signal u(t) is not unconstrained, but rather bounded by the

available resources (such as fuel, energy, or supply). In optimal control theory, we

seek an optimal control signal u∗(t) that, in addition to transferring the system

to a desired state, also minimizes a cost functional J(u(t)). The cost functional is

application dependent and the optimal solution u∗(t) depends on what we consider

to be “cost”. For example, in the cost functional we may penalize large control

signals or penalize deviations from a desired trajectory. Subsequently we will

discuss two important cost functionals.
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Minimum-time control

In the minimum-time control problem, the objective is to transfer a system

to a final state with a constrained control signal as quickly as possibly. Thus, the

cost functional penalizes the total time it takes to transfer the initial state to a

final state and can be expressed as

J(u(t)) = tf − t0 (3.3)

where the initial state x(t0), initial time t0, and final state x(tf ) are known, while

tf is unknown, and the system dynamics are described by equation 3.1. We

furthermore constrain the control signals to be bounded

|u(t)| ≤ B. (3.4)

We now show the solution to the minimum-time control problem for an LTI

system as described by equation 3.2. We consider A and B to be constant n× n

and n×m matrices respectively. Thus the minimum-time control problem can be

expressed as

minimize
u(t)

T

subject to ẋn(t) = Axn(t) + Bu(t)

xn(0) = xi

xn(T ) = xf

|u(t)| ≤ B

(3.5)

where we have defined T ≡ tf − t0 and assumed t0 = 0. This special case has been

solved by Pontryagin and colleagues. Their conclusions lead to several important
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points upon which this work builds, as they guarantee a control signal which

switches a finite number of times between two possible values. These points are

summarized below (see [67] for more details).

P.1 For a given LTI system, there is one, and only one optimal signal to drive

the system from an initial state to a desired state.

P.2 Because the goal of a minimum-time problem is to move the system to the

desired state in the least amount of time, a control signal representing a

dynamic variable (such as acceleration) is always at one of two extremes,

+B or −B. These extremes are defined in the constraints of equation 3.5.

Intuitively, if you want to get from point X to point Y as fast as possible,

you would change from zero acceleration to maximum positive acceleration to

speed up initially, and then to maximum deceleration to slow down to reach

point Y , and then to zero acceleration to maintain your starting position.

The two extreme values are the only values that yield to a minimum time

(optimal) result.

P.3 The control signal will switch between these two extremes at most n + 1

times, where n is the derivative of position we choose to be the control signal.

For example, for velocity, acceleration, and jerk, n is 1, 2 and 3 respectively,

and thus has a maximum of 2, 3, and 4 (respectively) switches between the

extremes of the control signal.

This type of control signal is sometimes referred to as a “bang-bang” control

signal since the signal switches between the lower bound and upper bound of the

inequality constraint of equation 3.4 (see [36] for more). It can also be regarded as

a “sparse” control signal since the number of changes in the signal’s values is small.

In other words, the changes in the control signal can be described by a bounded
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number of switches between the lower and upper bound. These switches can be

encoded by a series of Dirac delta functions, which resemble neural bursts or spikes.

Minimum-effort control

In the minimum-effort control problem, the objective is to transfer a system

from an initial state to a final state with a control signal that is as “small” as

possible (hence, minimum “effort”). Typically, the “size” of a control signal is

measured with a penalty function. In this work we consider the Lp norm penalty

function and can express the cost functional as

J(u(t)) =

(∫
u(t)pdt

)1/p

(3.6)

which denotes the Lp norm (and is typically the L2 norm), and the system dynamics

are described by equation 3.1. We can also have additional constraints in the

minimum-effort control problem, and just as in the minimum-time control problem,

there can be many variations by introducing additional constraints or additional

costs to the objective. For example, a simple extension would be to consider

a control problem where the cost functional trades-off between “effort” and the

transfer time and can be expressed as a combination of equations 3.3 and 3.6

J(u(t)) = γ

(∫
u(t)pdt

)1/p

+ tf − t0 (3.7)

where γ ≥ 0 is a trade-off parameter between “effort” and the state transfer time

and can be varied depending on the application.

As an example of a minimum-effort problem, Flash and Hogan considered

the following minimum-effort control problem which introduced constraints on
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initial and final state in order to describe human movements:

minimize
u(t)

(∫
u(t)2dt

)1/2

subject to ẋ(t) = Ax(t) +Bu(t)

x(0) = xi

x(T ) = xf

(3.8)

where x(t) =

[
x(t) ẋ(t) ẍ(t)

]>
is the state vector, xi and xf are the initial and

final boundary conditions, and T is the duration of the movement (with movement

starting at time t = 0). Flash and Hogan used a jerk control signal (u(t) =
...
x (t)),

and furthermore used a third-order integrator model for the linear time-invariant

dynamic equation parameters:

A =


0 1 0

0 0 1

0 0 0

 and B =


0

0

1

 . (3.9)

This simple model yields trajectories that are remarkably similar to those of humans.

Naturally, simple extensions of this optimization problem can yield results that are

even more realistic and many researches have begun exploring these extensions.

For example, [57] has noted that when humans make movements to a target, the

target that is reached is a not a specific point, but rather a distribution of points.

Hence, in their optimization procedure they relaxed the constraints of equation 3.8,

which specify an exact final state.
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3.1.2 Sparse optimal control policies for straight point-to-
point trajectories

In a previous work, we show how square wave control signals, with abrupt

switches between two states (first alluded to in P.2, with an example given in

figure 3.1), can effectively model smooth human reaching movements [62]. This

work extends that notion by developing a method to represent neural signals via

sparse usage of the Dirac delta function. These sparse signals can be thought of

as encoding a series of positive (excitatory) or negative (inhibitory) neural spikes,

or, more plausibly, groups of neurons spiking for brief periods. In summary, we

take the square wave control signals described in [62], and encode them as a sparse

series of Dirac delta functions, each of which signifies one of the abrupt switching

points for the control signal.

We define a sparse optimal control policy as a control policy that meets

optimality constraints with the lowest cost, as defined by the chosen cost function,

that can be encoded by a finite number of discontinuous changes in the signal. An

example of a signal that can be encoded as a sparse series is a rectangular pulse

function, much like the control signals explored in [62], and shown in figure 3.1.

Functions like these can be encoded by impulse functions (see Figure 3.2). The

control signals in the minimum-time control problem discussed on in section 3.1.1

is an example of sparse control signals that are optimal in terms of state transfer

time. Henseforth, we will refer to the control signal (square wave) as “sparse”, as

it is easily transformed into a sparse signal consisting of Dirac delta functions.

Here we discuss sparse optimal control signals that solve the minimum-effort

problem. The control signal is defined as the n-th order derivative in terms of

position x(t),
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Figure 3.1. An example of the types of sparse signals generated by minimizing
the control signal as measured by the L∞ norm.
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Figure 3.2. Rate of change of sparse signal shown in Figure 3.1. These impulse
functions are all that are needed to characterize the control signal in Figure 3.1.
They resemble neuronal spike trains, giving them a plausible and mapping to neural
systems and making their neural coding predictions testable.



52

un(t) =
dn

dtn
x(t). (3.10)

The minimum effort control problem that results in sparse control signals uses the

L∞ norm and is written as

minimize
un(t)

sup
0≤t≤T

|u(t)|

subject to ẋn(t) = Anxn(t) + Bnun(t)

xn(0) = xi

xn(T ) = xf

(3.11)

where xn(t) =

[
x(t) d

dt
x(t) d2

dt2
x(t) . . . dn−1

dtn−1x(t)

]T
is the state vector, xi and

xf are the initial and final boundary conditions, T is the duration of the movement

(with movement starting at time t = 0), and sup0≤t≤T |.| is the L∞ norm. Here we

consider a system that is an n-th order integrator, thus

An =

0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

 and Bn =

0(n−1)×1

1

 . (3.12)

The authors of [62] considered the special case u3(t) =
...
x (t), (n = 3), and showed

that this particular sparse control signal explains the trajectories of human move-

ments better than the traditional Flash and Hogan model of equation 3.8. Perhaps

more importantly, sparse control signals are biologically more realistic than non-

sparse signals (See the Discussion section for more on this). As we will demonstrate,

most formulations of minimum effort problems can be easily converted to generate

sparse control signals, complete with the afore mentioned benefits. By simply

measuring the effort term in the objective function via the L∞ norm (as opposed
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to the 2-norm), we can frame the control signal solution to these problems in terms

of discontinuous switching states.

We now show the general analytic solution for equation 3.11. To derive the

general solution, we assume that the boundary conditions are

xi =

 xi

0(n−1)×1

 and xf =

 xf

0(n−1)×1

 . (3.13)

That is, we assume that the movement starts at rest and ends at rest. We solve

the general sparse minimum effort control problem by manipulating equation 3.11

to a form that has been previously solved. Namely, note that every optimization

problem can be written equivalently as an optimization problem with a linear

objective by introducing an auxiliary variable K and we can equivalently express

equation 3.11 as follows:

minimize
un(t),K

K

subject to ẋn(t) = Anxn(t) + Bnun(t)

xn(0) = xi

xn(T ) = xf

|un(t)| ≤ K.

(3.14)

where un(t), An, Bn, xi, and xf are defined as before in equations 3.10, 3.12, and

3.13 respectively, and we have used the fact that ||un(t)||∞ ≤ K =⇒ |un(t)| ≤ K.

The equivalency between equations 3.11 and 3.14 is due to the fact that every

objective can be bounded, and this bound is expressed as an additional constraint

in equation 3.14.

The optimization problem of equation 3.14 has the same form as equation
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3.5. We can therefore use the results from the minimum-time control problem and

apply them here (namely that the results of Pontryagin and colleagues still hold).

The difference is that in equation 3.5 the unknown is time T , whereas in equation

3.14 the unknown is the bound K on the control signal un(t). Since the dynamic

system in equation 3.14 is an n-th order integrator, we can use the result from [68]

and write the following theorem:

Number of Switches for an N-th Order Integrator. Theorem 1. For a

control problem of the type in equations 3.5 or 3.14 where the system dynamic

equations are an n-th order integrator (as in equation 3.12), then the number of

switchings in the control signal is exactly n+ 1 and the control signal is symmetric.

