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ABSTRACT OF THE DISSERTATION
Understanding Spatiotemporal Boundary Formationc®sses, Models, and Scope
by

Gennady Erlikhman

Doctor of Philosophy in Cognitive Psychology
University of California, Los Angeles, 2014

Professor Philip J. Kellman, Chair

Often, differences in luminance, color, texturej a@epth can help us determine object
boundaries. However, when two surfaces have sitaldures, as in the case of camouflage, or
under dim lighting conditions, object segmentatian be difficult. In such cases, motion leading
to the gradual accretion and deletion of textufermation on a farther surface by a nearer one
can be used to define the nearer object’s bounttargs been demonstrated that accretion and
deletion is but one of a general class of textlgment transformations that can give rise to the
perception of illusory contours, global form, ardlml motion. This general process is called
spatiotemporal boundary formation or SBF.

In the first chapter, | demonstrate two novel prtips of SBF. First, SBF can be seen
when element transformations are displacemen@ndam directions. Second, global forms can
be seen even when SBF-defined objects are rotakpgnding or contracting, accelerating, or
smoothly deforming from frame to frame. | considdwo-stage model of SBF that can account
for the perception of illusory contours and glofmam. In the first stage, oriented edge fragments

are extracted locally from the sequential transttram of at least three elements in a small
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spatiotemporal neighborhood. In the second sthgsgetfragments are integrated and missing
regions are interpolated by the same processegakiatn spatiotemporal interpolation between
contrast-defined edges.

Chapter 2 tests the first stage of this modeleated a display in which small circular
elements were arranged in a sawtooth pattern aagbpear and reappear one at a time in
sequence. The resulting percept was not of apparetion, but of an illusory bar that occluded
elements one at a time. Using both subjective d&ectve methods, | identified the spatial and
temporal parameters under which SBF occurs. Therexpnts provide support for models of
SBF that begin with extraction of local edge fragitseand identify minimal conditions required
for this process.

In the final chapter, | implemented the first sta¢he SBF model and used it to predict
edge orientations of SBF-defined edges. Model amdam performance were compared in an
orientation discrimination task as a function @reéent density, number of element
transformation, and frame duration. The ideal ollsemodel was able to perfectly predict edge
orientation while human performance was suboptitnadnsidered several constraints and
sources of noise that could contribute to diffeemnlbetween human and ideal performance. In a
second experiment, | measured the sensitivity &iapand temporal display properties that may
have acted as sources of noise. A model that incatrgd these constraints and sources of noise
was able to model human performance very closdly mo additional free parameters. The
behavioral and modeling work provide the first engail evidence in support of the two-stage

model of SBF.
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having a different value for that property (e.gl cércles inside the boundary and green outside).
As the virtual object moves, elements enteringatvendary of the square become white and
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confidence intervals. The dotted gray bar indicatence performance (10%).

Figure 1.6.Shape identification accuracy in Experiment 2 saijgar by shape and element
quantity (low = 529, medium = 900, and high = 1@0£ments) and collapsed across subjects.
The dashed gray line indicates chance performa&itape names correspond to the shapes
shown in Figure 1.2 starting at the top-left corakthe figure and proceeding left-to-right and
top-to-bottom.

Figure 1.7.Shape identification sensitivitd’() in Experiment 2 separated by shape and density
(low =529, medium = 900, and high = 1600 elemeats) collapsed across subjects.

Figure 1.8.Percentage of morph between target shape and asbidgge when subjects initiated
a response (response time corrected, see texfuastion of element quantity. Subjects were
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target shape. Values closer to 100% indicate greasponse precision. Data are shown for
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Figure 2.1.An example of three frames from a typical SBF digpIThe virtual object, a square,
is indicated by the dashed line. Elements insideothject boundary are white, indicating that
they share some surface property (e.g., colorntaimn, shape), while those outside are black,
having a different value for that property (e.gl oércles inside the boundary and green outside).
As the virtual object moves, elements enteringatvendary of the square become white and
those exiting become black. Figure adapted fromr@i@ on p. 5 of Shipley T. F. & Kellman, P.
J., (1994) Spatiotemporal boundary formation: Baugdform, and motion perception from
transformations of surface elementsurnal of Experimental Psychology: Gener3(1), pp.
3-20.
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Chapter 1: Non-Rigid lllusory Contours and Global Shape Transformations
Defined by Spatiotemporal Boundary Formation

Abstract

Spatiotemporal boundary formation (SBF) is the gption of form, global motion, and
continuous boundaries from relations of discret@ngfes in local texture elements (Shipley &
Kellman, 1994). In two experiments, small, circukxture elements underwent small
displacements whenever an edge of an invisibléu@lr object passed over them. Unlike
previous studies that examined only rigidly tratisiobjects, we tested virtual objects whose
properties changed continuously. Experiment 1 destgd objects that changed in orientation,
scale, and velocity. Experiment 2 tested displags transformed non-rigidly across a series of
virtual object shapes. Results showed that robBEt&-curred for all of the rigid
transformations tested, as well as for non-rigitizal objects, producing the perception of
continuously bounded, smoothly deforming shapess&movel illusions involve perhaps the
most extreme cases of visual perception of contisdmundaries and shape from minimal
information. They show that SBF encompasses a waigge of illusory phenomena than

previously understood, and they present substastialenges for existing models of SBF.

Introduction

How do we perceive the boundaries of objects? iBhiirst of all, a question of what
information is available in the optical input teethyes. Often, objects differ from their
backgrounds or other objects in surface charatitesjtshese differences produce discontinuities
in luminance, color, or texture in their retinabctions. In ordinary environments (as opposed
to pictures), there also tend to be depth discaiti@s at object boundaries. These are manifest

optically in stereoscopic disparities at boundaagsvell as through changes in relative motion
1



of points along a boundary during object or obsemetion.

In many situations, however, discontinuities inststimulus properties are insufficient
to reveal the complete boundaries of objects. Mestasive are cases of occlusion, in which
parts of an object’s boundaries do not projechtodye due to a nearer, interposed object.
Likewise, under conditions of camouflage, objectate properties may closely match
properties of the background. Perception of conepbéiects in such cases depends on
interpolation processes, as have been investigrathe perception of partially occluded and
illusory contours and objects (e.g., Kanizsa, 1Mi@hotte et al, 1954; Kellman, Garrigan &
Shipley, 2005; for a review, see Shipley & KellmaA00). Experiments and models in this area
have revealed a great deal about how the visutdsygoes beyond local visual information and
uses spatial and temporal relations among physgisp#cified edges to determine the occurrence
and positions of interpolated edges.

These processes are used pervasively to overcomgeo patterns of occlusion in in
ordinary environments; yet perceiving object bouretacan be even more difficult. Suppose
thatno oriented edge fragments are visible. This can occocamouflage, or more frequently,
under dark viewing conditions, where a few spalsments or features may be all that can be
detected from the surfaces of objects or backgreu@ison, Kaplan, Reynolds & Wheeler
(1969) showed that even under such impoverishedmistances, objects with continuous
boundaries can be perceived. Under conditionslafive motion of objects and observers, an
object and its background undergo accretion anetidel of texture elements (Kaplan, 1969;
Gibson, Kaplan, Reynolds & Wheeler, 1969). Accretimd deletion of even sparse texture
elements on a farther surface by a nearer oneiearrige to the perception of continuous

boundaries, shape, and the relative depth of thestwfaces (Anderson & Cortese, 1989;



Braunstein, Andersen, & Riefer, 1982; Gibson, KapReynolds, & Wheeler, 1969; Kaple
1969; Ono, Rogers, Ohmi, & Ono, 1989; Rogers & @mahl1983; Yonas, Craton, & Thomsp:
1987).

Shipley &Kellman (1993, 1994, 1997) revisited accretion dakbtion of texture an
showed that it is just one example of transfornmtithat can serve as the input to a more ge
process, which they callegpatiotemporal boundary formati (SBF). They hypottsized that
the crucial information for boundaries and shapaderetion and deletion is not the grac
covering or uncovering of texture elements, butféoe that those events are encoded as a
transformationsgpatiotemporal discontinuiti) in local visible elements. If this more gene
idea is correct, then transformations of other progs of local elements should also be cap
of producing visual perception of continuous comspghape, and relative motion. Tt
experiments revealed thdiscrete appearance and disappearance of texameets, not jus
gradual covering or uncovering, produced SBF. Col@ange also produces SBF. Moreove
whole range of ecologically bizarre transformatidnsluding orientation change, positi
chang (local element motion), and form change (of elas)ealso produce SBF. Figtl.1
shows an example of SBF displays. All element fansations were unitary and discre

meaning that they occurred instantaneously witpartial covering of the textu elements.

FRAME 1 FRAME 2 FRAME 3
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Figure 1.1.An example of three frames from a typical SBF digplThe virtual object, a square,
is indicated by the dashed line. Elements insigeothject boundary are white, indicating that
they share some surface property (e.g., colorntaimn, shape), while those outside are black,
having a different value for that property (e.gl cércles inside the boundary and green outside).
As the virtual object moves, elements enteringabnendary of the square become white and
those exiting become black. Figure adapted fromriei@ on p. 5 of Shipley T. F. & Kellman, P.
J., (1994) Spatiotemporal boundary formation: Baurggdform, and motion perception from
transformations of surface elemerntsurnal of Experimental Psychology: Gene3(1), pp.
3-20.

As indicated in Figure 1.1, SBF occurs for bothdirectionalandbidirectional
transformations. In unidirectional displays, eletseantering a specified virtual region all
change their feature values in the same way. Famele, in a unidirectional color change
display, a virtual region moves among an array lotevdots against a black background. Dots
change from white to blue upon entering the virtegion and change back from blue to white
upon exiting. Unidirectional color change displéngve been extensively studied by Cicerone,
Hoffman and colleagues, with an emphasis on peedetolor spreading within such displays
(Cicerone, Hoffman, Gowdy, & Kim, 1995; Cicerones®ffman, 1997; Fidopiastis et al., 2000;
Miyahara & Cicerone, 1997; see also, Cicchini &ll8pan, 2013; Gephstein & Kubovy, 2000).
One feature of such displays is that in static gieavregion corresponding to the virtual region
(albeit with unclear boundaries) can be segregated the background. lhidirectional
displays, all texture elements are randomly assigme of two feature values, so no such region
is visible in any static view. Elements switch v@duwhen entering or exiting the virtual region.
In a bidirectional color display, an array contamblue and white dots would be given, and
when the virtual region passes over dots, the wdots turn blue and the blue dots turn white.
Bidirectional displays also support SBF, produdimg perception of continuous contours,

complete shape, and global motion, but with no rcepweading. The lack of uniform color

across elements within the perceived shape’s boiasdappears to prevent perceptual surface



formation. In SBF displays of this sort, ring-likkjects with an empty interior region are seen.
Besides homogeneous color, it appears that comnaodiomof interior elements can also
produce perception of a surface (Shipley & Kellmi®94), as in classical accretion-deletion

displays.

