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Sage Algorithms for Knapsack Problem 

 
Leo Landa 
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Department of Computer Science and Engineering, 
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San Diego 

1 Abstract 
We attack the unbounded integer knapsack problem, known to be NP-complete. The state-of-

the-art algorithms for precise solutions are pseudo-polynomial with respect to n (the number of types 

of items available) and b (the capacity of the knapsack). With reasonable encoding, those algorithms 

are exponential with respect to the bits of encoding due to the presence of b. In practical settings, the 

boundary constraint b can be quite large with respect to the rest of the values in the problem statement, 

and becomes a dominating factor in both time and space complexity. 

We present different algorithms for solving knapsack problems that are not dependent on the 

value of boundary in the original problem. These algorithms allow building useful pre-solution 

information about a particular instance of a knapsack problem (boundary excluded), which later be 

used in combination with any boundary to generate a final solution in polynomial time. Specifically, 

the Sage-2D algorithm shown provides pre-solution information for sufficiently large boundaries in 

O(nw1) time and space complexity (where w1 is the weight of the best item), and the Sage-3D 

algorithm shown provides pre-solution information for any boundaries in O(nw1v1) time and space 

complexity (where w1 is the weight of the best item, and v1 is the weight of the best item).  

This type of approach has two advantages over the state-of-the-art algorithms. Firstly, even 

though the pre-solution algorithms are pseudo-polynomial with respect to the items’ weights and 

values, they do not depend on the value of the boundary constraint b, which makes solving a large 

class of practical problems significantly easier (requiring less time and space). Secondly, this approach 

allows solving any number of knapsack problems with the same setup and varying boundary constraint 

in polynomial time, thus reducing the overhead of solving many knapsack-based practical problems.  

We conjecture that there are many more NP-complete problems that can also be solved through 

a pseudo-polynomial pre-solution and polynomial final solution. 

2 Introduction 
In this section we define the problem formally, show known state-of-the-art properties of 

unbounded integer knapsack problems, and define a solution model for the rest of the paper.  

2.1 Problem definition 

The unbounded integer knapsack problem is define as follows. Given a set of (n) types of items 

with corresponding integer weights (w1, w2, …, wn) and values, maximize the combined value of a 

selected set of items (V), not exceeding the given knapsack carrying capacity (b): 

 

Maximize: V =  x1v1 + x2v2 + … + xnvn 

Subject:  x1w1 + x2w2 + … + xnwn ≤ b 

    xj, wj, vj, b – integers 
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The unbounded problem presumes that the solution values of x may be any non-negative 

integer number, i.e. there is an unlimited supply of each type of item. Note also that if the values of x, 

w, and v are integers, the value of b can also be considered effectively integer: since a linear 

combination of any integer values is integer, the resulting combination will be less than or equal to the 

whole part of boundary b. 

2.2 Reasonable encoding 

The specification of a problem includes specifying the weights, values, and boundary at a 

minimum. A reasonable encoding would specify all those values without explicitly specifying the 

value of n – the number of types. It is possible for the algorithm to calculate this number on its own 

from the encoding of the problem by counting the number of weights and values specified. 

However, the number of items in a reasonable encoding is linear with respect to the encoding, 

since there cannot be more items specified than bits in the encoding of the problem. 

Therefore, any complexity polynomial with respect to weights, values, or a boundary is pseudo-

polynomial to the number of bits in a reasonable encoding, i.e. exponential, while any complexity 

polynomial with respect to the number of items is truly polynomial to the number of bits in a 

reasonable encoding. 

2.3 Special cases: n=0, n=1 

If n=0, the solution to any problem instance is trivial – the total value obtained is zero. The 

solution is obtained by a  

If n=1, the solution to any problem instance is also trivial – it is comprised of the only available 

item; the x1 is obtained by integer division of boundary b over the weight of the only item w1. This is a 

polynomial operation with respect to the bits of encoding, and thus has no interest. 

In the rest of the paper, we will concentrate on the problem instances where n is greater than 1. 

2.4 Density 

The art of solving integer knapsack problems recognizes the importance of the density, a 

descriptive property of each type of items. Density is the ratio of the items’ value to weight, and 

represents the rate (efficiency) with which the item is increasing total value by using up the knapsack 

weight capacity. 

Among the finite number of types of items, the highest density is considered best. The types of 

items with best density are considered best types, while types of items with non-best density are 

considered non-best types. The items corresponding to best types and non-best types are called best 

items and non-best items respectively. 

2.5 Non-best items and their usage 

It is known that optimal solutions to knapsack problems may contain no more that a certain 

finite number of non-best items. If a certain best type j has weight wj, while a certain non-best type k 

has weight wk, then any optimal solution contains no more than wj – 1 items of type k. The reason is 

obvious: if the optimal solution contains at least wj items of type k, then they occupy wjwk of the total 

weight-carrying capacity. Exactly the same capacity can be occupied by wk items of type j (i.e. by best 

items), and the total value produced by best items would be greater than the total value produced by 

non-best items (by definition of best density). Hence, the value of wj – 1 is a cap for the number of 
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times an item of any non-best type may appear in a particular optimal solution
1
. For example, if a 

certain best type has value of 15 and weight of 5 (hence, density of 3), while some non-best type has 

value of 8 and weight of 4 (hence, density of 2), then optimal solutions cannot have 5 or more of non-

best items: 5 non-best items take up 5*4=20 units of weight and produce 20*2=40 units of value, while 

the same units of weight can be taken by 4 items of best type, producing 20*3=60 units of value. 

