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Consequences of dispersal heterogeneity for
population spread and persistence

Joseph P. Stover*™ Bruce E. Kendalll and Roger M. Nisbet?
August 17, 2014

Abstract

Dispersal heterogeneity is increasingly being observed in ecological pop-
ulations and has long been suspected as an explanation for observations
of non-Gaussian dispersal. Recent empirical and theoretical studies have
begun to confirm this. Using an integro-difference model, we allow an in-
dividual’s diffusivity to be drawn from a trait distribution and derive a
general relationship between the dispersal kernel’s moments and those of
the underlying heterogeneous trait distribution. We show that dispersal
heterogeneity causes dispersal kernels to appear leptokurtic, increases the
population’s spread rate, and lowers the critical reproductive rate required
for persistence in the face of advection. Wavespeed has been shown previ-
ously to be determined largely by the form of the dispersal kernel tail. We
qualify this by showing that when reproduction is low, the precise shape
of the tail is less important than the first few dispersal moments such as
variance and kurtosis. If the reproductive rate is large, a dispersal kernel’s
asymptotic tail has a greater influence over wavespeed, implying that esti-
mating the prevalence of traits which correlate with long-range dispersal is
critical. The presence of multiple dispersal behaviors has previously been
characterized in terms of long-range vs short-range dispersal, and it has
been found that rare long-range dispersal essentially determines wavespeed.
We discuss this finding and place it within a general context of dispersal
heterogeneity showing that the dispersal behavior with the highest average
dispersal distance does not always determine wavespeed.
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1 Introduction

Intraspecific heterogeneity in individual traits, such as survival and reproduction,
is common in ecological populations and can result from habitat heterogeneity
(e.g., Gates and Gysel, 1978; Boulding and Van Alstyne, 1993; Menge et al, 1994;
Winter et al, 2000; Franklin et al, 2000; Manolis et al, 2002; Bollinger and Gavin,
2004; Landis et al, 2005), early life conditions such as birth order effects (e.g.,
Lindstrom, 1999), unequal allocation of parental care (e.g., Manser and Avey,
2000; Johnstone, 2004), maternal family effect (e.g., Fox et al, 2006), persistent
social rank (e.g., von Holst et al, 2002), or genetics (e.g., Yashin et al, 1999;
Ducrocq et al, 2000; Gerdes et al, 2000; Casellas et al, 2004; Isberg et al, 2006).

In spite of this widespread occurrence, intraspecific heterogeneity has only
recently begun to receive considerable theoretical treatment. It has been shown to
affect demographic stochasticity (Fox and Kendall, 2002; Kendall and Fox, 2002;
Kendall and Fox, 2003; Vindenes et al, 2008), extinction risk of both density-
independent populations (Conner and White, 1999; Fox, 2005; Lloyd-Smith et al,
2005) and density-dependent populations (Robert et al, 2003), population growth
rate (Kendall et al, 2011), and equilibrium population size (Stover et al, 2012). We
aim to expand this literature to include dispersal heterogeneity’s effect on spread
rate and persistence in advective environments.

Studies of dispersal have usually assumed identical dispersal behavior among
individuals although heterogeneity in dispersal ability or behavior is ubiquitous
(c.f. Zera and Denno, 1997; Table 1 in Clobert et al, 2009), and is important for
understanding biological phenomena such as invasions (Shigesada and Kawasaki,
1997) and the spread of alleles through a population (Fisher, 1937). Dispersal
heterogeneity has been observed across a variety of taxa including cane toads
(Phillips et al, 2006), rodent-dispersed trees (Xiao et al, 2005), flowering plants
(e.g. Venable et al, 1995), dragonflies (McCauley, 2010), and freshwater killifish
(Fraser et al, 2001) to name a few examples. Understanding dispersal presents a
particular challenge due to the variety of dispersal mechanisms and the difficulty
in accounting for rare dispersal events which have been shown to have a strong
influence on spread rate (Shigesada and Kawasaki, 1997; Clark et al, 1998; Okubo
and Levin, 2001).

Dispersal is especially important for populations living in advective environ-
ments (i.e. subject to unidirectional flow) due to the risk of being washed away.
This may include species that are subject to long-shore drift currents (Byers and
Pringle, 2006), flow in a river or stream (Speirs and Gurney, 2001), or facing
pressures due to climate change (Potapov and Lewis, 2004). Persistence in an
advective environment depends in part on the population’s ability to disperse in-
dividuals upstream (Lutscher et al, 2010). The minimum reproductive rate needed
for persistence also depends on the population’s upstream dispersal ability. Under-
standing the impact heterogeneity has on dispersal is important to understanding



how populations persist in the face of advection.

The effect of dispersal heterogeneity on spatial spread has been explored only
in a few special cases. Clark et al (1998) showed that when a small part of
the population disperses according to a fatter-tailed kernel, a significantly higher
wavespeed results. Neubert and Caswell (2000) considered a neotropical plant
which is dispersed by four ant species, and the plant population’s spread rate was
essentially determined by one of the ant species due to its much greater dispersal
distances. Okubo and Levin (2001) showed that a composite two-Gaussian kernel
is leptokurtic (having positive excess kurtosis), and that when one variance is held
fixed, and the other increases, then the kurtosis of the composite kernel increases
and approaches that of the Laplace (double-sided exponential) distribution. Mur-
ray (2002) analyzed a Fisher-Kolmogorov equation model, where one phenotype
is a disperser and the other is a non-disperser, and showed that the wavespeed
increases when a greater proportion of individuals are dispersers. Shigesada and
Kawasaki (2002) showed that increasing the proportion of long-range dispersers
or their dispersal variance increases wavespeed in an integro-difference model.
However, dispersal variance has a strong influence on wavespeed, and of these five
studies, only Clark et al (1998) held the variance of the population dispersal kernel
constant while changing the long-range dispersal component of the population.

Individual dispersal is often modeled as diffusion, where the location of the
dispersing individual after some specified time is given by a Gaussian distribu-
tion (Okubo and Levin, 2001; Murray, 2002). However, empirical observations
often show that long-range dispersal events occur more frequently and at greater
extremes than would be expected if dispersal was truly Gaussian (e.g. Nathan,
2001; Delgado and Penteriani, 2008) — these dispersal patterns are commonly
referred to as ‘fat-tailed’; ‘heavy-tailed’; or ‘leptokurtic’.

Heterogeneity has long been postulated as a cause for this preponderance of
long-range dispersal (e.g. Dobzhansky and Wright, 1943). Skellam (1951) showed
that having each individual’s dispersal variance chosen from some probability dis-
tribution results in a leptokurtic dispersal kernel. The hypothesis that hetero-
geneity might explain the prevalence of long-range dispersal observed in ecological
populations has more recently been confirmed mathematically in several studies
(Skalski and Gilliam, 2000, 2003; Petrovskii et al, 2008; Petrovskii and Morozov,
2009). Petrovskii et al (2008) and Petrovskii and Morozov (2009) constructed
model populations of dispersers in which each individual’s diffusion coefficient is
drawn from a continuous distribution and showed that the tail of the resulting pop-
ulation dispersal function decays slower than a Gaussian. However, these studies
did not examine how a population’s rate of spread is affected by heterogeneity in
dispersal.

Wavespeed has been found to be highly dependent on the dispersal kernel tail
(Kot et al, 1996) and to be determined by rare long-range dispersers (Neubert and
Caswell, 2000; Okubo and Levin, 2001). We qualify this finding by discussing how



wavespeed depends on the moments of the dispersal kernel and reproduction and
how to understand these findings within the general framework of dispersal hetero-
geneity. We use the term ‘diffusivity’ to refer to an individual’s diffusion coefficient
and show how heterogeneity in diffusivity affects the shape of the population dis-
persal kernel. A general relationship between the dispersal kernel moments and
the moments of the underlying trait distribution is derived. We describe scenarios
where different dispersal behaviors have varying influence on wavespeed and also
on the critical reproductive rate required for persistence in an advective environ-
ment. Using these results, we show how dispersal heterogeneity affects spread rate
both in advective and non-advective environments and how heterogeneity impacts
the critical reproductive rate needed for persistence under advective flow.