Ecology and SBF

Some transformations that produce SBF could artsa physical events involving real
objects and surfaces. Ignoring for the moment tendtion between discrete and gradual
element changes, both element disappearance amdcbainge are ecologically natural events.
As recognized in the pioneering work of Gibson, kKapReynolds & Wheeler (1969), relative
motion between an opaque object and a texturedgbawid surface will lead to disappearance
(covering) and reappearance of texture elementpleyh& Kellman (1994) noticed that
accretion-deletion displays are also consistertt aiit alternative, ecologically plausible
interpretation. In a display with white visible glents and black surround, the white dots could
be holes in a black surface, allowing visibilitydbgh the holes of a more distant white surface.
The element change of disappearance in such agisplld be occlusion of the white surface
by a moving black object situated behind the fildatk surface and in front of the more distant
white surface. This alternative physical arrangetemd the occasional appearance of SBF
displays as containing an occluded object, has tsenssed by Cicerone and Hoffman (1997)
in the context of unidirectional color changes ¢cdfom motion). It corresponds to a similar
parallel between ordinary partly occluded objecis élusory objects, which has been described
previously (Kellman & Shipley, 1991). The reverstlgiof common illusory figures displays has
been one of several bases for theories positirggrammn mechanism underlying illusory and

occluded contour perception (Shipley & Kellman, 298ee Kellman, Yin & Shipley, 1998 or



Kellman, Garrigan & Shipley, 2005 for more detaitBgcussion). Unidirectional color change
displays (e.g., when elements change from whitdue upon entering the virtual region) are
also ecologically plausibfeThey could occur as modal completion if a bluanstucent filter,
having the shape of the virtual region, passedantfof the array of elements. An ecologically
plausible amodal version would occur under theucirstances described earlier for element
disappearance, except that here a blue objecgrrdthn a black one, is seen through holes.

In contrast to unidirectional color change, most&nt changes that support SBF could
not arise ecologically from relative motion of doject and its background. For example, Shipley
& Kellman (1994) showed that SBF is produced wheiamay consists of small horizontally and
vertically oriented rectangles, and the elemenhgha consisted of orientation changes, such
that a moving virtual region cause vertical eleraeuatn to horizontal andce versalikewise,
bidirectional color changes are not consistent aiti surface moving over a background nor
with an amodal version, in which a moving formees through apertures. Most relevant to the
current studies is the fact that SBF can be pradifroen local element displacements (Shipley &
Kellman, 1993, 1994). This is perhaps the most rkatde element transformation that evokes
SBF, because the local motions used as the eldnaestormation bear no relation to the global
motion of the form that is seen. The form and glabation are resultants or spatial and
temporal relations of element transformationsnasther SBF cases; the fact that the elements
themselves move are incidental (see Movie 1.1taxample). One might think that these local
motions would degrade the information about shag@BF displays, but this does not appear to

be the case.

1 Note that element disappearance is also an example of unidirectional color change; it is a special case in
which the element changes to the background color.
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Unlike kinetic or static illusory contours, or pgroccluded contours, in SBF displays, no
visible oriented contour fragments are requiredrtmduce contour and object perception. In fact,
SBF occurs even in sparse displays, in which elésnmecupy as little as 1% or less of the total
surface area. For these reasons, along with théhaicSBF occurs under many conditions that
are ecologically bizarre, SBF might be consideredmost extreme case of perceptual illusion in
the construction of contours and objects. Percetegdiours and shape are even more illusory
than typical illusory contours, because so muatreated from so little. Of course, as with most
illusions, SBF may be seen as a byproduct of thehar@sms by which the visual system copes
with the need to recover objects from informatibattis fragmented in space and time (Shipley

& Kellman, 1994).

The aperture problem in SBF

In SBF, the only information available that canused to recover moving contours are
the positions and relative timing of abrupt elentesmisformations. This presents a seemingly
impossible version of the aperture problem. Indlassic version (Wallach, 1935; Adelson &
Movshon, 1982; Nakayama & Silverman, 1998a, 1993tnojo, Silverman, & Nakayama,
1989), when an object’s boundaries are seen throagty small apertures, the visual system
must determine the combined velocity structure ahynspatially discrete, oriented contour
segments whose global velocity is ambiguous. Foin edge segment, its orientation and
orthogonal motion velocity is available within thperture. In SBF, the apertures are local
elements that change discretely in some properjik& classic apertures, these changes by
themselves do not produce any perception of a ngastlge fragment. Moreover, a moving edge
fragment in a classical aperture provides cleamnation information and constrains the

directions of its movement to a 180 degree rang#vidual element changes in SBF provide no



orientation information and no usable global motigiormation. Depending on the
transformation used to produce SBF, there may ohtte=al orientation changes (when
orientation change is used) or local motions (wilement displacement is used), but these
events not only provide zero information aboutrgéa form and moving contours, they provide
what would appear to be contradictory informatidhis more extreme version of the aperture
problem in SBF has been referred to as the “p@ettare problem” (Prophet, Hoffman, &
Cicerone, 2001).

One proposed solution relies on an intersectiatooktraints (Kellman, Erlikhman,
Mansolf, Fillinich, & lancu, 2013; Shipley & Kellnma 1994, 1997). Successive transformations
of texture elements produce velocity signals thatdetermined by the spatial and temporal
separation between transformation events. The Wglacientation, and global motion direction
of a region boundary are constrained by these lsgRar example, consider several one-
dimensional strips of evenly spaced texture elemantlifferent orientations relative to the
region boundary. Element transformations will ngst along the strip that is orthogonal to the
boundary, revealing the boundaries orientatione@itvansformations along two strips (i.e.,
transformation of three non-collinear elementsjhlibe velocity of the boundary and the local
orientation can be recovered (see Shipley & Kellmi®94, 1997 for details).

As in the case of the typical aperture problens thodel produces a coherent output only
when several constraints are met. The texture eletrensformations are assumed to come from
1) a single, rigid entity that is 2) moving at axstant velocity. It is also assumed that the
boundary can be decomposed into piecewise lineggmeets for which the orientation and

velocity can be determined locally and indepenge®lich a model has been successfully



implemented for bar-like shapes whose boundaries Aaingle orientation and velocity along
their length (Erlikhman et al. 2013).

Previous work has considered these constrainisioithe case of unchanging shapes.
Strong versions of the constraints underlying pnmadels would seem to imply that SBF should
not occur for transforming shapes. For exampla,shape rotates, local edge orientations change
continuously. If a shape scales, it also changesoital orientation of curved contours. If global
motion of a shape accelerates, the assumptionnstaot velocity is violated. The models rely
on the fact that fixed edge orientations and véllesiproduce specific spatiotemporal patterns of
texture element transformations (which elementsgband at what rate). If the pattern is
constantly changing between element transformawamts because edge orientation and
velocity are changing, it would pose problems famrent models in terms of recovering
orientation and velocity of local edge fragmentssthort, existing versions of SBF models, on
the simplest account of their underlying assumggtiovould work for a limited class of objects.
Not coincidentally, these correspond to the objdts have been used in prior studies: rigid
shapes moving with unchanging orientation and @ortstelocity.

Here we explore whether these limitations on SBiEsamodels may be arbitrary. In the
real world, object motions are not limited to tdati®n at constant velocity; objects rotate,
accelerate, and scale (at least retinally). Whgeatd rotate in depth, the retinal projection of
their boundaries transform non-rigidly. In struetdrom-motion (SFM) displays, we can readily
see these as well as other non-rigid motions, aadhe deformation of elastic objects or
biological motion, even in sparse dot displays.(elgin & Zaidi, 2011). Does SBF work with
shapes of objects whose boundaries are changmeintation or size be recovered? If illusory

boundaries can be seen for SBF-defined objectsalete, scale, transform non-rigidly, this may



force a reexamination of models of SBF. Percepdioshape and illusory contours under these
conditions would also provide the most spectacuasions of this class of visual illusion.
Moving, deforming illusory contours would be see@tvireen stationary texture elements in the
absence of all local orientation and motion infotiora

We report two surprising visual illusions involvisgatiotemporal boundary formation.
In Experiment 1, SBF-defined illusory figures aees that rotate, scale, and change velocity.
Even though the displays contain only sparse tex@l@ments such that no contour or shape
information is available on any given frame, robgisbal form and motion is seen. In
Experiment 2, observers were able to see non-tiggbry contours produced by continuously
deforming SBF-defined illusory figures. The dis@alemonstrate a new, easy way to create

non-rigid illusory contours of arbitrary complexity

Experiment 1

Experiment 1 used object transformations of rotgtscaling, and acceleration to test
core assumptions about SBF. SBF is thought to fmose the integration of local motion signals
across space and time. Shipley & Kellman (199#)rdjsished form-precedes-motion models
from motion-precedes-form models and found eviddacéhe latter in SBF. Their results
suggested that pairs of discrete element changammpaite in space and time provide the input to
SBF. If viewed in isolation, such pairs of elemehanges would produce perception of nearest
neighbor apparent motion (Uliman, 1979), but in S8y do not result in perception of such
motion (between two element changes). Rather, iieror more vectors produced by pairs of
element changes are present within a certain $patporal window, these are integrated to
produce moving oriented contour fragments. At déidevel, perception of object shape and

continuous boundaries in SBF appears to depeng@aiotemporal interpolation processes that
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connect the edge fragments. Spatiotemporal coméenpolation, which has been studied in
other contexts, relies on the updating of positirdarmation of contour segments that have
disappeared based on a representation of themtatien and velocity. This persistence and
positional updating of previously seen contour fnagts in a temporary visual store allows such
fragments to be integrated with contour segmeratsappear at a later time (Palmer, Shipley, &
Kellman, 2006; Palmer & Kellman, 2014).

Existing models of SBF assume that local edgentateon and velocity are fixed within
the integration window (Shipley & Kellman, 1994 ,919. Both the initial formation of edge
fragments, and most, but not all, studies of spatporal interpolation between edge fragments,
have used contours with fixed orientations andaigés, and, as this would imply, rigid shapes
of unchanging size and orientation. Experimentsletwhether SBF operates when these
parameters change.

A secondary goal of the experiment was to determinether element transformations
consisting of motions in random directions coulgmsut SBF (see Figure 1.2). In previous
work, consistent element motions (displacementuniform direction of all elements upon
entering the virtual object) produced SBF (Shielellman, 1993, 1994). Preliminary work in
our laboratory suggested that random element m@tiamsistent in extent but random in

direction) could also support SBF, but no prior kvbas used these in SBF experiments.
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Figure 1.2.Example of the element transformation used in Erpants 1 and 2. The dashed
region defines a “virtual object” which is not sdgnthe observer. As the virtual object moves,
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elements that enter or leave the boundary of thiealiobject are displaced in a random
direction.

A virtue of using small, random element displacets@s the inducing events in SBF
displays is that no static view contains any infation about a possible global shape in the
display. Accurate shape perception in displaysdbasethis transformation necessarily reflects
the integrative SBF process that constructs glsbape and continuous contours from series of
element transformations integrated over time (®yigl Kellman, 1994).

As in earlier research on SBF, we used a forcedzelshape identification paradigm.
The paradigm is an objective performance methothahthere was an objectively correct
answer (which virtual object was used in the digptm each trial. In the absence of global
shape produced by SBF in displays such as thoskhese, consistently accurate shape

perception is not possible (Shipley & Kellman, 1293

Materials and Methods

Participants

Subjects were 16 undergraduate students (3 mabm age: 19, range: 18-21) from the
University of California, Los Angeles. All partiapts reported having normal or corrected-to-
normal vision. Subjects received course credipfaticipating. Experiments were approved and
conducted under the guidelines of the UCLA IRB. flbjects provided informed consent to

participate.