Therefore, optimal solutions to knapsack problems in question have a certain finite cap on the 

number of times each non-best item may appear in the solution, and do not have a cap on how many 

times a best item may appear in the solution. 

2.6 Best items and their usage 

Even though there is no cap on the number that a non-best item may appear in optimal 

solutions, in the face of several best types such a cap can be imposed on all but one of such types. 

Suppose there are two best types in a problem – j and k, with corresponding weights wj and wk 

and values vj and vk. Since both types are best, they both have the same density ρ = vj/wj = vk/wk. 

In this case wj items of type k use up wjwk of the weight-carrying capacity of the knapsack, 

producing a combined value of vkwj = vkwjwk/wk = ρwjwk, or the density multiplied by the weight 

capacity occupied. The same combined value can be produced by wk items of type j: they use up wjwk 

of the weight-carrying capacity of the knapsack, producing a combined value of vjwk = vjwkwj/wj = 

ρwjwk, the same value. 

Therefore, for two given best types of items, it is possible to cap the number of times the items 

of one time appear in a solution by preferring another best type. Furthermore, in the presence of 

several best types, it is possible to cap all best types but one, preferring that one to all other best types. 

2.7 Solution model 

All solutions discussed in this paper impose a cap on all the best types of items except for one. 

The one “uncapped” type is called the best type, and is chosen to have both the maximum density and 

the smallest weight. It is possible to select such a type in a preprocessing stage of an algorithm with n 

steps, which makes this step polynomial (section 2.2) and thus affordable. 

For simplicity, we will assume that the preprocessing stage rearranges the indexes of items in 

such a way that the best type has index of 1, and the rest of the types have indexes 2 and higher. We 

will call this type type 1, or best type, and never use those terms to refer to other types of items with the 

density equal to the density of type 1. 

2.8 Principle of optimality 

Knapsack problem is a classic dynamic programming problem due to the inherent principle of 

optimality of solutions, which is the guiding principle for the DP-based algorithms. We will refer to 

this principle several times throughout the paper. 

The principle of optimality states that any optimal solution is based on optimal sub-solutions. 

The general form of the principle means that if an optimal solution to a particular instance of a 

knapsack problem with boundary b can be split up into several sub-solutions (several sets of whole 

items, taking up portions of the boundary – b1, b2, …, bk), then those sub-solutions are optimal 

solutions to their respective portions of boundaries. 

                                                 
1
 Note that this cap may be even smaller in case the greatest common divisor of the weights of the best item and 

non-best item in question is greater than one; however, this is not relevant at this point. 
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The validity of the principle of optimality is intuitive. The optimality of any solution by 

definition means that there does not exist any other solution yielding a better result. If a particular sub-

solution to the problem is not optimal itself, i.e. there exists a better solution to sub-problem, then this 

better sub-solution can be combined with the rest of sub-solutions to the original problem, yielding a 

better result, which is contradiction. 

Therefore, all sub-solutions of any optimal solution to any instance of the knapsack problem is 

an optimal solution itself, to the corresponding weight-carrying capacity occupied by it. 

2.9  “Periodic” nature 

With a cap present on all but one types of items, it becomes obvious that there exists a 

particular boundary b
**

 such that its optimal solution does not include any items of type 1, but also 

such that optimal solutions to any boundary larger than that does include them. Considering that w1–1 

is a sufficient cap for all n–1 capped types (sections 2.5 and 2.6),  the weight-carrying capacity 

occupied by non-best items cannot exceed (n–1)*(w1–1), no solution for boundaries larger than this 

have more items of non-best types, which means that starting with boundary of (n–1)*(w1–1)+w1 and 

larger all solutions have at least one item of the best type. Even more, it means that solutions to all 

boundaries greater than b
**

 are combined from sub-solutions to b
**

 or less and items of the best type. 

This leads to a “periodic” nature of all solutions to boundaries b larger than b
**

: each such solution is a 

combination of a best item and a previous solution to b – w1. 

The given boundary of (n–1)*(w1–1)+w1 as a possible b
**

 is an over-estimate for illustrative 

purposes. It is a sufficient, but not necessary condition, which can be quite larger than the actual values 

of b
**

. 

The significance of b
**

 is tremendous. If b
**

 is known, then a solution to any boundary larger 

than b
**

 can be found by combining an appropriate solution to b
**

 or less and the best items only. For 

example, if b
**

 is 200, w1 is 10, and a particular problem has a boundary of 2000005, then the solution 

is obtained as a combination of solution to 195 and (2000005–195)/10= (1999810)/10 = 199981 best 

items (as opposed to running an algorithm of O(2000005) time and space complexity). 

However, attempts to find b
**

 have not been very effective. Gilmore and Gomory [1] have 

found a sufficient but unnecessary condition for b
**

: 

 

b
**

 = v1 / (ρ1 – ρ2) 

 

In this formula ρ1 refers to the density of the best type, and ρ2 refers to the best density of the 

remaining types. This formula gives a great overestimation in the majority of cases, and gives infinity 

in case of two types with the best density. 

2.10 Conclusions 

The state of the art recognizes the periodic nature of the solutions to knapsack problems with 

fixed values and weights and varying boundary past some boundary b
**

. However, there are no known 

conditions for b
**

 that are both necessary and sufficient. There are also no known algorithms to find 

such a boundary efficiently. 