2 Model framework

The basic linear one-dimensional integro-difference model, which arises by lin-
earizing many non-linear, spatially homogeneous, non-stage-structured integro-
difference models around n = 0 (Kot et al, 1996), is given as

n(z,t+1) = R/OO K(x —y)n(y,t)dy (1)

where n(x,t) is the population density at location x and time ¢, and R is the net
reproductive rate. Given mean dispersal location p, the dispersal kernel K is given
as K(u) = f(u— p), where f is called the displacement kernel. The displacement
kernel is assumed to be a symmetric mean-zero distribution that describes an
offspring’s displacement from the mean dispersal location pu. The system is called
advective when the mean is nonzero such as in the presence of a unidirectional
wind or flow of water. In each time step, the population reproduces at net rate
R and then dies. The new offspring then disperse according to the kernel K. A
semelparous aquatic insect living in a flowing stream is the example we keep in
mind during the analysis of this model.

This model exhibits convergence to traveling wave solutions with a constant
asymptotic speed ¢* for dispersal kernels with exponentially bounded tails and
compactly supported initial conditions (Kot et al, 1996). When advection is
present (u is non-zero) there is a critical net reproductive rate R* such that the
population only persists when R > R* (Lutscher et al, 2010). Under advection,
there are constant wavespeeds for both upstream (possibly negative speed) and
downstream movement of the population. When we discuss advection, by con-
vention we consider the current drifting from right to left, hence a negative drift
speed (p < 0).

The dispersal kernel K is assumed to have exponentially bounded tails so that



the moment generating function exists and is defined as

Micls) = [ K@, )
which can be written as the power series
s s3
Mg(s) = 1—|—mK,1s+mK,2§+mK73§+~~ ) (3)

The coefficients in (3) depend on the raw moments of dispersal: mg; = E*(z")
(the expectation, according the the probability distribution K, of the dispersal
distance raised to the kt* power) for k > 1. The central moments of K will be
denoted by pgp = EX ((m — /L)k) The moments of f are equivalent to the central
moments of K. Because we assume symmetry about the mean, all odd moments
of f are zero: E/(z%*71) = 0 for k > 1 (i.e. all odd central moments of K are
7€ro0).

The second moment of f is the dispersal variance pyo = o, which describes
the ‘width’ of the distribution. The normalized fourth central moment is the
kurtosis, or peakedness: p;4/0* and describes how much weight is in the tail of
the distribution as opposed to the shoulders (Balanda and Macgillivray, 1988;
DeCarlo, 1997). The excess kurtosis vz is often referred to instead which is the
kurtosis minus three (since the kurtosis of a Gaussian is three). A distribution
with positive excess kurtosis is called ‘leptokurtic’. The skewness is the normalized
third central moment: 74, = p17.3/0*2, which is zero for the dispersal kernels under
current consideration.

The terms ‘fat-tailed’ and ‘heavy-tailed” have been loosely used to describe dis-
tributions with a positive excess kurtosis, signifying that long-distance dispersal
events occur more frequently than would be expected if Gaussian diffusion alone
were operating. Confusingly, these terms have also been used to refer to distribu-
tions whose asymptotic tails are not exponentially bounded; they may have some
(or all) undefined moments and thus no moment generating function (c.f. Kot
et al, 1996, Clark et al, 1998). Leptokurtic kernels may still exhibit Gaussian tail
decay (c.f. Okubo and Levin, 2001; Petrovskii and Morozov, 2009). This con-
flation is unfortunate because only exponentially bounded kernels (those whose
tails decay at least exponentially fast) produce constant spread rates (Kot et al,
1996). The term ‘heavy tailed’ is the preferred technical term used to refer to
distributions whose tails are not exponentially bounded (Foss et al, 2011).

The asymptotic upstream (which is to the right by convention here) wavespeed
is given by

¢ = min {é In RM(S)} | ()

s>0

Equation (4) is attributed originally to Weinberger (1978, 1982) and further de-
veloped by Lui (1989) and others; for more straightforward derivations, see Kot
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et al (1996) for an unstructured population and Neubert and Caswell (2000) for
a structured population. The critical reproductive rate in a system with finite
advection (u < 0) is given by

. 1 1
0 ) v &)
(Lutscher et al, 2010). The values of s where the minima in (4) and (5) occur, s
and s}, respectively, are shape parameters that give the exponential rate of decay
of the upstream wavefront. Usually, s} # sj; equality between the two shape
parameters holds when R = R* and the upstream wavespeed is zero.
To solve for wavespeed, the following parametric representation is often used:

R QSM}((S)/MK(S)7 - M}{(s)' ©)
M (s) Mic(s)
For a given R, one would solve the left equation for the shape parameter s} and
then plug it in to the right equation so get c*.

When the dispersal kernel has mean zero (no advection), the critical reproduc-
tive rate is R* = 1 (Kot et al, 1996). In the presence of advection, R* > 1. In either
case, the population persists everywhere in the domain when R > R* (Lutscher
et al, 2010). In the presence of advection, a critical population (R = R* > 1) has
an exponentially shaped, stationary wavefront (¢* = 0), in which case the shape
parameters from (4) and (5) are equivalent (s} = s}). When 1 < R < R*, the
population still has an exponential shape given by s’, but is washed downstream
(negative wavespeed) while its total size still grows (assuming a suitable initial
population and infinite downstream habitat). If R < 1, the population simply
dies out.

3 Dispersal heterogeneity

We assume that offspring disperse in a one-dimensional environment (such as wind
or stream flow) with a fixed drift velocity v (v < 0 by convention). The position
at time 7 of an offspring with dispersal diffusivity D (diffusion coefficient) is given
by a Gaussian distribution with mean p = v7 and variance 0 = 2D7. These
expressions may be derived from a random walk where dispersing individuals takes
steps of length L with inter-step time 7' in either direction equally likely while
drifting with constant velocity v. It is assumed that the ratio L?/(2T) converges
as L and T go to zero, thusly, the ratio converges to the diffusivity constant D
(see Okubo and Levin, 2001; Murray, 2002). Since heterogeneity in either L or
T is expressed through differences among individuals in their diffusivity, we focus
on heterogeneity in D. We assume that all dispersing individuals are subject to



the same drift velocity v and settle after a fixed time 7 so that the displacement
kernel is Gaussian.

We now derive a relationship between the distribution of offspring diffusivities
and the population dispersal kernel. Let ¢(D) be the probability distribution of
offspring diffusivities which we call the trait distribution. We require that ¢(D) be
exponentially bounded as D goes to infinity. Zero parent-offspring correlation in
diffusivity is assumed, so each individual offspring’s diffusivity is an independent
draw from ¢(D). This assumption is appropriate in some ecological scenarios,
such as the ant-mediated dispersal in Neubert and Caswell (2000). We denote
the mean zero Gaussian with variance 0% as G(x;0?). The displacement kernel f
is then given by integrating over the distribution of offspring diffusivites:

f(x) = / " 9(D)G(a; 2Dr)dD. (7)

We first wish to understand how dispersal heterogeneity affects the shape of
the kernel. The 2k central moment of the population dispersal kernel is

Mok = / R / ¢(D)G(x;2D7)dDdx (8)

Changing the order of integration and noting that the 2k** central moment of
the Gaussian is (2k — 1)!lo?* (where k!! denotes the double factorial, which is
the product of all odd numbers from k to 1 when k is odd), the right side of (8)
becomes (2k —1)!1(27)* [ D*¢(D)dD which simplifies to (2k —1)!!(27)¥m . Thus
we find that the k' moment of the trait distribution gives the 2k moment of the
population’s displacement kernel:

mf,gk = (2]{7 — 1)”(27’)km¢,k (9)

This has been shown previously by Skellam (1951) who examined heterogeneity in
dispersal variance (which is proportional to diffusivity). The moment generating
functions for f and ¢ are related by M;(s) = My(s?) (Skellam, 1951).

