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Article

Information Extraction from Lumbar Spine MRI Radiology
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Abstract: Background/Objectives: This study aimed to create a pipeline for standardized
data extraction from lumbar-spine MRI radiology reports using a large language model
(LLM) and assess the agreement of the extracted data with research-grade semi-quantitative
scoring. Methods: We included a subset of data from a multi-site NIH-funded cohort study
of chronic low back pain (cLBP) participants. After initial prompt development, a secure
application programming interface (API) deployment of OpenAIs GPT-4 was used to extract
different classes of pathology from the clinical radiology report. Unsupervised UMAP and
agglomerative clustering of the pathology terms’ embeddings provided insight into model
comprehension for optimized prompt design. Model extraction was benchmarked against
human extraction (gold standard) with F1 scores and false-positive and false-negative
rates (FPR/FNR). Then, an expert MSK radiologist provided comprehensive research-
grade scores of the images, and agreement with report-extracted data was calculated using
Cohen’s kappa. Results: Data from 230 patients with cLBP were included (mean age
53.2 years, 54% women). The overall model performance for extracting data from clinical
reports was excellent, with a mean F1 score of 0.96 across pathologies. The mean FPR
was marginally higher than the FNR (5.1% vs. 3.0%). Agreement with comprehensive
scoring was moderate (kappa 0.424), and the underreporting of lateral recess stenosis (FNR
63.6%) and overreporting of disc pathology (FPR 42.7%) were noted. Conclusions: LLMs
can accurately extract highly detailed information on lumbar spine imaging pathologies
from radiology reports. Moderate agreement between the LLM and comprehensive scores
underscores the need for less subjective, machine-based data extraction from imaging.

Keywords: large language models; spinal imaging; magnetic resonance imaging

1. Introduction
Low back pain (LBP) is one of the major causes of disability worldwide [1], with a

substantial impact on both quality of life for affected patients and healthcare expenditures,
which outpace the rate of inflation [2]. One of the most deployed tools in the diagnostic
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work-up of LBP is lumbar spine magnetic resonance imaging (MRI). While this diagnos-
tic tool can demonstrate pathologies that may require surgical intervention, many scans
do not uncover any addressable pathology or plausible culprit lesion linked to clinical
symptoms [3]. One strategy to address this knowledge gap between imaging findings and
clinical outcomes is to investigate large databases, e.g., institutional electronic healthcare
records. However, the considerable resources needed to extract standardized and clinically
relevant data from patient electronic health records at a multi-institution scale has histor-
ically limited “big data” studies. Radiology reports are a potential additional source of
pre-existing image-derived data, yet these reports are mainly in the form of free-text, which
is not amenable to established biostatistical or epidemiologic analytic approaches.

With the advent of modern large language models (LLMs), standardized information
extraction from clinical radiology reports may be feasible, and has been successfully piloted
in several fields [4,5], notably for malignant diseases of the liver [6], breasts [7], and
lungs [8]. Radiology reports, often narrative in format, contain valuable details about
pathology, patient history, and diagnostic impressions, but their unstructured nature poses
challenges for direct data extraction and analysis. Modern LLMs use attention mechanisms
to efficiently capture complex dependences across short contexts (i.e., adjectives modifying
nouns) and long contexts (i.e., pronouns referring to nouns). The numerical representation
of input text, referred to as text embeddings, offers valuable insight into the model’s
processing. In the model encoder, LLMs perform tokenization by breaking text down
into words or characters, and then transform these tokens into embeddings, which are
continuous vectors that capture semantic meaning. These embeddings provide a structured,
comparable data format and another avenue to evaluate the model’s semantic accuracy
in understanding medical terminology. These embeddings are used in the model decoder
for next word prediction, allowing us to assess the reliability of the extractions against
expert-provided labels.

While LLM information extraction pipelines show promising performance when
benchmarked against manual data extraction, comparisons with research-grade scores,
i.e., comprehensive qualitative or semi-quantitative scoring of images, are lacking. A
mismatch between clinical reports and research-grade comprehensive scoring is expected,
as the tasks differ somewhat in their general aim. However, when considering the potential
utility of clinical radiology reports for research purposes, benchmarking report-derived
data against expert, research-grade scoring is required to provide guidance on the strengths
and limitations of this data source. Thus, this study aimed to first create a pipeline for
the accurate extraction of standardized pathological findings from lumbar spine MRI
radiology reports using an LLM, and then assess the agreement of the extracted data with
comprehensive and semi-quantitative expert scoring.