In this paper, we shall explore the properties of b
**

 in great detail, find necessary and sufficient 

conditions for it, and then use the properties found to make an algorithm that provides pre-solution 

information for boundaries both larger and smaller than b
**

 that allows constructing a solution to any 

boundary in linear time. 
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3 Analysis 
In this section, we analyze some properties of optimal solutions to knapsack problems, extend 

the notion of b
**

, define the concepts of threads and gains, and lay the foundation for Sage-2D and 

Sage-3D algorithms. 

3.1 Periodic nature revisited: threads 

In section 2.9 we have shown that solutions to all boundaries b above a particular b
**

 consist 

from at least one best item. In section 2.8 we have shown that the remaining sub-solution, taking up  

b–w1 units of the weight-carrying capacity, is an optimal solution itself. In case this boundary is itself 

greater than b
**

, the same argument can be applied, which means that the solution to b–w1 consists of 

one best item and the solution to b–2w1. The same argument can be applied to all boundaries of the 

form b–kw1, as long as they are all greater than b
**

. 

Visually this relationship can be viewed on a number line as follows: 

 

 
The boundaries are linked together because they have the same “nature”: they are all a 

combination of a number of best items and a particular sub-solution to boundary b
* 

(which is equal to 

b
**

 or smaller). This sub-solution is common to the solutions of all boundaries linked. The solution to 

the boundary that is a starting point for the links yields a polynomial-time solution to any boundary in 

the chain, as long as the target boundary can be reached by adding the weight of the best item enough 

times. Hence, the solutions to problem instances for linked boundaries really revolve around the 

solution to boundary b
*
: 

 

 
Considering that all links have the same length – w1 – we can see that there are w1 paths. 

Within each path all boundaries have the same value modulo w1. Each path has its own starting 

boundary b
*
, which does not have any best items in its solution. Considering that there are w1 such 

paths, there are w1 values of b
*
, one for each path. 

Visually we can represent this structure among the solutions for large enough boundaries in a 

table form, rather than a linear form. The table simply wraps around the number line with w1 entries in 

a row, so that boundaries that are a multiple of w1 away from each other are lined up: 

… b*+1w1 b*+3w1 … b*+2w1 … … b
**

 … b
*
 

… b-2w1 b … b-1w1 … … b
**

 … b
*
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 +0 +1 +2 … +w1–3 +w1–2 +w1–1 

0+ b
*
(0) b

*
(1)      

w1+        

2w1+      b
*
( w1–2)  

3w1+   b
*
(2)    b

*
( w1–1) 

…     b
*
( w1–3)   

…        

…        

 

The arrows represent links between boundaries whose solutions differ by one best item only. In 

every column the boundaries are the same modulo w1. The columns are labeled 0 through (w1–1) 

corresponding to that modulo value common to all boundaries in the column. The solutions in every 

column become related by the best items starting at some point that we have earlier denoted as b
*
. 

Every column has its own such b
*
, and the largest one of them is nothing else but b

**
. The values of b

*
 

in some columns may be significantly smaller than b
**

: for example, column zero (representing all 

boundaries divisible by the weight of the best item) has b
*
 of zero, meaning that solutions to all 

boundaries in the column are made up from the best item only. 

The column view gives a very important insight into the structure of the solutions to knapsack 

problems with varying boundary. 

We consider that all boundaries b such that b mod w1= t to be making up a thread numbered t. 

There are w1 such threads, numbered from 0 to w1–1. Every thread is unique in a sense that it is based 

on a unique solution to its own b
*
, which is the largest boundary in a thread whose optimal solution 

does not include the best item. 

3.2 Comparing solutions: gain 

In order to formalize the relationships between different candidate solutions for the same 

boundary, as well as solutions and their respective sub-solutions, we introduce the notion of gain. 

Gain is a property of a solution candidate of a knapsack problem for a particular boundary. It is 

the difference between the total value of the solution and the maximum value obtained using the best 

type only. We will denote the value of gain with a letter g. Considering that best-type-only solutions 

involve best items only, as many as can fit in the carrying capacity b, the general formula for gain is as 

follows: 

 

g(b) = V(b) – b/w1 v1 

 

Gains have several important properties that explain why it was chosen as the basis for Sage 

algorithms. 

Optimal gains cannot be less than zero. If any solution yields a result that is worse than the 

solution involving the best item only, it is by definition not optimal. All optimal solutions have gains 

of zero or more. 

Gains cannot be more than v1–1. A gain of v1 means that the solution has average density 

higher than the best density, which is impossible by definition of the best density. 

Gains are always integer. Since gains are defined as a difference between two integer 

numbers, they are also always integer. 
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The gain of a solution that contains an item of non-best type j can be expressed through 

the gain of the sub-solution without it and the thread of the sub-solution. Suppose the sub-solution 

for boundary bs in thread s has a gain of  gs, and the solution for boundary bb = bs+w1 consists of the 

same items with an addition of item j. Then the gain of the latter solution, gb, can be found as follows: 

 

 s = bs mod w1  

 gb  = Vb –  bb/w1v1  

  = (Vs + vj) – (bs+wj)/w1v1 

  = (Vs + vj) – (bs/w1w1 + bs mod w1 + wj)/w1v1 

  = (Vs + vj) – (bs/w1w1 + s + wj)/w1v1 

  = (Vs + vj) – (bs/w1 + (s + wj)/w1)v1 

  = (Vs + vj) – bs/w1v1 – (s + wj)/w1v1 

  = (Vs  – bs/w1v1) + vj – (s + wj)/w1v1 

  = gs + vj – (s + wj)/w1v1 

 

Note that the final formula for gs does not depend on the actual boundaries involved, but rather 

thread numbers. This formula essentially allows to find gain of a solution that consists of a 

combination of a sub-solution (gain and thread information) and a particular non-best item. 