The variance of the displacement kernel depends only on the mean of the trait
distribution:

o7 =2Dr, (10)
where the expected diffusivity is E?(D) = D.
The excess kurtosis of the displacement kernel is given by

mya )2 Var(D)
Y=o gt —3=3 0% -3 =302 (11)

2 2
Mo Mg

and only depends on the mean and variance of the trait distribution.
Since the raw moments of the displacement kernel f are equivalent to the
central moments of the dispersal kernel K, the dispersal variance is given by (10)
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and the dispersal kurtosis is given by (11). This is a consequence of the assumption
that all dispersers are subject to the same advection velocity and disperse for the
same length of time 7. For the remainder of the paper, we assume 7 = 1 so that
the mean dispersal location is equivalent in magnitude to the advection velocity,
W=.

From (11), it is evident that increasing the variance of the trait distribution
(while holding the mean trait constant) increases the kurtosis of the population
dispersal kernel. Thus heterogeneity in diffusivity naturally results in a leptokurtic
dispersal kernel, a result also shown previously by Skellam (1951).

For concreteness, we illustrate this result and its consequences with two trait
distributions, which we will use throughout the rest of the paper. The first is the
gamma trait distribution studied by Petrovskii and Morozov (2009):

(D) = e (2 (12)

aBHIT(B +1

where I'(+) is the gamma function, o and B are a fixed positive numbers, and D is
the diffusivity. The dispersal kernel which arises from the gamma trait distribution
will also arise if instead of heterogeneity in D, offspring have gamma-distributed
settling times (Yasuda, 1975; Yamamura, 2002). The second trait distribution,

¢s(D), includes only two dispersal phenotypes with diffusivities D; = D(1 — hy)
and Dy = D(1+hy) for 0 < hy < 1 and hy > 0. With probability 1—p an offspring
has diffusivity D; and with probability p diffusivity Dy, where p = hy/(hi+ h2) so
that D is the average diffusivity between the two types of offspring. This second

trait distribution takes the form

¢s(D) = (1 = p)dp, (D) + pdp,(D) (13)

where 0p, is the delta distribution with mass one at D;. When h; = 1, phenotype
one is non-dispersing (a case studied by Murray (2002) in the context of Fisher-
Kolmogoroff diffusion equations).

The displacement kernel resulting from (12), fr(z), cannot be written down in
a simple form, but its moment generating function is easily calculated (see next
section). Petrovskii and Morozov (2009) showed that the decay rate in the tail
of fr(z) is slower than Gaussian but still exponentially bounded. If a maximum
diffusivity is imposed (i.e. no disperser has diffusivity larger than some maximum
Dinaz), the displacement kernel tail is asymptotically Gaussian irrespective of the
shape of the trait distribution (Petrovskii and Morozov, 2009). A distribution
K (x) is called asymptotically Gaussian if K (2) ~ C'e™%*" for some positive C' and a
when z is large. Since the two-type trait distribution ¢s has a maximum diffusivity,
the corresponding displacement kernel has a tail which is asymptotically Gaussian,
and in fact is exactly a linear combination of two Gaussian kernels.



The k' raw moment for ¢ is

. (ho(1 — hy)® + hy(1 + hy)¥
— DF 14
mopa = D (PSR , (14
and for ¢r is
m B @kF (B+1+k)
or-k T'(B+1) (15)

=o*(B+k)(B+k—1)---(B+2).

Simplified formulas for the first few central moments of the trait distributions are
given in Table 1.

central trait distribution
moments two-type, ds gamma, ép
B[D) D B+ 1)
O'2D B D2h1h2 Oéz(B + 1)
He,3 D3hyha(he — hy) 203(B + 1)

toa  D*hiho(hd — hiho +B2) 30*(B+1)(B + 3)

Table 1: Central moments are given for two trait distributions ¢r (12) and ¢
(13).

The displacement kernels fr and fs have identical variances when their under-
lying trait distributions have the same mean (i.e. when E%*(D) = D = a(B+1) =
E®r(D)). However, if one trait distribution has a larger variance than the other, its
corresponding kernel will have a greater excess kurtosis (11). Since the two-type
trait distribution can have a higher variance than the gamma trait distribution
and the kurtosis of the dispersal kernel is proportional to trait variance (11), fs can
have a larger kurtosis than fr. This reveals that a larger kurtosis is not necessarily
associated with a slower tail decay rate.

When the trait variance is small and identical among the two different trait
distributions, the corresponding dispersal kernels appear nearly identical. A large
trait variance can cause dispersal kernels arising from the different trait distri-
butions to have clearly different shapes (Fig. 1). The gamma trait distribution
results in a slower dispersal kernel tail decay rate than that of the two-type model
(Fig. 1, inset panel). When the two-type trait distribution matches the skew
of the gamma trait distribution, the corresponding displacement kernel appears
nearly Gaussian due to high diffusivity being rare.



T T T T T
Trait distribution:
— Uniform two-phenotype |
--+Skewed two-phenotype
- Gamma

o
(S
T

o
—_
T

Figure 1: The displacement kernels are shown for three trait distributions with
D =7 =1 and Var(D) = 0.81. The kernels appear quite different although they
share the same variance (Var(z) = 2) and kurtosis (772 = 2.43), and additionally
the kernels from the skewed two-type and gamma trait distributions have the same
sixth dispersal moment (mpg ~ 170.36; myse ~ 87.48 for the uniform two-type
trait distribution). The subpanel shows the tails of the dispersal kernels for large
x.

4 How dispersal kernel shape impacts ¢* and R*

In this section, we discuss generally how wavespeed and the critical reproductive
rate are impacted by dispersal kernel shape. The individual moments of the dis-
persal kernel are shown to have differing degrees of importance depending on the
magnitude of the reproductive rate. We show that a single low-order dispersal
moment is sometimes sufficient enough to determine whether or not one dispersal
kernel imparts a larger wavespeed or a smaller critical reproductive rate when
compared to another kernel.

Consider two symmetric, exponentially-bounded displacement kernels f; and
fo such that fo(xz) > fi(x) for x sufficiently large. For our purposes, we say that
f2 has slower tail decay. Slower tail decay of f, guarantees that all sufficiently
high-order dispersal moments are larger, my¢, 2, > my, 2, for all n large enough
(Appendix A.1). However, a displacement kernel with faster tail decay may still
have one or more lower-order moments which are larger, such as variance or kur-
tosis. If there are N; and Ny such that my, o, > my, 2, for n < Ny, but at least
one n < Ny such that my o, > my, 2n, and my, 9, < My, 9, for n > Ny, we say
that fi; has low-order dominance over fy and equivalently say that f is high-order
dominant. Note that the low-order dominant kernel f; must have at least one mo-
ment which is strictly larger than that of f,. The concepts of high- and low-order
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dominance transfer to dispersal kernels in the obvious way since we only compare
dispersal kernels with the same mean.

We now show that a low-order dominant dispersal kernel can produce a larger
wavespeed and a smaller critical reproductive rate than a kernel that has slower
tail decay and is high-order dominant. If a single dispersal kernel is referred to as
being low-order dominant, it is to be assumed that it is in comparison to another
dispersal kernel which is high-order dominant, and vice versa.

4.1 Wavespeed in absence of advection

Consider kernels f; and fs where f, has slower tail decay, but kernel f; is low-order
dominant and f; is high-order dominant. The corresponding moment-generating
functions satisfy M;(s) > Ms(s) for s small enough (see Appendix A for detailed
mathematical justification; Figure 2 illustrates this). To understand this fact,
recall that the moment generating functions can be written as power series in s
centered about s = 0. Hence, for s small enough, higher order terms are small in
magnitude due to large powers of s.

Also, note that M;(s) < My(s) for s large enough since fs has larger high-order
moments. Since the moment generating functions are continuous, they must cross
paths at least once. Define § to be the smallest value of s such that M;(s) = Ms($).
Above 8, the graphs of M; and M, may intersect again, but for all s large enough
MQ(S) > Ml(S).

We now show that a population dispersing according to the low-order dominant
kernel f; is guaranteed to have a larger wavespeed than a population dispersing
by fo if the net reproductive rate is fixed close enough to one, even if f, has
much more weight in its tail than f;. Appendix A shows this in a more rigorous,
analytical way.