2. Materials and Methods
2.1. Study Population and Imaging

A subset of 230 participants who participated in the HIPAA-compliant, IRB-approved
Longitudinal Clinical Cohort for Comprehensive Deep Phenotyping of Chronic Low-Back
Pain (cLBP) in Adults Study (comeBACK) [9], a part of the NIH HEAL Initiative’s Back Pain
Consortium (BACPAC) Research Program [10], were included in this analysis. To be eligible
for inclusion in this post hoc analysis, participants must have had an available full clinical
radiology report and comprehensive image scoring. Of the 450 participants enrolled in
comeBACK, 239 had comprehensive MRI scores from their baseline scan at the time of this
analysis and n = 9 of them were excluded due to unavailable clinical radiology reports. The
mean patient age was 53.2 ± 15.3 years and 54.3% (125/230) of the patients were women.
All participants underwent a 3.0 T non-contrast lumbar spine MR scan at baseline [11]. The
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MR acquisitions, which were read by clinical radiologists and scored by experts, included
standardized sagittal T2-weighted fat saturated, sagittal and coronal T1-weighted, axial
T1-weighted, and axial T2-weighted images covering the region between the vertebrae
T12 and S1 [12]. All participants gave written informed consent before their inclusion in
the study.

2.2. Prompt Engineering and LLM Pipelines

The LLM used in this analysis was a protected health information (PHI)-compliant
deployment of GPT-4 (8-k model, OpenAI, San Francisco, CA, USA; Microsoft Azure,
Microsoft, Redmond, WA, USA); under the name VERSA, this deployment can be used
both with a chat interface and an application programming interface (API) [6]. For our
pipeline, VERSA-API was used within a Python script, which is publicly available (https:
//github.com/michelle-tong18/VERSA-spine, version 1.0, accessed on 16 March 2025).

In an initial exploration, prompting strategies were tested on ten representative reports
not used in this analysis. For preprocessing, unnecessary text passages (e.g., scan date) and
the word “significant” were removed, as it led to erroneous detection in the context of “no
significant stenosis”, which was consistently understood to imply stenosis. Preprocessed
text was then fed into the LLM, and the prompts were refined until information extraction
on the ten sample reports showed >90% agreement with human interpretation. From this
process, few-shot prompting (i.e., providing specific examples of desired output within the
prompt text) emerged as the most effective strategy. Briefly, a prompt is assembled from
predefined building blocks, adding information on pathology as well as the format of the
output and instructions on how to handle ambiguous wording (if present) (see Figure 1).
The assembled prompt is then fed into the large language model, and the output is parsed
into a data frame in a fully automated process; an example extraction is then given as
Supplementary Figure S1. Additional hyperparameters were set to improve the generation
of relevant responses, which should be purely numeric: the output token limit was set to
50 to limit unwanted verbosity and the temperature was set to 0 to decrease the chance
of hallucinations [13]. The used tokens, separated into input and output tokens, were
extracted as secondary output and used to calculate the cost of processing per report.
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2.3. Comprehensive Image Scoring and Manual Report Data Extraction

Comprehensive semi-quantitative image scoring included the assessment of a range
of pathologies with relevance to cLBP [12]; for the purpose of this investigation, only
assessments of pathologies routinely included in the semi-structured clinical reports. Table 1
shows the included scoring items. Briefly, the items included disc abnormalities (bulging,
protrusion, and extrusion), endplate changes (endplate erosions, Schmorl’s nodes, and
Modic changes), central spinal canal stenosis, lateral recess stenosis, foraminal stenosis, and
facet joint arthropathy at each spinal level (L1 through S1). Laterality (left versus right) was
noted for lateral recess stenosis and foraminal stenosis. Lastly, the presence of sacroiliac
joint changes, alterations in spinal curvature, or the presence of a vertebral fracture were
noted. All images were scored by an expert musculoskeletal radiologist (TML). Data of the
same structure, as detailed in Table 1 were manually extracted from anonymized clinical
radiology reports. Pathologies not mentioned were graded as absent. All reports were
manually processed by two trained radiologists (KZ and VK), independently and without
access to underlying imaging or other patient-related information; cases of disagreement
were adjudicated by a third radiologist (CTC).

Table 1. Extracted data points. Location = anatomical site at which pathology is assessed;
level = assessed at each intervertebral level from L1–L2 to L5–S1; level and side = assessed at each
intervertebral level for left and right side separately; and overall = assessed per patient. Scale = level
of detail in which the pathology is assessed.