There are exactly v1 distinct values that optimal gains may have. This is follows from the 

previous three points. 

Solutions obtained by adding or removing the best items have the same gain as the 

original solution. To see why this is true, suppose that the sub-solution (smaller) for boundary bs has a 

gain of  gs, and the boundary for the larger problem is bb=bs+w1, while the value of the solution to the 

larger problem is vb=vs+v1. By definition of gain we have: 

 

 gs  = Vs –  bs/w1v1 

 gb  = Vb –  bb/w1v1  

= (Vs+v1) –  (bs+w1)/w1v1  

= (Vs+v1) – (bs/w1+1)v1 

= (Vs+v1) – (bs/w1v1 + v1)  

= Vs+v1 – bs/w1v1 – v1 

= Vs –  bs/w1v1  

= gs 

 

An important implication of this is the fact that for large enough boundaries the gains of the 

solutions in a single thread do not change, since they are all obtained from each other by adding or 

removing the best item. 

Better solutions for the same boundary have higher gain. Suppose there are two candidate 

solutions for some boundary b, yielding values of vb (gain gb) and vs (gain gs), such that vs < vb. Then, 

by definition of gain, we have: 

 

vs < vb 

gs +  b/w1v1 < gb +  b/w1v1 

gs < gb 
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The same mechanism can be used to prove that any relationship between two solutions of a 

problem for the same boundary holds for corresponding gains. 

In each thread, the values of optimal gain are non-decreasing as boundary increases, and 

reach a certain maximum at b
*
. Since the solution for any boundary in the thread (with an exception 

of the smallest one) can be achieved by combining the solution to the previous boundary in thread and 

the best item, and such combination leads to the same gain as the previous solution, any solution that 

has a smaller gain loses to this combination. In other words, once a certain gain is achieved in a thread, 

all the boundaries greater than the one that whose solution achieves it can also have the same gain. 

This effectively means that the quality of solutions to the boundaries in a thread cannot get worse – it 

will at least be as good as the previous ones. Considering that there is a finite number of values that 

gain can have, even if it improves for certain boundaries, it cannot keep improving forever – at some 

boundary it reaches the highest possible value for the thread. The boundary where that happens is, in 

fact, the b
*
 for the thread – the largest boundary whose optimal solution does not have the best item (if 

it had the best item, its gain would be the same as the gain of the previous boundary in the thread, as 

shown above). 

4 Algorithm Sage-2D: pre-solution for sufficiently large boundaries 
The Sage-2D algorithm builds pre-solution information that consists of the precise values of b

*
 

for every thread of the problem, as well as the solutions for those boundaries. This information is 

enough to solve the given knapsack problem for any boundary that is no less than the value of b
*
 it its 

thread. 

4.1 Approach 

The problem of finding b
**

 has evolved into finding a set of b
*
 – one value for each thread – 

and their corresponding solutions. The proposed algorithm starts off by finding the required 

information for a knapsack setup consisting of the best type only, and then updates the information by 

processing the rest of the available types one by one. 

The procedure involves comparing existing optimal solutions for each thread to new 

candidates, selecting the best one fitting the selection criteria. The selection criterion is as follows: 

• The solution with higher gain is preferred over the solution with lower gain; 

• If gains are the same, the solution with smaller boundary is preferred
2
; 

4.2 Principle of optimality: relationship between different b
*
 

Suppose there exists information about the values of b
*
 in all threads, including their optimal 

solutions and gains. 

Thread zero always consists of boundaries that are divisible by w1, their preferred solutions 

under the solution model discussed in section 2.7 consist of items of the best type only, which means 

that the gains of such solutions are zeroes. All of the boundaries are linked, and the b
*
 of the thread is 

zero. 

                                                 
2
 In practice, sometimes both gain and boundary match, even though the solutions are made up from different sets 

of items. There could be more conditions added to the selection criteria, for example reachability. Sometimes one solution 

may consist of items whose combined weight matches the specified boundary precisely (i.e. reaches it), while another 

solution’s combined weight is less than the boundary (i.e. does not reach it). An algorithm may take this or any other 

criteria into consideration, but these are all secondary to the primary criteria of knapsack solutions, which is to maximize 

combined value for given boundaries. Therefore, these criteria are omitted from discussion. 
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Suppose we choose some other thread with a non-zero gain at its corresponding b
*
. Suppose 

that solution for its b
*
 contains at least one item of some type j (since this is a b

*
, this is type is not the 

first type). The solution is based on two components – the type j and the rest of the items that use up 

b
*
–wj units of weight carrying capacity. From the principle of optimality described in section 2.8, this 

sub-solution must also be optimal for its corresponding thread. Following the logic of the principle of 

optimality, if that sub-solution was not optimal, then we could combine the optimal solution for that 

thread with the same item j to achieve a better solution for the b
*
 in question. 

Effectively, the principle of optimality claims that all sub-solutions of the optimal solutions to 

b
*
 in every thread are also b

*
 for the corresponding threads. 

4.3 Adding a new type to existing solution: chains 

Suppose there exists information about the values of b
*
 in all threads, including their optimal 

solutions and gains, corresponding to a certain set of items. Suppose we were to extend the knapsack 

problem with a new type j of weight wj and value vj. 

For any thread t, the item j is either part of the optimal solution in the thread, or it is not.  