Apparatus
All displays were created and displayed using tHeIJAB programming language and
the Psychophysics Toolbox (Brainard, 1997; PedB7). Stimuli were presented on a Viewsonic

G250 CRT monitor, which was powered by a MacPrath & 2.66 GHz Quad-Core Intel Xeon
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processor and an NVidia GeForce GT120 graphics ddrel monitor was set to a resolution of

1024x768 pixels and a refresh rate of 60 Hz.

Displays

Small red circles (diameter = 11.9 arcmin) werenghon a black background that filled
the screen (40 cm x 30 cm; 25.06 deg x 18.92 ddw total number of elements was either 200,
400, 600, or 1200. Elements were pseudo-randoméyged by creating 100 equally sized
regions and placing an equal number of elemerasramdom position within each region (see
Shipley & Kellman, 1994). This minimized overlaptlween elements and ensured a nearly
uniform distribution of elements across the disptareby also avoiding large, empty regions.
The four element quantities corresponded to elememsities of 0.42, 0.84, 1.27, and 2.53
elements per square degree of visual angle respBctElements covered 1.28%, 2.56%, 3.83%,
or 7.67% of the pixels in the display area.

We defined ten virtual objects or “pseudosurfacasiilar to those used in Shipley and
Kellman (1993. They are depicted in Figure 1.3. We will refethese as virtual objects or
virtual regions, while noting that they were reéetto as “pseudosurfaces” in earlier work.
Either label is intended to convey that the shapesiot physical entities; any static frame of the
display is seen to contain only a field of undiéfetiated texture elements. The shapes had
varying degrees of symmetry and regularity. The&uairobjects were on average 5.6 degrees of
visual angle in height and width, within a rangetd6 to 6.45 degrees in either dimension.
When a virtual object came into contact with amredat, the element was displaced by 10 pixels

(14.9 arcmin) in a random direction (see Figurg.IlBe displacements were large enough to be

2 In the original stimulus set, two of the “randositapes (corresponding to the bottom row in Figueg iere
rotated or mirror reflections of one shape. Becalsges rotated in some conditions in this expetiyvee
generated new shapes that were complex and sharedhkfeatures with other shapes, but were ndusable
when rotated.
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readily detectible (Shaffer & Wallach, 1966; Shipk Kellman, 1993). When the element’s
original position was no longer within the boundafyhe virtual objects, the element returned to
that position. An element was defined as insidevttigal object if its center was on or inside of
the virtual object boundary. On average, 1.74, 3427, and 10.51 elements transformed from
frame-to-frame for each of the four element quagitespectively. An example of a scaling and

rotating shape is shown in Movie 1.2.

O ANRO®

Yy % ¢
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Figure 1.3.Ten shapes used in Experiments 1 and 2. The tosf@apes are familiar, regular,
and have multiple axes of symmetry. The secondamwain shapes that are more unusual, but
still symmetrical. The final row contains asymmesifishapes. All shapes have approximately
the same horizontal and vertical extent. They avdeted after the shapes used in Shipley &
Kellman (1994). Throughout the text we refer tonthas circle, triangle, square, hexagon, tri-
leaf, butterfly, four-leaf, randl, rand2, and rastiting from the top-left and going to the
bottom-right.

Virtual objects traveled on a circular path ceatleon the middle of the screen, with a
radius of 4.97 degrees of visual angle. The pathdiaded into 360 equidistant positions and
the virtual object visited them sequentially. Thetual object traveled at a rate of four positions
every frame (0.35 degrees per frame) and each freaseshown for 32.2 ms. A trial was

complete when the virtual object made one compmieteiit of the path. The starting position

along the path was randomized across trials. Alasted 3 seconds.
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As virtual objects traveled along the path, theglerwent one of four possible
transformations: scaling, rotation, rotation analisg), or acceleration. In the scaling and rotation
and scaling conditions, virtual objects increasedearreased in size at a rate of 1% per frame.
The maximum size of a virtual object was 9.92 degr@nd the minimum size was 2.49 degrees
in any dimension. Upon reaching the size limitliagedirection reversed. Initial scaling
direction (shrinking or growing) was randomizedassrtrials. If the virtual object was rotating,
it rotated at a rate of 3 degrees per frame irckhekwise direction. Starting orientation of the
shape was always upright. In the scaling and otatondition, both of the transformations were
applied simultaneously. In the acceleration coaditon each frame, there was a 30%
probability of the velocity increasing, a 30% prbligy of the velocity decreasing and a 40% of
the velocity remaining constant. Velocity changi#saied which of the 360 positions along the
path the virtual object would visit. Minimum veltgwas the two positions per frame (compared
to a base velocity of four) and maximum velocitysvegven positions per frame. Constantly
increasing velocity for the duration of the mowsulted in a final speed that too fast to follow

and caused the trial to terminate very quickly.

Design

On each trial, participants performed a forcedahegelection of the shape in the
displays from among a fixed set of 10 alternatividse four texture element quantities, the four
shape transformation conditions, and the ten shapes counterbalanced in a 4 x 4 x 10 design.
Each trial was repeated twice, resulting in a toféd20 trials. Trial order was randomized. Prior
to the experimental trials, there were 10 pradtieds. Each practice trial had the highest density
of elements and no shape transformation. Eacheatetih shapes was shown once, in random

order. The entire experiment lasted approximatélynutes.
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Procedure

Subjects sat in a dark room at a distance of 9@ram the computer monitor, with the
only illumination coming from the monitor. They veegiven verbal and written instructions
explaining that they were going to see a blackestkgith red dots in which an illusory shape
would appear to move. Their task was to identify shape that they had seen out of a set of ten
possible shapes. Subjects then began the pragtite At the start of each trial, a white fixation
cross appeared in the middle of a black screef &@cond. Then, the cross disappeared and the
red texture elements were shown. The virtual oljegain to move as soon as the elements
appeared. Once the object completed a full pathrarthe screen, a new display with an image
of the ten shapes was shown. Subjects made a espgrclicking on one of the ten shapes with
the mouse. A red, rectangular box appeared ardwndriswer choice for 1.5 seconds to indicate
the subject’s response. For practice trials, feekilpaas provided by showing a green,
rectangular, box around the correct choice. Ifshigiect had selected the correct response, the
green box surrounded the red one. In additionwibrel “Correct” or “Incorrect” appeared in the
top-left corner of the screen. Subjects had unéichiime to make a response. Once the practice
trials were over, a message appeared on the sinsémcting subjects that the practice trials

were over and that they would no longer receivefaagback.

Results

Mean accuracy data for Experiment 1 are showngaréi 1.4. Highly accurate shape
perception was possible under some of the conditodithe experiment, especially at the highest
element density, and all conditions appeared teexchance accuracy. These observations
were confirmed by the analyses. Accuracy data weltapsed across shapes and submitted to a

4 x 4 within-subjects ANOVA. There was a main effettransformation typeH(3,45)=90.18,
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p<0.001,;72p = 0.86), with highest accuracy for scaling shapskwed by scaling and rotating
shapes, rotating shapes, and accelerating shagess acost element quantities. There was a
main effect of number of elemenl§(3,45):349.36p<0.001,;72p = 0.959), with accuracy
improving with an increasing number of elementseréhwas also a significant interaction

(F(9,135)=2.70p=0.006,°, = 0.15).
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Figure 1.4.Average accuracy data from Experiment 1 as a fanaf number of texture
elements in the display. Data are averaged acuigscis and shapes. All transformation
conditions were within-subject. Error bars indic@8% confidence intervals. The gray, dashed
line indicates chance performance (10%).

% Correct

The highest accuracy was observed for the scabngition with the largest element
guantity (88.13%). Performance for this shape fansation at this number of elements was
greater than all of the other transformation coodg (rotation: 65.31%(15)=6.80,<0.0001 ;
scaling + rotation: 80.31%(15)=2.74,p=0.015 ; acceleration: 72.19%15)=5.08,p<0.001).

For the lowest number of elements tested (200jppaance in all conditions was above chance
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(10%) (scaling: 34.69%(15)=9.64,p<0.0001 ; rotation: 18.12%(15)=3.64,p<0.005 ; rotation

+ scaling: 28.13%4(15)=7.15,p<0.0001 ; acceleration: 18.12%15)=5.17 p<0.001).

Discussion

The results of Experiment 1 show that boundanesagcurate shape can be perceived
from SBF displays in which the virtual objects cbarorientation, scale and velocity. Moreover,
these illusory figures were seen despite the taamsdtions being displacements of individual
texture elements in random directions, thereby pcody incoherent local motion signals.
Accurate perception of shape and the subjectiveajapce of continuous illusory contours
bounding shapes illustrates the extreme natunetefpolation processes in SBF. Texture
element transformations were spatiotemporally gepi@se in this study. For the 200, 400, 600
and 1200 element displays, there were on averamd a6, 3.2, 5 and 10 element
transformations per frame, respectively. These wpread along an average boundary length of
the shapes of 17.6 degrees of visual angle. Staaqkslusory contours perceived in SBF,
including the transforming shapes in this studgresent perhaps the most extreme illusion
among illusory contours, in terms of spatial suppéven when a number of accumulated frames
are considered together, there amount of total daynspecified by local stimulus information
is a very small percentage. Displays perceivedBR B&present, in an important sense, the most
perceived boundaries and shape perceived frone#st $timulus input.

It is surprising that transforming virtual objegi®duced such robust SBF, given that
changing orientation of edges in a neighborhoodnging stimulus velocity, and the changing
size of virtual objects should all complicate reegvof the local edge fragments hypothesized to
give rise to SBF. Transforming virtual objects t¢estavo confounding problems for an

intersection of constraints solution to this apergoroblem. First, in between successive
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transformations of local texture elements, the sdijat caused those transformations are
changing not only in their position, but also ieithorientation and velocity. Since several
transformation events are needed constrain thatatien and velocity of an edge, it is unclear
how the visual system can relate two or more eveaaised by, essentially, two different edges.
Second, once local edge segments are recovergdntist be interpolated since they are
recovered piecemeal, in different positions aldrgirtual object boundary and at different
times. We return to these issues in the Generalussson.

Shape identification was affected predictably by mmanipulation of element quantity,
improving as a function of the number of elemeRexformance was best for scaling and the
combination of scaling and rotation shape transé&tions. Accuracy may have been better in
those conditions because as objects become langee, texture element transformation events
occur along the virtual object boundary. For thghlest density, there were, on average, 4.64
transformations per frame when a virtual objecthed its smallest size (compared to an
average 10.51 transformations per frame for ragatinjects that did not change size) and 18.68
transformations per frame when the virtual objeeiched was largest. However, this increase in
element changes scales directly with figure siaehghat the number of element changes per
unit of perimeter remains constant. Perhaps a iplaresible account of improved performance
with larger sized objects is that size may makiebhces between similar shapes larger and
more discriminable. For example, at the highessigim the scaling condition, circles were
never confused for hexagonswice versabut they were confused 17 times across all stgopec
that element density when the objects were rotatitigout scaling.

The pattern of results in this experiment, witmedat position changes in random

directions, was similar to experiments in whichnedat transformations were position shifts in
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only one or two directions and when virtual objegtge rigid and not transforming (Shipley &
Kellman, 1993, 1994). In those studies, performaise increased as a function of element
guantity. Since different numbers of elements wesed across studies, converting the
independent variable to element density per degirgssual angle allows a standard metric for

comparison. We take up these comparisons aftenidansgy the results of Experiment 2 below.