Pathology Class Location Scale Included Pathologies

Endplate pathology level absent/present Endplate erosions, Schmorl’s
nodes, Modic changes

Disc pathology level absent/present Bulging, protrusion, extrusion

Facet joint arthropathy (FJ-OA) level absent/present Hypertrophic changes, synovial
cysts, increased facet joint fluid

Lateral recess stenosis (LRS) level and side absent/present Nerve root contact, compression

Spinal canal stenosis (SCS) level absent, mild, moderate, severe Varying grades of stenosis,
regardless of cause

Foraminal stenosis level and side absent, mild, moderate, severe Varying grades of stenosis,
regardless of cause

Sacroiliac joint (SIJ) pathology overall absent/present
Any observed joint changes,
including sclerosis, bone marrow
signal changes (edema/fat)

Scoliosis overall absent/present Changes in curvature of lumbar
spine

2.4. Semantic Information Representation

Text embeddings were generated for each pathology term to capture domain-specific
content for the assessment of semantic closeness. The “text-embedding-ada-002” model
(OpenAI, Microsoft Azure), which was optimized for versatile tasks, tokenized the input
text into smaller semantic units (tokens) using “cl100k_base”, and extracted their numerical
representation into a vector of a length of 1536 from the model’s embedding layer. Unsuper-
vised uniform manifold approximation projections (UMAPs) [14,15] and cosine similarity
with hierarchical clustering [16] of embeddings for pathology synonyms were created to
visualize term similarity, motivating the model’s language comprehension. Through a grid
search, the optimal UMAP parameters for the number of neighbors, minimum distance,
negative sample rate, and local connectivity were selected to minimize the cluster silhouette
score. For cosine similarity visualization, agglomerative clustering iteratively merged the
closest clusters based on the distance between rows and columns to capture term closeness
in the heatmap.
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2.5. Statistical Analysis

Human-extracted report information served as the reference standard, against which
the model performance was measured. The F1 score, false-positive rate (FPR), and false-
negative rate (FNR) were computed for each imaging finding separately. Ordinal measures
were collapsed to binary measures (0 = absent/all other = present) for this analysis. In
the second step, the agreement of report-extracted information from VERSA-spine with
comprehensive image scoring was calculated. For this, Cohen’s kappa values were com-
puted for each pathology and location, and the mean kappa values with ranges were
reported per pathology. Ordinal measures were analyzed with weighted kappa with lin-
ear weights [17]. As an advantage over percent agreement, Cohen’s kappa accounts for
agreement by chance. Kappa values are commonly interpreted according to Landis and
Koch [18] as follows: 0.00–0.20 slight agreement; 0.21–0.40 fair agreement; 0.41–0.60 moder-
ate agreement; 0.61–0.80 substantial agreement; and 0.81–1.00 almost perfect agreement.
All analyses were performed using the Python version 3.11.8. Statistical significance was
set to p < 0.05.

3. Results
3.1. LLM Performance

Using the adjudicated human report interpretation as the standard of reference, the
VERSA-spine pipeline showed excellent performance. The results of individual diagnostic
performance per pathology class are given in Table 2. The mean F1 score across all pathology
classes was 0.960, with the best performance seen in pathologies assessed only at the level
of the whole patient—sacroiliac joint pathology and scoliosis, both with F1 scores of 0.987.
Notably, the mean FPR was slightly higher than the FNR at 5.1% vs. 3.0%. Taking a closer
look at the individual pathologies, disc pathologies had the highest false-positive rates at
16.8%, while endplate pathologies had the highest false-negative rates at 13.6%.

Table 2. VERSA-spine performance. CI = confidence interval. FPR = false-positive rate. FNR = false-
negative rate. LL = lower limit. UL = upper limit. Acc = accuracy. FJ-OA = facet joint osteoarthritis.
LRS = lateral recess stenosis. SCS = spinal canal stenosis. SIJ path = sacroiliac joint pathology.