Define the wavespeed function, which is the function we minimize in (4) to find
the asymptotic wavespeed, for kernel 7 by

ci(s) = éln (RM;(s)). (16)

Since Mi(s) > Msy(s) for s < &, this also implies that c¢;(s) > co(s) for s < §
as well due to monotonicity of the logarithm function. As R approaches one
from above, the critical shape parameter s* and wavespeed ¢* approach zero (see
Appendix A.2). Thus we can choose R close enough to one to ensure that the
critical shape parameters for both f; and f, (s} and s} , respectively) fall in
the region where M;(s) > Ms(s) (see Figure 2). Standard mathematical analysis
ensures that if both ¢;(s) and ¢,(s) have a local minimum in the interval 0 < s < 8,
where ¢;1(s) > c2(s), then mine¢i(s) > minca(s). When using (4) to calculate the

wavespeeds, we have

A =cl(s) = rgi(r)wl(s) > rsn>1(r)1 ca(s) = calsy,) = ¢ (17)
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Hence slower tail decay alone does not automatically result in higher wavespeed,
even if comparing kernels that have a number of identical low-order moments.

It is important to note that s’ and s} can be distinct (and likely will be).
Note that in practice R need not be extremely close to one for our results to
hold; R = 4.6 in Figure 2 for two example kernels. This argument only declares
existence of such an R value. The parameters are deliberately chosen in Figure 2
to make the differences in the graphs more apparent. In order for ¢j < ¢f with
the parameters as in Figure 2, R = 537 is required, hence quite a large R may be
necessary for a high-order dominant kernel to give larger wavespeeds.

4.2 Critical reproduction and wavespeed under advection

When advection is present with dispersal mean p < 0, the moment generating
functions for dispersal kernels K (z) = fi(z—p) and Ky(z) = fo(z —p) are simply
M, (s)e” and Ms(s)e!® respectively. Following a similar argument as above with
wavespeed, define the reproductive rate function R;(s), whose maximum (5) is the
critical reproductive rate, and satisfies for s < §:

1 1
= <
M(s)ers — My(s)ers

Ry (s) = Ry(s) (18)

since Mi(s) > Ms(s). As long as the advective current is weak enough (u close
enough to zero) both critical shape parameters, s3 and s%,, which give the critical
reproductive rates using (5) are less than § so that the critical reproductive rates
satisfy

R} = Ri(sy,) = max Ry(s) < max Ry(s) = Ry(sk,) = R5. (19)

Hence a low-order dominant dispersal kernel with faster tail decay can give a lower
critical reproductive rate than a high-order dominant kernel with slower tail decay
in sufficiently weak advective currents. It is not necessary that p be extremely
close to zero; for example, p = —5.5 in Figure 2, again for a somewhat extreme
example. An advection velocity of y = —8.9 is required to make R; > Ry for the
remaining parameters chosen in Figure 2.

Now that we have established that a weak enough advective current allows for
R} < Rj, even though fs has more weight in its tail than f;, we can show that
under advection, cj > ¢ is also possible.

Recall that the moment generating function with advection is identical to that
without advection but multiplied by e**. The ¢;(s) (16) become

ex(s) = S In (RMi(s)e) = * In (RMi(s)) + o (20)

S S

Hence the wavespeed under advection is just that without advection plus the
advection speed p. This alone however is not enough to show the result. We need
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R to be small enough in order for ¢ > ¢ (17) to hold, but R} and R} are greater
than one and may be unequal. Thus we can not simply let R be close to one as
done above in the case without advection.

Instead, we first assume that p is close enough to zero so that R} < R; (19).
Now, decreasing R down towards R} (the larger of the two critical reproductive
rates) results in ¢ decreasing to zero while ¢} remains positive. This shows that
under sufficiently weak advection, a low-order dominant dispersal kernel can pro-
duce higher wavespeeds in addition to producing a lower critical reproductive rate.

As the advection strength is increased, both R* and s}, increase. In order to
see that s}, increases, one must recognize that the moment generating function
M;(s) for the displacement kernel has its minimum at s = 0, and it is a strictly
increasing function. The moment generating function for the dispersal kernel with
advection is Mg(s) = Mg(s)e”® (multiplication by an exponential decay factor
since p < 0). The maximum of e”® is one and occurs at s = 0. This shifts to the
right the location on the s-axis where the minimum of Mg (s) occurs, and thus s},
increases.

Under sufficiently strong advection, a high-order dominant kernel gives a smaller
critical reproductive rate and a larger wavespeed for any value of R. This occurs
because there exists some § such that M;(s) < Ms(s) for s > s since f, has larger
high-order moments. As the magnitude of y increases (stronger negative advec-
tion velocity), both s and sf, increase. Since Ry(s) > Ry(s) for s > 5 and the
maxima of both functions occur on s > 5, we have R} > R;. As R gets close to
1, ¢i approaches zero while ¢} stays positive. For any R > Rj, si is larger than
sy and hence stays above s resulting in ¢} < c.

Any increase in the shape parameter s}, makes higher-order moments become
more important in determining the value of Mg (s};) due to higher-order terms in
the power series (3) having a greater contribution.

*
(&

5 Heterogeneity’s effects on wavespeed and per-
sistence

In the preceding section, we saw how wavespeed and persistence may be more
sensitive to low-order moments as opposed to the specific shape or tail decay rate
of the dispersal kernel. In Section 3, we saw how the dispersal kernel’s moments
depend on those of the heterogeneous trait distribution. From (4), we know that
wavespeed depends directly on the net reproductive rate and the moment generat-
ing function and from (5), that the critical reproductive rate depends only on the
moment generating function (hence only on the moments of the dispersal kernel).
Dispersal heterogeneity impacts wavespeed through changing a species’ dispersal
moments.

13



Trait Distribution:
—Two-phenotype, @9
---Gamma, ¢r

Figure 2: Graphs corresponding to trait distributions ¢r (12) are black, dashed
lines and for ¢s (13) in red, solid lines. (a) Dispersal kernels Kr and Kj are
shown with parameters 4 = 0, D =1, B =0, a = 1, hy = 0.5, and hy = 3.5.
Both trait distributions have the same mean, but ¢s; has a larger variance than
¢r (05, = 1.75, 03 = 1). The dispersal kernels have identical variance, but
Mgon > Mr oy, for n = 2,3,4,5,6; all higher-order raw moments are larger for Kp
(first seven even moments listed in Table 2). K has slower tail decay, however
K, is low-order dominant. (b) The corresponding moment generating functions
M (s) are shown. When s < §, Ms(s) > Mr(s). (c) Wavespeed functions cs(s) and
cr(s) (defined in (16)) are shown. R = 4.6 is small enough so that s¥ < § for both
models, hence ¢§ > ¢} (minima of the graphs). (d) Reproductive rate functions
R(s) (defined in (18)) are shown for mean dispersal location y = —5.5 which is
weak enough so that R} < R} (maxima of the graphs).
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raw dispersal kernel

moments K Kt
mg2 2 2
Mg 4 33 24
MK 6 1380 720
MK 8 86,205 40,320
MK 10 6,975,990 3,628,800
MK 12 690,550,245 479,001,600

MK 14 80,793,432,720 87,178,291,200

Table 2: The first seven nonzero raw dispersal moments are given for two dispersal
kernels K and K (using trait distributions ¢r (12) and ¢4 (13)) with parameters
R=46,D=1,B=0,a=1,h; =0.5, hy = 3.5, and 1 = 0 (hence odd moments
are zero).

In this section, we examine how heterogeneity in dispersal behavior impacts
wavespeed and persistence for the two-type (13) and gamma trait distributions
(12). The two-type dispersal kernel K has Gaussian tail decay, but the dispersal
kernel Kt has slower tail decay and hence much larger high-order moments. We
show that at low reproductive rates, the two-type model has a wavespeed which is
very close to that of the gamma trait model. However, at high reproductive rates,
the disparity between wavespeeds becomes more apparent.