In other words, as initially discussed in P.3, as the order of the control signal

increases (as n increases), the number of switches in the control signal increases

by the same amount. [69] solved the general n-th order minimum-time control

problem of equation 3.5 for an n-th order integrator. We adapt their results for the

general n-th order minimum-effort control problem of equation 3.14 and summarize

the solution as follows:

K∗n =
22(n−1)(n− 1)!(xf − xi)

T n
(3.15)

t∗i = T sin2

(
πi

2n

)
, i = 0, . . . , n (3.16)

where K∗ denotes the optimal amplitude or bound on the control signal, and t∗i

denotes the optimal switching times. Figures 3.3, 3.4, 3.5, and 3.6 show examples
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Figure 3.3. Control signal for ui(t) where i = 3, and the movement starts at t = 0
and ends at t = 1.
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Figure 3.4. Control signal for ui(t) where i = 4, and the movement starts at t = 0
and ends at t = 1.

of several optimal control signals that can be encoded sparsely.

3.1.3 Sparse Optimal Control Signals in Fast Human
Movements

The sparse optimal control signals introduced in section 3.1.2 are not only

optimal with respect to a minimum-effort objective, but are also more biologically

plausible when compared with non-sparse signals. Sparse optimal control signals

can be are those that can be efficiently represented with Dirac delta functions,

which resemble neuronal bursts or spikes. If we treat each spike as an idealized
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Figure 3.5. Control signal for ui(t) where i = 5, and the movement starts at t = 0
and ends at t = 1.
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Figure 3.6. Control signal for ui(t) where i = 6, and the movement starts at t = 0
and ends at t = 1.
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Dirac delta function, as done in [70], and as visualized in Figure 3.2, then a spike

sequence that represents an n-th order optimal control signal can be expressed as

ρn(t) = K∗n

n∑
i=0

(−1)iδ(t− t∗i ) (3.17)

where K∗n and t∗i can be found from equations 3.15 and 3.16 respectively. The spike

train represented by equation 3.17 is not postulated to be from a single neuron,

but rather a population of excitatory and inhibitory neurons forming a network.

The work of [35, 62] showed that a sparse optimal control signal that

corresponds to jerk (expressed as ρ3(t) in the notation of equation 3.17) can model

fast human movements with greater accuracy than the smooth control signal that

results from using the L2 norm. We now also propose that the control signals

the nervous system uses are not limited to the jerk control signal. There is

nothing preventing the nervous system from using a higher-order control signal

(see Figure 3.9 for comparisons higher-order derivative control signals). With each

increase in the order of the control signal, the number of spikes increases and the

timing of those spikes changes (as shown in Figures 3.3, 3.4, 3.5, and 3.6). Because

each wave form is different, these high-order derivative control signals can form a

basis set, the elements of which are combined to form a subspace of control signals.

The neuroscience motor control literature commonly refers to the elements in such

basis sets as “motor primitives”. These primitives are combined to control a variety

of animal movements[71].

3.1.4 Application of Sparsity to Extensions of Minimum
Effort Control

The minimum effort control problem identified in section 3.1.1 can be

extended in numerous ways, e.g. [55, 72, 62, 35, 73, 20, 58]. These works and
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others, account for various aspects of movement and draw different conclusions

regarding the nature of the motor system. For example, in [58], several types of

reaching movements under various conditions are analyzed and modeled via an

extension of the minimum effort problem. The types of movements included both

two and three dimensional reaching, with and without target perturbation, with

and without obstacle avoidance, and under various instructions to the subject

regarding how the target should be impacted. The following is a simplified version

of the model in [58] that maintains its core concepts: a term for effort and a term

for final state error. Equations 3.18 and 3.19 give an example of how minimum

effort control problems can easily be adapted to our method of generating sparse

signals.

minimize
u(t)

||x(T )− xf ||22 + weffort

∫ T

0

u(t)2dt

subject to ẋ(t) = Ax(t) +Bu(t)

x(0) = xi

(3.18)

Equation 3.18 is the same as the minimum effort control problem discussed ear-

lier, with the exception that hard equality constraints (the end-point boundary

conditions) are now “soft” constraints and are penalized as a cost. The weffort

term dictates a trade off between minimizing effort and meeting the final boundary

conditions. To have a sparse implementation of the above, we use the infinity-norm

(sup) as before:

minimize
u(t)

||x(T )− xf ||22 + weffort sup
0≤t≤T

|u(t)|

subject to ẋ(t) = Ax(t) +Bu(t)

x(0) = xi

(3.19)
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This optimization problem, similar to the sparse minimum effort problem above in

equation 3.11 can be written as follows:

minimize
u(t),K,K1,K2

K

subject to ẋ(t) = Ax(t) +Bu(t)

x(0) = xi

K = K1 +K2

||x(T )− xf ||22 ≤ K1

|u(t)| ≤ K2/weffort

K1 ≥ 0, K2 ≥ 0

(3.20)

As before, we are using the property that every optimization function can be written

equivalently as an optimization problem with a linear objective by introducing an

auxiliary variable. Again, we have used the property that weffort sup0≤t≤T |u(t)| ≤

K2 ⇒ weffort|u(t)| ≤ K2. Therefore, we also have a “bang-bang” solution, since the

control signal is hard bounded.

3.2 Materials and methods

The human arm movement data for this work was originally collected by

Karniel and Mussa-Ivaldi and used in their 2002 paper to investigate the nervous

system’s ability to adapt to perturbations. We used a subset of this data that was

relevant for our study of fast movements (the baseline unperturbed movements)

and summarize their experimental setup below and refer the reader to [41] for a

more complete description.

Five subjects participated in an experiment involving a manipulandum

that restricted their movements to a the horizontal plane in front of the seated
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Figure 3.7. Experimental setup for collection of fast reaching movement data.
Subjects sat down and held a manipulandum with their hands which they could
maneuver about a 2D plane positioned in front of them perpendicular to their
torsos. Regions ’A’, ’B’ and ’C’ (Figure adapted from [62] with permission.)

subjects (subjects participated separately in these experiments). During each trial,

the subject watched a screen that displayed the position of their hand and the

manipulandum in relation to three positional markers A, B and C. Each marker

was separated by 10 cm and formed an equilateral triangle (see Figure 3.7). For

each trial, the subject was instructed to move the on-screen representation of the

manipulandum from one target to another in about one third of a second with a

tolerance of ±50ms. At the end of each trial feedback was given indicating if the

subject had reached the target and also if the execution of their movement was

within the allowed time window. The trajectories were recorded for all six possible

movement types for all subjects over the course of four days. In all, there are 366

trials for the 5 subjects.
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Figure 3.8. A velocity profile for a typical hand movement trial. We attempt
to identify the “ballistic” (fast) portion of the movement by using an onset and
offset detection algorithm to automatically detect the beginning and end of the
fast reaching portion of the movement. The “onset” is indicated by the leftmost
red line and the “offset” is indicated by the rightmost red line. The “corrective
region” refers to the time during which the subject attempts to correct any over or
undershoot of the target, this region is not modeled. Data between the red lines is
modeled, the rest is discarded.

For each trial, we only select the so-called “ballistic” portion of the movement

(see Figure 3.8). That is, we select the portion of the trial where movement had

started and the movement had completed its feedforward portion, the portion of

the movement that was preplanned and not affected by peripheral feedback. Part of

the justification for this understanding of fast reaching movements is that they are

happening too quickly for a corrective proprioceptive signal to make a meaningful

difference, as discussed in [74, 75]. Thus we do not model the “corrective” portion

of the movement that likely involves additional feedback information from the

subjects’ visual system and limbs in order to fix any error when attempting to

reach to the targets. For this reason, we frame our approach as a feed forward

control problem, because feedback is not involved in the movements. This is the

same approach used in several studies including [62, 76, 35].

There are various methods for movement onset and offset detection [42,

43, 44], and there is no standard technique for choosing the relevant portion of a

movement since the definition of what is relevant may change from study to study

or from one movement type to another.
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We approach finding the start and end of movement by finding the point

in time when the velocity profile has reached it’s peak velocity. Fast movements

always have a unique global maximum in the trial (unless the trial is an outlier) so

finding the time at which this maximum occurs is unique. Once this point in time

is found, we proceed to consider velocity samples before and after the peak velocity

and find the sample that falls below a pre-determined threshold. This methods

extracts the ballistic region of the movement.

The optimization procedures were implemented using CVX and Matlab.

CVX is package for specifying and solving convex optimization problems [77].

3.3 Comparison of sparse and non-sparse

model predictions for human reaching

movements

Figure 3.9 shows the average mean squared error (MSE) between the human

subjects’ trial velocity profiles and the velocity profiles generated by four computa-

tional models. We computed the MSE between the models’ velocity profiles and

those of the human subjects across time steps of the recorded movement. For all

models, portions of the velocity profile which were forced to be accurate due to

setting boundary conditions were not included in the MSE calculation. The figure

highlights the canonical minimum jerk (as measured by the L2 norm) model which

results in a continuous, non-sparse control signal. We compare this model with one

that minimizes jerk as measured by the L∞ norm. In all cases the sparse signal

generated by this model has a lower error than the minimum jerk L2 norm model.

This is not to say that the L∞ norm model is decidedly better in all cases, but it is

in most, and at the very least it performs similarly to the L2 norm model while
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Figure 3.9. Comparison of average mean squared error between the velocity
profiles of reaching trials for all five subjects and predictions made on those
trials by four models. Error units are in m/s. Red bars indicate MSE for the
L2 norm based minimum jerk model (continuous). MSEs shown in green, cyan,
purple are all based on the L∞ norm, and thus result from sparse control signals.
They represent minimum jerk (sparse), minimum snap, and minimum crackle,
respectively. The sparse control signals on average have smaller error than the
continuous control signal (resulting from use of the L2 norm). In all comparisons
but one, the sparse control signals result in lower MSE than the continuous control
signal. The one exception is in the case of subject C where we see the the minimum
crackle sparse control signal produce a greater error that the L2 norm minimum
jerk (continuous) control signal, however, the difference between the errors is not
statistically significant (as determined by a Wilcoxon rank-sum test).

retaining the characteristic of an intuitive mapping to a spike train representation.