Pathology F1
F1: 95% CI

FPR
FPR: 95% CI

FNR
FNR: 95% CI

Acc.
Acc: 95% CI

LL UL LL UL LL UL LL UL

Endplate 0.949 0.939 0.958 0.039 0.033 0.047 0.136 0.089 0.172 0.948 0.933 0.959

Disc 0.938 0.930 0.948 0.168 0.111 0.243 0.015 0.009 0.023 0.951 0.937 0.962

FJ-OA 0.957 0.938 0.974 0.006 0.006 0.006 0.035 0.035 0.035 0.981 0.971 0.987

LRS 0.970 0.957 0.981 0.004 0.004 0.004 0.000 0.000 0.000 0.929 0.917 0.939

SCS 0.921 0.898 0.950 0.109 0.064 0.155 0.018 0.002 0.042 0.923 0.906 0.937

FS 0.970 0.966 0.974 0.053 0.038 0.068 0.008 0.003 0.013 0.974 0.967 0.980

SIJ path. 0.987 0.987 0.987 0.018 0.018 0.018 0.000 0.000 0.000 0.991 0.969 0.998

Scoliosis 0.987 0.987 0.987 0.007 0.007 0.007 0.025 0.025 0.025 0.991 0.969 0.998

Mean 0.960 0.051 0.030 0.961

The average token cost of VERSA-spine, which extracts a total of 42 individual data
points from each report, was 1967.4, which translates into an approximate cost of $0.06 per
report using the 8-k model at the time of manuscript preparation (September 2024).

3.2. LLM Embedding Representation of Semantic Information

The embeddings generated effectively captured semantic relationships between patho-
logical terms, as evident from the formation of distinct clusters after UMAP dimensionality
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reduction (number of neighbors = 10, min. distance = 0.01, negative sample rate = 6, local
connectivity = 3) and agglomerative clustering of the cosine similarity between terms.
Pathological findings such as “spinal canal stenosis” formed a cluster distinct from re-
lated terms like “foraminal stenosis”, demonstrating the model’s ability to differentiate
between clinically distinct yet related terms. Unsupervised UMAPs formed well-defined
clusters, with a silhouette score of 0.64 shown in Figure 2. Clusters for joint pathologies
were distinct yet appropriately related, reflecting the model’s nuanced understanding of
clinical terminology. These results validate the embeddings’ contextual integrity despite
GPT-4.0’s development for general purpose usage, underscoring their utility for accurate
information retrieval from unstructured radiology reports. A further evaluation of the
embedding quality in Figure 3 shows a heatmap and dendrogram of the cosine similarity
between pathology terms (detailed axes specifying pathology terminology and dendrogram
clustering are included in Supplementary Figure S2). Distinct clusters emerged for stenosis
types, supporting the model’s differentiation capabilities.
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Figure 2. Unsupervised UMAPs of embeddings of pathology terms. SCS = spinal canal stenosis.
LRS = lateral recess stenosis. FS = foraminal stenosis. SIJ = sacroiliac joint. Curv = pathology of the
curvature of the spine. Olisth = olisthesis. Frac = fracture. The contextual specificity of pathology
term embeddings are observed: Joint pathology (“facet”—red and “sacroiliac”—pink) and stenosis
pathology (“spinal canal”—green and “lateral recess”—brown) form closely related clusters that
are distinct and separate from other clusters. Three terms indicated by arrows (“schmorl’s node”,
“schmorls node”, and “annual fissure”) were misclassified suggesting, that they were challenging
terms for the model.
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Figure 3. Heatmap of cosine similarity between embeddings of pathology terms. Cosine similarities
(red–blue) between each pair of pathology term embeddings are shown in the heatmap, with values
of 1 indicating perfect similarity. Unsupervised agglomerative clustering of cosine similarities
allowed for a data-driven approach to understand model comprehension of term similarity. The
color bar along the y-axis shows expert assigned pathology categories in comparison with data-
derived categories. Distinct color bands (yellow–purple), such as for each type of stenosis, suggest
that the model can reconcile semantic variability when addressing the challenge of diverse medical
terminology, thereby lending insight for prompt development.

3.3. Agreement of Report-Derived Data with Comprehensive Image Scoring

The agreement of VERSA-spine with comprehensive expert scoring, as well as of FPR
and FNR with comprehensive scores as a standard of reference, are given in Table 3.
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Table 3. Agreement with comprehensive scoring. CI = confidence interval. FPR = false-positive rate.
FNR = false-negative rate. * = ordinal variables that were binarized to present/absent to calculate
FPR and FNR, and for which the reported kappa is weighted (linear).

