
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
How to Learn Good Cue Orders: When Social Learning Benefits Simple Heuristics

Permalink
https://escholarship.org/uc/item/7s51w12b

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28)

ISSN
1069-7977

Authors
Garcia-Marques, Rocio
Gigerenzer, Gerd
Takezawa, Masanori

Publication Date
2006
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7s51w12b
https://escholarship.org
http://www.cdlib.org/


How to Learn Good Cue Orders: 
When Social Learning Benefits Simple Heuristics 

 
Rocio Garcia-Retamero (rretamer@mpib-berlin.mpg.de) 

Center for Adaptive Behavior and Cognition, Max Plank Institute for Human Development, Lentzeallee 94,  
14195 Berlin, Germany 

 
Masanori Takezawa (take@mpib-berlin.mpg.de) 

Center for Adaptive Behavior and Cognition, Max Plank Institute for Human Development, Lentzeallee 94,  
14195 Berlin, Germany 

 
Gerd Gigerenzer (gigerenzer@mpib-berlin.mpg.de) 

Center for Adaptive Behavior and Cognition, Max Plank Institute for Human Development, Lentzeallee 94,  
14195 Berlin, Germany 

 
 

Abstract 

Take The Best (TTB) is a simple one-reason decision-
making strategy that searches through cues in the order 
of cue validities. Interestingly, this heuristic performs 
comparably to, or even better than, more complex 
information-demanding strategies such as multiple 
regression. The question of how a cue ordering is 
learned, however, has been only recently addressed by 
Dieckmann and Todd (2004). Surprisingly, these 
authors showed that learning cue orders through 
feedback––by updating cue validities––leads to a slow 
convergence to the ecological cue validities. Various 
other simple learning algorithms do not provide good 
results either. In the present paper, we provide a 
solution to this problem. Specifically, in a series of 
computer simulations, we show that simple social rules 
such as “imitate the successful” help to overcome the 
limitations of individual learning reported by 
Dieckmann and Todd (2004). Thus, the dilemma of 
individual learning can be collectively solved. In line 
with the spirit of bounded rationality, we found that 
several simple social rules performed comparably to, or 
better than computationally demanding social rules. We 
relate our results to previous findings on bounded 
rationality in the social context. 

Fast and Frugal Heuristics 
In our everyday lives, we make decisions frequently. 
However, the information we need for that might not always 
be available, and it might not be possible to consider all 
alternatives as fully as we would wish because of our 
limitations in time and cognitive processing power, and the 
complexity of the environment. How do we make such 
decisions? One recent approach, promoted by the Center for 
Adaptive Behavior and Cognition (ABC; Gigerenzer, Todd, 
& the ABC Research Group, 1999; Todd & Gigerenzer, 
2000) suggests that in these situations, people use fast and 
frugal heuristics, that is, simple but nevertheless fairly 
accurate strategies that use a minimum of information. 

These heuristics enable organisms to make smart choices 
quickly under limitations of time and cognitive processing 
by exploiting the way information is structured in the 
environment (Martignon & Hoffrage, 2002). The ecological 
rationality view of decision making as promoted by 
Gigerenzer et al. (1999; see also Simon, 1990) thus brings 
the two elements—mind and environment—together, 
focusing on how minds with limited capacities are adapted 
to their environments and how the environments in which 
we make decisions shape our strategies, a concept known as 
bounded rationality. 

One fast and frugal heuristic is Take The Best (TTB; 
Gigerenzer & Goldstein, 1996). This heuristic is designed 
for forced-choice paired comparisons. That is, it can be used 
to infer which of two alternatives, described on several 
dichotomous cues, has a higher value on a quantitative 
criterion, such as which of two cities has a higher 
population based on cues such as whether they have a 
university.  

