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Synthesis of Samarium-Cobalt
Sub-micron Fibers and Their
Excellent Hard Magnetic Properties

Jimin Lee 1, Tae-Yeon Hwang 1, Min Kyu Kang 1, Hong-Baek Cho 1, Jongryoul Kim 1,

Nosang V. Myung 2* and Yong-Ho Choa 1*

1Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, South Korea, 2Department of

Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States

High-throughput synthesis of Samarium-Cobalt sub-micron fibers with controlled

composition and dimension was demonstrated by combining electrospinning and

reduction-diffusion processes. The composition of fibers was readily varied (8 < Sm < 20

at.%) by adjusting precursor composition whereas the diameter of fibers was precisely

controlled by varying electrospinning parameters (e.g., applied voltage, solution feed

rate, temperature, and humidity) to reach single-domain size. X-ray diffraction patterns

confirmed that single phase Sm2Co17 fibers were synthesized when the metal precursor

ratio (Sm3+/(Sm3+
+Co2+)) was precisely controlled at 10.6%, whereas mixed phases

(i.e., Co-Sm2Co17 or Sm2Co17-Sm2Co7) were observed when the ratio is deviated

from the stoichiometric. Magnetic saturation (Ms) of the synthesized fibers monotonically

decreased with an increased in Sm content. In contrast, coercivity (Hc i) monotonically

increased with an increase in Sm content.

Keywords: samarium cobalt, electrospinning, fiber, permanent magnet, magnetic properties

INTRODUCTION

Rare-Earth/Transition-Metal (RE-TM) permanent magnets such as Nd-Fe-B, Sm-Co, and
Sm-Fe-N are essential part in a wide range of applications including direct current (DC) rotating
electric motors in automobiles, data storage, magnetoelectronic, electromechanical, and electronic
devices (Campbell, 1996; Liu et al., 2008). Among these RE-TM permanent magnets, Sm-Co based
alloy magnets are the promising materials for high-temperature applications due to excellent
magnetocrystalline anisotropy constant (approaching 17.0 × 106 J/m3) and the higher Curie
temperatures (Tc of∼1,190K) (Strnat, 1990; Pan, 2014).

Recently, as the devices are becoming miniaturized and high efficiency, more enhanced
magnetic performance of magnetic materials is necessarily required. Some researchers predicted
that enhanced hard magnetic properties (e.g., coercivity) can be achieved when the dimension of
materials reaches the single-domain size (e.g., theoretical single domain size for Sm2Co17 = 0.66
micron and SmCo5 = 1.6 micron) (Jiles, 2003; Hadjipanayis and Prinz, 2013; Hou and Sellmyer,
2017). At this condition, themagnetic spin in each single-domain of particle gives highest resistance
to demagnetization, leading to greater coercivity. The other way to enhance hard magnetic
properties is to create high aspect ratio structures which will increase shape anisotropy (Park et al.,
2000; Lu et al., 2007; Zabel and Farle, 2012; Han et al., 2014). That is to say, the enhanced hard
magnetic properties are predicted from one-dimensional Sm-Co sub-micron fibers.
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Sm-Co nano- and micro- structures have been fabricated by
various methods including ball-milling (Liu and McCormick,
1999; Zheng et al., 2012; Wang et al., 2013), co-precipitation
(Zhang et al., 2011), sol-gel process (Suresh et al., 2012),
and polyol process (Saravanan et al., 2011a). However, these
methods are difficult to control the dimension including diameter
and length due to heterogeneous nucleation and growth.
Electrospinning is a scalable nanomanufacturing process where
the dimension (e.g., diameter from tens of nm to several microns)
and morphology can be readily controlled by adjusting precursor
solution composition and electrospinning parameters (Huang
et al., 2003; Barakat et al., 2008; Shuakat and Lin, 2014).

In this work, we demonstrated to ability to synthesize Sm-Co
fibers with controlled composition and dimension by combining
electrospinning and reduction-diffusion process. Figure 1 shows
a schematic representation of fabrication processes where
electrospinning and several annealing process were subsequently
carried out to synthesize fibers.

MATERIALS AND METHODS

Materials
The raw materials for these experiments were samarium(III)
nitrate hexahydrate [Sm(NO3)3·6H2O, 99.9%; Sigma-Aldrich,
USA], cobalt(II) nitrate hydrous [Co(NO3)2·6H2O, 99.9%
up; Kojundo Chemical, Japan], Polyvinylpyrrolidone (PVP,
Mw≈1,300,000; Sigma-Aldrich, USA), citric acid anhydrous
(99.5% up; DAEJUNG Chemical & Metals Co., Ltd., South
Korea), and calcium hydride (CaH2, 92%; Alfa Aesar, England).
All chemicals were used without further purification.

