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Role of external torque in the formation of ion thermal internal transport
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South Korea
2Center for Astrophysics and Space Sciences and Department of Physics, University of California San Diego,
La Jolla, California 92093-0429, USA

(Received 4 October 2011; accepted 21 March 2012; published online 6 April 2012)

We present an analytic study of the impact of external torque on the formation of ion internal

transport barriers (ITBs). A simple analytic relation representing the effect of low external torque

on transport bifurcations is derived based on a two field transport model of pressure and toroidal

momentum density. It is found that the application of an external torque can either facilitate or

hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of

intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to

power input is shown to be a key macroscopic control parameter governing the characteristics of

bifurcation. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701560]

Realization of advanced tokamak operation in ITER

and future reactors requires operating a plasma in an

enhanced confinement regime, likely characterized by the

existence of core transport barriers.1–3 Necessarily this is re-

kindling interest in internal transport barrier (ITB) dynamics

and/or the improvement of ion thermal confinement at zero

or low external torque, because of the limited capability of

driving the necessary torque in a reactor by neutral beam

injection (NBI). Most of the ion ITBs in current experiments

have been observed when sufficiently large external momen-

tum is delivered by NBI.4,5 We note, however, that the for-

mation of an ion ITB without external momentum input has

been recently observed at Alcator C-Mod using off-axis ion

cyclotron resonance heating (ICRH).6 In such a low torque,

high heat flux-driven plasma, the intrinsic rotation, which is

likely due to off-diagonal contributions to the turbulence-

driven parallel Reynolds stress,7,8 will be of primary impor-

tance in and strongly coupled to barrier dynamics. The role

of intrinsic rotation in zero torque ITB dynamics has been

studied in a recent article with the help of global gyrofluid

simulations.9

If finite external torque is applied to a plasma, it will

interact with the self-generated intrinsic torque. A remark-

able example of this external-intrinsic torque interaction is

the observation of cancellation of co-current intrinsic rota-

tion by the application of counter-current external torque in

H-mode plasmas.10 We remark here that the cancellation of

intrinsic rotation in ITB plasmas was actually alluded in

early JT-60U experiments,11 even though the authors did not

stress that point. Then, the plasma rotation observed in actual

experiments will be the outgrowth of this external-intrinsic

torque interaction. In this context, it is necessary to elucidate

the physics of this external-intrinsic torque interaction to

improve our understanding of ITB formation when external

momentum is injected into a plasma. A question then

naturally arises of how barrier dynamics is affected by

external torque (i.e., how a plasma responds to the external

torque). This question is closely related to figuring out the

role of external momentum input in the improvement of ion

thermal confinement (i.e., the de-stiffening of the ion

temperature profile).

The main focus of this paper is to study the role of low

but finite external torque in heat flux-driven ion ITB forma-

tion. It necessarily requires a model that is capable of incor-

porating the physics of intrinsic rotation, in addition to the

self-consistent inclusion of external heat and momentum

sources in barrier dynamics. In particular, we will be inter-

ested in identifying a key control parameter which influen-

ces the barrier formation when finite external torque is

applied. In this regard, recent JET experiments highlight the

combined role of large rotation and low magnetic shear in

de-stiffening the ion temperature profile, hence achieving

ITBs or an enhanced confinement mode with a flat q-pro-

file.12 The familiar story of E� B shear decorrelation of

turbulence mostly by the plasma rotation has been applied

to explain confinement enhancement in ion thermal channel,

without invoking another important player in barrier dy-

namics—the intrinsic rotation. As mentioned in the previous

paragraph, the interaction between external and intrinsic

torque should be included in the analysis of experimental

data leading to the ion temperature profile de-stiffening by

plasma rotation.