As a step-by-step algorithm, TTB is constructed from 
building blocks of information gathering and processing to 
generate a decision. More specifically, it has a search rule, 
which prescribes the order in which to search for 
information (TTB looks up cues sequentially in the order of 
the cue validities⎯the probability that a cue will lead to the 
correct decision given that it discriminates between the 
alternatives; Martignon & Hoffrage, 2002); a stopping rule, 
describing when the search is to be stopped (TTB stops after 
the first discriminating cue); and a decision rule for how to 
use the available information to make a decision (TTB 
chooses the alternative favored by the first discriminating 
cue and ignores the rest of the cues. TTB is thus called one-
reason decision making).  

The efficiency of TTB consists in its surprising 
performance relative to its extreme simplicity. For instance, 
Gigerenzer and Goldstein (1996) tested the performance of 
TTB with more savvy strategies such as multiple regression 
using the German cities data set, which consists of the 83 
German cities that had more than 100,000 inhabitants at the 
time. These cities were described on nine cues, such as 
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whether a city has a university or whether it is on an 
intercity train line. Gigerenzer and Goldstein (1996) found 
that the performance of TTB came close to or even 
outperformed multiple regression in cross-validation. 1 
Czerlinski, Gigerenzer, and Goldstein (1999) further 
demonstrated the superiority of TTB across a wide range of 
real-world environments.  

The Problem: Individual Learning of Cue 
Orders Is Very Slow 

The accuracy of a strategy depends critically on the order in 
which cues are searched in the environment. Note that in the 
German cities data set, there are 9! (i.e., 362,880) possible 
cue orders. Therefore, finding the best cue order is 
computationally intractable (Martignon & Hoffrage, 2002). 
In this data set, the best cue order achieves an accuracy of 
75.8%. TTB, which searches through cues in the order of 
the cue validities calculated using the 83 cities in the 
German cities data set, achieves an accuracy of 74.2%. 
Surprisingly, only 1.8% (i.e., 7,421) of the cue orders 
achieve a higher performance than TTB. The mean of the 
distribution of the accuracy of all possible cue orderings in 
the German cities data set (i.e., 70%) corresponds to the 
expected performance of the Minimalist, a one-reason 
decision-making heuristic that searches through cues in a 
random order (Gigerenzer & Goldstein, 1996). This 
indicates that TTB achieves an impressive performance.  

How can an individual learn a good cue order if cue 
validities are not available beforehand? One could assume 
that people could use TTB and update a cue order by using 
only the cues they searched. That is, one could assume that 
a cue ordering by validity can be acquired by learning-
while-doing. This question has been only recently addressed 
by Dieckmann and Todd (2004) in a series of computer 
simulations. These authors evaluated the performance of a 
variety of simple learning algorithms for ordering cues in 
the forced-choice paired comparison task for which TTB 
was designed. These algorithms update cue orderings on a 
trial-by-trial basis (Bentley & McGeoch, 1985). 

The accuracy of the cue orderings resulting from the 
application of simple learning algorithms was tested using 
the German cities data set. Specifically, each algorithm 
started with a random cue ordering and searched one cue at 
a time until it found a cue that discriminated between the 
alternatives, which was then used to make the decision (i.e., 
the algorithm chose the alternative favored by the first 
discriminating cue). After each decision, feedback was 
provided and the cue ordering was updated. Decisions were 
made repeatedly through one hundred pair comparisons.  

Which simple learning algorithms did Dieckmann and 
Todd (2004) consider in their simulations? They evaluated 
the validity, tally, swap, and tally swap learning algorithms. 
The validity algorithm keeps two pieces of information for 

                                                           
1 Cross-validation refers to the accuracy of a decision strategy that 
is fitted to one half of a data set (training set) and tested on the 
other half (test set). 

each cue: a count of all discriminations made by a cue up to 
a certain trial, and a count of all the correct decisions. The 
validity of each cue was then computed by dividing the 
number of current correct decisions by the number of 
current discriminations.2 The tally algorithm simply counts 
the number of correct decisions made by a cue up to a 
certain trial minus the number of incorrect decisions 
(=tally). The swap algorithm moves a cue up one position in 
the cue order after a correct decision, and down if the 
decision was wrong. Finally, the tally swap algorithm makes 
swapping contingent on whether or not a cue has a higher 
tally than a neighboring cue.  