We also explore the contribution to wavespeed made by individual heteroge-
neous dispersal types (e.g. long vs short range dispersers). This leads to insight
on the question of what drives wavespeed. It has been shown in many studies that
rare long-range dispersers or the shape or decay rate of the dispersal kernel tail
has the strongest influence over wavespeed (Kot et al, 1996). We qualify these
findings by examining them in a more general context of heterogeneous dispersal
where the dispersal types may range from only slightly different in behavior to
having orders of magnitude different mean dispersal distances.

5.1 Heterogeneity increases wavespeed

We now explore in more detail the asymptotic wavespeeds for the two example
trait distributions ¢s (13) and ¢r (12). The gamma trait distribution results
in a displacement kernel which is not easily written down, but the displacement
kernel’s moment generating function is given by

Mp<s>=( ! )BH. (21)

1 — s52a
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The moment generating function for the two-type displacement kernel is
M;s(s) = (1 —p)exp (s°D(1 — h1)) + pexp (s°D(1 + hy)). (22)

The gamma distribution has only two parameters, so for a given mean D and
variance 0%, the parameters must satisfy

2 D2
a=22 and B=— -1 (23)
D o7

This determines all of its higher order moments; the third central moment is

oD
Hors =275 (24)
In contrast, the two-type trait distribution has an additional degree of freedom,
so for a given mean and variance, the skewness can be large or small. If both trait
distributions have the same mean and variance, we can set

6 2
Hes,3 9p 9p
ho = 9 1 14+ d h = —=—" 25
2 202 D? ( + M?sé,:g) an 1 DI, (25)

so that they have the same skewness. Consequently, their respective dispersal
kernels have the same variance, kurtosis, and sixth central moment. To maintain
this relationship, the proportion of longer range dispersers in the two-type model,
p, decreases as trait variance is increased (additionally, both h; and hy increase).

Differentiating the &™ moment (15) of the gamma trait distribution with re-
spect to 0% gives

%mw = (D + (k= 1)03) (D + (5 — 2)03) - - D? (26)
which can be algebraically manipulated into a polynomial of degree k with positive
coefficients. This shows that each trait moment is an increasing function of trait
variance.

For the uniform two-type trait distribution, set hy = hy = \/0_123 /D. Differen-
tiating the k' trait moment (14) with respect to o2, yields

_ k—1 k—1
a lec—l 2 2
o = <1 Vb ) ) <1 ) _> @

8U2D 41/U2D D D

Because (1 + ho)*=t > (1 — hy)k~1, the right side of (27) is positive. Hence the

trait moments increase as 0% is increased.
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Since the moments of the dispersal kernels corresponding to both example
trait distributions are proportional to the trait moments by (9), all dispersal mo-
ments are increasing functions of variance in diffusivity. Any increase in dispersal
moments results in an increase in wavespeed, hence increasing variance in diffu-
sivity while holding the mean trait constant increases the wavespeed (illustrated
by Figure 3(a)).

Matching the first two dispersal moments of Ks to those of Kr results in
wavespeeds which are close, especially at low reproduction and low levels of het-
erogeneity. As the variance in diffusivity is increased, the disparity in wavespeeds
grows (Figures 3(a)—(b)).

Setting ptg,;3 = g3 as defined by (24) for fixed D and 0% matches the skew-
ness of the two-type trait distribution to that of gamma trait distribution. This
brings wavespeeds for the two models even closer (Figure 3(a)). Analytically
showing that all moments of the skew-matched two-type model are increasing
functions of trait variance proves difficult, however, the results of Section 4 show
that wavespeed is still increased for sufficiently low reproductive rates since the
kurtosis and the sixth moment of the dispersal kernel both increase.

We are free to treat jue, 5 in (25) as a parameter for the two-type model. This
allows the skewness of ¢s to be set lower or higher than that of ¢r. Increasing
the skewness of the two-type trait distribution results in the higher-diffusivity
dispersal phenotype becoming more rare but dispersing much further. If the two-
type trait distribution has a skewness which is larger than that of the gamma trait
distribution allows the two-type model to give larger wavespeeds than the gamma
trait model as long as reproductive rates are low enough (shown in Section 4).
The mean and variance are identical among the two dispersal kernels, however,
the gamma trait distribution always results in a dispersal kernel with a more slowly
decaying tail (Fig. 1, inset panel).

5.2 Long vs. short range dispersal impacts on wavespeed

Past studies of dispersal heterogeneity have often focussed on populations with
distinct long and short range dispersal behaviors. The difference between the
mean dispersal distances of the two behaviors has often been orders of magnitude
as well. For example, the ant-mediated dispersal in Neubert and Caswell (2000)
had an average long-range dispersal distance which was seventeen times that of
the average short-range dispersal distance. This is comparable to one dispersal
morph having a diffusivity which is 289 times that of the low-diffusivity morph.
Wavespeed is essentially determined by this extreme long-range dispersal alone,
even when quite rare. In models with both long and short range dispersers, this
is sometimes shown by calculating the wavespeed with only the (rare) long-range
dispersers while the short-range dispersers are assumed to not disperse (e.g. Neu-
bert and Caswell, 2000). Here we explore how ignoring one or the other dispersal

17



26 . - T .

Trait distribution.

——————
——————

2 5k |—Uniform two-phenotype, T

== Skewed two-phenotype /,——: """"""""
--- Gamma

- et f:::- """""
* e
) 1‘3:; 1111
23
2.2
o2
D
(a)
5 . | | |
4 | ”""':.':.:f':.:.'_'.:,'_-.:.—:.:.—_—.:,—__.:
3 | s o2
*U
2r Trait distribution:
— Uniform two-phenotype
1 ---Skewed two-phenotype |
--Gamma
0 . | | |
2 4 i 8 10
R

(b)

Figure 3: (a) The wavespeed increases with the variance of three trait distribu-
tions (diffusivity is the individual dispersal trait): gamma, uniform two-type, and
skewed two-type (with the skew matched to that of the gamma trait distribution).
R =307, D =71 = 1. (b) The wavespeed increases with reproductive rate R
(D =7 =1, 0% = 0.81). The difference between the wavespeeds given by the
dispersal kernels corresponding to the two-type and gamma trait distributions is
made smaller by matching their skew.
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behaviors in our two-type model might impact the approximation of the wavespeed
for the non-advective case.
The mean absolute distance traveled by a dispersing offspring with diffusivity
22 4D
e bdy =4/ —

D is given by
<
T, = F(|x]) =2 .
p=Ble) =2 [ :

Diffusivity and mean absolute dispersal distance are thus related to each other
through dispersal variance by

(28)

Var(z) = 2D = gff,. (29)
If mean absolute dispersal distances differ by a factor of ten, then diffusivities
must differ by a factor of one hundred. Hence diffusivities differ by twice as many
orders of magnitude as mean dispersal distances.

Consider our two-type model (13). If we assume that only a proportion p of
offspring disperse with diffusivity D, and that the rest of the offspring do not
disperse (remain at the origin as if having a diffusivity of zero), then the resulting
dispersal variance for the entire population is

Var(z) = 2pD. (30)

Now let p be the fraction of high-diffusivity offspring (the fraction of low-diffusivity
offspring is 1 — p) and D; and D, be the diffusivities of the two types of offspring
with low and high diffusivities, respectively.

We now compare wavespeeds for four different populations:

1) Population Py, where fraction 1 — p of offspring are low-diffusivity dispersers
and fraction p are non-dispersers,

2) Population Py, where fraction 1— p of offspring are non-dispersers and fraction
p are high-diffusivity dispersers,

3) Population Pg, where both kinds of dispersers are present in their respective
fractions, and

4) Population P 5, homogeneous with the mean diffusivity D = (1 — p) Dy + pDs.

For a given net reproductive rate R, denote the wavespeeds of the above listed
populations as cj, c3, cp, and cj, respectively. The dispersal variances corre-
sponding to each of the above populations are 0? = 2(1 — p)Dy, 05 = 2pDs,
0p =2(1 —p)D1 +2pD,, and 03 = 2pD.