If it is, in fact, part of the solution, then it is used either once or more than once. If it is used 

once, then this solution is a combination of a sub-solution (optimal for its thread) and does not use the 

item. If it is used more than once, then it this solution is a combination of a sub-solution (optimal for 

its thread) and also uses this item at least once. 

Therefore, in order to find out whether an item is part of a new optimal solution for some 

thread t (a solution which is better than the solution in the absence of this item), it is sufficient to know 

the optimal solution for the thread (t – wj) mod w1. In turn, to find whether the optimal solution for that 

thread has item j it is sufficient to know the optimal solution for the thread (t – 2wj) mod w1. Therefore, 

every thread has a “parent” thread with respect to item j, such that it is necessary to know the optimal 

solution for the “parent” thread to find the optimal solution for the “child” thread. Checking solutions 

must go from parents to children, provided that the very first parent’s information is reliable, until all 

threads are checked. 

This procedure involves going “forward” from some start thread t: first checking thread t, then 

thread (t + wj) mod w1, then (t + 2wj) mod w1, then (t + 3wj) mod w1, and so on. Such a procedure 

encounters exactly w1/gcd(w1,wj) jumps through distinct threads before a thread is repeated (a full 

circle is made), where gcd(w1,wj) stands for the greatest common divisor of w1 and wj. The definition 

of greatest common divisor both necessary and sufficient for the claim:  

• sufficient, since w1/gcd(w1,wj) jumps by wj each cover a total distance of 

w1wj/gcd(w1,wj) units, which when divided by the number of threads (w1) yields 

wj/gcd(w1,wj), which is an integer number – and hence the end thread is the same as the 

start thread; 

• necessary, since if it took less than w1/gcd(w1,wj) jumps to come back to the same 

thread (say, k jumps, k<w1/gcd(w1,wj)), it would mean that the value of kwj evenly 

divides both w1 and wj, making the value of (w1wj)/(kwj) = w1/k a divisor of both w1 and 

wj; however, this value is greater than w1/gcd(w1,wj), which is a contradiction by 

definition of greatest common divisor. 

Hence, the technique of jumping forward involves making a full loop of w1/gcd(w1,wj) threads. 

If the greatest common divisor is not equal to 1, this loop would not visit all threads, but only a fraction 

of them. The algorithm would have to visit several sequences of threads (precisely, gcd(w1,wj) of them, 

independently of each other). We call such sequences chains, and index the chains with numbers from 

0 to gcd(w1,wj)–1 based on the smallest thread number in the chain. 



Sage Algorithms for Knapsack Problem  Page 10 of 17 

4.4 Starting points in chains 

In order to visit all threads in a chain for the purpose of evaluating the usefulness of an 

additional item, a proper starting thread has to be chosen – a thread whose optimal solution would not 

include item j, so that its child thread could have no more than one item j in its optimal solution, the 

next one – no more than two, etc. 

Every chain corresponding to any non-best type (even a type with the best density) has such a 

thread that its corresponding optimal solution does not contain the item j. Suppose it wasn’t so, and 

every single thread in the chain had an optimal solution did in fact have at least one item j. From the 

principle of optimality defined for b
*
 as discussed in section 4.2 we conclude that if a thread’s optimal 

solution involves a non-zero number of items of type j (non-best), then the sub-solution missing one 

such item must also be optimal for its thread. Therefore, if an item is used by any thread at all, there is 

at least one thread that uses it once less, and so on recursively, until a thread with 1 item is 

encountered, whose parent thread’s optimal solution does not require this item at all. This proves the 

existence of such a thread. 

Since there always exists at least one thread whose optimal solution does not involve the item 

of the new type, any one of such threads can be used as the first thread to start scanning the threads 

forward. Finding such a thread directly is not an easy task. 

However, such a thread can be recognized during traversal of the chain – it would be the thread 

whose optimal solution does not use the solution to the parent thread as a sub-solution. Due to the 

existence of such a thread, it is guaranteed to be encountered on the first pass. Therefore, a double-pass 

through the chain (or looping through the threads twice) is sufficient to find all optimal solutions that 

may be based on the new item – the first pass encounters the good starting point, and the second pass 

ensures that all thread’s solutions are based on optimal solutions parents. 

More specifically, it is needed to have w1/gcd(w1,wj)–1 jumps forward from the starting point to 

visit all the rest of the threads, and it is needed to have w1/gcd(w1,wj) jumps forward to consider all 

possible threads as a starting point. Therefore, in general case, it is needed to have 2w1/gcd(w1,wj)–1 

jumps forward from an arbitrary thread in the chain. 

The only special case is chain 0, which includes thread 0. It is known ahead of time that thread 

0 does not included any items that are not of the best type, and therefore this thread can be used as a 

starting point. In this special case, only w1/gcd(w1,wj)–1 jumps forward are required to visit each 

thread. 

4.5 Sage-2D: the algorithm 

The algorithm builds a two-dimensional (hence the name) table T, whose first dimension 

corresponds to the types of items analyzed (1…n), and the second dimension corresponds to the 

threads (0…w1–1). Each cell T[x,y] contains information about the optimal solution for thread y, if 

item types 1 through x are used. The cell contains the gain of the optimal solution (T[x,y].g) and the 

smallest boundary where that gain can be reached (T[x,y].b). 