Dieckmann and Todd (2004) tested the offline accuracy 
and frugality of the learned cue orderings at each trial, for 
the total set of pair comparisons (i.e., 3,403 pairs of 83 
cities). Their results showed that the performance of these 
algorithms soon rose above that achieved by Minimalist, 
which searches through cues in a random order (see Figure 
1). 
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Figure 1. Mean performance of the four learning algorithms 
in Dieckmann and Todd’s (2004) simulations. The bottom 
straight line shows the performance of Minimalist (random 
cue orders). The top straight line shows the performance of 

TTB (ecological cue validities). 
 
Surprisingly, none of these learning algorithms reached 

the benchmark performance of TTB based on the ecological 
cue validities (upper line in Figure 1). Even after obtaining 
feedback for 100 pair comparisons, they all fell well behind. 
These simulations showed that updating cue validities 
through feedback leads to a slow convergence to the 
ecological cue validities, at least after the first 100 pair 

                                                           
2 Note that the difference between TTB and a one-reason decision-
making strategy that uses the validity learning algorithm is that the 
first computes cue validities beforehand using all objects and cues 
in the environment, whereas the second acquires knowledge about 
cue validity on a trial-by-trial basis using only information about 
the first discriminating cue that is looked up. Therefore, these 
strategies do not necessarily have to arrive at the same cue 
ordering. 
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comparisons. Various other learning algorithms reported by 
Dieckmann and Todd (2004) did not provide better results 
either.  

Can Social Learning Resolve the Limitations of 
Individual Learning? 

The simple learning algorithms we mentioned above suffer 
from a serious and frequent problem in the literature of 
reinforcement learning (e.g., Sutton & Barto, 1998; see also 
Einhorn, 1980): the trade-off between exploration and 
exploitation of the information in the environment. 
Specifically, to be fast and frugal, the learning algorithms 
considered by Dieckmann and Todd (2004) do not search 
for all the available cues in the environment but instead stop 
search after the first discriminating cue. Exploitation of the 
environment, therefore, is an important constraint that 
significantly reduces performance (i.e., if all the cues were 
looked up, these algorithms would soon achieve the 
performance of the ecological cue validities). Yet, an 
exhaustive exploration of all the cues in a real world 
environment not only decreases speed and frugality but is 
often impossible. Thus, the trade-off between exploration 
and exploitation seems to be an essential problem for these 
learning algorithms for ordering cues as long as they 
simultaneously pursue speed, frugality, and accuracy in 
performance.  

In contrast to laboratory tasks, in real-world environments 
we often exchange reports of our experiences with other 
individuals. Consider once again the question of which of 
two cities has a higher population; rather than collecting 
information individually, we might discuss with other 
people what the relevant cues are. Thus, people could learn 
to order cues not only individually but also socially by 
exchanging information. Our argument is that the exchange 
of information can help boundedly rational individuals to 
solve the problem of learning good cue orders without 
impairing speed and frugality.  

From a theoretical point of view, collective information 
sharing can be modeled as rules that define how people 
update cue orders on the basis of those of others. These 
rules might differ both in simplicity and accuracy. For 
instance, a complex social rule (the average rule) implies 
exchanging knowledge about subjective cue validities with 
other individuals, then computing the mean value across all 
individuals for each cue to arrive at a new cue order. In 
contrast, the majority rule is an example of a less demanding 
way to come up with new cue orders: Individuals simply 
vote for the cue that they consider best, second best, and so 
on.  

Along these lines, Hastie and Kameda (2005) recently 
compared the performance accuracy of several social rules 
in group decision making. Interestingly, they found that 
very simple social rules performed comparably to much 
more demanding rules. Bearing this in mind, in the 
following we investigate, by means of a simulation study, 
whether social rules can help to overcome the slow progress 
in individual learning of a good cue order. 