In field studies, it can be difficult to account for rare long-range dispersal
behavior, yet spread may be largely driven by rare long-range dispersers (Neubert
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and Caswell, 2000). We wish to understand under what conditions the wavespeed
a heterogeneous population is largely determined by only one of the dispersal
types. Hence we examine when the wavespeed of population P (containing both
types of dispersers) is better approximated by that of population Py as opposed
to P;. Using (30) to compare dispersal variances of Py and Py, we can see that if

1—p D,
> — 31
.Dl, ( )

p

then population P, has a larger dispersal variance than population Py. Applying
the results from Section 4, for R sufficiently close to one ¢} is larger than ¢
(again, Appendix A provides more rigorous mathematical justification). Since the
population with both types of dispersers Pp has the largest wavespeed, cj is a
better approximation to c¢j; than ¢5. In order for ¢} to be a better approximation
to ¢ than cj, either there must be a sufficiently large difference between the two
diffusivities (i.e. Ds/D; must be large enough), the fraction p of high-diffusivity
dispersers must be large enough, or the reproductive rate R must be large enough.
Each of these situations results in higher-order moments of the dispersal kernel
having a greater contribution to the wavespeed.

Figure 4 shows the wavespeed divided by ¢} for each of the four populations
plotted against the ratio of the mean dispersal distances of the two dispersal types:
Tp,/Tp,. Ratios are used so that the graph does not depend on the specific value of
D;. As described in the preceding paragraph, we allow one type to disperse while
the other remains at the origin. With R = 1.01 and p = 0.01, the offspring type
that disperses further on average (higher diffusivity) must have a mean dispersal
distance of more than 8.55 times that of the less diffusive type in order to better
approximate the wavespeed of the population with both types. Since diffusivity
is proportional to the square of the mean dispersal distance (29), the longer range
dispersing type must possess a diffusivity of more than 73 times greater than that
of the low-diffusivity type for ¢ to better approximated cj; than ¢;. In order to
consider the long-range dispersal behavior as the primary driver of spread — i.e.
that ignoring all but the long-range dispersers has little impact on wavespeed (e.g.
Neubert and Caswell, 2000) — the higher of the two diffusivities should probably
be well beyond two orders of magnitude greater than the lower.

When the long-range disperser only travels an order of magnitude further than
the short range disperser, most of the increase in wavespeed could be explained
by the increase in the mean diffusivity trait (and hence explained by dispersal
variance, as shown by (9)). This is evident from Figure 4 since ¢ becomes a
better approximation to ¢ than ¢}, only once Tp, is greater than 16.7 times Tp, .
Even when the higher diffusivity is just over two orders of magnitude greater than
the lower diffusivity, most the the increase in wavespeed could be explained as
being due to the increase in the overall dispersal variance.
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Figure 4: Wavespeed divided by cj for each of the four models is shown as a
function of the ratio of the mean dispersal distances of the two dispersal types.
The probability of high-diffusivity is p = 0.01 and the net reproductive rate is
R = 1.01; D, is fixed and D, varies from 1 to 625 times D;, which corresponds
to a mean dispersal distance ranging from 1 to 25 times Zp, (see Equation (29)).
Wavespeed ¢ is shown for P (the heterogeneous population with both types), ¢}
and ¢} for Py and Py (the populations with only one type dispersing while the other
type stays at the origin) , and c}, for Pp (the homogeneous population with the
mean diffusivity trait). The overall mean dispersal distance of the heterogeneous
population increases as Tp, /Tp, increases. The high-diffusivity dispersal type
must have a mean dispersal distance that is sufficiently higher (about 8.55 times
higher with the given parameters) in order for its contribution to wavespeed to be
greater than the low-diffusivity type. This gives the high diffusivity Dy as being
greater than 73 times Dy, nearly two orders of magnitude.
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5.2.1 Sensitivity to range and proportion of long-range dispersers

It has also been shown in a number of ecological examples that wavespeed is more
sensitive to the range of the long-range dispersers than to the fraction of long-
range dispersers (e.g. Neubert and Caswell, 2000). We now establish this more
generally but also show when it does not hold. To understand this, consider the
moment generating function of the model with both types of dispersers:

M(s)=(1- p)652D1 +pes2D2.
The 2k central dispersal moment is given by
Moy, = (1 — p)(2k — 1N2¥DF + p(2k — 11125 Dk

and is linear in p and a polynomial of degree k in diffusivity (a similar statement
is true for Laplace dispersal kernels).

Instead of analyzing the sensitivity of wavespeed to p and D, directly, we
derive the sensitivity and elasticity of the dispersal moments. Because an increase
in any dispersal moment directly causes an increased wavespeed (so long as no
other moment decreases), knowing the sensitivity of each moment is to p and Ds
gives important information about the sensitivity of ¢*.

The sensitivities of mo; to p and D, are

9, DY
g, = (2k — D)N12kDE (1 - =L 32
oo = (2~ 120 (1= 2 (32)
9 p = p(2k — DN2FE DA (33)
aDQ 2 .. 2 .
Comparing (32) and (33) shows that msy is more sensitive to Dy than to p if
DY pk
- < = 34
D5 = D, (39

Recall that Dy > D1, thus the left side is less than one. For fixed p and Ds, as
long as k is large enough, (34) holds. However when p is extremely small or Ds is
large, only moments of very high order are more sensitive to Dy than to p, hence
moments of sufficiently low order can be more sensitive to changes in p than D,.

Multiplying (32) by p/may and (33) by Dsy/may, gives the elasticities of moy
to p and Dsy, respectively. Comparing these elasticities shows that mg; is more
elastic to changes in Dy than to p if

k

D
1- =L <k 35
D§< (35)

which holds for all £ > 1. All moments are more elastic in D, than p.
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Increasing either p or Dy results in all dispersal moments increasing. However,
we have shown that when R is close to one, low-order moments are important in
determining wavespeed. Since low-order moments can be more sensitive to small
changes in p than D,, wavespeed may be more sensitive to changes in the propor-
tion of long-range dispersers than to their range of dispersal when reproductive
rates are low. This conclusion is strengthened further when the proportion p is
already extremely small or the range of dispersal is large (Ds large). Considering
elasticity and relative changes in p or Dy, wavespeed is always more sensitive to
the range of the long-range dispersers than to their proportion.

We can also understand the disparity of effects on wavespeed between increases
in p as opposed to increases in Dy at high reproduction by noting that the shape
parameter s’, which gives the shape of the invading wave-front, increases as R
increases (the invasion wavefront becomes more ‘compressed’ with a steeper ex-
ponential shape). When R is close to one, the wave is more spread out with a
less-steep exponential shape. Higher-order moments in the power series represen-
tation of moment-generating function (3) are multiplied by higher powers of s,
and when R is close to one, s} is close to zero thus making higher-order moments
less important.

5.3 Heterogeneity in an advective environment

Now we study the effects of dispersal heterogeneity on wavespeed and on the
critical reproductive rate in an advective environment. Dispersal heterogeneity is
found to reduce the critical reproductive rate required to persist in the face of
advection, and at high advection speeds the reduction is found to be large.

When advection is present, the moment generating function of the dispersal
kernel is that of the displacement kernel multiplied by e**: Mg(s) = My(s)e.
Minimizing (20) in order to find the wavespeed shows that dispersal heterogeneity
increases wavespeed in an advective environment for our two example trait distri-
butions ¢s (13) and ¢r (12) since it increases wavespeed when advection is absent
(see Section 5.1).

In an advective environment, dispersal heterogeneity reduces the critical net
reproductive rate for population persistence for our two example trait distributions
(Figure 5) as could be anticipated with increasing the wavespeed (Figure 3(a)).
At low advection speeds, heterogeneity has little impact on R* (Figure 5(a): as o%
increases from 0 to 1, the quantity R* — 1 decreases by about 7%). If the two-type
trait distribution has the same skewness as the gamma trait distribution, then the
critical reproductive rates resulting from each is quite close (Figure 5(a)). Thus
at low advection speeds, knowing the first few moments of dispersal may allow a
sufficient approximation of the critical reproductive rate. Higher-order moments
have more influence on persistence at high advection speeds and heterogeneity can
cause a dramatic reduction in R* (Figure 5(b)).
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For a population living in an environment with strong advection speeds and
making a slow upstream advance or getting washed out due to a reproductive rate
which is too low, heterogeneity could make all the difference needed to allow for
persistence. When advection is strong, a small increase in dispersal heterogeneity
causes a large reduction in the critical reproductive rate for our two example
trait distributions (Figure 5(b): as 0% increases from 0 to 1, the quantity R* — 1
decreases by about 80%).