To address this problem analytically, we start from a

two-field transport model consisting of the conservation of

pressure and the mean toroidal flow
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where P, n, v/, S(r), and U/ðrÞ denote the mean pressure,

density, toroidal flow velocity, external power, and toroidal

momentum density input, respectively. The fluxes in Eqs. (1)

and (2) are given by

HðrÞ ¼ � v0 þ
v1

1þ ac2
E

� �
@P

@r
; (3)

Pr/ðrÞ ¼ Pdiff þPres ¼ � �0 þ
�1

1þ ac2
E

� �
@v/

@r
þPres;

(4)

where v0 (�0) and v1 (�1) represent the neoclassical and tur-

bulent ion thermal diffusivity (viscosity), respectively, cE is

the E� B shearing rate, and a is a coupling parameter char-

acterizing the strength of E� B suppression of turbulence.

In writing Eq. (4), we decomposed Pr/ into the diffusive

(Pdiff ) and the residual stress (Pres) parts, which is the off-

diagonal element of Pr/.7 In this paper, we assume that Pres

is given by13,14

Pres ¼ �
�1f

1þ ac2
E

@vE

@r
; (5)

where f is a dimensionless parameter involving the shift of

the intensity fluctuation profile due to E� B shear,

ðTi=TeÞ1=2
, and the ratio of density to magnetic shear scaling

length.14 We note that the sign of f can change depending on

the type of turbulence modes (i.e., ion temperature gradient

(ITG) or electron drift modes). Equation (5), albeit simple,

contains the essential physics of intrinsic rotation generated

by turbulence (i.e., the intrinsic torque) due to the E� B
shear-driven symmetry breaking.14 The other off-diagonal ele-

ment of Pr/, the toroidal momentum pinch term that is pro-

portional to the toroidal velocity itself,15,16 is neglected for

simplicity. Recent global gyrofluid simulations showed that

this compressibility effect is indeed small in ITB dynamics.9

Equations (1) and (2) are then coupled through Pres and

cE. In this paper, we assume that dominant contributions to

cE come from the diamagnetic term and the mean toroidal

flow gradient

cE ¼ �
1

eBn2

@n

@r

@P

@r
þ �

q

@v/

@r
� fP1 �

�

q
V1; (6)

where � and q are the inverse aspect ratio and safety factor,

respectively, P1 ¼ �@P=@r, V1 ¼ �@v/=@r, and f ¼
ð@n=@rÞ=eBn2 ¼ ðeBnLnÞ�1

. Contributions to cE from the

poloidal flow and the pressure curvature are neglected for

the sake of analytic progress. Neglecting these terms may

make the application of the present model dubious to edge

transport barrier (ETB) dynamics (i.e., L-H forward and

back transition) where the contributions from these terms are

crucial. Further, this model of cE cannot predict the barrier

width, even in the core region, due to the neglect of the pres-

sure curvature term. This limitation is mitigated if we focus

on local ITB dynamics where the parallel velocity shear

term is likely to be prominent in barrier dynamics, as shown

in recent simulations9 and experiments at Alcator C-mod.6

Thus, an important advantage of this simple model is that it

captures the physics of intrinsic rotation and its influence in

ITB formation, via @v/=@r term in cE, at a given radius.

We assume a quasi-static process such as slow power

ramps. Then, substituting Eqs. (3)–(6) into Eqs. (1) and (2)

and integrating them from 0 to r yields

v0 þ
v1

1þ ac2
E

� �
P1 ¼ QðrÞ; (7)

�0 þ
�1 þ �2

1þ ac2
E

� �
V1 �

G

1þ ac2
E

P1 ¼ FðrÞ; (8)

where �2 ¼ ð�=qÞf�1, G ¼ f f�1, and

QðrÞ ¼
ðr

0

r0Sðr0Þdr0; FðrÞ ¼
ðr

0

r0U/ðr0Þdr0;

is the radially integrated power and toroidal momentum

sources, respectively. It is easy to eliminate the pressure gra-

dient term in Eq. (8)

ðv1�0V1 þ Gv0P1Þ þ
v1ð�1 þ �2Þ

1þ ac2
E

V1 ¼ v1FðrÞ þ GQðrÞ:

(9)

Using Eqs. (7) and (9), one can express V1 as a function P1,

V1 ¼ P1

Gv0P1 � ðv1FðrÞ þ GQðrÞÞ
v0ð�1 þ �2ÞP1 � v1�0P1 � ð�1 þ �2ÞQðrÞ

: (10)