We also contrast the results of the L2 norm model with three additional

models that minimize snap, crackle, and pop (fourth, fifth, and sixth derivatives of

position) as measured by the L∞ norm (resulting in sparse control signals). Errors

of all models employing sparse control signals are smaller than those generated by

the minimum jerk model employing a non-sparse control signal in all cases but one.

In this case, for subject C, the sparse crackle (L∞) based model has a higher error

than the non-sparse jerk (L2 norm) based model, however, the difference between
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the non-sparse minimum jerk error and sparse crackle error is not statistically

significant (by a Wilcoxon rank-sum test). This demonstrates that regardless of

the chosen derivative of position used as the control signal (jerk, snap, or crackle),

sparse signals are effective control strategies.

3.4 Discussion

3.4.1 Sparse Signals and Their Biological Plausibility

Converting traditional minimum effort models to their sparse counterparts

via methods outlined in this work can bring these models closer to a plausible

biological interpretation in several ways. At the level of the observation of human

movement, studies have indicated that human subjects use sparse (intermittent)

control strategies for ballistic movements to control activities that are continuous

in nature [78, 35].

At the neural system level, there is evidence that various neural structures

exhibit intermittent behavior. For example, the basal ganglia have been shown

to be key components in the control of movement. Inputs to the basal ganglia,

arriving from a large portion of the cerebral cortex, exhibit intermittent behavior

[79]. More generally, the basal ganglia as a whole are thought by most to be a

network that switches between well defined states, in an intermittent fashion [79].

Another example that is directly applicable to this work examines a primate tasked

with making reaching movements towards two possible targets that the animal

is accustomed to. For a given trial, the “correct” target is not initially known

to the animal. At this point, two sustained signals (sustained neural activity),

representing each potential target, are present in its pre-motor cortex. Once the

“correct” target (for a given trial) is revealed, an abrupt switch occurs where the



65

neural signal representing the “incorrect target” is suppressed and the “correct”

neural signal remains [80]. This is is clearly an abrupt switch between two states,

as suggested by the sparse model of reaching tasks outlined in this work.

At the neuronal level, it has been shown in [81] that Purkinje cells in the

cerebellum (well known to be involved with motor control) exhibit bistability.

That is, they have two modes of operation, each of which persist until a switching

event occurs. This event consists of brief neural pulses , which switch the Purkinje

cell back and forth from a highly active state to an inactive state. The modeled

spike trains suggested in this work (e.g. Figure 3.2) may be interpreted as single

neurons or they may be interpreted as ensembles of neurons working in concert.

In either case, the the pulses controlling the bistable state of the Purkinje cell

can be represented by Dirac delta functions, which is an accepted technique to

mathematically represent spike trains [70]. In this way, these signals more closely

mirror the physiology of neurons when compared to their non-sparse counterparts

(as shown in Figure 3.10). Conceptually, there is a mapping from sparse switches

(Dirac deltas) to neuronal spikes, or groups of neurons spiking. Furthermore, spike

timing, and its relevance in the neural coding of control information is directly

represented, which is not the case with the continuous control signal method. In

addition, the sparsity of these signals simplify the necessary output of a neural

circuit used to drive motor function. For example, it would require only four spikes

to encode the signal shown in Figure 3.3. This concept lends itself to a hierarchical

control structure employing “higher level” neural motor control structures that

focus on learning and producing simple switching times, which drive and offload

more complicated tasks and signal processing to lower level structures (as discussed

in [72]) which exist in the brain stem and spinal cord. To reiterate, we are not

stating that the models in this work imply that a single neuron is driving any kind
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Figure 3.10. The red plot shows a minimized jerk control signal as measured
by the L2 norm. Note that it is parabolic and continuous (non-sparse). The blue
plot shows a minimized jerk control signal as measured by the L∞ norm. Note the
distinct qualitative difference between the two. The L∞ based signal is encoded by
a finite number of abrupt changes. Such a signal can be characterized by Dirac
delta functions as show in Figures 3.1 and 3.2. These spikes resemble neuronal
spikes. In contrast, the L2 norm based signal and has no obvious mapping to the
physiology of neurons. (figure originally used in [62])

of motor function, or that these signals directly drive muscles. Rather, that, the

concepts here are an abstraction which indicates that at some level of a hierarchy

of neural motor control hierarchy, this sparse control approach is plausible.

It is clear that the timing of spike trains plays an important role in their

meaning and information content [82, 83]. Unlike continuous control signals, the

sparse signals discussed here have very specific switching times, each switching

time being integral to the character of the resulting modeled movement. Because

of this, the sparse approach can model spike timing as it pertains to neural coding

of information, while the continuous models have no explicit representation of spike

timing or abrupt system level switches.

It has been proposed that signal dependent noise contributes to the variability

of observed movements [57]. Both [84, 85] provide empirical support for this proposal.

This viewpoint correlates neural signal magnitude with the level of noise in the
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system, and therefore the accuracy of the movement. In other words, signals

that are extremely strong (i.e. all available neurons for a given task are firing),

inherently create more noise in their own system, lessening the accuracy of the

movement. Using the L∞ norm to generate sparse control signals has the additional

benefit of setting a upper bound on the magnitude of the control signal, thus upper

bounding the signal-dependent noise, and increasing accuracy. Thinking of the

two ideas (upper bounding a control signal, and signal dependent noise) in this

way may reconcile any perceived discrepancy between them. Figure 3.10 shows

the continuous signal exceeding the absolute magnitude of the sparse signal in

two locations, thereby creating more noise in the system at those points. There is

nothing explicitly preventing the continuous signal from becoming arbitrarily large

at any point along the way, allowing the noise associated with large signals to reach

arbitrarily large levels. Using L∞ norm avoids this problem, as it sets a cap on

the absolute magnitude of the control signal, and therefore, the signal dependent

noise. In addition, preventing arbitrarily large signal magnitudes is in line with

the physiology of (populations of) neurons, which can only fire with a maximum

strength and frequency.

3.4.2 Future Work

Future work should consider extensions of the simple minimum effort cost

functions used in this work in order to describe a richer set of movements. This

can be accomplished by simply penalizing the norm of the effort term in any cost

function (such as those outlined in [11]) with an L∞ norm instead of the L2 norm

that is typically used. Additionally, the possibility be should explored that some

type of combination of signals of the type shown in figures 3.3, 3.4, 3.5, and 3.6

may be advantageous when modeling a richer set of movements. Combining select
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signals might form a basis set which would provide a larger subspace of signals

that, by extension, controls a larger subspace of human movements than have been

explored in this work. We envision a set of sparse signals generated by separate

populations of neurons which produce sparse control signals that are combined

(linearly or otherwise). This “combination of signals” concept is inline with the idea

that the CNS achieves control through relative activation of motor primitives (as

described by Giszter [71]). He empirically illustrates how spinal motor primitives

can be thought of as a basis set that can be combined in varying degrees to achieve

a desired movement. However, in addition to controlling the relative magnitude

of activation between primitives, changing the timing of the activation of the

primitives is equally, if not more important, as only a proper sequence of motor

primitive activation will provide the desired motor output. A basis set of signals

as described in this work would be advantageous as it would require a minimum

amount of neural structures to control human movement. This combination of

“on-off” sparse signals might be thought of as controlling motor primitives by varying

the activation times between them. Future work should consider combining such

sparse signals to describe a richer set of movements. Furthermore, since this work

is an abstraction of neural control signals, and it models reaching movements well,

the abstraction may be a useful platform to apply to robotic motor control.
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Chapter 4

Suboptimal combinations of cost
functions fit fast human reach-
ing movements as well as optimal
combinations

Central to the approach of using optimal control to model human movements

is the minimization of costs and/or the maximization of rewards in order to generate

a movement trajectory. When more than one type of cost/reward is to be considered

(e.g. movement accuracy or energy usage), an objective function with multiple

weighted terms is used, and is typically referred to as a composite function. This

approach yields a movement trajectory that minimizes/maximizes the weighted

costs/rewards while meeting some set of constraints (e.g. the movement should

be completed within a certain amount of time). Inherent in this approach is the

assumption that human movements are optimal with respect to some costs and/or

rewards. However, this notion has been recently challenged. In this work we

compare a cost-optimal approach to modeling fast human reaching movements

with a cost-suboptimal approach. We analyze two different models of fast, point-

to-point human reaching movements. One model, referred to as the composite

model, is optimal in terms of minimizing costs, while the other model which we

70
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call “confluence”, is not. Both models trade off between two weighted costs which

minimize derivatives of position and are known to produce the bell shaped velocity

profiles and smooth positional trajectories observed in human reaching movements.

Specifically, both models trade off between the costs of “jerk” and “crackle”, the

third and fifth derivatives of position respectively. The composite (cost-optimal)

model employs a two term cost function of weighted minimum jerk and minimum

crackle. In contrast, the confluence model uses a cost-suboptimal approach which

employs two single term cost functions, minimum jerk and minimum crackle, and

combines the results from two separate optimizations over each cost function. We

quantitatively compare the reaching trajectories generated by each model with

fast point-to-point human reaching movements recorded from five subjects. Our

results indicate that, for the purposes of modeling human reaching movements,

although the cost is strictly higher for the the confluence (cost-suboptimal) approach

presented here, it is statistically equivalent to the composite (cost-optimal) approach

in terms of error when comparing the models’ dynamic profiles to human reaching

movements. Additionally, on a per subject basis, when root mean squared error is

averaged across all reaching trials, the confluence approach always results in lower

error when compared with the composite approach. Together, these results indicate

that confluence should be considered as a viable alternative for modeling human

movements, while calling into question the assumption that human movements are

governed by minimum cost optimality principles.

4.1 Introduction

The method by which animals achieve graceful and effective movement is not

understood. Optimal control theory has the potential to elucidate such biological

mysteries. The optimal control approach to understanding animal motor systems
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assumes that animal motor systems have evolved to be “optimal” in some sense.

When optimal control is applied in an effort to understand human movement, the

validity of the approach rests upon this assumption of optimality. However, it is

plausible that animal motor systems have evolved to simply be “good enough” to

survive in their niche without achieving optimality. The assumption of optimality

in animal motor systems has been recently questioned, as has the use of optimal

control as the best paradigm by which to model and understand animal motor

systems [86, 87]. In this work we introduce a suboptimal model of human reaching

movements that compares favorably with the optimal approach.