Experiment 2

The results of Experiment 1 suggest that shapésdtede, scale, and accelerate can be
accurately perceived in SBF. In Experiment 2, whier examined what kinds of global shape
transformations are supported by SBF. Changesentation, scale, and velocity are rigid
transformations of the virtual object. Perhaps ngid transformations can also be perceived. In
these displays, virtual objects smoothly morphedfone of the ten shapes used in Experiment
1 into another. Morphing continued from shape tapghuntil all shapes were seen. Subjects
were instructed to look for a target shape (sag/tilangle) in the morphing sequence and to
indicate when they saw that shape (see Movie 1.3).

If non-rigid illusory contours are seen in thesgpthys, this presents a much more
confounding problem for spatiotemporal interpolatitn addition to the difficulty in matching
texture element transformation events with contthas are changing in position and
orientation, the visual system must now deal witArges in contour curvature as the shape is
morphing. Supposing that local edge segments caomehow recovered even though the
curvature of those segments changes in betweesfaramation events, the segments must then
be interpolated. While it has been demonstratedcinatour fragments that change in orientation

under occlusion can be interpolated with visiblegnt is not known whether contours
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segments, real or illusory, can undergo changearnvature while not visible and still be

interpolated with other contour segments that @er Irevealed.

Materials and Methods

Participants

The participant group was composed of 12 UniveitCalifornia, Los Angeles
undergraduate students (10 female, mean age =)22lrparticipants reported having either
normal or corrected-to-normal vision. Participantse awarded course credit for their
participation. Experiments were approved and cotetliender the guidelines of the UCLA IRB.

All subjects provided informed consent to partitga

Displays and Apparatus

Since the lowest element densities in Experimentile shape identification difficult
when the shape was not changing, higher elememtitjga were used to ensure that
performance was not at floor. The three elemenniifies used were 529, 900, and 1600. In
order to accommodate the larger number of elenmntbe screen, texture element diameter was
reduced to 7 arcmin for a viewing distance of 13#b The element quantities corresponded to
densities of 2.46, 4.18, and 7.43 elements persgiegree of visual angle. Elements covered
2.62%, 4.47%, and 7.95% of the total display area.

The same shapes were used as in the first expdridagrage virtual object diameter
was 4.45 degrees. The smallest size was 3.35 degneldargest was 5.03 degrees. On average,
there were 3.8, 6.47, and 11.47 element transfasmaper frame for each of the three element
guantities respectively. As in Experiment 1, theual object traveled along a circular centered
on the middle of the display. The radius of théhpahs 3.33 degrees. The path was divided into

120 equidistant positions. The distance betweeh pasition was 0.17 degrees. The virtual
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object visited one position per frame. Each fraastdd for 33.2 ms. It took an object 4 seconds
to make a full revolution. Starting position alaihg path was randomized across trials.

On each trial, the virtual object began as ondeftén shapes and smoothly morphed
from one shape to another until it had become eétte ten shapes once. Shape morphing was
performed by selecting 120 equally spaced poimtsgthe contour of each shape to use as
reference points. A morphing algorithm generateth®mediate shapes between every pairing
of shapes by creating matches between the neamsiuc points of the two shapes and
interpolating intermediate locations. In total,rihgvere 90 such morphing sequences, one
between each pair of shapes. The first and lags stbthe morphing sequence were the original,
un-morphed shapes. Each intermediate morphingiséepfore reflected the relative proportion
of the two shapes that were being morphed. For pkgran the 3% step in the morphing
sequence between shape A and B, the shape washé@d A and 31% shape B. The entire
transformation sequence from one shape to anaibkrapproximately 3.3 seconds.

The transformation sequences on each trial invohree transformations between the ten
shapes. The order of shapes in the transformagiguesice was randomized on each trial with
the constraint that the first and last shapes coatde the target shape. Each trial lasted a
maximum of 30 seconds. Each shape served as tiet srape twice for each density, resulting
in a total of 60 trials. Trial order was randomizé&d in Experiment 1, there were 10 practice
trials to help familiarize the participants withettask. Each of the ten shapes was the target for
one of the practice trials. The highest densityjkgemunds were used for all practice trials. The

entire experiment lasted approximately 30 minutes.

Design and Procedure
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Participants were informed that the purpose ofstdy was to examine the perception of
changing visual illusions. The stimulus was desatibs a morphing shape that would result
from a pattern of flickering dots on the screenth beginning of each trial, the participant was
presented with a target shape selected from otteeden possible shapes. After a key press, the
textured background appeared and the animatiombddp@ participant was instructed to press a
key when they believed the virtual object on theen most closely resembled the target shape.
The display was terminated immediately once thégipant pressed the key. If no response was
given during the course of the animation sequetheetrial was repeated (same target shape), but
with a different shape transformation sequencejestdbwere instructed to try to make a
response on the second or third viewing of a taad] to avoid repeating a trial more often.

The first ten trials of the experiment were praetigals at the highest density. Each of
the ten shapes was the target shape on one arthedls. Feedback was provided on the screen
after every practice trial (“Correct” or “IncorrértOnce the practice trials were over, the subject
was informed via instructions on the screen thay tvould no longer receive feedback and that

the number of texture elements would vary acroakstr

Dependent Measures and Data Analysis

A response was scored as correct if it was madkewie virtual object on the screen was
a morph of 50% or more of the target shape. Thtsiwed as one shape morphed into the target
shape or as the target shape began morphing intbeaxn Since each frame corresponded to a
1% morphing of the virtual object, the range withihich a response was scored as correct was
50 frames on either side of the frame that contha&00% morph of target shape.

The exact frame on which a response was recorastdiprably includes time for

response initiation and execution (i.e., respomse)t We applied a correction to account for the
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delay between when a relevant perceptual evenedaars observer to initiate a response and
when a subsequent key press was recorded. For éxamesponse time correction that
corresponded to 30 frames would mean that if aervbs initiated a response when the virtual
object was a 50% morph of the target shape, theneitorded response would occur 30 frames
later, when the object was an 80% morph. Likewasescorded response when the object was a
60% morph of the target shape would actually cpoed to a response initiation 30 frames
earlier, when the object was only a 30% morph.

We defined the frame that contained the 100% mofhe target shape as ttagget
frame the frame on which a key press was recordedeag$iponse frameand the frame on
which the response was initiated asdeeision frameThe response time was defined as the
difference between the response frame and theidedrame. Applying a response time
correction shifted the center of the window witkihich a response was considered correct
forward in time. With no correction, the window wdudpe centered on the target frame and
would span 50 frames on either side. A 30-frameexbion would shift the window forward by
30 frames so that correct responses would be tlespense frames that occur between 20
frames before or 80 frames after the target frame.

We considered all integer response time correcti@teeen 0 and 50 frames. For each
correction, we determined the window within whielsponses were correct and computed the
average accuracy across all subjects and condifldresresponse time correction that resulted in
highest average accuracy was 12-15 frames (alktiméhat range produced the same accuracy).
Those numbers of frames corresponded to times&#39498 ms, which roughly agree with
response times from object priming studies (Vorpbtattler, Heinecke, Schmidt, &

Schwarzbach 2003), recognition memory (Sternbeéd§9), and RSVP paradigms (Botella,
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1992). The difference in average accuracy with\aitldout the correction was less than 1%

all subsequent analyses were no different whetteecaorriction was applied or nc

Results

Mean accuracy data for Experiment 2 are showngnrél.5. It can be seen th
successful shape identification occurred well abdhance performance throughout, react
very high accuracies at the highest element demnsdguracy data were collapsecross shapes
and submitted to a ongay, withir-subjects ANOVA. There was a significant main effet
density {:(2,22):19.38p<0.001,;72p = 0.64. Pairwise comparisons between the threatoes
revealed that accuracy at the highest density wesey han at the other two densities (high
medium:t(11)=2.55,p=0.027 ; high vs. lowt(11)=5.43,p<0.001) and that accuracy at
medium density was greater than at lowest densigd{um vs. lowt(11)=4.31,p=0.001).
These and the results that followre the same for analyses without the response

correction.
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Figure 1.5.Average accuracy data from Experiment 2 as a fanaif number of textur
elements in the display. Data are averaged acuigects and shapes. Error bars indicate !
confidence intervals. The dotted gray bar indicatence performance (109

% Correct
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Accuracy data were also examined separately fdr glhape across the three element
guantities (Figure 1.6). Data were collapsed acsaggects since each target shape was repeated
only twice per subject. Low, medium, and high ia flyure legend correspond to the three
element quantities (529, 900, and 1600 elememsjtification accuracy was perfect for
triangles and hexagons for the largest elementtgiggnand exceeded 90% for squares, the
guad-leaf shape, and the shape Rand3. Worst penfmerfor any element quantity was for the
shape Rand1l (25%). Worst performance at the laggesitity was for shape Rand2 (41.67%).
Chance performance was 10%. Sensitiwity for each shape is shown in Figure 1.7. False
alarms were counted as those trials in which aestilbgsponded with any shape other than the
target shape. As with accuracy, sensitivity was pated from data collected from all subjects.
Sensitivity was highest for triangles (4.65), sqsa(3.82), and hexagons (4.68) for the highest
density, and was relatively high for circles (3,1d)ad-leaf (3.11), and Rand3 (3.35). Sensitivity

decreased with decreasing element density.
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Figure 1.7.Shape identification sensitivitd’() in Experiment 2 separated by shape and density
(low = 529, medium = 900, and high = 1600 elemeaits) collapsed across subjects.

A secondary analysis examined the degree to whielittual object on the screen
resembled the target shape on the decision fraespgnse time corrected). Recall that subjects
were instructed to respond as close as possilleetarget frame (the frame containing the
100% morph of the target shape). Looking onlyiatdrin which subjects made a correct
response, the number of frames between the tasgaefand the decision frame is a measure of
the extent to which the virtual object resemblesitdirget shape. Because there were 100 frames
between the target shape and the subsequent shtqgetiansformation sequence, a decision on
the 16" frame after the target frame would indicate thatshape on the screen was an 84%
(100-16) morph of the target shape. Likewise, asiimt 16 frames before the target frame
would also contain an 84% morph of the virtual chj®esults were not significantly different if
the response time correct was not applied.

Figure 1.8 shows the percentage of target shapleeodiecision frame (response frame -
15 frames) averaged across subjects as a fundtigleraent quantity. A one-way, within
subjects ANOVA found a significant main effect @ity £(2,22) = 5.65p=0.010,;12p:0.34).
Post hoc, between-density comparisons revealedhbatercentage of target shape on the
decision frame for the highest density (84.96%¢dtsihape) was significantly greater than the
percentage for the lowest density (79.31%1)=3.17p=0.009). No other differences were
significant. As before, these results were the satmen the response time correction was not

applied.
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Figure 1.8.Percentage of morph between target shape and asbidgge when subjects initiat

a response (response time corrected, see texfuasteon of element quantity. Subjects w
instructed to make @esponse when the figure on the screen matchddsed\ycas possible tt
target shape. Values closer to 100% indicate greasponse precision. Data are showr
correct trials only.