A strong advective current is needed to show a noticeable difference between
the two-type and gamma trait cases when the skewness of the trait distributions
is identical, as is evidenced by comparing Figures 5(a) and (b). This illustrates
the importance of low-order moments as discussed in Section 4.

6 Discussion

Using a one-dimensional integro-difference model, we investigated the effects of de-
mographic heterogeneity on asymptotic wavespeed and on the critical (minimum)
reproductive rate needed for persistence in the face of advection. We assumed
that the diffusivity of individual organisms was determined by a trait distribution
and derived a general relationship between the moments of the dispersal kernel
and those of the trait distribution. We showed that dispersal heterogeneity causes
dispersal kernels to appear leptokurtic, increases the population’s spread rate,
and lowers the critical reproductive rate required for persistence in the face of
advection.

Our analysis also revealed some general insights into the determinants of the
speed of population spread: (i) when the net reproductive rate is close to one, the
first few moments of the dispersal kernel determine the wavespeed; (ii) with large
reproductive rates, the shape of the tail of the dispersal kernel strongly influences
wavespeed. In many previous studies, wavespeed has been described as being
highly dependent on the dispersal kernel tail, an observation largely influenced
by the fact that distributions with tails that are not exponentially bounded may
lead to accelerating waves (e.g. Kot et al (1996)). In contrast, Lutscher (2007)
showed that including kurtosis to a moment-based approximation improved ac-
curacy. Our results show that neither kurtosis nor tail decay rate universally
determine wavespeed in models with exponentially bounded kernels since a low-
order dominant kernel can produce higher wavespeeds at low reproductive rates
(see Section 4).

Reproduction and dispersal behavior both impact the shape of an invasion
wavefront. For a more ‘spread out’ wave (small s* shape parameter) as occurs with
low net reproductive rates, low-order moments significantly influence wavespeed
(see Appendix A). Increasing the level of heterogeneity in the population strongly
influences wavespeed in this situation. Larger net reproductive rates typically lead
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Figure 5: The critical reproductive rate is a decreasing function of diffusivity
variance at (a) weak (1 = —1), and (b) strong (1 = —4) advection speeds.
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to fast moving, ‘tightly packed’ invasions (large s*) of highly fecund individuals, in
which higher-order moments of dispersal are important in determining wavespeed,
and thus slower tail decay of the dispersal kernel can become important.

Rigorous assessment of the importance of rare long-distance dispersers in deter-
mining invasion speed (e.g. Neubert and Caswell, 2000) is hampered by linguistic
vagueness around the terms “rare” and “long-distance”. Even if “rare” means a
frequency on the order of 0.01, then the long-distance dispersers need to disperse
on average an order of magnitude further than the typical individual in order to
be the primary source of population spread. Furthermore, we have shown that
such results are only unequivocal when net reproductive rates (which include sur-
vival to adulthood) are high. High reproductive rates are not characteristic of all
species; furthermore, fast growing populations would rapidly experience density
dependence, which is absent from the present analysis.

Our current study is limited to trait distributions whose moments are all in-
creasing functions of trait variance. Since heterogeneity increases all trait mo-
ments, it increases all dispersal moments (9). This increase in dispersal moments
directly results in increased wavespeeds. However, selective pressure which changes
the distribution of traits within an ecological population is not guaranteed to act
in such a simple way. If trait variance increases and the mean trait remains un-
changed, higher-order moments of the trait distribution may either increase or
decrease. Even if heterogeneity decreases all higher-order moments, it is only
transforming a high-order dominant kernel into a low-order dominant kernel. Our
results in Section 4 show that for low reproductive rates, this still results in in-
creased wavespeeds.

Ellner and Schreiber (2012) explored temporal variability (as opposed to the
form of heterogeneity we study here) in dispersal in integro-difference models,
but also included heterogeneity in individual dispersal in one of their models.
Comparing both panels of Figure 1 in Ellner and Schreiber (2012) suggests that
increasing heterogeneity increases wavespeed, but the authors do not discuss this.
Indeed, their figure suggests that heterogeneity has a larger impact on wavespeed
than temporal variability (the focus of their study), which we can understand by
considering the underlying averaging processes. For simplicity, consider a popula-
tion which alternates seasonally between long (L) and short (S) range Gaussian
dispersal (with respectively high and low diffusivities). The wavespeed in this
case is determined by using the geometric average of moment generating func-
tions, Mry = /M (s)Mg(s) for M(s) in Equation (4) where M, and Mg are the
moment generating functions corresponding to the long and short range disper-
sal years, respectively (Ellner and Schreiber, 2012). In contrast, a heterogenous
population in which both diffusivities are present in each season results in an
arithmetic average of moment generating functions: My = (M. (s) + Ms(s)).
One can see that Mpy(s) < Mpyg(s) for each s by the standard comparison of
arithmetic and geometric means. Hence the minimum wavespeed corresponding
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to Mpy will be less than that for My. This shows that dispersal heterogeneity
where individuals with high and low diffusivity are present simultaneously results
in a higher wavespeed than if the population were to seasonally alternate between
high and low diffusivity. In particular, for mean-zero Gaussian dispersal, a quick
calculation shows that temporally alternating between long and short range dis-
persal behaviors (high and low diffusivities) gives an asymptotic wavespeed which
is identical to that using the average of the two diffusivities. However, as we have
shown in this paper, if individuals of both diffusivities disperse in each time-step,
then asymptotic wavespeed increases dramatically.

If heterogeneity in the time spent dispersing 7 is included in our two-type
model with advection, then a skewed displacement kernel results, and increasing
the magnitude of heterogeneity in 7 leads to the more diffusive phenotype drifting
further downstream on average. Skewed kernels, such as the asymmetric Laplace
(Lutscher et al, 2005; Lutscher et al, 2010), have dispersal moments of alternat-
ing sign and may make moment approximating methods of little value when the
skewing is sufficiently strong. Further work is needed to understand the impact
of heterogeneity when displacement is not symmetric about the mean dispersal
location.

Dispersal ability might also be correlated with demographic rates. Hetero-
geneity in survival is known to cause ‘cohort selection’; irrespective of the initial
composition of a cohort, as it ages it will become increasingly dominated by in-
dividuals with a higher propensity to survive (Vaupel and Yashin, 1985). This
causes an increase in population growth rate for density-independent populations
(Kendall et al, 2011) and an increase in equilibrium population size under density-
dependence (Stover et al, 2012). Through its impact on growth rate, demographic
heterogeneity will affect spread rates. A positive correlation between dispersal
ability and survival — which might result from dispersing individuals reaching
higher quality sites (Lowe, 2010) — may cause a further increase in wavespeed be-
yond that due to either type of heterogeneity acting alone. However, a trade-off
between dispersal ability and survival could result in a decreased wavespeed such
as might occur if individuals dispersing further were at increased predation risk.
A trade-off between reproduction and dispersal ability may also exist (Simmons
and Thomas, 2004). How this trade-off impacts wavespeed and persistence likely
depends on its strength, but if it is strong enough, reduced fecundity may reverse
any benefit of further dispersal. This provides an number of interesting topics for
future work.

Another important avenue for future research is to determine how the inclu-
sion of heritability impacts our results. Our models were unstructured and only
required a suitably constructed dispersal kernel for analysis, however introducing
parent-offspring correlations results in a structured population. Analysis should
be possible using the methods developed in Neubert and Caswell (2000). As long
as offspring are not identical to the parent (in which case two non-interacting
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invasion waves result), results in Neubert and Caswell (2000) suggest that asymp-
totically, the fraction of individuals in each dispersal phenotype will be the same
throughout the invasion front. This contrasts with the biological intuition that
the faster dispersers should occur at increasing frequency the further out one looks
along the leading edge of the invasion. If a simple form of heritability is included
in our example models, increasing the magnitude of dispersal heterogeneity still
increases the wavespeed in the non-advective case and decreases the critical repro-
ductive rate in the advective case. However, a general analysis of how dispersal
heterogeneity impacts wavespeed and persistence when traits are heritable may
require different analytical techniques and is left open for future exploration.