When applying optimization theory to the modeling of biological movement,

the investigator must consider what cost function (or functions) best model the

movements in question. An optimal control policy is a strategy that is “optimal” in

the control of a system (biomechanical system, robotic arm, etc.) with respect to

minimizing (or maximizing) a cost (or reward) function (from this point on, we refer

only to “cost”, with the understanding that analogous concepts apply to “reward”).

Techniques from optimal control theory which utilize a single cost function to arrive

at a control policy for human movements vary in nature. Some focus on minimizing

torque change around a joint [55], some concern themselves with the state of the

hand during reaching and grasping maneuvers [56], others focus on the relationship

between signal strength and the amount of noise in the motor system [57], and

still others minimize higher derivatives of position in order to produce smooth

trajectories [10, 32, 35, 62]. These policies are optimal with respect to the cost

function that each work has proposed.1 But, are human movements truly optimal

with respect to all of these (or other) cost functions?

1In finding an optimal control policy, in addition to the cost function, the set of constraints
in the optimization problem also plays a role in determining the characteristics of an optimal
control policy. Details of the constraint set used in this work can be found in section 4.2.1.
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It is accepted that a single-term cost function is not likely to capture the

breadth of human movement over a multitude of tasks. A clear improvement to

this is the multi-term cost function [11, 88], which trades off amongst multiple costs

and therefore is more flexible. These weighted, multi-term functions are called

composite cost functions. Models that employ composite cost functions seek to find

the single unique solution to minimizing those collective costs while still meeting

a set of constraints. It is proven that for a well defined class of problems, this

organization of cost terms will yield the solution that is optimal, in that it has

the lowest cost of any solution [36]. Deviation from the composite cost function

organization (shown in equation 4.1) is suboptimal, again, in terms of cost , but not

necessarily in terms of accuracy when the model’s dynamic profiles are compared

to real world data.

While the dynamic profiles generated by a model of movement depend upon

defining the notion of cost, specifically in this work, they also depend upon the

organization of the functions chosen to represent that cost. In this work, we offer

an alternate way to express the notion of cost. Composite cost functions weight the

importance of several terms within a single function. These terms may represent,

for example, the amount of energy expended in a movement, or the degree by

which the target position of a movement is missed. The technique introduced here,

called “confluence”, instead uses multiple single-term cost functions that are used

to optimize control signals individually .

Although the confluence approach outlined here is rooted in optimal control,

its formulation is cost-suboptimal in terms of the mathematical organization of its

cost functions. Despite this, for the modeling of human reaching movements, the

confluence based model performs as well as the the traditional composite (cost-

optimal) approach. This indicates that optimal composite cost function should
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not be considered the de facto technique for modeling animal movement, and

agrees with the suggestion by Loeb that the vertebrate motor system may employ

a suboptimal “good-enough” control strategy [86].

In order to simplify the comparison between the composite (cost-optimal)

and confluence (cost-suboptimal) approaches, we choose two simple functions from

a well known family of kinematic cost functions which have proven effective in

modeling human reaching movements, and apply them within each of the two

paradigms. Minimizing various derivatives of position has proven effective to model

various aspects of human movement. This approach yields the smooth position and

velocity profiles we observe in human reaching movements. The two cost functions

we employ in both models are the minimization of “jerk”, the third derivative of

position, and “crackle”, the fifth derivative of position. We choose these because

they are well understood, and serve as a straight forward way to compare the

composite approach with confluence. For further discussion on the choice of cost

functions, see 4.1.1 We run experiments using these costs organized in the manner

prescribed by both confluence and composite and then compare the results with

human reaching movements.

4.1.1 Background

We compare the composite and confluence approaches by implementing two

versions of a “minimum effort” control problem, which is an optimization problem

that seeks a control policy that meets a desired set of constraints and uses the

smallest possible “size” or “effort” of the control signal. For example, Flash and

Hogan authored one of the seminal works describing fast reaching movements [10].

Their model is a minimum effort model which uses jerk as the control signal, and

therefore uses the smallest possible jerk signal to achieve its goals. For this reason
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it is called a “minimum jerk” model. They (and others) chose to quantify the

dynamics of a fast reaching movement by finding the ratio of the movement’s peak

velocity to its average velocity. We use r to refer to this value:

r =
peak velocity of movement

average velocity of movement

Minimum effort models for fast reaching movements based on single term

cost functions have rigid values for r that do not change for a given set of initial

and final conditions. As seen in figure 4.1 and Table ??, the r value is different

for each of the derivatives of position that each model minimizes. As indicated by

[89], experimental measurements of r can be used to determine the best derivative

of position to minimize. Flash and Hogan’s data was based on one subject’s

movements over thirty trials and r was estimated to be 1.805 with a standard

deviation of 0.153. One justification for Flash and Hogan’s choice of a minimum

jerk model is that it predicts an r value of 1.875, very close to their experimental

data [10]. These results were corroborated in subsequent work [90]. However,

there is confusion in the literature regarding whether the minimum jerk model fits

human reaching movements best. Some studies with more extensive data show

that models based on minimum snap (fourth derivative of position) fit the data

better [91, 92, 93]. Other studies show that crackle fits best for hand movements

that control a non-rigid object [94]. Even still, other studies continued to use jerk

minimization but noted that snap minimization is a better fit in many cases [95].

Modern scientific works continue to accept the Flash and Hogan minimum jerk

model as a baseline assumption and use this to build their arguments [96, 97, 98].

All of these models fit the data only on average, and do not account for the
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Table 4.1. r values predicted by several minimum effort control policies.

Predicted r Values
Derivative Order r

3 1.875
4 2.188
5 2.461
6 2.707
10 3.523
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Figure 4.1. Different velocity profiles resulting from minimizing various derivatives
of position. n represents the order of the positional derivative that is minimized.
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variability of r observed across subjects and trials. An inspection of our data set

of fast, point-to-point hand reaching movements (explained fully in section 4.2.1)

confirms that movement dynamics vary from trial to trial, and that minimization

of derivatives higher than jerk fit best in many cases. Often, no single model in the

minimum effort family provides a good fit because a trial’s r value falls in between

the r values generated by two of the minimum effort models. This leads us to

suggest that combinations of multiple minimum effort models are required to more

accurately capture the variation in movement from trial to trial and subject to

subject.

4.2 Materials and methods

Here we describe the collection of human data for fast reaching movements.

We then define the “Optimal Confluence Control Framework” (OCCF), a general

framework for modeling human movement. We then demonstrate an instance of

this framework called the “Multi-Derivative Optimal Confluence” (MDOC) model,

which is a basic implementation of the more general OCCF. The MDOC models

fast reaching movements by combining two optimal control signals related to two

cost functions each based on a single term, and will be compared to a model based

on a traditional composite cost function, with the two terms combined into one

function. The methods of comparison between the two are discussed.

4.2.1 Experimental setup

The human hand movement data used in this work was originally collected

by Karniel and Mussa-Ivaldi [41]. We used a subset of this data that was relevant

for our study of fast movements (baseline unperturbed movements). We summarize

their experimental setup below and refer the reader to [41] for a more complete
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description.

Five subjects (four male and one female) participated in an experiment

involving a manipulandum (see [99] for a detailed description of the manipulandum)

that restricted their movements to a two-dimensional horizontal plane of the seated

subjects (subjects participated separately in these experiments). During each trial,

the subject watched a screen that displayed the position of their hand and the

manipulandum in relation to three positional markers A, B and C. Each marker

was separated by 10cm and formed an equilateral triangle as shown in figure 2.2.

For each trial, the subject was instructed to move the on-screen representation

of the manipulandum from one target to another in about one third of a second

(±50ms). Many trials fell outside this window. These trials were kept, but at the

end of each trial, visual feedback was given indicating if the execution of their

movement was within the desired time window. The trajectories were recorded for

all six possible movement types for all subjects over the course of four days. The

experiments also included trials where the arm was perturbed during movement.

We excluded these trials from our study and only considered unperturbed trials.

Figure 4.2 shows the profile of a typical movement. Since these movements are

restricted to the two-dimensional plane and tend to be straight from the starting to

ending position, we only consider the component of the movement that corresponds

to the straight line direction between the start and end points A, B, or C.

Evidence suggests that only feedforward signals are necessary to achieve

fast “ballistic” reaching movements. Studies on deafferented animals show that

trajectory planning for these fast point-to-point movements is not disrupted and

that proprioceptive or cutaneous feedback is not necessary for the execution of such

movements [45]. Because of this, we can model these movements as a feedforward
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Figure 4.2. A recording of position and velocity profiles from a typical reaching
movement. The oscillatory behavior at the end of the movement corresponds to
the overshoot and correctional effects described in the text and are discarded since
they are not part of the ballistic portion of the movement. The units of time and
position are not relevant and are not shown.
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control problem, as done in [62, 35, 100]. For each trial, we identify the “ballistic”

portion of the movement, that is, we select the portion of the trial between the

points where the movement has started and completed its “feedforward” portion

(see figure 4.3). There are various methods for movement onset and offset detection

[42, 43, 44], and there is no standard technique for choosing the relevant portion

of a movement since the definition of what is relevant may change from study to

study or from one movement type to another.

We approach finding the start and end of the ballistic portion of a velocity

profile algorithmically in two steps. The first step is intended to find a point near

the beginning or the end of the relevant portion where the velocity profile is close

to zero. We begin by finding the point in time when the velocity profile has reached

its peak. Fast movements always have a unique global maximum (unless the trial is

an outlier). Once this maximum point is found, we proceed to consider sequential

velocity samples before and after the peak velocity and check to see if they fall below

a threshold of .05 mm/s. I.e., We descend on both sides of the bell shape curve

looking for a velocity value that is lower than the stated threshold of .05mm/s.

Once the sample is found, we refer to this sample as the “start” or “end” depending

on whether the sample is before or after the peak velocity. This threshold may

first be crossed on either the start half of the bell curve, or the end half of the bell

curve.