We further explored the data by distinguishing estwdecisions tit came before th
target frame and those that came after. The datahenwn in Figurd.9. A 2 x 3, withir-subjects
ANOVA found a significant main effect of decisiame (before vs. after)F(1,10)=10.20
p=0.010,;°,=0.50) and of element quantitF(2,20)=10.79p=0.001,;°,=0.52). There was als
a significant interactionH(2,20)=4.52 p:0.024,;72p:0.31). Poshoc paired comparisons f
percentage of target shape before and after tgetttmme revealed a difference for displays

contained the lgest number of elemenit(11)=4.17 p=0.002). There were no significe

differences for the two other element quantit
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Figure 1.9.Percentage of morph between target shape and arsbidyge separated by whet
the response came before or afte frame on which the pure target shape was presi
(response time corrected, see text). Data areofwect trials onl.

Discussion

The results of Experiment 2 demonstrate that itysontours can be accurate
perceived in SBF displays even when e boundaries are smoothly deforming. A
Experiment 1, this has two implications for thewabprocesses involved in perceivi
boundaries in these displays. First, local boundagments can change not only in orienta
and velocity, but also in cuature in between the texture element transformadigents the
define them. Second, interpolation between boungagynents occurs even when one segi
continues to deform but is now invisible. Sincerdggedo not occur continuously along the er
boundary of the virtual object, they reveal only partshe boundary at any given time.
transformation events reveal parts of the boundange newly visible regions interpolate w
previously seen but now invisible ones. This precagygests a foriof representation thi
encodes constructed edge fragments as well ascthinuing trajectories and deformati
allowing such information to be preserved and updi&r combination with later appeari

information (c.f. Palmer, Kellman & Shipley, 2(; Palmer & Kellman, 2014) With the virtu
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object morphing from frame-to-frame, the boundargeforming non-rigidly. If the visual

system encodes an orientation, velocity, and cureatf a boundary segment at one moment as
fixed values, those features may not align witlegnsent recovered at a later time. We return to
this possibility in the General Discussion.

Comparing the two experiments, the best performéao®ss all shapes) in Experiment
2 (79.58%) was within the range of best performarican the four conditions in Experiment 1
(65.31% - 88.13%). However, element density hdaetdoubled to 4.18 elements per square
degree of visual angle before this level of perfance was achieved. One reason for this
difference could be because virtual objects werallemin Experiment 2 (average diameter of
4.45 deg) than in Experiment 1 (diameter 5.6 dBgrause element size was smaller in
Experiment 2, the total number of element trans&iroms per frame was similar for the two
largest densities in each experiment (12.85 in BExpnt 1 and 11.47 in Experiment 2).
Alternatively, a greater element density may hasenbneeded in Experiment 2 to reach
comparable performance because the task was hReggonses were marked as correct only if
they fell within 1.66 seconds of the target framvbgereas there was no response time limit in
Experiment 1. In addition, some intermediate mangtstages may have appeared to be similar
to other shapes. For example, morphing betweenas@nd a circle may have resulted in
intermediate morphs that resembled hexagons.

With the results of Experiment 2 in hand, we comedashape identification accuracy
with the transforming and non-rigid virtual objeatsExperiments 1 and 2 with shape
identification accuracy in earlier work. Shipleyk&liman (1994, Experiment 3) used rigid, non-
transforming shapes and local motion as the eletn@msformation in a 10-AFC task. There

were some differences from the present experim@stsientioned earlier, we used a somewhat
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revised set of figure choices here. Moreover, waluandom directions of element motion,
whereas the earlier study used consistent vedisplacements. The virtual objects used in the
current experiment were also larger (4.45 degrégsoal of angle in diameter vs. 2 degrees).
Although comparisons are inexact, they may be médive with regard to the primary purpose
of the present work: to determine whether SBF acooibustly for transforming shapes. The data
are clear in showing the SBF occurs with transfagrobjects, but if SBF occurs from
transforming objects but is notably weaker thanan-transforming shapes at comparable
element densities, it would suggest that changrmentation, shape, or velocity do impact the
recovery of shape in SBF.

Figure 1.10 plots the data from the two currentegxpents along with the earlier
experiment with all conditions being displayedémts of element density (elementsfjegs
can be seen, performance at comparable densitieefiarming shapes in Experiment 2 was
comparable to that of rigid, non-transforming slsajpeExperiment 3 of Shipley & Kellman
(1994). The four densities used in Shipley andidati (1994) were 1.61, 3.21, 6.42, and 12.85
elements per degree of visual angle. (Performarasenet significantly different for the two
largest densities and density did not exceed &4Ra current experiment, so accuracy for only
the first three densities is shown.) The densiiged in the present Experiment 2 were 2.46,

4.18, and 7.43 elements per square degree of \asigde.
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Figure 1.10.Average shape identification accuracy from Expenitad. (black, red, green, a

blue lines) and 2 (purple line, “n-rigid”) plotted as a function of element densitysé plotted
are reproduced data from Experiment 3 from Shipley Kellman (1994) in ay.

Figure 1.10also plots the results of the transforming, rididses of Experiment 1 as
function of element density. Remarkably, all ofsaeonditions producebettel shape
identification performance than occurred with -transforming shapes the earlier work. Thi
densities used in our Experiment 1 were 0.42, A.&%, and 2.53 elements per square degr
visual angle.

For all comparable element densities, accuracyhagteer in the current experiment w
transforming but rigid shapes n for nontransforming ones in earlier work. Even wt
densities were three times larger than those usttkicurrent study, identification performai
for nontransforming virtual objects reached 80%, whileniifecation accuracy for scalin
virtual ohjects reached 88%. This difference may be becaushobjects in the current stu

were more than twice as large (average diamete® ddyg) as those used previously (2.0 d

That larger shapes produce better shape idenidice not entire intitive. For displays with th
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same density, the number of element changes iit afuimme per unit of perimeter remains
constant for a large and small display of the sahape. Also, larger shapes would tend involve
more of the retina outside of the fovea, with s@ttiendant loss of visual acuity. It may,
however, be the case that larger shapes make ckeahape’s parts and relations. We noted in
the discussion of Experiment 1 that best perforraaiserved in that study occurred in the
scaling conditions, which included presentatiothef largest shapes in the experiment. As
suggested there, the exact reason for better peafure with larger shapes in SBF is not entirely
clear, but one plausible hypothesis is that lawigral angles allow better definition and
discrimination of shape parts, resulting in imprdwascrimination.

It is clear from the data that identification acoy varied depending on shape
complexity and confusability (Figure 1.6). Sensitiwas greatest for triangles, squares,
hexagons, quad-leafs, and shape Rand3 than farsithpes (Figure 1.7). Shape Rand2
appeared to be difficult to identify irrespectivietloe number of elements. For the lowest and
intermediate element quantities, sensitivity wagdst for the shapes tri-leaf, butterfly, quad-
leaf, Rand1l and Rand2. These shapes share in conegions of high curvature. Such regions
require more proximal events to clearly specifyboendary. For a long, low curvature segment
of a boundary, two edge fragments that are fartapauld still be relatable (Kellman & Shipley,
1991). For high curvature regions, the segmentddvoeed to be from relatively nearby
positions on the boundary to be relatable. Spawgere displays would yield few recovered
boundary segments.

In addition to improving accuracy, element denfityquantity, as these covaried in this
study) was directly proportional to response piienisSubjects tended to respond on frames

closer to the target frame (the one which contathedarget shape) as texture element quantity
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increased (Figure 1.8). Since the task instructgpegified that subjects should respond as close
as possible to the target frame, responses framésantained shapes more closely morphed to
the target shapes can be interpreted as more pmesigonses. Precision may have improved as a
function of element quantity because subjects codde readily predict when the morphing
sequence was approaching the target shape, arld bave improved because once the target
frame was reached, subjects were quicker to idetitd shape and respond. In order to
distinguish between these two possibilities, dataevsplit by whether responses came before or
after the target frame (Figure 1.9). Responses tiftetarget frame did not depend on element
guantity. However, the more elements there wertherscreen, the more precisely subjects

could anticipate when the target frame was appiogch

General Discussion

Spatiotemporal boundary formation is known to peform, continuous boundaries,
and global motion from discrete transformationsdirse textural elements. The use of spatially
separated, sequential changes in small, sparsemrigo produce these perceptual outcomes
comprises an amazing spatiotemporal integratioaagpof the visual system. SBF occurs
despite a lack of information that can define cargoor surfaces in a single, static view or even
across many frames. Within frames, in the displesesd here, there are no differences between
figure and ground in luminance, texture, or deptany frame. Moreover, in terms of motion
perception, every local stimulus event in the digplused here is fully accounted for as a single
dot traveling a short distance in some directiodekd, viewed singly, that is the appearance of
each element transformation. In terms of the litstinulus events (discrete changes in local
elements, with no local or momentary informationdontinuous boundaries or surfaces), SBF

represents a startling illusion.
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As with many illusions, SBF presents dual implicat regarding the utility and function
of perceptual processes. The events most likelgygger SBF in real world situations are
motions of objects that are poorly specified, eitbecause of matching object and background
surfaces (camouflage) or because an object isteemingh multiple apertures. In these
situations, SBF recovers whole objects accuratelyfminute bits of information spread across
time. As Gibson, Kaplan et al. suggested in desaibccretion and deletion of texture elements
(the best known case of SBF), transformations preduy relative motion of objects and
surfaces carry important information deeply roatethe optics of opaque objects, depth order,
and motion. In the ways we are most likely to emteuSBF in ordinary viewing environments,
SBF is a highly ecological and sophisticated meidmarior detecting what is really occurring in
the environment.

But as with the processes underlying many othesiins, SBF turns out to accomplish
its ecologically relevant tasks by means of medrasithat in other cases produce ecologically
impertinent outcomes. Accretion and deletion iac &bout ecological optics, but when we ask
how the visual system accesses that fact, it towh$o use discrete changes in local elements —
virtually any detectable discrete changes. This is both mordemsdhan the original idea that
the visual system detects accretion and deletios.nhuch more because virtually any element
transformation can provide an input into SBF, egeologically bizarre ones such as orientation
change or local displacement of an element.l#gsthan accretion and deletion because
elements need not be gradually covered nor must ieeany array of texture elements that
move together (as will always be present duringtied motion in accretion and deletion

displays).

36



When non-ecological element transformations ard,ulesory contours and shapes are
perceived that cannot arise from any known phy&part from CRT displays and clever
programmers). When for example, white and blueutex¢élements on a black background
switch values upon entering or leaving a definedyimg, virtual region, the array of changes
could not be caused by any moving translucent filte any movement of an object seen
through apertures in an occluder. The fact of arbeillusion, here as in other illusion contexts,
lays bare the functioning of the visual procesagslved. The visual processing that apprehends
objects passing in front of each other from spark@mation also puts together illusory shapes
from abrupt changes of other kinds, such as thectdformed from local, random direction
element displacements in the experiments here.

In Experiment 1, we found that the orientationzesj and velocities of virtual object
boundaries can change between successive transimnmreaents and still be continuously seen.
In Experiment 2, SBF was also found to support geann boundary curvature, giving rise to
robust percepts of non-rigid, illusory contourstiBexperiments used displays in which
boundaries were perceived without accompanyinigddin or surface completion suggesting
that the two processes are separable and candiedstndependently. The methods described
can be readily adapted to generate dynamic, naeth-illyisory contours with arbitrary form and

complexity.