Population spread is a complex ecological process involving an interplay be-
tween a number of factors including heterogeneity, reproduction, and dispersal
behavior. Our results have shown that a higher frequency of long-range dispersal
events is not enough on its own to produce larger wavespeeds in all ecological
scenarios — this is especially true at low reproductive rates. Our purpose is not to
de-emphasize the role of long-range dispersal but to call for careful attention to
the specifics of each situation. A greater wavespeed may simply be due a single
low-order moment such as variance or kurtosis irrespective of long-range dispersal.
The existence of heterogeneity in the dispersal behaviors of natural ecological pop-
ulations and its ability to alter the shapes of dispersal kernels further reinforces
this call for attention to detail when studying invasion speeds and persistence in
the face of advection.
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A Appendix: moments and wavespeed

In this appendix, we will show that a dispersal kernel with faster tail decay can
result in larger wavespeeds than a kernel with a more slowly decaying tail as long
as the reproductive rate is sufficiently small.

Let M;(s) and My(s) be two moment generating functions for mean-zero, ex-
ponentially bounded, symmetric dispersal kernels fi(x) and fy(x) respectively. We
assume that fo(z) > fi(x) for x > y > 0 and that fo(z) < fi(z) for some z < y.
Only a finite number of moments of f; can be less than those of f; (see A.1 below).

The 2n'™ moment of a distribution f is defined as m;q, = o fi(z)dz.

—0o0
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We further assume that the first £ — 1 even moments of the distributions are the
same (all odd moments are zero), but that the 2k moment of f; is larger than
that for fo. We drop the first subscript on the first £ — 1 moments since they are
equivalent among the two kernels to get:

2 et 52(k=1) 52k > 527
M- =1 — — .. [T - .
() = Lma oy +mag oo mage) a0 1))!+m172k(2k)!+j;1m172j Ohl
(36)
2 84 82(k—1) SQk’ 0 52]'
M. =1 — —t... [ — - -
2(8) +mo ol +my A1 + +m2(k 1) (2(k — 1))' —|—m2,2k (2k)' + Z Mg 2; (2])|
Jj=k+1
(37)

We know that my o > mg 9y, and the rest of the moments can have any arbitrary
relationship as long as some K exists such that m; 9; < mgg; for all j > K.

M, (s)—Ms(s) = ((ml,zk — My k) + j;l(ml,zj - m2,2j)(2’f)!5(237_.)!> % (38)

For s small enough, M;(s) — Ma(s) > 0 because the dominant term becomes
that with the 2k moment m; o, which is larger for f;. However M;(s) < My(s)
for s large enough, since the higher-order moments of f, are larger. Thus § exists
such that M;(8) = M(8) and that M;(s) > My(s) for 0 < s < § and that
M;(s) < Ms(s) for § < s < § (for some § — depending on the precise relationship
among the moments, it may be possible for the moment generating functions to
cross at multiple points).

For any given reproductive rate, R:

¢(3;R) = c1(5; R) = éln (RMy(3)) =

Wy | =

In (RM3(8)) = c2(8; R), (39)

and ¢;(s; R) > co(s; R) for s < 5. The wavespeed is defined as

¢ = e(s'; R) = min {% In (RMi(s))}. (40)

As R goes down to one, both s and s go to zero since R = 1 corresponds to
a wavespeed of zero with a shape parameter s* = 0. So for R sufficiently close
to one, we can get s and s} as close to zero as we like (see Appendix A.2) and
hence both smaller than s. Because both critical shape parameters are in the
region where ¢;(s; R) > ca(s; R), ¢; > ¢5. This shows that a dispersal kernel with
a ‘thinner’ tail can give a larger wavespeed than a dispersal kernel with a ‘fatter
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tail” as long as the former dominates the latter in lower-order moments and that
the net reproductive rate is sufficiently close to one.

When the mean dispersal location is negative, the critical reproductive rate
is greater than one and the above argument does not apply since s* does not
approach zero as R goes down to R*. However as long as the mean dispersal
location is close enough to zero, R* is close to one, and for a fixed R close enough
to R*, f1 gives larger wavespeeds than f.

A.1 Miscellaneous moment calculations

High-order moments tend towards infinity Here we show that the mag-
nitude of a probability distribution’s moments grows unboundedly as we look at
higher and higher order moments.

To see that the 2n'* moment goes to infinity as n — oo for a symmetric kernel
f which has support for > 1, find j > 1 such that f(x) > C; on the interval
(j,j +1). The 2n' moment is my, = 2 [;° «*"f(x)dz. This integral is then
bounded from below by 2j2"C;. As n — 0o, ma, > 2j*"C; — oo which proves the
result.

High-order moments are larger for slower decaying tail In this section,
we show that if one dispersal kernel is eventually above another fo(x) > fi(x) for
all x greater than some y, then the higher order moments of f, are all larger than
those of f; (for sufficiently large order). This is a somewhat looser requirement
than f5 having a slower tail decay rate, which may involve showing that the ratio
fi(z)/ f2(x) goes to zero as z goes to infinity.

Assume that symmetric, mean-zero, exponentially bounded kernels satisfy
fa(z) > fi(z) for all x > y. Also assume that the minimum of fo(z) — fi(z) =
—C < 0 for 0 < z <y. For the interval 0 < z < y, 2?"(fo(z) — fi(z)) > —Cy*",
and for © > y, 22"(fo(x) — fi(z)) > C2*" assuming that fo(z) — fi(z) > C for
z < x < z+1 given some z > y.

maen = mian) = ["a (i) e+ [ o () A

> _Cy2n+1 + CerQn

Because z is greater than y, n being large enough ensures that Cz2n — COy?ntt

is positive, demonstrating that all higher-order moments of fy(x) are larger than
those of fi(x).

A2 AsR\1,c¢c—=0and s*—0

As the net reproductive rate R goes down to one, we will show that the wavespeed
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c* goes to zero and the corresponding critical shape parameter s* also goes to zero.

Let R, be a decreasing sequence of reproductive rates which converges to one.
The moment generating function for some mean-zero, symmetric, and exponen-
tially bounded dispersal kernel is

2

Aﬂgzymm%+~-

When s is near zero, the moment generating function is near one and is thus
M(s) =1+ O(s?). The power series expansion of the natural logarithm is In(1 +
z) = x — 32 + -+, thus In(M(s)) = O(s?). Now we look at the sequence of
functions

%@zémmﬂﬂm.

It is clear that ¢,(s) > ¢,+1(s) for any n and for any s because R, is a decreasing
sequence and the natural logarithm is a monotone function.

Following a standard analytical technique, for any ¢ > 0, choose an s close
enough to zero such that LIn(M(s)) = O(s) < §. Because R, — 1 and for
the fixed value of s we just chose, a natural number N can be chosen such that
$In(R,) < § for any n > N since In(R,,) can be made as close to zero as we like.

Now we have established that, for the sequence of functions ¢, (s), we can

choose an NV and a fixed s such that for any n > N,

1 1 € €
=—-In(R —In(M < -+ =-=¢
n(s) = ~In(R,) + - In(M(s)) < S+ =
Because ¢,(s) < € at some s, its minimum is also less than e. Thus we can choose
R close enough to one to make the wavespeed as close to zero as we like.
Using the parametric representation (6) and letting R go down to one:

_ M'(s*)
M (s*)

Since the moment generating function M(s) is positive and monotonically increas-
ing in s (hence M'(s) > 0 for any s > 0), as R goes down to one, M'(s*) must go
to zero. This happens only if s* — 0.

Now we have established that for any exponentially bounded, symmetric dis-
persal kernel with mean-zero, we can choose a R close enough to one to give s* as
close to zero as we like.

*

— 0.
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