Simulation Study 
We conducted a series of computer simulations in which we 
evaluated the success of several social rules (see Hastie & 
Kameda, 2005, for a review) when they were implemented 
in two of the simple learning algorithms for ordering cues 
considered by Dieckmann and Todd (2004). The two 
algorithms chosen were validity and tally swap. The former 
defines cue orderings of TTB and performed best in Figure 
1. The latter was reported in an experiment by Dieckmann 
and Todd (2006) to capture the participants’ behavior best. 
We tested the simple social rules using the German cities 
data set (Gigerenzer & Goldstein, 1996). As we mentioned 
above, the German cities data set consisted of the 83 
German cities that had more than 100,000 inhabitants. In 
our simulation study, the task was to infer which of two 
cities has a higher population. For this inference, several 
cues could be considered (e.g., whether the city is the 
national capital). 

Basic Setting of the Simulations 
The key feature of our simulations was that a group of 
individuals exchanged information about the cue orders that 
they learned independently. Specifically, they started from 
random cue orderings and went through a subset of pair 
comparisons in which they derived and updated such 
random cue orders with feedback. In the basic simulation, 
groups of ten individuals went through a set of five pair 
comparisons. They all used the same learning algorithm but 
received a different set of five pair comparisons. 
Consequently, after this individual learning experience, each 
group member came up with a different cue order.  

All group members then exchanged information about 
their cue orders and used a social rule to arrive at a single 
social cue order. In a further subset of five trials, group 
members started looking cues up in the social cue order 
instead of the random one. This social cue order was 
subsequently updated through individual learning. The 
process of social exchange and individual learning took 
place repeatedly every five trials and for up to one hundred 
pair comparisons.  

Social Rules 
In the simulations, we investigated the following five social 
rules:  
   1. The average rule: Each group member estimates the 
validity (or tally) of each cue, and the group computes the 
mean value across all members for that cue.  

2. The Borda rule: Each group member ranks all cues 
according to their validities (or tallies). The value assigned 
to each cue is the sum of the members’ rank order for that 
cue. 

3. The majority rule: Each member assigns one vote to 
the cue with the highest validity (or tally), and the cue that 
receives the most votes is selected. This process is repeated 
for all the cues.  
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4. The Condorcet rule: All comparisons between two cues 
are kept. The cue that wins all comparisons in each cue 
order position is the Condorcet winner.  

5. The imitate the most successful rule (also known as the 
best member rule): The cue order of the group member who 
achieved the highest accuracy in the last five trials is used 
by all members of the group. Note that imitate the most 
successful is the simplest rule. In contrast to the rest of the 
social rules, it does not involve the aggregation of social 
information. Individuals using such a rule just have to find 
out who performed best in the last five trials and imitate that 
group member. 

During a set of five trials, all the group members kept 
count of the number of correct decisions and the total 
number of discriminations made by each cue. These 
accounts were subsequently updated when individuals 
arrived at a social cue order. Specifically, those individuals 
who used the average rule replaced the accounts of each cue 
by the corresponding values averaged across all group 
members. Individuals using the rest of the social rules 
estimated both accounts drawing random values for a 
uniform distribution with the following constraints: (1) the 
range of the distribution was determined by the maximum 
and minimum values stored in the previous trial, and (2) the 
final values had to conform to the social cue order.  

Results of the Basic Simulation 
Figure 2 shows the performance of the five social rules 
averaged across 1000 runs when they were implemented in 
the validity learning algorithm. For comparison, we further 
added the performance of individual learning according to 
validity (solid jagged line), TTB (upper straight line), and 
Minimalist (lower straight line).   
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Figure 2. Mean performance of the five social rules when 

implemented in the validity learning algorithm. 
 