Implications for models of SBF

Perception of continuous boundaries and shape kh&ppears to depend on two
processing stages. The first is to recover locgeesegments from sparse texture transformation
events and the second is to interpolate (connleeset segments to produce a representation of

continuous contours and object shape. We consatdr groblem in turn.
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The recovery of edges from transformation evengsdsficult version of the aperture
problem. Typically, local edge orientations andoegiies are available in many small apertures,
and the problem is to determine how they are cdedeand the global motion signal. In SBF,
there is no local orientation information availabiece the apertures are points. The difficulty is
compounded by the fact that in the displays useatéae experiments, texture element
transformations were element displacements in nandicections, generating irrelevant and
incoherent local apparent motion signals that werapletely independent from the global
motion of the virtual object. The relevant informoat for defining the virtual object boundary
was solely the position and timing of transformatevents. Despite these difficulties, it is
possible to solve this point-aperture problem lsuasng that contour segments of the virtual
object boundary are rigid, moving at a constanbeigy and not changing their orientation.

Experiments 1 and 2 demonstrated that contoursltamge in these properties and still
support the perception of global shape and mobaes this invalidate existing models? The
answer is that models may need to be modifiedhattthe underlying concepts may survive.
Theoretically, a local edge orientation in SBF barrecovered from three non-collinear element
transformations in some local neighborhood (Shigléfellman, 1997). The aperture problem
in SBF may get solved many times, relatively quickind in relatively small regions. Thus, an
object may not have to be rigid or otherwise unganfor initial edge segments to be
constructed.

If the texture is sufficiently dense, the apertpreblem can be solved multiple times in a
small spatiotemporal window, resulting in severamated edge representations over time. These
will be small illusory contour segments. Straightarved apparent motion might then be seen

between successively recovered illusory segmeatsatie proximal in space and time. In effect,
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once the aperture problem is solved for a locaisad, the problem becomes a matter of
detecting correspondences between sequentiallyeest segments. There is no reason to
suspect that this would be any different for raallasory contours: whatever the solution to the
correspondence problem that allows the matchingalf contours across success frames can be
applied to rotating illusory contours in SBF.

Difficulty will arise when texture displays are yesparse. In order to solve the aperture
problem, multiple transformation events are needelle contour transforms too much between
the events, then the solution might not be coriBuais could explain why SBF deteriorates with
decreasing element density.

Once the aperture problem is solved locally in ptdeecover a segment of the
boundary, these boundary segments must be intéepdia produce a representation of the
global shape. Since element transformation evestsatiotemporally sparse, boundary
segments are recovered piecemeal, in differenbnsgand times. This leads to the second level
of processing in SBF: interpolation connecting basintour fragments that have been formed.
Because these do not appear simultaneously ogistee spatially, the visual system therefore
needs a way of encoding recovered segments, andgsémd updating their representations to
be interpolated with segments that are recoveradater time. Such spatiotemporal
interpolation has been found with real edge fragsemrigidly translating (Palmer, Shipley, &
Kellman, 2006; Palmer & Kellman, 2014) and rotatihgninance-defined edges (Kellman &
Cohen, 1984), but not yet for illusory contours aad for non-rigidly deforming shapes.

According to models of spatiotemporal interpolatismen a part of an object becomes
occluded, a visual, iconic representation of thatage continuous to persist for a brief time

(Palmer, Shipley, & Kellman, 2006). That icon iseartoding of the position, orientation, and
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velocity of the surface contours. If another pdrthe object is revealed (appears from

occlusion), the visual system interpolates thetabla contours of the visual icon with those of
the newly revealed object part. Interpolation isgible because the representation of the position
of the occluded segment (the visual icon) is uptlateder occlusion (for a short time).

The visual system faces the same problem in SB#ayis: since the aperture problem is
solved locally for different areas along the vittabject boundary, edges are not recovered all at
once. It is as if parts of the boundary becomeatismled whenever the problem is solved, and
are occluded otherwise. The visual system mustititerpolate between recovered edge
segments that are visible only for short periodsé. One possibility is that the representation
of occluded edges is very flexible and capableath liirst and second order deformations. For
rotating shapes, for example, when transformatadoisg one part of the virtual object boundary
reveal an edge segment, the representation ofoiegn and orientation of that segment
continue to change even when there are no funthesfiormations to support its perception.
When the aperture problem is then solved agaimieaaby position, the resulting segment is
interpolated with the shifted and rotated represt@m of the past segment if the two are
relatable. A second possibility is that the repnéston of the segment remains fixed in terms of
orientation and curvature at the moment of occlusfosnapshot is taken, and it can only be
minimally manipulated. When the next segment isveced, the two segments must fall within
the range of relatability (Kellman & Shipley, 199@)order to be interpolated. Further studies
are needed to distinguish between these two ptssgi

The present studies show that SBF encompassesanaitye of illusory phenomena
than previously realized. Scaling and rotating,ne@ecelerating rigid shapes can be recovered in

SBF. Even more remarkable, deforming shapes caefoeived, and recognition of a shape is
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possible even when it is part of a rapidly changiages of shapes. These phenomena clearly
expand the envelope beyond what previous modeiszate or explain. Although we sketched
an outline of how more advanced models might ene@sithese perceptual illusions, the current
results raise more questions than they answerfuaticer research will be required to achieve a
detailed understanding of these amazing phenonmewhich the visual system does so much

with so little.
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Chapter 2: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary
Formation

Abstract

Spatiotemporal boundary formation (SBF) is the gption of illusory boundaries, global
form, and global motion from spatially and templyrabarse transformations of texture
elements (Shipley & Kellman, 1993a, 1994). It hasrbtheorized that the positions and times of
texture element transformations can be used taeine orientation of local edge fragments,
which form the basic shape units in SBF. To teistttieory, we created a novel display
consisting of a sawtooth arrangement of circulam&nts that disappeared and reappeared
sequentially, one at a time. Within the approprdigplay settings, the resulting percept was not
of apparent motion between elements, but of a tasgented edge fragment that traveled
laterally across the display. Experiment 1 ideatifthe spatial and temporal intervals within
which SBF occurred using a contour clarity ratiagkt Experiment 2 extended and refined the
temporal limits using an objective performance taskvhich the perceived widths of moving
bars in SBF could be compared to the virtual okjesed to generate the visible element
changes. The two experiments, using perceptualtepnd accuracy in size perception,
converged in revealing highly constrained spatima semporal parameters under which SBF
occurs. The experiments provide clear support foders of SBF that begin with extraction of
local edge fragments and identify minimal condig@aquired for this process.

Introduction

Spatiotemporal boundary formation (SBF) is the gption of continuous contours,

global form, and global motion from the sequerttiahsformation of sparse texture elements
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(Shipley & Kellman, 1993a, 1994). SBF is perhapsrtiost extreme case in which the visual
system constructs contours and objects from fragangmput, as it requires no oriented edge
fragments and produces complete perceived boursdatiik little stimulus support. For

example, the concept of support ratio (the ratidla$ory or occluded edge length to total edge
length) has been shown to predict interpolatioargjth of edge fragments for occluded and
illusory contours (Banton & Levi, 1992; Shipley &Kman, 1992). Roughly speaking, robust
contour interpolation occurs with support ratios®br greater, and noticeable interpolation may
still be present at support ratios of .2 or .3tyivical examples of SBF, with widely spaced,

small background elements, support ratio woulddxg elose to zero, yet robust perception of
continuous contours and clear overall shape aeptéShipley & Kellman, 1994).

Functionally, SBF may exist as a visual mechanisnapprehending objects under conditions of
minimal information, as when the surface properiesvo objects are similar or difficult to
discriminate, or when an object is viewed under gl@m occlusion situations (e.g., through
foliage), or under dim viewing conditions when sied features are difficult to resolve.

How are shapes seen in SBF? One hypothesis iSBtafirst defines local edge
fragments from transformations of texture eleméatg. occlusion) that occur closely together in
space and time. These edges fragments, once greatagkct across gaps to form concrete
objects. Shipley & Kellman (1994, 1997) have pragaba model of how edge orientation can be
computed from the positions of elements, the diarbetween them, and the temporal interval
between their transformations. If the model is aat® it should be possible to create displays in
which only a single, illusory edge fragment is sesrd its perception should be constrained by
the spatial and temporal intervals between texgélement transformations. In this paper, we

describe a novel display that comprises or apprstie minimal conditions for the occurrence
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of SBF. The display can be parametrically varérid the range of spatiotemporal texture
element transformation intervals that support SBé&eu these minimal conditions. The present
experiments provide more precise information reiva modeling SBF than has previously
been available, and they also allow for a moreyeadnparison of SBF to other, well-
characterized visual phenomena in which elemeatstorm successively, such as apparent
motion.

Surprisingly, relatively little is known about sgaemporal constraints on SBF. Prior
work has exclusively focused on two-dimensionaiual shapes that travel in an array of
randomly arranged elements (Shipley & Kellman, 209®93b, 1994, 1997; Cunningham,
Shipley & Kellman, 1998; Fidopiastis et al. 20083%. a result, the spatial and temporal
properties of the displays, in particular, intezraknt distance and the time between element
transformations are highly variable depending ot Ibloe shape and the distribution of elements.
In a typical display, small, uniform texture elerteerusually circles, are distributed randomly in
a large area (Figure 2.1). A virtual object is sfped that moves across the texture field. The
object is virtual in the sense that its boundaaiesnot defined by luminance differences with the
background. As the virtual object moves, elemems were previously inside the boundary may
now be outside andce versaFor ease of description, we refer to this as el@mexiting or
entering the virtual object region, even thoughk iisually the region that is moving while the
elements are stationary. Elements that move atnedsoundary change in one of their
properties. For example, a red element inside tijecoboundary may become red when the
boundary moves and no longer contains that eleriiéig.produces a pattern of element
transformations along the boundary of the objeat em®ves across the display. Surprisingly,

clear, continuous illusory contours are seen thatspond to the virtual object’s boundary.
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These boundaries are seen even if fewer than engeal on average transforms per frame and
when elements cover only a small portion (e.g. %) %f the entire display area (Shipley &
Kellman, 1994). When transformations are color gesnas in the example above, color
spreading is also seen within the boundary of thjead and the entire region may be perceived
as a transparent surface moving in front of a textbbackground. This phenomenon has been
studied separately under the name “color from nmdtay “dynamic color spreading” (Cicerone,
Hoffman, Gowdy, & Kim, 1995; Cicerone & Hoffman, 9B, Miyahara & Cicerone, 1997).
However, illusory contours can be seen in the atisehcolor spreading. Shipley & Kellman
(1994) showed that a wide range of local elemamistiormations can support SBF, including
changes in element position, shape, and orientaiarumber of transformations they studied,
including bidirectional color and orientation chasgand local element motion, provide no

information in any static frame about an approxemadgion in which a form may reside.