The second step, which we call the“corrective step” starts at the near zero

point on the velocity curve. Its purpose is to move the entire range of the chosen

velocity profile (both the start and end points in lock step) to find a start and end

point that differ by no more than .2mm/s. Let us consider the case of the initial

threshold (in step one) being first crossed on the start (left) side of the velocity bell

curve. That velocity is guaranteed to be close to zero (<= .05mm/s). This means
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Figure 4.3. A typical result for the onset and offset detection algorithm which
identifies the “ballistic” portion of the velocity profile.

that the chosen starting point will be less than or equal to the end point velocity.

The corrective step then moves both the start and end point forward one step at

a time, searching for a point at which velocity values both are within .2mm/s of

each other. This means the start point is climbing back up the left side of the bell

curve, and the end point is descending down right side of the bell curve. When

Endvel − Startvel < .2mm/s, the final start and end velocities are decided upon.

A similar approach is used in the case where the initial .05mm/s is crossed on the

end (right) side of the curve.

Regarding the parameters .05mm/s and .2mm/s, we visualized many possi-

ble selections. Qualitatively, any choice within a given range these captured the

ballistic portion of the fast reaching movement very well. Figure 4.3 is indicative of

the onset and offset detection of almost all non-outlier trials.

Regardless of what onset and offset detection method used, it is very rare

for the trial to start and end at complete rest (i.e. with velocity equal to zero). As

a result we do not set the boundary conditions to zero, but rather to the starting
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and ending velocity and acceleration of the given trial. We posit that the higher

order dynamics in the boundaries must be zero at some point. As a result, we set

the final boundary condition of jerk to zero (similar to the “traditional” constraints

mentioned in [58]). Later, we compare this approach to the composite approach,

and we apply the boundary conditions in the same way.

4.2.2 The Optimal Confluence Control Framework: A
generalized framework for modeling human move-
ments

There is abundant evidence that heterogeneous neural control signals origi-

nating in disparate parts of the motor system are combined (see chapter 5.1 and

figures 4.4 and 4.6a) in order to produce final motor output. We propose an

approach that consists of a confluence of multiple control signals that are each

optimal with respect to different cost functions (Fig. 4.5). We suggest that our pro-

posed framework, The “Optimal Confluence Control Framework” (OCCF) is a step

towards applying optimal control theory as a means to represent and understand

biological motor systems more directly.

We choose the term “confluence” to represent the concept of individually

optimized neural signals working together, being transformed and combined, to con-

trol the motor system. Our OCCF draws its inspiration from the vertebrate nervous

system and the evolutionary forces that presumably shaped its sub-components and

neural control signals. Real-time optimization performed by the nervous system

during movements seems computationally implausible. Instead, our approach posits

that the optimization of individual neural control signals was accomplished over

millennia via evolutionary processes, and that the only real-time neural computa-

tions performed during a movement resembles a weighted combination (linear or
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Figure 4.4. A high level view of some important components of the vertebrate
motor system and the the connectivity between them. Despite the high level
abstraction and simplicity of the diagram, note that signals from multiple areas
of the motor system converge simultaneously on other areas of the motor system.
Evidently, they all work together to achieve desirable motor control.
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Figure 4.5. High level schematic of one example instance of the Optimal Conflu-
ence Control Framework. The figure is not intended to mirror any particular neural
system. Instead, it shows that any desired network architecture can be achieved in
order to mirror any known connectivity found in the HMS, or elsewhere.
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otherwise) of neural signals, similar to a suggestion made in [11], along with simple

transformations, e.g. integration of a signal over time.

There are key differences between OCCF and traditional optimal control

strategies. The OCCF can abstractly represent the nervous system’s network

architecture. Its method for trading-off between various properties of a movement

(e.g. speed vs. accuracy) represents signals from one population of neurons becoming

more or less dominant relative to others. The OCCF allows the investigator to

map the network architecture of the model to network architectures found in the

nervous system, allowing scientists to use the model to draw inferences related to

anatomy and physiology (See Fig. 4.6). By contrast, the traditional multi-term

approach intertwines all optimization goals together into a single cost function.

This leads to each term influencing the other with regard to final output, with no

notion left of what the individual terms would have represented by themselves. An

example of this distinction is illustrated in the following equations. The first is the

generalized equation used to arrive at a cost employed by traditional, multi-term

composite cost functions[11]:

arg min
u(t)∈S

k∑
j=1

αjcj(x(t), u(t)). (4.1)

The second equation represents the method employed by the OCCF:

k∑
j=1

αjarg min
u(t)∈Sj

cj(x(t), u(t)). (4.2)

In both equations, x(t) is a function of state over time, u(t) is the control signal, k

is the number of cost functions being considered, cj is some set of cost functions,
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Figure 4.6. Fig. 4.6a depicts the anatomy of the vestibulo-ocular system (adapted
from [1] and reprinted with permission). The VOR system utilizes measurements
of head movement to control eye movements. Information related to the angular
velocity of the head flows from top (semicircular canals) to bottom (oculomotor
neurons). Some pathways are integrated over time and all pathways are combined
to produce the final control signal to the muscle. Fig. 4.6b shows an example of
how the Optimal Confluence Control Framework can be used to mirror a biological
system. At the top of the figure, a pre-optimized control signal (c0(t)) represents
the ability of the inner ear to detect acceleration and output a signal representing
velocity. This ability was optimized over time via evolutionary pressures. On the
left branch, Ω1 is an operator integrating the velocity signal over time to produce
a positional signal. The left and the right signal branches are combined with
various weights (αi) before being delivered to actuators in the system. Note the
combination of signals at the bottom of both diagrams. This transformed, weighted
combination of optimized signals is what we call confluence.
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αj are the weights paired with each cost function, and S is a set of constraints

that u(t) must meet for the composite formulation (eq. 4.1). However, Sj are

the constraints that each individual u(t) must meet in the confluence formulation

(eq. 4.2), allowing confluence a separate set of constraints over each optimization.

Equation 4.1 yields the optimal u(t) based on the sum of weighted costs while

equation 4.2 sums weighted u(t) functions which have been optimized over each

cost and constraint set individually.

In our example implementation (MDOC), the resulting u(t) signal then

controls an end effector (a representation of a hand) to arrive at a desired final

position. We demonstrate how these signals can work together to model dynamic

profiles of reaching movements effectively.

In order to offer a direct comparison to equation 4.1, and for simplicity,

equation 4.2 (OCCF) uses a summation to combine the control signals, but any

kind of combination strategy may be used under the OCCF. These concepts are

further justified in chapter 5.1: “Anatomical and physiological justification for cost

and control signal reorganization”.

4.3 Definition of the OCCF

As indicated in Figure 4.5, an instance of the OCCF consists of five sets of

elements (see the section 4.4 section for a concrete example):

1. A set of pre-optimized control signal producers crafted via selection of cost

or reward : “Pre-optimized” means that, for all chosen cost functions, the

optimization of their corresponding signals are carried out prior to being

combined (confluence) with each other. An optimized signal producer is

crafted once, based on some optimality condition, then held static, henceforth
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only differing in its relative influence compared to other signals with which

it interacts (see item 3). Elements of this set are analogous to evolutionary

process forging structures in the nervous system and the character of the

neural signals they produce.

2. A set of signal transformation operators which can be defined in any way such

that they take one or more signals as input and transform them to produce an

output signal (See section “A simple application of the OCCF (confluence) to

model human movements: MDOC” for an example of how signals might be

combined/transformed) . Elements of this set are analogous to any structure

in the nervous system where neural signals are transformed and/or combined

(e.g. Fig. 4.6a).

3. A set of weights used to adjust the relative amplitude of the signals mentioned

in item 1. Differing ratios between cooperating neural signals produce different

movement dynamics2.

4. A set of network connections. These outline the ways in which signals connect

to signal transformation operators, signal weighting points, and output points.

They are analogous to the overall network architecture of the neuronal system

being modeled. 3

5. A set of strategies for choosing the values for the weights (item 3) based

on the desired characteristics of movement. We hypothesize that changing

2This is not the first framework of motor control to blend multiple signals, e.g. [101]. However,
such models are not suited to be a framework that mirrors the known connectivity of the nervous
system. In addition, they do not pair this reflection of the nervous system’s network architecture
with optimization techniques that mimic evolutionary processes as a means to craft a basis set of
optimized control signals.

3In practice, the set of weights can be combined with the set of network connections, where
there is no connection, the weight becomes zero, but here we separate them for clarity.
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the weighting of signals is an important real-time computation occurring

during the control of movement. The weightings are analogous to excitatory

neurons increasing the activity of their targets, and to inhibitory neurons

either inhibiting or disinhibiting the activity their targets (e.g. Renshaw cells

which down modulate populations of alpha motor neurons in the spinal cord,

or the disinhibitory systems involving pallidal neurons in the basal ganglia).

See section 4.4 for an example of a basic strategy for weight selection.

4.4 A simple application of the OCCF (conflu-

ence) to model human movements: MDOC

Here, we implement a simple model using the generalized OCCF called

the Multi-Derivative Optimal Confluence model (MDOC). The key difference

between the MDOC and traditional composite approach to a minimum effort

problem is its method for trading-off between various minimum effort strategies.

The MDOC separates each goal into a separate optimization problem, then later

combines the results. By contrast, the traditional multi-term approach intertwines

all optimization goals together into a single cost function. This leads to each term

influencing the other with regard to final output, with no notion left of what the

signal related to the individual terms would have represented by themselves. This

distinction is shown in equations 4.1 and 4.2.

We define two generalized control problems that can vary based on derivatives

of position, boundary conditions and norm used to measure the control signal.

These control problems are formulated in discrete time and will form the basis of

the MDOC.
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minimize
x

‖ Dmx ‖p

subject to Aeqsx = beqs

(4.3)

and

minimize
x

‖ Dnx ‖p

subject to Aeqsx = beqs

(4.4)

Where x is a vector containing discrete samples of hand position from continuous

time recordings of reaching movements, n and m are derivatives of position to be

minimized, m 6= n, Dn and Dm are matrices used to approximate the n-th and m-th

order derivatives of the position vector x, Aeqs and beqs represent the constraints of

the control problem, such as starting and ending boundary conditions. (see [102]

for details).