Results showed that the complex average rule matched 
the performance of TTB after 100 pair comparisons. The 
majority and Condorcet rules, which are computationally 

less demanding, performed comparably, placing behind the 
average rule. The Borda rule fell behind the rest of the 
social rules. It did not achieve the accuracy that the 
individual learning algorithm did, but its performance was 
better than that of random order. Interestingly, the “imitate 
the most successful” rule beat the rest of the social rules we 
considered and even TTB.  
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Figure 3. Mean performance of the five social rules when 
implemented in the tally swap learning algorithm.  

 
How frugal were these rules? Table 1 shows the mean 

number of cues looked up in 100 trials for all the social 
rules. Note that all social rules, except “average,” were 
comparable to and more frugal than TTB, which looked up 
4.23 cues on average. However, all these rules were less 
frugal than Minimalist, which looked up 3.34 cues on 
average.  

 
Table 1. Averaged number of cues looked up in 100 trials 

for the five social rules.  
 

 Validity 
algorithm 

Tally swap 
algorithm 

Individual 3.2 3.13 
Average 3.94 2.96 
Borda 3.35 3.19 

Majority 3.50 2.99 
Condorcet 3.35 3.03 
Imitate the 

successful 
3.53 3.26 

 
   What is the consequence when individual learning by 
validity is replaced by the tally swap algorithm? Some of 
the previous findings were replicated (see Figure 3). For 
comparison, we also added the performance of individual 
learning according to tally swap (solid jagged line), TTB 
(upper straight line), and Minimalist (lower straight line). 
The average, majority, and Condorcet rules outperformed 
individual learning using tally swap. However, they still 
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lagged behind the performance of the ecological cue validity 
order. Again, the Borda rule performed worse than 
individual learning, but still better than the random order. 
The accuracy of the “imitate the most successful” rule when 
implemented in the tally swap learning algorithm matched 
that of TTB. Yet one characteristic distinguished it from 
validity learning: After each social exchange, there was a 
decline in performance, and the average performance was 
not as high as when individuals updated cue orders by 
validity. Furthermore, all these social rules were comparable 
in frugality (see Table 1). In fact, they all were more frugal 
than the TTB and Minimalist.  

Why did the cue orders resulting from the application of 
some of these social rules perform so well? Why did some 
of them perform better than others? To answer these 
questions, we analyzed the accuracy of the social cue orders 
obtained by each social rule for both the validity and tally 
swap learning algorithms. We gathered 20,000 cue orders 
that each social rule produced until the 100th trial. Then, we 
classified them depending on whether they achieved a better 
performance than (1) the ecological cue validities order (i.e., 
TTB), (2) individual learning according to the 
corresponding learning algorithm, (3) the random order (i.e., 
Minimalist), or (4) whether their performance was even 
worse than the random order (see Figure 4).  
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Figure 4. Performance of the five social rules relative to 

three criterions: the ecological cue validities order, 
individual learning, and the random order.  

 
Interestingly, results showed that the cue orders produced 

by the “imitate the most successful” rule were more accurate 
than the ecological cue validities order in more than 50% of 
occasions. This result was found for both validity and tally 
swap. Note that, as we mentioned above, in the German 
cities data set, there are 9! (i.e., 362,880) possible cue 
orders, and only 1.8% (i.e., 7,421) of them perform better 
than the ecological cue validity order does. Furthermore, the 
rest of the social rules apart from Borda generally came up 
with cue orders that achieved a better performance than 
individual learning but worse than the ecological cue 

validities order. Finally, most of the cue orders produced by 
the Borda rule achieved a performance that was worse than 
individual learning.  

Sensitivity Analyses 
In an extended set of simulations, we modified several 
parameters of the basic simulation. More specifically, we 
focused on the number of individuals who exchange 
information to arrive at a social cue order (i.e., the group 
size), and the number of trials in which individuals learned 
independently before exchanging information (i.e., the 
frequency of social information exchange). In these 
extended simulations, we focused on three of the social 
rules (i.e., average, majority, and imitate the most 
successful). We examined the performance and frugality of 
these rules for four different group sizes (2, 10, 25, and 100 
individuals), and three different frequencies of social 
information exchange (5, 25, and 50 trials).  