Preparation of Sm-Co fibers
The ratio of Sm(NO3)3·6H2O to Co(NO3)2·6H2O were varied
from 8, 10.6, 13, 16.7, and 20 at.% of Sm. These salts were
dissolved in a mixed solvent of 3mL of deionized water and
1mL of ethanol followed by acoustic mixing under 60Hz
for 10min. Blends were prepared in a laboratory scale mixer
(PharmaRAMTM I Mixer, Resodyn Corporation, USA) for
homogeneous mixing. An appropriate amount of PVP were
added into the solution to reach the PVP concentration of
4.0 wt.%. The viscosity and the electrical conductivity of all
the prepared solutions were kept within 118∼120 cP and
26.5∼27.5 mS/cm, respectively. Ten milliliters of precursor

FIGURE 1 | Schematic drawing of the process flow.

solution was loaded into a plastic syringe with a 30-gauge
needle. The needle was connected to a high voltage power
supply, faced vertically to the rotating drum collector. The
specific process conditions were: the applied voltage of 20
kV, the distance between the needle tip and the collector
was15 cm, the solution feeding rate was 0.3 mL/h. Temperature
and relative humidity were 30◦C and below 20% of relative
humidity, respectively. The spun fibers were dried overnight
at 80◦C to remove solvent residue. The dried fibers were then
calcined at 900◦C for 2 h in a box furnace under ambient air
to decompose organics including polymer. The calcined fibers
were 1st reduced at 700◦C for 2 h in pure H2. Finally, the
as-reduced fibers were mixed with CaH2 as a reducing agent,
and subsequently 2nd reduced at 700◦C for 2 h under argon
environment. The customized stainless steel (SUS304) crucible
with the close-fitting cover was utilized as the reaction chamber
to minimize the loss of volatile Sm source and to keep the
sufficient retention time for the reaction. (See also description
over the SUS304 crucible in Results and discussion) To remove
residual CaH2 and byproducts after the reduction, the products
were washed several times with the 0.1M of dilute acetic acid
solution, deionized water and ethanol, then dried in an oven at
60◦C.

Characterization
Thermal gravimetric analysis (TGA, SDTQ600, TA Instruments)
was employed to study thermal behavior of the as-spun and
metal oxide fibers. The analysis was carried out with a heating
rate of 10◦C/min up to 1,000◦C, in Air and H2, respectively.
The phase and crystallographic characteristics of the fibers
were identified using an X-ray diffractometer (XRD, D/MAX-
2500/PC, Rigaku) with Cu Kα radiation (1.5406 Å). Field-
emission scanning electron microscopy (FE-SEM, MIRA-3,
Tescan) and transmission electron microscopy (TEM, JEM-
2100F, JEOL) were employed to analyze the morphology
and microstructure. The quantitative elemental contents were
measured by transmission electronmicroscopy energy-dispersive
X-ray spectroscopy (TEM-EDS, JEM-2100F, JEOL) and X-
ray Fluorescence Spectrometer (XRF, ZSX Primus II, Rigaku).
Magnetic properties were measured at room temperature
using a physical property measurement system (PPMS, PPMS-
9T, Quantum Design) with a maximum applied field of 90
kOe.
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RESULTS AND DISCUSSION

Optimization of Calcination Process
Condition
For the optimization of heating temperature, the TGA
thermograms of the spun PVP/nitrates/citric acid composites
and calcined fibers was investigated and shown in Figure 2.
As shown in Figure 2A, there are many stages in TG curve,
named stage (I), stage (II), and stage (III). At stage (I), the
mass loss was attributed to removal of the adsorbed water.

FIGURE 2 | Thermogravimetric analysis (TGA) of the composite fiber; (A) spun

fibers composed of PVP/Sm nitrate/Co nitrate/citric acid, and (B) calcined

fiber which is made up of SmCoO3/Co3O4.

TABLE 1 | Free energy of CaO and Sm2O3.