Substitution of Eq. (10) into Eq. (7) leads to the relation

P1 þ
kP1

1þ af 2P2
1½1� JðQ;P1;FÞ�

¼ Q̂ðrÞ; (11)

where k ¼ v1=v0; Q̂ðrÞ ¼ QðrÞ=v0, and

JðQ;P1;FÞ ¼ k2

ðQ̂ � P1Þ þ ðk=GÞF
ðk1 þ k2ÞQ̂ � ðk1 þ k2 � kÞP1

(12)

with k1;2 ¼ �1;2=�0. Equation (11) is a key result of this pa-

per. Basically, it describes the well-known S-curve-like

transport bifurcation due to cE (Refs. 17–19) in the presence

of intrinsic rotation and external torque.

A drawback of Eq. (11) that it is analytically intractable.

To make progress analytically, we further assume that

k1 þ k2 � k. In tokamaks, this is a good approximation due

to the smallness of �0 in comparison to v0 while �1 � v1 in

ITG turbulence.20 The validity of this assumption should be

checked in the case of k2 < 0 because k2 can have either

positive or negative sign depending on turbulence modes.

Since jk2j ¼ ð�=qÞjfj�1; k1 þ k2 � k is still valid (to order

of �=q) even when k2 < 0 and jfj � j1j.
Given this assumption, Eq. (12) becomes

JðQ;P1;FÞ ¼
k2

k1 þ k2

1þ ðk=GÞF
Q̂ � P1

� �
: (13)
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We first consider the case of zero external momentum input

(F¼ 0), i.e., a purely heat flux driven bifurcation. In this

case, the rVjj contribution to cE is provided exclusively by

intrinsic rotation, which is strongly coupled to ITB dynam-

ics.9 Then, Eq. (11) is reduced to

FðgÞ ¼ g 1þ k
1þ l2g2

� �
¼ Q̂

0ðrÞ; (14)

where g2 ¼ af 2P2
1; l

2 ¼ ½k1=ðk1 þ k2Þ�2 ¼ ½1þ ð�=qÞf��2

and Q̂
0ðrÞ ¼ Q̂a1=2jf j. Equation (14) describes transport

bifurcation in the presence of intrinsic rotation; for a given

value of Q̂
0ðrÞ, the left hand side of Eq. (14) has local maxi-

mum and minimum when k � 8.

The effect of intrinsic rotation in transport bifurcation is

contained in l2 via k2. Without intrinsic rotation, k2 ¼ 0 and

Eq. (14) represents the conventional bifurcation curve driven

by E� B shear suppression of turbulence.17 If k2 6¼ 0, how-

ever, the threshold heat flux, Q̂
0

th, at which the bifurcation

occurs, increases or decreases compared to the no-intrinsic

rotation case, depending on the sign of k2. This is illustrated

in Fig. 1 where F(g) is plotted when l ¼ 1:0 (black solid

line), 1.2 (blue dotted line), and 0.8 (red dotted line). As can

be seen in Fig. 1, negative k2 (i.e., l > 1) reduces Q̂
0
, while

positive k2 increases it. Since the sign of k2 depends on tur-

bulence modes (e.g., ITG or TEM), it suggests that the char-

acteristics of pre-transition turbulence may facilitate or

hamper heat flux driven transport bifurcation, for a given

power input, via intrinsic rotation. This observation leads to

an interesting prediction that the ITB power threshold for an

ECH heated plasma (i.e., TEM dominant) could be different

from that of a NBI heated plasma (i.e., ITG dominant) with

balanced beam injection.