FRAME 1 FRAME 2 FRAME 3
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Figure 2.1.An example of three frames from a typical SBF digpIThe virtual object, a square,
is indicated by the dashed line. Elements insideothject boundary are white, indicating that
they share some surface property (e.g., colorntaimn, shape), while those outside are black,
having a different value for that property (e.gl oércles inside the boundary and green outside).
As the virtual object moves, elements enteringatvendary of the square become white and
those exiting become black. Figure adapted fromr@i@ on p. 5 of Shipley T. F. & Kellman, P.
J., (1994) Spatiotemporal boundary formation: Baugdform, and motion perception from
transformations of surface elementsurnal of Experimental Psychology: Gened3(1), pp.
3-20.
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The perception of illusory contours in these digpls known to depend on several
factors. First, element transformations must beded as discontinuities or disruptions in the
regular pattern of the textured background (Shigld¢ellman, 1993a). If changes are
detectable, but small (e.g., displacement overoa slistance), then no illusory shape is seen. At
frame durations longer than 165 ms, illusory corgpglobal form, and global motion are no
longer seen (Shipley & Kellman, 1994). One insteagls apparent motion between nearby
transforming elements. However, because texturaaieétransformations may occur in any
region of the boundary from frame to frame, itiglear from this result what the temporal
integration limits are for local edge fragments.(ifor spatially proximal texture elements that
whose transformations define a local contour). @;H8BF also degrades with texture density.
However, manipulating texture density confounddiapand temporal distances between
transformation events as well as the total numb&maasformations that occur. Density also
interacts with contour complexity. Spatially spateeture will result in fewer interactions with
the virtual object border. Regions of high curvattirat fall in between places on the border that
interacted with an element have no way of beingver=d. A study in which the arrangement of
texture elements was not random, also found thamdbaries were more clearly seen for higher
densities in which there were smaller gaps betvedmments (Fidopiastis et al. 2000).

SBF displays based on random arrangements of eegteaments and regular or arbitrary
two-dimensional virtual objects produce percepbbrontinuous contours completely bounding
a region, and clearly defining a shape. Howeveseidisplays make it difficult to isolate the
effects of inter-element distance and inter-trarmfdion time and to evaluate models of the
process. We wondered what are the minimal conditiorelicit the key phenomenon in SBF —

the construction of a contour. To that end, wetexdaovel displays in which elements were
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arranged in a sawtooth pattern and disappearedtangéme sequentially. This allowed us to
independently manipulate the absolute spatial amgboral distances between element
transformation events, to restrict the number @ngs that occurred per frame, and enabled us to

identify the spatiotemporal limits within which égration occurs that leads to SBF.

Experiment 1

A display was created in which a sawtooth arrangemkdots was presented, and one
dot at a time flashed off and then on again in sage (Figure 2.2). What would we expect to
perceive in such a display? For many spatial amghteal intervals, the laws governing apparent
motion should cause us to see a single entity {gewdot or blob) moving along the sawtooth
pattern (Wertheimer, 1912; Korte, 1915; Ekroll, F&uGolz, 2008). Indeed, this is exactly what
is seen in Movie 1. In this movie, all elements\asible for fourteen frames (140 ms); one
element disappears for four frames (40 ms); athelats are again visible for fourteen frames
(140 ms), etc. These settings are well within drege when apparent or phi-motion should be
seen (Wertheimer, 1912; Steinman, Pizlo, & Piz@)®@ Ekoll, Faul, & Golz, 2008).

In a two-element apparent motion display, the terlgaterval between the appearance
of one element and the appearance of the nex¢ istitmulus onset asynchrony (SOA), the time
that an element is visible is the stimulus durgteod the interval during which no elements are
visible is the interstimulus interval (1SI). Conerthg the first two elements in Figure 2.2, the
SOA is the interval between the appearance ofitbedlement and the appearance of the second
(180 ms). The stimulus duration is length of timeetement is visible before it disappears (140
ms + 40 ms + 140 ms = 320 ms). Finally, since taments are never invisible simultaneously,
ISI is negative (-140 ms), indicating that the stins duration is longer than the SOA. The

absolute value of the ISI therefore correspondleanterval when all elements are visible.
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Figure 2.2.Fourapparent motion frames in which elements disappearat a timen sequence.
Consider the first two elements in the displaym@spparent motion pa Stimulus onse
asynchrony (SOA) is the temporal interval betwdenappearance of the first element anc
appearance of the second. Stimulus duration isrntieeoneof the two elements is visible. ISI
negative because there are no frames when botleeterare invisible

A simpler way to characterize the display in teohthese intervals is to consider i
disappearance of a black dot to be the appeardrawhite dot in that position. In that case,
appearance of a white, invisible element at eaemenht position is the stimulus relative
which all time intervals are measured (see Fi2.3). Consequently, the duration that
element is occluded becesthe stimulus or flash duration (f), the tempaortrval between th
appearances of white elements (flashes) becomdStthend the total time between t
disappearance of one element and the disappeashtieenext is the SOA. This parametriza

IS more intuitive in that it avoids negative valdes|S| and captures the idea that an eler

transformation event is the stimulus of inter
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Figure 2.3.A replotting of Figure 2.2, treating the white @sta stimulus. SOA remains t
same durabn, but is now measured from the appearance oflohentil the appearance of t
next. The stimulus duration is relabled as thehfldgration, f, which is the duration that a wt
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dot is present. The ISl is the temporal intervaieen the disappeince of a white dot and tt
appearance of the next dot.

We developed this display, however, not to exarfonal apparent motion, but
investigate the minimum conditions for SBF. Asyigital in SBF, the local apparent moti
correspondences (e.g., ki&n, 1979) are not what is seen; instead, groupkofent change
support perception of a larger moving form or edggure2.4 shows how this display is in fa
a good testbed for minimum conditions in SBF. Altbb the display has a perfectly ve
physical description as a moving (white) dot thatcessively occludes each element (Fis
2.2 and 2.3 there is another desction that characterizes this display as an SBFudtim a
virtual bar moves through the space such thatises a change in each element it toL
(Figure 2.4). Movie 2 shows this effect with a vertical virtual edgel @ne element change
disappeeance (and reappearance after the bar has passed)nly difference between Mov
2.2 and Movie 2 is that the temporal interval trall elements were visiblleas been shorten:
in Movie 2.2, fromfourteen to two frames (1 to 20 ms). This change e¢esponds to shortenir
both the SOA and ISI to 40 ar2l0 ms respectively, while keeping stimulus durafigad. In
the alternative formulation of the timing paramstéhese values correspond to an SOA of 4l

and an ISI of 20 ms.

Figure 2.4. Thesame display as in Figures 2.2 and 2.3. Elemeapg&sarances (changes
white) are triggered by the passing of a virtual badicated by the dashed rectan

Why is this a minimal SBF display? A collinear araf dots would be simple
However, anmportant characteristic of SBF is that it does o@tur for collinear arrays, ar

models of SBF become degenerate under this condifioe reasons involve an especii
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difficult aperture problem that occurs in SBF (Séjp& Kellman, 1994, 1997; Prophet,
Hoffman, & Cicerone, 2001). A simple summary istt88F specifies an edge orientation as
well as its motion from the spacing and timing l@eent changes. In a collinear array, the
timing of element transformations will be identiéat all edges regardless of virtual edge
orientation. Only by adding a non-collinear elemeam orientation be determined from relative
timing of flashes (Shipley & Kellman, 1997).

Virtual object properties can easily be manipulalply by changing the temporal
features of these displays. For example, it isiptesso create displays with moving bars of any
orientation simply by changing the relative timioigelement changes. An oriented edge will
result in variable delays between element changés shorter intervals between elements that
lie on paths parallel to the bar and longer intisrb@tween changes of elements that lie on paths
perpendicular to the bar. An example can be se&foiie 3. In Experiment 2, we examine how
changing the duration that an element is invisdale affect the perceived width of the illusory
bar.

The goal of Experiment 1 was to identify the spatrad temporal spacing parameters of
texture element transformation events that sugperperception of SBF in the displays
described above. If there is a spatial integrdimoit, then the perception of illusory contours
should deteriorate as distance increases for d femporal interval between transformations. If
there is a temporal integration limit, then, evendmall inter-element distances, no illusory
contours would be seen provided a sufficiently lortgrval between element transformations.
The advantage of the current displays is that tpasgmeters can be easily controlled and
manipulated independently simply by changing ilement spacing and change duration (i.e.

occlusion or flash duration). Using a vertical f@ra virtual object and a sawtooth pattern with
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fixed inter-element distances ensured that theuwdcgt and timing between eagent(not just
between each element) was constant within a display

In Experiment 1, we used a subjective rating metitds method allowed us to
determine as directly as possible the conditiomeumwhich participants actually perceived a
moving, oriented edge. It also allowed us to samaplede variety of spacing and timing
parameters. We collected subjective contour claatings for a variety of spacing and timing
parameters and found that there is indeed an grgattern of spatial and temporal limits within
which an illusory bar was visible. In Experiment& followed up these results using an
objective performance method, both to validatepdeeptual reports of Experiment 1 as well as
to explore when SBF under minimal conditions haasueable effects on performance on a task

with an objectively correct answer.

Method

Participants

Subjects were eight research assistants or graduuatents (one of whom was one of the
authors, GE) who volunteered for the study (5 femalean age: 25.38). All subjects reported
having normal or corrected-to-normal vision. Albgects except for the author were naive to the

purposes of the study.

Design

Two properties of the displays were manipulatetependently: inter-element distance
(seven levels) and the ISI, the interval betweeréappearance of one element and the
disappearance of the next (13 levels). All combamet of the 7 inter-element distances and 13

temporal intervals were tested, resulting in 9Xqueidisplays. Each display was presented 5
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times, for a total of 455 trials. Subjects proviadeehtour clarity ratings on a scale of 1-5 for each

display.

Stimulus and Apparatus

All displays were created and displayed using t#eTMAB programming language and
the Psychophysics Toolbox (Brainard, 1997; PetiB7). Stimuli were presented on a Viewsonic
G250 CRT monitor, which was powered by a MacPrath w2.66 GHz Quad-Core Intel Xeon
processor and an NVidia GeForce GT120 graphics ddrel monitor was set to a resolution of
1024x768 pixels and a refresh rate of 100 Hz.

Displays consisted of black dots (diameter = Tcdnan) on a white background (13.42 x
10.08 degrees of visual angle) arranged in a sdlioattern with five dots per cycle. The dots
were centered on the screen vertically and spaitsedtire width. The vertical and horizontal
distances between each pair of points (measuredtfieir centers) were equal and varied from
0.2 to 0.8 degrees of visual angle in steps of Thése values correspond to Euclidean distances
between element centers of 0.28, 0.42, 0.57, 0.85, 0.99, and 1.13 degrees respectively. The
number of dots needed to span the width of theescvaried with separation: 68, 45, 34, 27, 23,
20, and 17, for each of the 7 inter-element sejenrst

Dots flashed (i.e., disappeared and then reappesrsequence, beginning with the left-
most dot and continuing, one at a time, from leftight. Once the right-most dot flashed, the
pattern reversed, with flashes going from rightetfo- Displays lasted until the subject made a
response. The flash duration (i.e., time each d mvisible) was 20 ms. The inter-stimulus
interval, or ISI was defined as the time betweaenrdappearance of one dot and the
disappearance of the next. ISI varied from 0 to h20n steps of 10 ms. An ISI of O describes

the case in which once an element reappears, #t@ne disappears on the same frame, i.e.,
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there are no frames on which all elements are samebusly visible. The ISI can therefore be
thought of as the duration of the interval duringief all elements are visible. Displays were

made with all combinations of inter-element disesand ISIs. Trial order was randomized.