Oxides ∆G298K (J) ∆G1,000K (J)

1/3 Sm2O3 −5.73 × 105 −5.11 × 105

CaO −6.04 × 105 −5.33 × 105

At stage (II), most of the organic materials including citric
group and PVP were degraded. NO−

3 group finally decomposed
in stage (III). Through decomposition behavior of the spun
fiber, all the organics were expelled and SmCoO3-Co3O4

phases were synthesized (Keely and Maynor, 1963; Barbooti
and Al-Sammerrai, 1986; Loría-Bastarrachea et al., 2010;
Melnikov et al., 2014). Total weight loss was about 72.5% at
below 800◦C. Thus, the calcination temperature was selected
at 800◦C to make sure all the organics decompose. The TGA
curve for the calcined nanofibers (Figure 2B) showed two clear
degradation stages; the first stage was the phase transition from
the initial SmCoO3-Co3O4 phases through an intermediate
mixture of Sm2O3-CoO when heated to 330◦C (Kelly et al.,
2016). The second step was the conversion of CoO to metallic
cobalt when heated above 430◦C (Olusola and Sudip, 2016).

FIGURE 3 | FE-SEM micrographs of samples obtained after; (A)

electrospinning, (B) calcination, (C) 1st reduction and (D) 2nd reduction with

subsequent washing (Insets: high magnification images). The size distribution

of fiber diameters for various samples obtained at each process is presented

in (E). All the samples are prepared by utilizing the precursor solution

containing 10.6 at.% of Sm.
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FIGURE 4 | (A) XRD patterns of the synthesized fibers obtained after each

process; electrospinning, calcination, 1st reduction, and 2nd reduction,

respectively. All the composition of samples is 10.6 at.% of Sm. (B) XRD

patterns of 2nd reduced nanofibers having different Sm atomic contents

ranging from 8 to 20 at.%.

FIGURE 5 | TEM images of synthesized Sm2Co17 nanofibers; (A) low

magnification and (B) HR-TEM micrograph and SAED pattern as indicated by

the red square in (A). (C) Bright-field STEM image of the synthesized

Sm2Co17 fibers and (D) TEM-EDS spectrum of Sm2Co17 fibers with chemical

compositions of the constituents as determined by TEM-EDS.

Temperature above 500◦C is selected as an appropriate reduction
temperature and the total weight loss was about 22.9% up
to 500◦C.

According to previous works, rare-earth element oxides such
as Sm2O3, Gd2O3, and Nd2O3 are difficult to be reduced
to metallic form unless the operating temperature is greater
than 1,000◦C, which is consistent with our observation where
no degradation in TG curve of the as-reduced fiber sample
was observed under H2 atmosphere till 1,000◦C (data not

FIGURE 6 | (A) Magnetic hysteresis loops and (B) the change of saturation

magnetization (Ms), squareness (Mr /Ms), and intrinsic coercivity (Hci ) of

synthesized Sm-Co fiber with different Sm contents (at.%).

TABLE 2 | The values of saturation magnetization (Ms), remanence (Mr ),

squareness (Mr /Ms), and coercivity (Hci ) for the synthesized samples.

Sm content (at.%) Ms(emu/g) Mr (emu/g) Mr/Ms(%) Hci (Oe)

8.0 106.0 52.4 49.5 5,210

10.6 97.8 52.5 53.7 6,066

13.0 77.2 44.4 57.6 7,750

16.7 64.6 36.0 55.7 8,020

20.0 55.5 35.6 64.1 12,676

shown) (Gupta and Krishnamurthy, 2013). It was reported that
rare-earth metals were obtained from their oxide form at low
temperature through reduction-diffusion process by employing
calcium or CaH2 as a reducing agent which is based on the
difference of the free energy between oxide materials (Cech,
1974; Sharma, 1986; Machlin, 2010). Table 1 lists the Gibbs
free energy (1G0) of CaO and Sm2O3 at 298 and 1,000K,
respectively. (Yoon, 2013) The reduction proceeds as described
in Equation (1):

1

3
Sm2O3 + Ca →

2

3
Sm+ CaO (1)

1G0
= G0

CaO − G0
1
3 Sm2O3

(2)

From Equation (2), because 1G0 < 0 in the temperature range
298 to 1,000K, the reaction (Equation 1) occurred spontaneously
and thus Sm2O3 could be fully reduced even at low temperature.
(Burrows et al., 2017) Drawing on this, CaH2, which decomposes
into Ca and H2 under inert condition, was selected as a reductant
in our work and 700◦Cwas selected enabling the low temperature
reduction.