Now, we consider the effect of finite external torque on

bifurcation. Substitution of Eq. (13) into Eq. (11) and rear-

rangement of the equation gives rise to

C2P2
1½P1 � Q̂ð1� dÞ�2 þ ðP1 � QÞðP1 þ kP1 � QÞ ¼ 0;

(15)

where C2 ¼ af 2l2 and d ¼ ð�=qÞð1=f Þðk=k1ÞðF̂=Q̂Þ � ch
with F̂ ¼ F=�0; c ¼ ð�=qÞð1=f Þðk=k1Þ and h ¼ F̂=Q̂. Typi-

cally, c 	 0 because Ln 	 0, while h can have either sign

depending on the direction of external momentum input. We

assume that the external momentum input is relatively small

in the sense that

d ¼ð�=qÞð1=f Þðk=k1ÞðF̂=Q̂Þ ’ ð�=qÞðnT=SðrÞÞ
� ðV/ðrÞ=V
iÞ � 1; (16)

where V
i is the ion diamagnetic drift velocity. The inequal-

ity of Eq. (16) is easily satisfied under tokamak experiments

with tangential NBI. Then, we can retain only the first order

term in d, and Eq. (15) becomes

C2P3
1 þ ð1þ kÞP1 ¼ Q̂ � C2Q̂ð2d� 1ÞP2

1;

from which we obtain

FðgÞ ¼ g
l2g2 þ ð1þ kÞ

1þ l2g2ð1� 2chÞ

� �
¼ Q̂

0
: (17)

Equation (17) is the main result in this paper. It describes the

S-curve-like transport bifurcation in the presence of both

intrinsic rotation and relatively low external torque in the

sense given in Eq. (16). The effect of external torque is con-

tained in the parameter h. Without external torque, h ¼ 0

and Eq. (17) is reduced to Eq. (14).

There are two messages in Eq. (17). First, the external

momentum source does not affect transport bifurcation inde-

pendently, but does as a combination with the heat source,

namely, through the ratio of strength between momentum

and heat sources. Second, the external momentum source

can play a role of control parameter (through h) governing

transport bifurcation by lowering or raising Q̂
0
th, depending

on its sign. The second point is illustrated in Fig. 2 where

F(g) is plotted for h ¼ 0 (black solid line), 2.0 (blue dotted

line), and �2.0 (red dotted line). In producing Fig. 2, we

have used k ¼ 20; c ¼ �0:1, and l2 ¼ 1:2. Comparing with

h ¼ 0 case, positive h leads to the transport bifurcation with

lower heat flux, while negative h requires higher heat flux

for bifurcation. In addition to the change of Q̂
0
th, it is also

noted that the end-product of bifurcation, namely ITB pres-

sure gradient, becomes higher when h is positive, while it is

considerably reduced when h is negative. Exactly the same

tendency is observed regardless of the l2 values being used

(i.e., independent of turbulence modes), suggesting it is a

general feature of the influence of h in transport bifurcation.

This suggests the possibility of exploiting h as a control
knob for transport barrier formation.

The prediction that h is a control parameter in ITB for-

mation has an interesting experimental implication: the

amount and direction of external torque may determine the

ITB pressure gradient. Our analytic results suggest that an

ITB with a moderate pressure gradient is accessible when

FIG. 1. Plot of FðgÞ ¼ gf½l2g2 þ ð1þ kÞ�=½1þ l2g2ð1� 2chÞ�g for three

value of l (0.8: red dotted line, 1.0: solid line, and 1.2: blue dotted line)

when there is no external torque (i.e., h ¼ 0). Direction of intrinsic rotation

is negative when l > 1 while it is positive when l < 1. k ¼ 20 and c ¼ 0:1
have been used. More precise definitions of parameters involved in F(g) are

given in the main text. The threshold heat flux (Q̂th) at which bifurcation

occurs increases or decreases depending on the sign of intrinsic rotation,

indicating the relevance of bifurcation to pre-transition turbulence modes.
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appropriate negative external torque is applied. This can

shed light on the realization of steady state ITBs with low

external torque, which is a prime candidate scenario for

advanced tokamak operation of ITER.

In conclusion, this paper has focused on the role of

external momentum input in the formation of ion thermal

ITBs and interaction between external and intrinsic torque.

A simple two-field transport model was used to derive a sim-

ple relation accounting for the interaction of intrinsic rotation

with low external torque in transport bifurcations. The main

results of this paper are summarized as follows:

1. Intrinsic rotation is an important player in barrier dynam-

ics. It is strongly coupled to ITB dynamics by providing

the rVjj contribution to cE. When finite external torque

is applied, a strong external-intrinsic torque interaction

occurs, by which the ITB formation is hampered or

facilitated.