We now discuss the control problem of making fast point-to-point reaching

movements. We implement a minimum effort control policy consisting of two parts

corresponding to equations 4.3 and 4.4, where m = 3, n = 5 and p = 2. That is,

two minimization problems that share the same constraint set, one that minimizes

jerk and the other that minimizes crackle. These two costs correspond to c1 and c2

in equations 4.1 and 4.2, where k = 2. We then combine the resultant signals from

each minimization process. The method by which the signals are weighted and

combined is discussed in section 4.5.1. The signal resulting from this combination

is used to control a representation of an end effector (hand). This is the “MDOC”,

of which figure 4.7 provides a visual representation. At its core, the MDOC is the

linear combination of two optimal control signals, one that is optimal with respect

to a minimum jerk cost function and a separate signal that is optimal with respect

to a minimum crackle cost function.

The MDOC trades off between two cost functions (and their corresponding
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optimal signals) related to derivatives of position (as done with the traditional

single function, multi-term approach in [35]). We choose these costs because they

are relatively simple, well understood, and serve to illustrate the implications of

reorganizing cost functions as defined by the contrast between equations 4.1 and 4.2.

Specifically, we choose minimized jerk as it is has been accepted as a standard choice

for smoothness maximization (see section 4.1.1). We choose crackle as the second

minimized cost. We considered higher order derivative experiments (beyond crackle)

for completeness and to fully establish the relationships between given minimized

derivatives and the boundary conditions used. Generally, RMSE decreases for both

composite and confluence as the order of the minimized derivative increases and as

the number of boundary conditions increase. However, the drawback to minimizing

higher order derivatives when modeling fast reaching movements is increased cost,

as shown in figure 4.8. This reflects a tradeoff between cost and accuracy of the

velocity profiles modeled. In addition, with each increase in order of minimized

derivative, the velocity profile’s sensitivity to very small changes in the higher

derivative control signal increases. This means that small changes in the modeled

control signal result in disproportionately large changes in the velocity profile. For

this reason, the more complex models (higher derivatives minimized along with more

boundary conditions) run the risk of modeling noise. The jerk/crackle formulation

was selected to balance these concerns. That said, for comparing composite with

confluence, the most important aspect of the experiment is that both approaches

use the same higher minimized derivative and the same boundary conditions.

Additional model complexity is not necessary due to the constrained nature

of the experimental setup (e.g. the movements have constrained distances and

times, have no reward/punishment involved, etc.). By eliminating these variables,

we can compare critical difference between the two approaches, i.e. the effects of
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generating control signal(s) via the approach outlined in equation 4.1 (composite)

vs. that in equation 4.2 (confluence). The MDOC model is intended to be a

simple example that demonstrates the efficacy and plausibility of this type of cost

function/optimization organization for modeling human movements.

Formal definition of the MDOC in terms of the OCCF framework

The MDOC is formally defined in terms of the five sets of elements any

OCCF implementation has, as denoted in section 4.3. See figure 4.7 for a graphical

representation of this definition:

1. A set of pre-optimized control signal producers:

{C1, C2}, where C1 produces a minimum effort signal defined by equation 4.3,

where m = 3 and p = 2, and C2 produces a minimum effort signal defined by

equation 4.4, where n = 5 and p = 2

2. A set of signal transformation operators which can be defined in any way such

that they take one or more signals as input and transform them to produce

an output signal:

{Ω12}, where Ω12 ≡ Ω(x, y) = x+ y

3. A set of weights used to adjust the relative amplitude of the signals generated

by members of item 1:

{w1, w2}, where w1 modulates the signal generated by C1, and w2 modulates
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the signal generated by C2

4. A set of network connections:

V = {C1, C2,Ω12}

E = {(C1,Ω12), (C2,Ω12)}

Where V is the set of vertices on a graph, E is the set of edges between

vertices, and Ω1 transforms the dual input of C1 and C2 and also provides

the output from the network.

5. A set of strategies for choosing the weights (item 3) based on the desired

characteristics of movement:

w1 and w2 are chosen such that w1 = 1 - θ and w2 = θ. A grid search is

performed by iterating from i = .00....1, with step size 0.05. All i values

become potential θ values. Of this set of potential θ values, the value that

yields the lowest root mean squared error is chosen.
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Figure 4.7. A representation of the MDOC. Separate, optimal signals are linearly
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Figure 4.8. A representation of the cost when modeling an idealized reaching
movement that is representative of a typical human trial by minimizing different
derivatives of position. The height of each circle represents the relative amount of
cost (unitless) across four scenarios: minimized jerk, snap, crackle and pop. The
condition number for each approach is also indicated by the size of the circles.
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4.5 Methods of comparison between the

MDOC and the composite models

4.5.1 Selecting cost weighings for the MDOC and com-
posite models

The proper ratio with which to weight two cost functions for a given trial

and model is unknown. Therefore, for both confluence and composite, for each

trial, we first selected the ratio that yielded the lowest RMSE. This approach is

similar to the free parameter selection technique used in [35]. We refer to this ratio

as θ. For the confluence method, for each trial, we grid searched for the θ which

yielded the lowest RMSE as described in part 5 of section 4.4. We grid searched in

the same way for θ to weight the two terms of the composite approach.

4.5.2 RMSE calculation

We compared the root mean squared error (RMSE) of the MDOC with its

composite counterpart. We computed the RMSE between the models’ velocity

profiles and those of the human subjects by summing the squared error at each time

step of the movement, and taking the square root of the sum. For both models,

the portions of the velocity profiles which were forced to be accurate due to setting

boundary conditions were not included in the RMSE calculation.

4.6 Results

As mentioned in section 4.1.1, velocity profiles vary from movement to

movement and from subject to subject. One way to model this phenomenon is to

combine the minimization of various derivatives of position, each with different

peak velocities and thus different bell shaped velocity profiles (see figure 4.1). There
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is more than one way to accomplish this. The traditional method would be to

include both effort terms (e.g. jerk and crackle) in the same cost function. Each of

the terms may be weighted to emphasize or deemphasize as needed. We refer to

this technique as using a composite cost function.

One of the key observations in this work is that the MDOC’s method of

separating two or more cost terms into two separate optimizations, then combining

the results of those optimizations, is fundamentally different than the traditional

composite approach of adding the same terms into a single cost function. Despite

the fact that the MDOC is suboptimal in terms of cost, it models fast human hand

movements as well as the composite method.

We compare the overall average RMSE for both the composite and confluence

approaches on a per subject basis in figure 4.9. The RMSEs of the stand alone

minimum jerk, minimum snap, and minimum crackle models are also displayed

as reference points, but we remind the reader that those models are less complex,

and therefore are not expected to perform as well. The comparison relevant to

our conclusions is that between composite and confluence, as these two models

stand on equal footing with the same number of parameters. We also provide visual

examples demonstrating how the two models are qualitatively similar to each other

and to human velocity profiles in figures 4.10 and 4.11.

Additionally, for each subject, we report the average RMSE across all

trials for the selected θ values (θ yielding the lowest RMSE per trial) for both

models under consideration. Figure 4.12 shows the 95% confidence intervals of the

confluence and composite average RMSEs per subject. We observe that there is not

a significant difference between the confluence and composite approaches. We use

the nonparametric Kolomogrov-Smirnov test and perform a two-sided pairwise test

for each trial, and we define the null hypothesis that there is no difference between
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Figure 4.9. Root mean squared error (RMSE) comparing five models for all trials
for all five subjects. Error units are in mm/s. The bars depict the RMSE of the
minimum jerk, snap, crackle models, as well as the RMSE for the composite and
the MDOC. Standard error bars are shown.

the two models in terms of RMSE. Table 4.2 shows that in all cases the p value is

far too large for us to reject the null hypothesis. We therefore conclude that overall

the confluence model and composite model have no significant differences in error

on this data set. Both figures (4.9 and 4.12) indicate this as well.

Of additional interest is the distribution of the θ values chosen to yield the

minimum RMSE. See figure 4.13 for the distribution of θ values chosen for both

models for a single subject. See figure 4.14 for the θ distributions of subjects 2-5.



97

(a) (b)

(c) (d)

(e) (f)

Figure 4.10. Typical subject velocity profiles compared with the profiles generated
by both models. Note that, in these examples, the peak velocity varies from
approximately .3 mm/s to .6 mm/s. No examples are given from subject 4 because
this subject clearly has a different mode of movement than the other four. The
other four subjects are comparable in terms of RMSE and qualitative inspection of
their velocity profiles. Subject 4’s profiles are qualitatively different for many trials,
as shown in figure 4.11.
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(a. thetas = 1) (b. thetas = 0)

(c. thetas = 1) (d. thetas = 1)

(e. thetas = 0) (f. thetas = 0)

Figure 4.11. Trial and model velocity profiles for which the θ = 0 or θ = 1 is
chosen by both models. The θ chosen by both models is listed under each subfigure.
Subject 4 is represented here disproportionately because this subject’s movements
often differ greatly from the other four subjects, and also from the models’ profiles,
leading to a more frequent selection of θ = 0 or θ = 1. Note that only a blue profile
can be seen, due to the fact that at θ = 0 or θ = 1, the models are either pure
minimum jerk or pure minimum crackle, repsectively. Therefore, the confluence
and composite plots are directly on top of each other.
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Figure 4.12. A comparison of the root mean squared error, over all trials, of
confluence (error shown in blue) compared to composite (error show in red). SX
represents subjects 1-5. For each subject we show the 95% confidence interval.
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Figure 4.13. Histogram of the distribution of the selection of θ (as defined in
section 4.4 and section 4.6) for all trials for subject 1. The left subfigure shows the
θ distribution for the composite model, the right displays the θ distribution for the
MDOC. The x axis of each histogram represents the bins of possible θ selections.
The y axis represents the number of trials for which a corresponding θ value has
been selected (the θ that yields the lowest RMSE for a given trial). Each subfigure
has six subcomponents, each representing one of six movement types, which are
illustrated in figure 2.2. The text above each histogram indicates the movement
type related to that histogram, e.g. “Left to Right” corresponds to “A” to “C” in
figure 2.2, “Center to Left” is “C” to “A”, etc. See figure 4.14 for θ distributions
for subjects 2-5.