Phase, Morphology, and Magnetic
Properties of Sm-Co Nanofibers
Figure 3 shows the morphologies of the samples obtained after
each process. Citric acid was employed to obtain soft and uniform
morphology of the spun fibers resulting from the formation
of cobalt(II) citrate complex [i.e., 3Co2+ + 2C6H5O

3−
7 →
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Co3 (C6H5O7)2], which has the higher moisture resistance than
cobalt nitrate in the atmosphere (Lee et al., 2016). Owing to this
additive, the uniform and bead-free spun fibers were obtained
with an average diameter of 1µm as shown in Figure 3A. After
calcination, as all of the organic materials were expelled, the
diameter of nanofiber decreased to nearly half (Figure 3B). After
1st and 2nd reduction process, the 500-nm-diameter fibers with
an aspect ratio of >50 were observed in Figures 3C–E. There
is no notable difference in dimension or morphology regardless
of the Sm composition in the precursor solution. It is because
the range of diameters of the fibers strongly depends on the
viscosity and electrical conductivity of the precursor solutions
and these values were kept within the specific range in our study
(Cramariuc et al., 2013).

Figure 4A shows the XRD patterns of the fibers obtained after
each process. The as-spun fibers mainly comprised of nitrates,
citric acid and PVP show the typical amorphous structure.
After calcination at 800◦C, SmCoO3 (JCPDS No.70-4511) and
Co3O4 (JCPDS No.43-1003) phases were generated with high
crystallinity. The SmCoO3-Co3O4 nanofibers were then reduced
to Sm2O3 (JCPDS No.15-0813) and face-centered-cubic cobalt
[(fcc)-Co] (JCPDS No.77-7452) phases when subjected to 1st
reduction under pure H2 condition. After final 2nd reduction
at 700◦C and subsequent washing steps, only hexagonal Sm-Co
phases were obtained without any byproduct patterns such as
CaO. Thermodynamically, Sm only reacts with Co then generates
Sm-Co intermetallic compound due to the low solubility of Sm
and Co in Ca as well (Deng et al., 2010).

The XRD patterns for the synthesized Sm-Co fibers with
different atomic percent of Sm, ranging from 8 to 20 at.%, are
shown in Figure 4B. It exhibits the coexistence of the mixtures
of Sm2Co7 (JCPDS No.58-0293; 22.2 at.% of theoretical Sm) and
Sm2Co17 (JCPDS No.65-7762; 10.6 at.% of Sm), without SmCo5
(;16.7 at.% of Sm) phase. According to the Sm-Co equilibrium
phase diagram, (Khan, 1974) Sm2Co17 and Sm2Co7 phases are
more stable at the reduction temperature of 700◦C than SmCo5
within the range from 0 to 25 at.% of Sm. Because the eutectoid
temperature of SmCo5 is about 805◦C, (Perry, 1976) the sample
annealed at 800◦C shows an existence of SmCo5 phase but
the morphology was not maintained to be one-dimensional
and degraded into agglomerated particles which was not in
accordance with the direction we pursued. (data not shown) The

more intense Sm2Co17 diffraction peaks were observed when the
Sm content decreased while Sm2Co7 peaks almost disappeared.
In the sample with 10.6 at.% of Sm, only Sm2Co17 pattern was
observed implying there is no Sm loss in whole processes. Some
researchers reported that a small amount of Sm loss occurs during
the heating and/or washing process then they used up to 40% of
excess Sm source (Lin et al., 1996; Hou et al., 2007; Lee et al.,
2011; Zhang et al., 2011; Yoon, 2013). It can be considered that
using the customized crucible with close-fitting cover prevents
losing volatile Sm (Spedding, 1960). (Supplementary Figure 1) A
few peaks of metallic cobalt (JCPDS No.77-7452) were detected
in the sample with 8 at.% of Sm. The presence of residual cobalt
is attributed to the insufficient amount of Sm source to form a
Co-rich phase of Sm2Co17.

The microstructures of the synthesized Sm2Co17 fibers were
analyzed by TEM, as shown in Figure 5. The high-resolution
TEM (HR-TEM) image of a part of the Sm2Co17 fibers shows the
inter-planar spacing of about 0.421 nm, corresponding the (100)
lattice projections of the hexagonal structure of Sm2Co17 crystal
(JCPDS No.65-7762). Selected area electron diffraction (SAED)
pattern reveals the sharp diffraction spots, implying the presence
of single- and high-crystalline Sm2Co17 with growth direction in
a-axial (the inset image of Figure 5B).