The algorithm assumes that there is at least one type of items (otherwise the solution is trivial, 

as discussed in section 2.3), and that the item of highest density and smallest weight has index of 1. 
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Algorithm Sage-2D 
FOR thread = 0 TO w1–1 

T[1,thread].g = 0 

T[1,thread].b = t 

FOR item = 2 TO n 

FOR thread = 0 TO w1–1 

T[item,thread] = T[item–1,thread] 

number_of_chains = gcd(w1,witem) 

FOR chain = 0 TO number_of_chains 

IF chain = 0 

 number_of_jumps = w1/number_of_chains–1 

ELSE 

 number_of_jumps = 2w1/number_of_chains–1 

thread = chain 

jumps_so_far = 0 

WHILE jumps_so_far < number_of_jumps 

 next_thread = (thread + wj) mod w1 

cand_gain = T[item,thread].g + vitem – ((thread+wj) mod w1)v1 

cand_boundary = T[item,thread].b + wj 

IF cand_gain > T[item,next_thread].g 

 T[item,next_thread].g = cand_gain 

 T[item,next_thread].b = cand_boundary 

ELSE IF cand_gain = T[item,next_thread].g  

AND cand_boundary < T[item,next_thread].b 

 T[item,next_thread].b = cand_boundary 

thread = next_thread 

jumps_so_far = jumps_so_far+1 

 

By the end of algorithm’s execution, cells T[n,0] through T[n,w1–1] contain maximum gains 

achievable in respective threads (by using all available types of items), and smallest possible 

boundaries where such gains occur (b
*
). 

The algorithm runs in O(nw1) space, since it requires a table of n-by-w1 cells with constant-

sized cells. It runs in O(nw1) time, since it visits each cell at most twice, spending constant time 

processing a cell. 

This information can be used to solve the knapsack problem for any sufficiently large boundary 

b in linear time – by calculating the thread to which the boundary belongs, checking against the 

appropriate b
*
, and using the gain supplied to calculate precise solution for the given boundary. 

Note also that since any meaningful w1 is smaller than b, this algorithms runs faster than the 

regular DP-based algorithm, which makes it possible to run Sage-2D before the DP-based algorithm by 

at worst not even doubling the execution time, and at best spending as much less time as b/w1, which 

for many practical problems is a huge factor. 

4.6 Algorithm extensions 

The Sage-2D algorithm as specified in section 4.5 builds information about the highest 

achievable gain in every thread, as well the information about the smallest boundaries for which those 
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gains are achieved. This information can be useful if the problem at hand involves maximizing the 

total knapsack value for sufficiently large boundaries. 

In practical tasks, more fine-tuned selection can be required. As specified in a footnote in 

section 4.1, more selection criteria such as reachability can be added to the algorithm or tracked by it. 

As long as those extra criteria are applicable only in case of ties on the values and boundaries, all of 

them can be safely added, since the algorithm considers all possible candidates with tying gains and 

boundaries for every thread. 

One of the most important practical additional requirements to the algorithm would be the 

ability to reconstruct the actual item count for each type that comprises the solutions found by the 

algorithm. Such recovery procedure can be added to the algorithm by adding extra information to the 

cells (constant size, nevertheless), and tracking that information (also constant time per cell). This 

additional information would include the last type of item added and the number of items of the type 

used by the solution. The important detail is that such tracking allows solution recovery in O(n) steps, 

since there are at most n type information entries to recover. It is not sufficient to simply track the last 

item used, since the solution may consist of the number of items of order O(nw1), and the recovery 

would thus become exponential. 

5 Algorithm Sage-3D: pre-solution for all boundaries 
The Sage-3D algorithm builds pre-solution information that consists of all gains achievable in 

every thread (not just the optimal gain) and their corresponding smallest boundaries. This information 

is enough to solve the given knapsack problem for any boundary with no restrictions. 

5.1 Approach 

At the top level, the Sage-3D algorithm is similar to the Sage-2D algorithm. It assumes the 

types have been preprocessed so that the first type is the best type. It assumes that there exists at least 

one type of items; otherwise the solutions become trivial (section 2.3). It initializes by processing the 

best type in a special way – knowing without any processing all the properties of solutions based on 

the best type only. It then proceeds to process all types in the setup one-by-one, essentially solving 

several sub-problems (involving two types, then three types, etc.). While processing every type, it 

loops through all the chains, and all the threads in each chain, to update the thread information. 

What is different, however, is the amount of information kept regarding each particular thread. 

While Sage-2D always preserves information about one solution per thread (the one yielding the best 

gain), the Sage-3D preserves information about several solutions per thread. This “extended” 

information contains not only the best solution for the thread (including best achievable gain and 

corresponding b
*
), but rather all achievable gains that make sense for the thread, and their 

corresponding smallest boundaries for which those gains are achieved. Smaller boundaries correspond 

to smaller gains. If a certain gain is achievable at some boundary, but a larger gain is achievable at 

smaller boundary, then the information about the smaller gain is discarded as not making sense. 

Just as the principle of optimality lies at the heart of the Sage-2D algorithm and dictates that 

sub-solutions to optimal solutions are optimal themselves, thus allowing the gradual build-up of 

relevant information, the same principle lies at the heart of Sage-3D. The notion of optimal somewhat 

changes, but the principle still holds and prescribes that any solution worthy enough to be preserved is 

based on sub-solutions that are also as worthy. 
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5.2 Principle of optimality: relationship between different solutions not involving 

the best items 

The Sage-3D algorithm has to track all relevant per thread – all useful gains and their 

corresponding boundaries. 