2. If there is no externally applied torque, the characteristics

of pre-transition turbulence may facilitate or hamper heat

flux driven transport bifurcation via intrinsic rotation.

3. The ratio between radially integrated external toroidal mo-

mentum density (which can be easily converted into a to-

roidal torque density) to power input h ¼
Ð r

0
U/rdr=

Ð r
0

Pinrdr, (where U/ is the external momentum density and

Pin is the power input) plays a role of a control parameter

in the barrier bifurcation. Low positive (i.e., the same

direction with intrinsic torque) torque facilitates the barrier

formation while negative (i.e., the opposite direction to

intrinsic torque) one impedes it.

Ion confinement enhancement or ion temperature profile

de-stiffening by externally injected momentum is an interest-

ing current issue. Recent experimental works at JET empha-

sizes the combined role of flat q-profile and plasma rotation

on the de-stiffening of ion temperature profile.12 On this

point, our work provides a new perspective on the interpreta-

tion of these experimental results. First, it is the radially inte-

grated torque that is important in the barrier formation, not

the rotation, as shown in Eq. (17). Second, it is necessary to

consider intrinsic torque as well as the external one (i.e.,

external-internal torque interaction). The actual plasma rota-

tion observed in experiments will be the result of external-

intrinsic torque interaction.
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16T. S. Hahm, P. H. Diamond, Ö. D. Gürcan, and G. Rewoldt, Phys. Plasmas

15, 055902 (2008).
17F. L. Hinton, Phys. Fluids B 3, 696 (1991).
18F. L. Hinton and G. M. Staebler, Phys. Fluids B 5, 1281 (1993).
19M. A. Malkov and P. H. Diamond, Phys. Plasmas 15, 122301 (2008).
20N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 (1988).

FIG. 2. Plot of FðgÞ ¼ gf½l2g2 þ ð1þ kÞ�=½1þ l2g2ð1� 2chÞ�g for three

values of h (�2.0: red dotted line, 0: solid, and 2.0: blue dotted) when

l ¼ 1:2. Positive and negative h means the same with and opposite to intrin-

sic torque, respectively. k ¼ 20 and c ¼ 0:1 have been used. More precise

definitions of parameters involved in F(g) are given in the main text. Appli-

cation of low external torque in the same direction as intrinsic torque facili-

tates bifurcation (low Q̂th with higher gradient, h ¼ 2:0), whilst opposite

external torque hampers it (higher Q̂th with lower gradient).

042302-4 Jhang, Kim, and Diamond Phys. Plasmas 19, 042302 (2012)

http://dx.doi.org/10.1088/0741-3335/48/5A/S01
http://dx.doi.org/10.1088/0741-3335/45/1/201
http://dx.doi.org/10.1063/1.2245579
http://dx.doi.org/10.1088/0029-5515/49/7/075007
http://dx.doi.org/10.1088/0029-5515/50/6/064008
http://dx.doi.org/10.1088/0029-5515/49/4/045002
http://dx.doi.org/10.1063/1.2826436
http://dx.doi.org/10.1088/0029-5515/51/7/073021
http://dx.doi.org/10.1088/0741-3335/49/12B/S29
http://dx.doi.org/10.1088/0029-5515/41/7/307
http://dx.doi.org/10.1103/PhysRevLett.107.135004
http://dx.doi.org/10.1063/1.3339909
http://dx.doi.org/10.1063/1.3339909
http://dx.doi.org/10.1063/1.2717891
http://dx.doi.org/10.1103/PhysRevLett.98.265003
http://dx.doi.org/10.1063/1.2839293
http://dx.doi.org/10.1063/1.859866
http://dx.doi.org/10.1063/1.860919
http://dx.doi.org/10.1063/1.3028305
http://dx.doi.org/10.1063/1.866747

	d1
	d2
	n1
	d3
	d4
	d5
	d6
	d7
	d8
	l
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	l
	d17
	f1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	f2