The impurity profiles including Ca were investigated using
TEM-EDS and XRF analysis (Figures 5C,D and Supplementary
Table 1) The EDS data shows the presence of samarium and
cobalt without any impurities. XRF analysis confirmed the
presence of Sm and Co without trace elements (i.e., < 0.1 wt.%).

Magnetic properties of the synthesized powders of Sm-
Co sub-micron fibers were characterized using PPMS without
compaction and sintering process. Figure 6 shows the magnetic
hysteresis loops of the samples as a function of the Sm content.
The corresponding values of saturation magnetization (Ms),
remanence (Mr), squareness (Mr/Ms), and coercivity (Hci) are
given in Table 2. All the samples demonstrated hard magnetic
behaviors irrespective of their phase composition. As the Sm
content decreases, Hci also decreases from 12,676 to 5,210
Oe. On the contrary, Ms monotonically increases which is
attributed to the increase of the volume fraction of Sm2Co17
(Kumar, 1988). It is well-known that Sm2Co17 phase has lower
magnetocrystalline anisotropy (Ka = 3.5× 106 J/cm3) and higher
saturation magnetization (Ms = 100 emu/g); whereas Sm2Co7

TABLE 3 | Magnetic properties of some earlier reported Sm2Co17 nanostructures.

Structure Size (nm) Synthesis method Magnetic properties References

Ms(emu/g) Mr/Ms Hci (kOe)

Nanoparticle (0-D) Davg.: 6 Co-precipitation ∼50.0 0.80 5.8 Zhang et al., 2011

Davg.: 90 Co-precipitation 74 <0.10 0.24 Saravanan et al., 2011b

Davg.: 100 Polyol process 85.3 <0.20 1.05 Saravanan et al., 2011a

Davg.: 18 Ball-milling – >0.75 4.7 Zheng et al., 2012

Nanowire (1-D) Davg.: 50 L: > 2,000 Electrochemical fabrication – 0.39 0.817 Yang et al., 2014

Davg.: 50 L: 12,000 Electrochemical fabrication – >0.9 <2.5 Cui et al., 2015

Davg.: 500 L: >25,000 Electrospinning 97.8 0.54 6.1 This work
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phase exhibits the higher Ka and the lower Ms, 6.3 × 106 J/cm3

and 0.79 T, respectively (De Campos et al., 1998; Saravanan et al.,
2011b). The increase in the Ms from 10.6 to 8 at.% of Sm is
mainly attributed to the existence of metallic cobalt showing a
soft ferromagnetism. The Ms value of bulk cobalt is reported
about 162.55 emu/g (Nishikawa et al., 1993). For the single phase
of Sm2Co17 fibers, Ms was within 98% of theoretical value for
Sm2Co17 alloy at room temperature (Werner, 1969). It indicates
that Sm2Co17 grains in the fibers were well-crystallized and
there is no or few impurities exist leading to the low magnetic
properties.

Table 3 compares these results with other reported data
(Saravanan et al., 2011a,b; Zhang et al., 2011; Zheng et al.,
2012; Yang et al., 2014; Cui et al., 2015). The higher Ms can
also be explained due to the well-crystallized Sm2Co17 grain
and low impurity contents less than 0.1 wt.% including Ca
as a byproduct, and minimum oxide phase on the surface
of Sm-Co. The magnetic properties of the electrospun sub-
micron fibers were also greater than nanowires prepared
by using electrochemical fabrication. The large Hci is
attributed to the appropriate dimension of fiber, near
single-domain size of Sm2Co17 (Hadjipanayis and Prinz,
2013). When the size decreases from single-domain size,
the magnetic properties drastically drops and finally shows
the superparamagnetic behavior (Tian et al., 2012; Hou and
Sellmyer, 2017).

CONCLUSION

In summary, Sm-Co sub-micron fibers with average diameter
of 500 nm were successfully fabricated via combined process

of electrospinning and reduction-diffusion process. These
combined processes produce high quality Sm-Co fibers with
controlled morphology and composition. Synthesized fibers
showed the excellent hard magnetic properties which were
attributed to the high shape anisotropy from high aspect ratio
morphology and near single-domain size structure by controlled
diameter of fiber. These processes provide cost-effective routes to
fabricate high quality high aspect ratio hard magnetic fibers with
controlled morphology and composition.
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