It has already been shown in section 3.2 that a solution involving the best item has the same 

gain as the sub-solution without it. Therefore, if a certain gain is achieved in a thread, the larger 

boundaries have gains no worse than this one. Hence, optimal solutions to all boundaries in a thread 

exhibit non-decreasing gains as boundary increases. For certain boundaries the gain is greater than the 

gain for the previous boundary in the thread. For all others the gain is the same as for the previous 

boundary. 

All smallest boundaries that exhibit changes in gain as compared to the previous boundary in 

the thread have no best item as part of the optimal solution. If they did, their gain would not be 

different from the previous boundary in the thread.  

Therefore, the key boundaries that contain enough information about solutions to all boundaries 

in the thread have two properties: 

• Their solutions do not contain the best items; 

• Their gain is greater than any gain corresponding to smaller boundaries in a thread; 

As shown in section 3.2, there are exactly v1 distinct values that a gain have – integers from 0 

to v1–1. Therefore the maximum information about a particular thread involves information about v1 

distinct gains – the flag indicating whether the particular gain appears in optimal solutions at all, and 

the minimum boundary where such a gain is achievable in case it does appear in optimal solutions. 

Information about each such gain refers to a particular solution that is comprised of several 

items. The sub-solutions of those must also be optimal under the conditions described above. If it 

wasn’t so, it would be possible to replace the sub-solution with a better one (bigger gain, or smaller 

boundary, or both), and thus provide a better solution for the thread in question (bigger gain, or smaller 

boundary, or both).  

Thus the principle of optimality holds true for every sub-solution of any solution that satisfies 

the criteria above. 

5.3 Adding a new type to existing solution: chains 

The same logic about chain traversal as for the Sage-2D (described in section 4.2) applies for 

Sage-3D. The only difference is that analyzing a pair of threads (parent and child) involves checking 

for more than one solution, but rather for all solutions that parent thread has – since each one of them 

may potentially be a sub-solution for the child thread. 

5.4 Starting point in chains 

In case of chain 0, just as in Sage-2D, the traversal of the chain can start from thread 0, since no 

solution in thread 0 has any non-best items. 

In case of chains 1 and higher, the traversal still requires a double loop technique in order to 

ensure that all optimal solutions are found. Even though the starting boundary may belong to different 

threads in case of different solutions (different gains), a double loop is still enough for all the same 

reasons. 
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5.5 Clean-up stage 

Tracking described in previous sections is guaranteed to track all the optimal solutions as 

defined in section 5.2. However, it may also pollute the information table with unnecessary 

information. 

The pollution happens when a certain gain becomes feasible for a thread whose optimal 

solutions do not have such a gain. Since the thread does not have this gain in any of the optimal 

solutions, it means that the particular gain is achievable for a boundary that is larger than an existing 

boundary for a higher gain – making the newly found solution sub-optimal. 

It is possible to check every new gain achieved for a thread to comply with the compatibility 

rules at the time of processing the gain, but this would involve checking multiple additional cells while 

processing just one cell, and thus making the order of the running time significantly worse. 

Instead, Sage-3D utilizes delayed clean-up. The table is checked after processing each item. 

Processing each item involves checking at most w1v1 cells, and clean-up involves checking exactly as 

many cells, after all optimal solutions are guaranteed to have been filled in. Since it is essentially one 

more sweep of the table, the time complexity of the algorithm is not hurt. 

In realistic environments, it might not be necessary to clean up the whole table by cleaning up 

every portion corresponding to every item. If intermediate solutions (corresponding to setups with a 

smaller number of types) that are produces “automatically” on the way are not important, the clean-up 

may be invoked only on the final slice of the table – corresponding to the whole setup only. 

For the sake of clarity, considering that the clean-up does not really worsen the tight bound of 

the algorithm running time, we present the clean-up stage after processing every type, and leave further 

optimizations that do not have academic interest outside the scope of the paper. 

Finally, the actual usage of the table once it is built requires speedy lookup of actual 

boundaries. The table is already pre-sorted in terms of boundaries, but the useful information is sparse. 

Therefore, in order to assist the binary search of boundaries, the clean-up stage also performs the 

initialization of all boundary values of the non-feasible gains to the value of the closest of the larger 

feasible boundaries. 

5.6 Sage-3D: the algorithm 

The algorithm build a three-dimensional (hence the name) table T, whose first dimension 

corresponds to the types of items analyzed (1…n), the second dimension corresponds to the threads 

(0…w1–1), and the third dimension corresponds to various values of gains that might be achieved by 

optimal solutions (0…v1–1). Each cell T[x,y,z] contains information about the optimal solution 

achieving gain z, in thread y, if items types 1 through x are used. The cell contains a boolean flag 

indicating if the gain is feasible (i.e. if the gain is achievable by some optimal solution) – T[x,y,z].f, and 

the smallest boundary whose optimal solution does achieve the gain in question – T[x,y,z].b. 