Pathology Kappa
F1: 95% CI

FPR
FPR: 95% CI

FNR
FNR: 95% CI

Lower Upper Lower Upper Lower Upper

Endplate 0.454 0.406 0.504 0.043 0.026 0.065 0.557 0.485 0.620

Disc 0.495 0.410 0.587 0.427 0.289 0.557 0.082 0.064 0.109

Facet arthropathy 0.341 0.248 0.439 0.135 0.135 0.135 0.441 0.441 0.441

Lateral recess stenosis 0.286 0.246 0.329 0.014 0.014 0.014 0.636 0.636 0.636

Spinal canal stenosis * 0.652 0.483 0.774 0.129 0.056 0.213 0.267 0.157 0.405

Foraminal stenosis * 0.653 0.616 0.693 0.241 0.155 0.328 0.197 0.144 0.258

SIJ pathology 0.234 0.234 0.234 0.215 0.215 0.215 0.556 0.556 0.556

Scoliosis 0.278 0.278 0.278 0.284 0.284 0.284 0.192 0.192 0.192

Mean 0.424 0.186 0.366

The mean kappa scores indicate a moderate agreement of 0.424, but values differed
substantially between pathologies. The lowest agreement with comprehensive scoring was
found for sacroiliac joint pathology (kappa 0.234) and the highest for foraminal stenosis
(0.653). Generally, underreporting was a greater source of disagreement than overreporting,
shown by a mean FPR of 18.6% vs. a mean FNR of 36.6%. Furthermore, the source of
disagreement differed between pathologies; while disc pathology tended to be overreported
in the clinical reports, with an FPR of 42.7%, lateral recess stenosis was underreported, with
an FNR of 63.6%. A specific example of disagreement is given in Figure 4.
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Figure 4. Example of disagreement between comprehensive scores and reports. The clinical report
(top left) indicates no significant stenosis (section highlighted in yellow), thus the LLM (= GPT) finds
no stenosis for this level. The comprehensive score (REACH) detects moderate stenosis. Manual
quantification shows 40% narrowing when compared with mid-vertebral canal width at L3 (orange
line and orange-framed axial section).

4. Discussion
Our study aimed to develop an information extraction pipeline for clinical lumbar

spine radiology reports and to compare the extracted data with comprehensive expert
semi-quantitative scoring, which is the current research standard for analyzing imaging
pathologies. The proposed pipeline showed excellent performance in information extrac-
tion, but limitations in agreement with comprehensive scoring were noted.

The extraction performance of our pipeline was excellent, with a mean F1 score
across different pathologies of 0.960, which can compete with the values reported in the
literature for related tasks, ranging from 0.688 [19] to 0.980 [20]. The extracted data have
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a high level of anatomical detail (e.g., not just general presence/absence of foraminal
stenosis, but specific grades for each lumbar foramen), and performance was similar for
different classes of pathologies. This higher level of anatomical detail differentiates our
work from that of previous studies that employed older, custom-built natural language
processing systems [21]. Agreement with comprehensive image scoring was moderate,
but not substantially lower than agreement between different radiologists performing
similar tasks [22]. Apart from data mining for retrospective analysis, these technologies
may also be deployed to provide ground truth for automated image analysis studies in a
more resource effective manner.

One of the main challenges in extracting information from routine clinical data for
scientific use is the fundamentally different context in which radiologists annotate the
images. A comprehensive and structured scoring system aims to capture both normal and
pathological findings, regardless of clinical symptoms, to which the reader is often blind.
While this measure is taken to ensure objectivity, it may also introduce challenges in the
correct interpretation of equivocal findings [23]. A clinical radiology report, on the other
hand, aims to identify a pathology that may explain present symptoms. Despite a trend
towards structured reporting in radiology [24], the fact remains that the satisfaction of
search errors [25], neglect of minor pathology, heterogeneous levels of reader experience,
time pressure, and exhaustion [26] inherently impact the quality and quantity of data in
clinical radiology reports. Reporting practices may vary considerably between institutions,
yet taking note of this limitation in the setup of larger database query studies with LLMs
can improve the interpretability of the extracted data, e.g., by performing benchmarking
exercises on smaller samples.

Historically, logic-based attempts at extracting information from free text required ad-
vanced programming experience and exhibited variable levels of performance [27]. Current
advancements in LLMs may help to perform tasks with prompts that only require language
understanding and logic, which makes this technology accessible to a much larger group
of researchers in healthcare [28]. Furthermore, such prompts can be shared easily between
researchers. Still, prompt engineering often requires an iterative approach that incorporates
considerations of medical domain-specific nuances such as risk-adverse documentation
to elicit accurate responses. As an example from our investigation, ambiguous wordings
like “multilevel disc bulging”, were handled as “affecting all levels”; this strategy may
overestimate the actual changes, and in part explain the relatively high number of false
positives for this specific pathology.