These θ distributions tend to vary in shape for different movement types for a given

subject, yet no discernible pattern emerges across subjects for a given movement

type.

Some of the distributions have the characteristic of being heavy at both θ = 0

and θ = 1, others are heavy only at one of the two extremes. This is partially due to

the phenomenon illustrated in section 4.1.1 regarding the variation of peak velocity

and shape of velocity profiles across various minimized derivatives. A shift from

θ = 0 to θ = 1 (jerk to crackle) changes the shape of the velocity curve and makes it

more “skinny” and “peaky” as θ = 1 is approached. Skews in θ distribution in either
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Figure 4.14. Histogram of the distribution of the selection of θ (as defined in part
5 of section 4.4 and section 4.6) for all subjects and all trials. The left and right
columns show composite and confluence (MDOC) respectively. The x axis of each
histogram represents the bins of possible θ selections. The y axis represents the
number of trials for which a corresponding θ value has been selected (the θ that
yields the lowest RMSE for a given trial). This diagram follows the same pattern
as figure 4.13
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direction (or both) indicate that some trials for a particular subject/movement

combination fall outside of the “bell shape range” of the jerk/crackle model tradeoff.

There are three main reasons for this to occur. First, for normative velocity

profiles (standard bell shaped profiles), the trial is either too “skinny” and/or

“peaky”, even for a pure crackle model (i.e. θ = 1). Subfigure “4.11a. thetas = 1”,

shows a trial in which θ = 1 for both models, but the models are not skinny or

peaky enough to match it. In the second case, a trial is too “shallow” and/or “fat”

for a pure jerk model (i.e. θ = 0). In subfigure “4.11b. thetas = 0”, θ = 0 for both

models, but the trial is more shallow than the model output (this is not a common

case).

The third main contributor to θ distributions that are heavy at the extremes

is that nonnormative trials (those that deviate greatly from the standard bell curve

shape) almost always gravitate towards the extreme ends of θ. The rest of the

subfigures are examples of this. We highlight Subject 4 because modeling his/her

movements yields the highest RMSE of all subjects (see figure 4.12). This indicates

that this subject’s velocity curves are nonnormative with respect to other subjects’

profiles. Subject 4’s trials have θ distributions heavily represented at 0 and 1,

indicating that most of this subjects velocity curves fall outside of the “bell shape

range” of the models. Additionally, subfigure “4.11f. thetas = 0” is particularly

interesting, as it is a nonnormative velocity profile, and θ = 1 for both models, but

still the trial is perfectly fitted. This is an unusual case.

The other classes of θ distributions are either more heavy in the center, or

more evenly spread across all θ. The distributions associated with subject 1, and

to a lesser extent subjects 2 and 5 fit often fit these profile.

In order to consider the results absent the θ selection process (i.e. choosing

one θ and keeping it for all trials, regardless of whether or not it represents the
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lowest RMSE for that trial), figure 4.15 compares how RMSE changes with the

confluence vs the composite approaches each θ values individually . We show the

average RMSE across all trials for each θ value between 0 and 1 in increments

of .05. The intervals within which the standard error bars overlap support the

notion that, regardless of what θ value is selected, the models are not statistically

different in terms of RMSE. However, two points are worthwhile to note. The first

is that subjects 1 and 3 show large ranges within which there is no overlap between

standard error bars. In these ranges, confluence’s RMSE is lower than that of the

composite model. The second point is that, when considering the point on the x

axis (θ) that yields the lowest point on the y axis (RMSE) for each model (i.e. when

choosing the optimal θ for each model), the lowest RMSE for confluence is always

less than than the lowest RMSE for composite for all subjects. That is to say, when

selecting the θ that yields the lowest average RMSE, the confluence approach yields

an average RMSE minimum that is lower than the composite method’s. This is

also reflected in a more compact form in figure 4.12, in which average RMSE for

confluence is always lower than that of composite.

Table 4.2. A comparison of the statistical differences in RMSE between the
confluence and composite based models compared to human movent data for all
subjects. The values represented in the tables correspond to the those reported in
figure 4.12. The p values are arrived at via a nonparametric Kolomogrov-Smirnov
test. In all cases, the two approaches are not significantly different in terms of
RMSE.

Subject p
Subject 1 0.3141994
Subject 2 0.5229139
Subject 3 0.9998817
Subject 4 0.9999999
Subject 5 0.1447257
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Figure 4.15. A plot of average RMSE across all trials of both MDOC and
composite as θ progresses from 0 to 1 in increments of .05 (x axis). Each point
represents the average RMSE across all trials for a given θ. Confluence is shown in
blue, composite is shown in red. Standard error bars are shown.
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4.7 Discussion

4.7.1 Anatomical Modeling Implications of the Conflu-
ence Approach

Let us consider the general confluence approach (not necessarily the MDOC)

in relation to the anatomy. We first state that we do not claim the existence of

signals representing jerk or crackle in the nervous system, therefore the MDOC does

not have a direct mapping to the anatomy of the motor system. However, we note

that the nervous system utilizes multiple signals for motor control that are up and

down regulated separately. As seen in equation 4.2, the confluence approach sums

multiple separate control signals, where the composite approach generates only

one control signal, as shown in equation 4.1. Relative weightings of the separate

confluence signals may arise from various amounts of inhibition imposed upon either

the signal producer, or may result from presynaptic or postsynaptic inhibition on

or near the target neural circuitry.

For example, the maintenance of balance requires a confluence of signals,

including those representing disturbances in inertia and acceleration, along with

vision, and signals from receptors in the muscles, tendons and skin. Additionally, it

appears that the efficacy of each of these signals is up or down regulated depending

on their relative congruence. If one or more of the signals involved in balance control

becomes incongruent with the vestibular system’s output, that incongruent signal

is suppressed [103]. Hence, balance control, as well as many other neuromuscular

functions, require the manipulation of many signals individually, as opposed to a

single signal (as produced by a composite cost function). These concepts are not

explored in this work, but future work might attempt to utilize the multi-signal

approach of confluence as a way to more closely represent the nervous system.
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4.7.2 Potential application to robotics

Controlling a robot in a way that mimics human movement is extremely

difficult. There exists some set of algorithms to effectively mimic the breadth of

human movement. For reasons mentioned in section 4.7.1, the confluence approach

may be more effective than traditional control strategies in solving this problem.

The confluence approach has the potential to directly relate to animal motor

control signals. Robots, with multiple sensory and control signals, may move with

human-like capabilities based upon the confluence approach.

4.7.3 The assumption of cost-optimality in the motor
system

Optimal control theory is a well accepted technique used to model human

movements. At the core of this approach is the assumption that human movements

are in some way directly tied to cost-optimality principles. If this supposed cost-

optimality was achieved by evolution, the assumption indicates that the human

motor system has reached some type of zenith beyond which there is no room

for improvement, at least within our current niche. In this work, the notion of

suboptimality means that, in terms of minimizing cost, the confluence technique

is suboptimal as compared to the composite technique. At least for the case of

this feed forward control problem for fast reaching movements, the composite and

confluence approaches are comparable in terms of RMSE when compared with

actual reaching movements. These results indicate that human reaching movements

do not necessarily adhere to cost-optimality principles.

Although the accuracy of each approach when compared to human movement

is not statistically different, a clear trend is present. Figure 4.12 shows that for

all subjects, the average RMSE across all trials for the MDOC is always lower
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than that of the composite method’s. This study was limited to five subjects. In

order to validate this trend, more subjects and trials would be necessary. If this

trend were to continue, it would offer strong evidence that the the assumption of

cost-optimality of the motor system should be reexamined. Furthermore, for this

set of subjects, the MDOC is more robust to an inexact (suboptimal) θ selection.

Figure 4.15 shows that when spanning all θ values, the RMSE “bowl” plots are

qualitatively deeper and wider for the MDOC. This means that, for a larger portion

of the θ range, the MDOC has lower RMSE. This allows for a wider range of (in

the parlance of Loeb [86]) “good enough” θ selections. Both of these RMSE related

results indicate that more extensive models using the confluence approach may also

perform as well as, or better than the composite approach.

Two cost functions were used in this work, minimized jerk and crackle.

This choice is not arbitrary, as these cost functions are related to smoothness of

movement, a family of costs shown to be more useful than other choices [11]. The

confluence approach outlined in equation 4.2 is general enough to utilize any set of

cost functions. However, it is unclear whether or not the confluence technique would

yield comparable results for other types of cost functions (e.g. minimum torque

change combined with an end point accuracy cost). It is also unclear how well this

technique would generalize to other, more complex movement types. Future work

should include an application of confluence to different movement types and/or

utilizing different cost functions. Future work may also involve the inclusion of

feedback.

We conclude that, for modeling reaching movements, the acceptance of

the traditional organization of composite cost functions should be reexamined.

The implications of this work and others that follow may lead us to question the

assumption that the human motor system is “optimal” with respect to a set of
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costs.
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Chapter 5

Conclusions, conjectures, and sci-
entific contributions

5.1 Anatomical and physiological justification

for cost and control signal reorganization

The OCCF attempts to create a bridge between mathematical models of

movement and biological motor systems. It does so by emphasizing control signals

related to many cost functions, by allowing for signal operators to transform a

signal or signals to mirror known neural operators (e.g. integration), and allowing

for a flexible network architecture in which signals combine and cooperate, which is

a phenomenon we call confluence and is witnessed throughout the nervous system.

While any cost or reward function can fit into this framework, the instance of

the framework demonstrated in this work (MDOC), emphasizes the role of the

derivatives of position as neural motor control signals. This choice is not arbitrary, as

these cost functions are related to smoothness of movement, a family of costs shown

to be more useful than other choices [11]. Additionally, neurophysiological examples

of such signals driving motor control are plentiful [1, 104, 105, 106, 107, 108, 109].

However, we do not assert that signals representing derivatives as high as those

explored here are present in the nervous system.