The general conclusion from these extended simulations 
is that the more individuals are included in the group, the 
higher the group’s accuracy, regardless of the social rule 
and the individual learning algorithm they used. The 
increase in accuracy from 5 to 25 individuals was larger 
than from 25 to 100. Furthermore, the lower the frequency 
of exchanging social information, the lower the performance 
was in the long run. Again, the combination of “imitate the 
most successful” and the validity learning algorithm proved 
to be an effective way to resolve the problem of slow 
individual learning. For instance, when 10 individuals 
exchanged information on just one occasion (after 50 trials), 
this was sufficient to achieve the accuracy of the ecological 
cue validity order.  

To achieve the performance of TTB, it is not necessary to 
exchange information with a large group of individuals. 
Frequent exchange, or the aggregation of social information 
(as would be required, for instance, in the average rule), is 
not necessary either. In summary, the superiority of the 
“imitate the most successful” rule, observed in the basic 
simulation, remained stable with an increasing number of 
individuals in the group, even when the number of social 
exchange opportunities was reduced. Briefly, the results of 
the basic simulation were strengthened.  

Conclusions 
The results of our simulations support the hypothesis that 
very simple social rules are able to improve the performance 
of simple algorithms for ordering cues. Specifically, all 
social rules we considered (except the Borda rule) 
outperformed individual learning. Even more interestingly, 
the “imitate the most successful” rule beat more 
computationally demanding social rules, such as the average 
or majority. Furthermore, it not only solved the problem of 
slow individual learning, but also performed even better 
than TTB using the ecological cue validity order did. In 
everyday life, aggregation of information can be difficult, 
requiring demanding computations; cognitively simple 
strategies are a viable alternative.  
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As mentioned above, finding the best cue order becomes 
computationally intractable as the number of available cues 
in the environment increases. One solution to this problem 
is to rely on simple learning algorithms for ordering cues. 
However, as Dieckmann and Todd (2004) showed, updating 
a cue order in a trial-by-trial basis leads to a slow 
convergence to the ecological cue validities. We showed 
that the limitation of the individual learning algorithms 
considered by Dieckmann and Todd (2004) could be 
resolved at a group level. That is, higher performance could 
be achieved by very simple social rules. These results 
suggest a promising avenue for future research on bounded 
social rationality (see Gigerenzer et al., 1999).  

For the sake of simplicity, in the current computer 
simulations we mimicked a situation of group discussion. 
However, this might be troublesome in real-world group 
discussion because communication and coordination require 
a huge effort, especially when aggregating complex 
information such as cue orders. The discussions of a group 
of people who report cue orders sequentially and aggregate 
them with a certain protocol, such as majority rule, could 
also be cumbersome. Rather, in the real world, a single 
person could easily come up with a single cue order (i.e., a 
social cue order) when listening to other people’s opinions. 
In such a situation, we believe that the “imitate the most 
successful” rule would also work well.  

Our basic results are in line with findings by Hastie and 
Kameda (2005). By means of computer simulations and 
using forced-choice tasks, they investigated how the 
members of a group who made decisions individually 
arrived at a collective decision. In contrast, we focused on 
how individuals exchanging information about individually 
learned cue orders arrive at a social cue order. The results of 
Hastie and Kameda (2005) are focused on the social 
learning of “decisions.” In contrast, our results are focused 
on the social learning of the “information” individuals use 
to make decisions. Despite theses differences, both studies 
found that cognitively simple social rules perform 
comparably to cognitively more demanding rules, such as 
the average rule. However, the impressive performance of 
the “imitate the most successful” rule is unique in our study. 
The performance of this rule in Hastie and Kameda’s (2005) 
study was worse than those of the majority and average 
rules in most cases. In future research, we will investigate 

the reasons for this seemingly contradictory finding, and 
also study the generalizability of our results to other 
learning situations.  
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