This study highlights the utility of LLMs in generating high-quality embeddings
for extracting structured information from unstructured radiology reports. Pathology
terminology was grouped into distinct clusters observed in UMAPs, demonstrating the
model’s ability to capture clinically meaningful relationships between terms. These findings
were further validated through clear association in the cosine similarities between similar
terms, which quantified the model’s comprehension of medical terminology for this domain-
specific extraction task. By effectively distinguishing between related yet distinct terms,
such as types of stenosis, these embeddings align closely with clinical reasoning and can
reveal discrepancies between model and expert comprehension, a critical consideration for
downstream applications of medical text analysis. This supports the optimized prompt
design, which only mentioned the primary pathology and excluded synonyms stemming
from variations in language, as an effective strategy to reduce token usage and its associated
costs without compromising performance.

Our findings underscore the potential of LLM-derived embeddings to enhance prompt
design and improve information retrieval for medical texts by providing insight into model
comprehension. Transforming unstructured text into structured, comparable representa-
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tions enables the quantification of the text’s semantic proximity in high-dimensional space
and the validation of the embedding’s quality to reflect intuitive, clinically accurate rela-
tionships. Future efforts in prompt optimization can leverage embedding space analyses
to identify challenging terminology or reports, refine prompts, and characterize possible
model limitations.

Our study had certain limitations that affect the generalizability of our findings.
Firstly, our analysis included reports from a single institution—this allowed for a highly
specific and therefore accurate prompt development, but achieving similar accuracy may
be more challenging when analyzing reports from different institutions. Furthermore, the
selection of pathologies to be extracted from clinical reports is somewhat subjective, and
other authors may choose different pathologies to include or exclude. Another limitation
regarding the widespread deployment of LLMs to medical record data revolves around
concerns about data confidentiality. In our study, we used a PHI-compliant deployment
of OpenAI’s GPT-4. Recently, many non-proprietary LLMs with different model weights
and underlying training data have become available, with somewhat differing accuracies
in radiology applications [29]. Some of these models can be set up to run locally, further
limiting the possibility of the leakage of confidential information [30]. Another limitation
of commercial LLMs may be the cost associated with their use. In our investigation, we
used a highly detailed extraction strategy with associated costs of $0.06 per processed
report. While these prices are small, and certainly much smaller than the cost of having
trained specialists performing similar tasks, they may still limit the deployment of these
technologies outside larger research centers.

5. Conclusions
In conclusion, LLMs can be leveraged to reliably extract highly detailed information

on lumbar spine imaging pathologies from radiology reports, enabling research studies that
encompass large-scale clinical databases, opening up opportunities for advancements in
the understanding of the complex interplay between different imaging pathologies in LBP.
The moderate agreement with comprehensive scoring in the reported ranges of agreement
between different radiologists in such frameworks suggests a role for less subjective, more
quantitative, and machine-based methods of extracting pathological features from imaging
in the context of LBP research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics15070930/s1. Figure S1. Prompt assembly and pipeline
schematic. Preprocessing: Crossed out text is deleted (red). A simple search logic determines whether
challenging wordings, identified in initial prompt development are present (purple) – in this example,
the interpretation guidance that was used in the later prompt is framed in red. Main instruction:
three different prompts are generated for each report, one for level-wise, one for level- and side-wise
and one for patient-wise (green) pathologies (orange) with formatting instruction (dark blue) and
few-shot examples (light blue). These are fed sequentially to VERSA, and their respective outputs
are then parsed into a data frame. Figure S2. Heatmap of Cosine Similarity between Embeddings of
Pathology Terms. Scs = spinal canal stenosis. Lrs = lateral recess stenosis. Fs = foraminal stenosis. Sij
= sacroiliac joint. Curv = pathology of the curvature of the spine. Olisth = olisthesis. Frac = fracture.
Cosine similarities (red-blue) between each pair of each pathology term embeddings are shown in
the heatmap with values of 1 indicating perfect similarity. Unsupervised agglomerative clustering of
cosine similarities allowed for a data driven approach to understand model comprehension of term
similarity. The color bar along the y-axis shows expert assigned pathology categories in comparison
with data-derived categories. Distinct color bands (yellow-purple), such as for each type of stenosis,
suggest the model can reconcile semantic variability when addressing the challenge of diverse
medical terminology, thereby lending insight for prompt development.

https://www.mdpi.com/article/10.3390/diagnostics15070930/s1
https://www.mdpi.com/article/10.3390/diagnostics15070930/s1
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