109
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5.1.1 Neural integration and the derivatives of position
in motor control, a link between biology and mathe-
matics

It is evident that the majority of animal species which have a sense of

position, velocity, acceleration, jerk, etc., have an evolutionary advantage. A

drosophila can sense the direction from which a threat is approaching (change in

position). The positional information directly influences the fly’s motor system as

it positions its body optimally for a quick escape in the opposite direction [110]. A

cheetah would not be able to change its velocity in a manner needed to catch its prey

if it had no notion of acceleration. The cheetah’s intended magnitude of velocity

change must be encoded in some way within the its nervous system. More generally,

if an animal species is to avoid extinction, possessing some neural representations

of basic Newtonian variables is evidently advantageous and necessary in order to

navigate effectively. In order to be effective, these neural representations must

influence the motor systems of these animals. Animals without these abilities would

have more difficulty navigating their environments in order to find food, escape

predators, etc. Thus, the majority of surviving animal species likely have neural

representations of dynamic variables related to position.

Neural signals related to body position and its derivatives are encoded in

many areas of the vertebrate nervous system. Head direction cells encode for

the current positional orientation of the head [111]. The vestibular system, the

semicircular canals and the otolith organs all produce signals coding for derivatives

of the position of the head [1, 104, 105, 106, 107], which initiate changes in eye

position and body stability. Other examples include signals from muscle spindles

which encode position and velocity of the limbs and body, and signals from Golgi

tendon organs which encode force exerted by muscles (with an obvious relationship
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to acceleration) [108, 109]. All of these signals converge upon spinal circuits and

influence motor control.

An example of a neuronal system that can be reasoned about mathematically

and demonstrates a wealth of cooperating control signals, thus an excellent candidate

system to be modeled by using the OCCF, is the oculomotor system (control of

the eyes). It consists of several subsystems, some of which use neural integration

mechanisms [112, 113, 114, 115]. Here we choose to examine the vestibulo-ocular

reflex (VOR), as all of its elements can be represented using the OCCF. The VOR

adjusts the eye position in order that they remain locked onto a target when the head

is moving, see figure 4.6a for an illustration of the circuit. The semicircular canals

of the inner ear detect angular acceleration of the head, and the signals measured

in the nerve emanating from these organs code for velocity , not acceleration [107].

Further downstream in the system, neural signals coding for eye position emerge.

These signals drive the alpha motor neurons controlling the eye muscles to move

in the opposite direction of head movement in proportion to the velocity of the

head movement, and then hold the new eye position, keeping the eyes on target

[1]. Robinson was one of the first to realize that integration (in the mathematical

sense) must be occurring [116], as this is how the positional signal is calculated

from a velocity signal and maintained to hold the new eye position. The existence

of neural integration mechanisms in the oculomotor system is now well accepted

[1, 117, 118]. Two brain stem nuclei, the interstitial nucleus of Cajal (INC) and

the nucleus prepositus hypoglossi (NPH), are key in the vertical and horizontal

(respectively) oculomotor neural integration systems [112, 113, 115, 114]. This

system uses signals representing position and its derivatives to drive oculomotor

function. All the systems mentioned earlier provide a biological substrate for the

computation of the dynamic variables found in many mathematical models of
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animal movement [10, 57, 35, 55, 58, 62]. Again we see a connection between

optimal control’s mathematics and anatomy and physiology. However, models to

date typically choose one of these variables to focus on without addressing the fact

that signals of various types routinely work in concert.

As shown in figure 4.6a, in the vestibulo ocular system, signals representing

velocity and position remain separate until finally combined at the point of the

actuator (motor neurons/muscles). Separate signals are needed for proper motor

functioning of the eye. Furthermore, the acceleration signals must remain separate,

as they are sent via multiple pathways to other areas of the nervous system which

may interpret or process them differently. It is an acceleration/inertial signal that

motor structures in the brainstem and spinal cord expect in order to maintain

balance [103], not a signal based on the amalgam of several costs in a multi-term

cost function. Unlike the composite formulation found in equation 4.1, confluence’s

equation 4.2 supports this separation of control signals. This is not to say that

mult-term cost functions are not useful, but instead that keeping multiple cost

functions separate to be combined post-optimization may be more useful when

envisioning or building a system or model inspired by the nervous system.

The example of the OCCF paradigm demonstrated in this work (MDOC)

treats higher order derivatives of position as control signals. Any type of control

signal can be used, however, if one chooses to use signals based on dynamic vari-

ables, then there is a direct linkage between the coding of known anatomical signals

(mentioned above) and the model, and thus between physiology and mathematics.

The nervous system has the capability to convert neural signals from one derivative

order to another. To convert a control signal representing a higher order derivative

to a signal representing a lower derivative, all that is necessary is the operation

of integration. There is evidence for the existence of multiple, disparate classes
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of neural mechanisms capable of approximating mathematical integration in hu-

mans and other animals. Examples include integrators in entorhinal cortex [119],

hypothesized neural integration in head direction cells [120, 121], integration in

the oculomotor system [1] and both differentiation and integration in V2 [122]. In

this way, the physiology of motor control signals can be mathematically expressed

and reasoned about, and it is evident that representations of control signals similar

to those used in this work exist. In the OCCF, signal transformation operators

represent such neural structures that perform known mathematics, again linking

mathematics with biology. In the MDOC example, the operation is a simple linear

combination of two signals.

5.1.2 Confluence of neural signals

In addition to neural integration, the oculomotor system exhibits a confluence

of neural signals working together to achieve a myriad of complex eye movements.

For example, the otolith organs produce signals based on linear acceleration of the

head. Similar to the semicircular canals in the VOR, the otolith organs also play

a role in eye control [1, 123]. The VOR and the otolith organs, along with other

oculomotor subsystems all act in concert to control ocular motor neurons. The

same neural integration nuclei involved in the VOR system (INC and NPH) are

also influenced by signals from the otolith organs, as well as signals representing

volitional control of the eyes, and by signals that are “bang-bang” like which

originate from premotor neurons in the rostral midbrain to produce saccades [124].

When taken together, we see a confluence of neural signals from different areas of

the brain converging, combining and cooperating in order to produce numerous

types of eye movements such as smooth tracking of moving objects, saccades of

varying magnitude, vergence, target fixation during head movement, etc. The
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oculomotor system is not controlled by a single control signal, but rather combines

different signals in varying degrees depending on the desired behavior [124]. A

single control signal, associated with a single cost function, is inadequate to control

the myriad of eye movement behaviors which exist.

Limb movement is also achieved via a confluence of neural signals. Betz cells

originating in motor cortex converge directly on alpha motor neurons in the spinal

cord while other projections from motor cortex and brainstem influence spinal alpha

and gamma motor neurons only indirectly, e.g. through various layers of the Rexed

lamina [125, 126]. Additionally, alpha motor neurons and other spinal circuitry

receive signals from muscle spindles and Golgi tendon organs which directly and

indirectly influence motor control [109].

The OCCF is designed to mirror neural systems such as these. If all of

the cost function terms and resultant signals are combined into a larger, single

cost function, all meaning and functionality contained in the connectivity between

elements would be lost. If we wish to more closely model the complexity of the

motor system, a paradigm akin to the OCCF would be helpful. Architecting such a

system pushes the “top down” approach of optimal control modeling “down” a level

closer to actual construction of the nervous system, as initially discussed in section

1.4.2 of the introduction. This approach can models individual components and

connectivity. Observing the behaviour of the constructed system can potentially

reveal insights into the inner workings of the nervous system.

5.2 Representation of evolutionary pressures

Optimal control cost/reward functions sometimes involve trade-offs between

several (composite) criteria (e.g. find a policy to get to a destination as fast as

possible while consuming the least amount of fuel). While a composite cost function
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contains several criteria, it is still encapsulated by a single function. To the best

of our knowledge, all applications of optimal control to human movements have

consisted of a single proposed cost function (composite or otherwise) producing

a single control signal. In contrast, biological systems have many interacting

subsystems composed of disparate structures that may have coevolved together,

each system forged by different cost or reward functions. It is reasonable to

assume that elements of the motor system which evolved during different points

in evolutionary history (e.g. spinal cord, cerebellum, brain stem motor nuclei,

motor cortex, etc.) did so under different evolutionary pressures (cost functions).

Our approach reflects this notion of neural systems that evolved under different

evolutionary pressures separately to produce neural control signals of different

types.

It is interesting to note that by its very formulation, in terms of cost, the

confluence technique is sub-optimal as compared to the composite technique. Yet,

at least for the limited case of this feed forward control problem of fast reaching

movements, the composite and confluence approaches are comparable in every

scenario. This indicates that more extensive models using the OCCF may also

perform as well as the composite approach, while maintaining the advantages

discussed in this work. In addition, this also raises the possibility that evolution

may have arrived at a sub-optimal solution for a motor control paradigm. The

OCCF allows the practitioner to model evolutionary processes related to motor

control.

5.3 Conclusion

In this work, we altered some basic assumptions and practices typically used

in optimal control for the modeling of human movements. Doing so gave us results
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comparable to or better than the standard approach, yet the construction and

nature of the resulting models have neuronal interpretations, where as with the

standard approaches, the neural interpretation is lacking.

We changed the norm used to measure and penalize the control signal in a

minimum effort control problem, using the L∞ norm as opposed to the L2 norm. We

applied this technique to the classic minimum jerk model for reaching movements.

This resulted in a highly accurate model, which utilizes a very simple control signal

as compared to the traditional approach. We then expanded upon this concept by

encoding this signal in terms of Dirac delta functions which resemble neural spikes,

thereby bolstering the neural implementation of the model and making the case

that, in principle, very simple signals can drive reaching movements with smooth

velocity profiles. We argue that evolution would likely “favor” such a simple control

strategy over a complicated one.

Additionally, we questioned the validity and usefulness of using a single,

mulit-term cost function for modeling reaching movements. We introduced a general

framework, the OCCF, that we believe has the power to more directly model the

motor system in terms of anatomy and physiology. This framework introduces

the idea of a network architecture containing multiple control signals based on

multiple cost functions, whereas the traditional approach has no notion of a network

and typically employs a single control signal related to a single cost function. We

then demonstrate the efficacy of the framework with a model of human reaching

movements which combines two separately optimized control signals, and produces

highly accurate results. Finally, we give examples of the anatomy of the nervous

system that show how modeling with the traditional approach is inadequate to

properly represent the network architecture of the HMS, bolstering the case for

using the OCCF to model components of the motor system.
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