The algorithm assumes that there is at least one type of items (otherwise the solution is trivial, 

as discussed in section 2.3), and that the item of highest density and smallest weight has index of 1. 
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Algorithm Sage-3D 
FOR thread = 0 TO w1–1 

T[1,thread,0].f = TRUE 

T[1,thread,0].b = t 

 FOR gain = 1 to v1–1 

  T[1,thread,gain].f = FALSE 

  T[1,thread,gain].b = 0 

FOR item = 2 to n 

FOR thread = 0 to w1–1 

  FOR gain = 0 TO v1–1 

   T[item,thread,gain] = T[item-1,thread,gain] 

number_of_chains = gcd(w1,witem) 

FOR chain = 0 TO number_of_chains 

 IF chain = 0 

 number_of_jumps = w1/number_of_chains–1 

ELSE 

 number_of_jumps = 2w1/number_of_chains–1 

thread = chain 

jumps_so_far = 0 

WHILE jumps_so_far < number_of_jumps 

 next_thread = (thread + wj) mod w1 

 FOR gain = 0 TO v1–1 

  IF T[item,thread,gain].f = FALSE 

   CONTINUE 

  cand_gain = gain + vitem – ((thread+wj)) mod w1)v1 

  IF cand_gain < 0 

   CONTINUE 

  cand_boundary = T[item,thread,gain].b + wj 

IF T[item,next_thread,cand_gain].f = FALSE 

  OR cand_boundary < T[item,next_thread,cand_gain].b 

 T[item,next_thread,cand_gain].f = TRUE 

 T[item,next_thread,cand_gain].b = cand_boundary 

   thread = next_thread 

   number_of_jumps = number_of_jumps+1 
  FOR thread = 0 TO w1  

   FOR last_gain = v1–1 TO 1 STEP –1 

    IF T[item,thread,last_gain].f = TRUE 

     BREAK 

    T[item,thread,last_gain].b = –1 

   FOR gain = last_gain–1 TO 0 STEP –1 

    IF T[item,thread,gain].f = FALSE 

     T[item,thread,gain].b = T[item,thread,last_gain].b 

     CONTINUE 

    IF T[item,thread,gain].b ≥ T[item,thread,gain].b 

     T[item,thread,gain].f = FALSE 

     T[item,thread,gain].b = T[item,thread,last_gain].b 

     CONTINUE 

    last_gain = gain 
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By the end of algorithm’s execution, cells T[n,t,0] through T[n,t,w1–1] contain information 

about optimal gains achievable in thread t, as well as the smallest possible boundaries corresponding to 

gains achievable. 

The algorithm runs in O(nw1v1) space, since it requires a table of n-by-w1-by-v1 cells with 

constant-sized cells. It runs in O(nw1v1) time, since it visits each cell at most four times (once for 

initialization, at most twice for processing, once for cleanup), spending constant time processing a cell. 

This information can be used to solve the knapsack problem for any boundary b in linear time – 

by calculating the thread to which the boundary belongs, then checking the cells corresponding to the 

appropriate cell to find the closest feasible boundary not exceeding the boundary from the problem 

statement, and using the gain corresponding to the found boundary to calculate precise solution for the 

given problem. Note that in order to find such an entry in the table in polynomial time, the v1 cells 

corresponding to the thread must be searched using a binary search (since they are sorted with respect 

to boundaries), resulting in O(log(v1)) search time, or linear with the bits of encoding. A brute-force 

search of the table would result in O(v1) search time, or exponential with the bits of encoding. 

5.7 Algorithm extensions 

The Sage-3D algorithm as specified in section 5.6 builds information about all optimal 

achievable gains in every thread, as well the information about the smallest boundaries for which those 

gains are achieved. This information can be useful if the problem at hand involves maximizing the 

total knapsack value for any given boundaries. 

In practical tasks, more fine-tuned selection can be required. As specified in a footnote in 

section 4.1, more selection criteria such as reachability can be added to the algorithm or tracked by it. 

Just as for the Sage-2D algorithm, as long as those extra criteria are applicable only in case of ties on 

the values and boundaries, all of them can be safely added, since the algorithm considers all possible 

candidates with tying gains and boundaries for every thread. 

One of the most important practical additional requirements to the algorithm would be the 

ability to reconstruct the actual item count for each type that comprises the solutions found by the 

algorithm. Such recovery procedure can be added to the algorithm by adding extra information to the 

cells in the same fashion as for Sage-2D, which is discussed in section 4.6. 

6 Conjectures 
This paper presents two algorithms, Sage-2D and Sage-3D, that provide a qualitatively 

different approach of solving knapsack problems. Instead of attacking a particular problem instance 

with a particular boundary, the algorithms build pre-solution information that can be used to solve 

particular instances of the given problem for any boundary (with certain restrictions in case of Sage-2D 

algorithm). 

Even though state-of-the-art DP-based precise solutions to multiple instances of unbounded 

integer knapsack problems may involve only one execution – for the largest boundary of all sets, the 

running time of such algorithms heavily depends on the largest boundary, which can make the actual 

time performance in realistic environment unfeasible. The Sage algorithms do not make such a 

distinction between boundaries, and provide sufficient information for all of them, regardless of size of 

the boundary constraints. 

Since knapsack problems are directly related to a number of other integer programming 

problems, other problems may also be solved by algorithms directly resembling Sage-2D and Sage-3D.  
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The fact that Sage-2D runs in relatively smaller time complexity than Sage-3D and even DP-

based algorithms, suggests that the larger instances of the problem that are commonly feared to 

represent the worst cases are in fact best cases. Solving relatively larger instances is conceptually 

easier than solving smaller instance. This, in conjunction with the concept of a common pre-solution 

algorithm and a polynomial final-solution algorithm, suggests that a finer categorization of NP-

complete problems may in fact be necessary to better analyze the practical complexity of those 

problems. 

7 Resources 
An online demo of the Sage-2D and Sage-3D algorithms is available on the web at 

http://www.leolan.com/research/knapsack/sage/ – the interactive script runs entered setups through 

Sage-2D or Sage-3D algorithms, providing the resulting thread view of the solutions, as well as traces 

of the algorithms’ execution. 
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