Procedure

Subjects sat at a distance of 170 cm from the ceenpoonitor with their heads
stabilized by a chin rest. The only illuminationtire room came from the monitor. Subjects
were instructed that they would see several maoasaining a sawtooth pattern of black of dots
on a white screen and in which one dot would flaish time. They were told that if they tracked
the flashing pattern laterally, they would somesmnsee a moving illusory bar and that their task
was to judge the clarity of the bar. They were thleown an example movie in which a bar was
easily discernable and told that this movie comesied to a high clarity rating (a five on a 1-5
scale). They were then shown a movie in which nmoAN@s seen as an example of a low clarity
rating stimulus (a one). Subjects were instructetack the flashing sequence and not maintain
fixation. Subjects provided a clarity rating oncalge from 1 to 5, 1 indicating poor illusory
contour clarity and 5 indicated maximal contourritya Text at the top of every display
reminded subjects that 1 indicated poorest clarity 5 best clarity. Displays lasted until a
response was made. After providing a rating, akhleuite screen was shown for 500 ms and
then the next trial began immediately. A break was/ided every 50 trials. The entire

experiment lasted 30-40 minutes.

Results
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Figure 2.5. Illusory contour clarity ratings for Experiment dveraged across subjects. Rati
were on an integer scale of 1 toBars indicate the standard error of the médnter-stimulus
interval (I1SI) corresponds to the duration thateddiments were visible on the screen in betv
flashes. The seven curves represent different -element separations from 0.28 degr
(circles) to 1.13 degreemyerted triangle).

The results are displayed in Figi2.5. Contour clarity ratings were averaged aci
subjects and are displayed as separate curveadbrigte-element separation as a functior
ISI. The data were submittéd a 7x13 withi-subjects ANOVA. There was a significant m
effect of interelement separatiOIF(6,42):30.69p<0.001,77p2=0.81, Greenhou-Geisser
corrected), ISII{(12,84):78.04p<0.001,77p2=0.92, Greenhous@eisser corrected), anc
significant interactionli’(72,504):17.71p<0.001,71p2=0.72, Greenhouséeisser corrected

Clarity ratings approached 1 (lowest clarity) f8td of 6(-80 ms for all inte-element
separations. Beyond 80 ms, ratings were flat at &Alf separations. For ISIs betwe0 and 60
ms, ratings decreased as a function of distandb,lew average ratings (< 2) for in-element
distances greater than 1 degréeufrond and inverted triangle symbin Figure 2.5) regardless

of ISI. For most distances, ratings decreasedfunction of ISI. However, for several of t
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element separations such as 0.71 and 0.85 degtaesiid square symbols in Figure 2.5), it
appears as though ratings first increased from2Dtts1 before decreasinBost hogpairedt-

tests found no difference between ratings at @ifsll 20 ISI for either element separation.

Discussion

The experiment revealed spatial and temporal iatem limits for SBF. Transformation
events had to occur within 1 degree of each othémathin 60-80 ms in order to produce a
percept of an illusory bar. lllusory contour stréng/as graded, decreasing gradually as a
function of both inter-element separation and ISI.

Past experiments with SBF had found that illusdrgpe perception degrades as SOA
increases up to 165 ms, beyond which only appanetion between elements is seen with no
corresponding global form or illusory contours (3&y & Kellman, 1993b, 1994). Shipley &
Kellman (1994) showed that performance on an olvgshape identification task improved
monotonically with the number of frames shown withitemporal window of about 165 ms and
that integration of information did not occur begahat temporal interval. However, these
findings are not directly comparable to those adesd here. First, the earlier work varied SOA
but, unlike the present experiment, used a fixeédiSero. Second, the 165 ms limit
encompasses a number of processes that must acmaer to see complete shapes: the
extraction of local edge orientations, the recowarg sufficient number of such fragments to
provide information around an entire 2D shape, sorde persistence of these fragments over
time to enable spatiotemporal interpolation (Pajrietiman & Shipley, 2006). Only the first
process is relevant to the current study. Thirthcalgh some elements changed every frame as
the object moved (on average, 5.44 elements dtigfest densities tested in their study), the

event positions may have corresponded to diffezentour fragments. It is unclear how much
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time was needed for three non-collinear elementsatesform in any local region of the object
boundary.

The present experiment allowed us to examine yhardics of the creation of a single
oriented edge fragment. The sawtooth displays@rewhat unique in allowing measurements
of the conditions that specifically restrict therextion of edges in SBF. Further work is needed
to determine how many edge fragments are usedistrcmt a complete object representation
and how those edges are integrated.

It is important to note that the results of Expent 1 also support the general idea that
the most basic process in SBF is extraction ofllonanted edge fragments. Possible theories of
SBF that could be based on defining 2D regionspadressively gaining evidence about their
shapes (Prophet et al., 2001) would not apply ésdldisplays (see also Shipley & Kellman,
1997).

Experiment 2

In Experiment 1, the flash duration was held camtstehile 1SI varied. For a fixed flash
duration, increasing the ISl also increases the $@An identical amount (SOA = flash duration
+ ISI). It is therefore impossible to determine wiex the limiting factor is ISI or SOA. It is also
unknown whether flash duration has an independétteExperiment 2 was designed to decide
whether SOA or ISI is the temporal constraint or-SB

It was found that illusory contours were not visilidr ISIs greater than 60-80 ms and
SOAs greater than 80-100 ms with a fixed flash tiomeof 20 ms. For this experiment, SOA
was held constant at 80 ms while IS varied froto 80 ms. If SBF is determined by SOA, then

illusory contours should be very weak or not sdeailaas was found in Experiment 1. On the
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other hand, if SBF is determined by ISI, then iyscontours should be seen for all but the
longest ISI.

These temporal properties of the sawtooth stimattect more than just contour clarity.
Because we began from an apparent motion displesyeasy to forget that flash duration, ISI,
and SOA are actually determined by the propertieéseovirtual bar, namely its width and
velocity. It is possible to look at these displéygsn a functional vantage point, in terms of a
mechanism allowing the visual system to recoveesamd objects from sparse information
(Shipley & Kellman, 1994). The baauseslements to disappear and reappear as it passes ov
them. It is possible to write an expression retatiar width and velocity to these temporal
parameters. Assuming that the bar is travelingarstant velocity in the rightward direction,
its speed can be determined from the time it takésavel between two elements, i.e., the time
between the disappearance of one element andgappdiarance of the next, or SOA.

h

V=—r
SCA

(1)

Here,v is the object velocity andis the horizontal separation between elements eSH@A is
defined as the sum of ISI and flash duration, dth@se temporal terms can be substituted by a
combination of the other two. The time that an edlems occluded (the flash duration) is the
time it takes for the bar to completely pass bydleenent. Given that elements disappeared and
reappeared discretely with no gradual coveringnmowuering, we treated the moment of element
disappearance and reappearance as the point wheartk edge reached (disappearance) or
passed (reappearance) the midpoint of the elerhbatdistance that the bar travels during the
flash duration is therefore its width:

w=v* f (2)
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Substitutingv from equation (1) into equation (2) yields an esgien for bar width solely in
terms of the spatial and temporal properties oftikplay:

h* f
W=
SCA

®3)

Note that these calculations are only possible i éhe virtual bar is vertical and translating
laterally across the display. As a result, ISI, S@Ad frame duration are the same for all
elements in the display.

Since displays are created by setting the temparameters, it is possible to determine
the objective width and velocity of the virtual hesed to generate the displays. If SBF serves to
recover edge and object information from sets afspelement changes, then an illusory bar,
when perceived, might have a perceived width cpoeding to that of the virtual object.
Changes in the temporal parameters might haveqiaddie effects on the properties of the
perceived bar. For example, holding the horizosgglaration between elements and SOA
constant while increasing flash duration, would@ase bar width while holding bar velocity
constant. The forward reasoning is more intuitgigen a constant velocity, wider bars will
occlude elements longer, resulting in a longefldgration.

If the visual system interprets the sequence ahghs as caused by a moving bar, it
should be possible to affect the perceived bargntegs simply by changing temporal settings.
This affords the opportunity to create an objecthveasure of SBF in sawtooth displays. If an
illusory bar is seen, observers should be ablec¢arately estimate bar width. This estimated
value can be compared to the objective width asrdened by the temporal settings. If
observers are seeing an illusory bar, then theepard and objective widths should be in
agreement. This should be possible, of course, amiier the conditions where SBF occurs, and
a bar is actually seen. Experiment 1 showed cietslin the spatial and temporal parameters
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that produce perception of a bar. Only under swucttitions — where SBF produces perception
of the object — would we expect participants t@bke to recover accurately its width (c.f.
Ghose, Liu, & Kellman, 2014).

This observation motivated the control conditidns Ipossible that observers could
perform the task solely by estimating the time #raelement was invisible and inferring that
this corresponded to a wider bar. Although unlike®zause the subjects were naive with respect
to how displays were constructed, we tested theandontrol condition with an SOA of 160 ms
and the same flash durations as for the 80 ms J@QiA.resulted in ISIs that were greater than
80 ms, a value that Experiment 1 showed did nopedSBF, regardless of whether the
temporal integration window is constrained by ISB®A. If subjects were using a strategy
based on matching flash duration to bar width, tinvety should perform equally well in the
experimental and control conditions, as it woultl matter whether timing parameters did or did
not support SBF. In contrast, if subjects reallyeveeeing the illusory bar and were basing their
responses on its properties in the experimentaliton, then we would expect poor

performance, and possibly chance performancejsrctmtrol condition.

Method

Participants
Participants were four student volunteers and drleecauthors (GE) (females: 3, mean
age: 22). All reported having normal or correctedrormal vision. With the exception of the

author, all subjects were naive to the purposéiseoéxperiment.

Design
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Two properties of the displays used in Experimeweie manipulated independently:
stimulus onset asynchrony (SOA), the temporal uatidnetween the disappearance of one
element and the disappearance of the next, antd diastion, the temporal interval during which
an element was invisible. We designated two ses$imiulus parameters as the experimental and
control conditions, respectively. Displays with gf8OAs (80 ms) were used as the
experimental condition and displays with long SG280 ms) comprised the control condition.
Seven flash durations were used from 20 to 80 msgejps of 10 ms. This resulted in ISIs (SOA -
flash duration) of 0-60 ms for the short SOA anell80 ms for the long SOA. All combinations
of SOAs and flash durations were used to createnigue displays. Each display was presented
20 times for a total of 280 trials. Equation (3)swevaluated for all SOAs and flash durations to
compute the objective width of an illusory bar thatuld have produced those temporal
intervals. Subjects performed a seven-alternativeetd choice task by matching the perceived

width of the illusory bar in the display to onesgven possible choices for each SOA.

Stimulus and Apparatus

Apparatus, stimuli, and procedure were similahtat bf Experiment 1 unless otherwise
noted. Horizontal and vertical spacing between el@swas fixed at 0.4 degrees, for which
illusory contours were relatively clear in Experimh&. Using equations (1) and (3), bar width
and velocity were computed for each SOA and flagiatibn. The bar velocity for the short and
long SOAs was 5 deg/s and 2.5 deg/s respectively bar widths were 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, and 0.4 degrees for each of the flash durattiespectively for the short SOA, and 0.05,
0.075, 0.1, 0.125, 0.15, 0.175, and 0.2 degreethéolong SOA. We refer to these computed
widths as the true bar widths. Above the elemesggen black horizontal lines were drawn with

widths corresponding to the seven true bar widbhg&ch SOA. Lines were ordered from
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shortest to longest from left to right across tspldy (see Figure 2.6ach line had a numb
above it corresponding to an answer choi«-7), with 1 above the shortest line i 7 above the
longest. The answer choices were always preseintgdartrial. All combinations of the SO/

and flash durations were tested. Trial order wadaanized for each subje:

Figure 2.6.Still image from Experiment Elements of the sawtooth pattern disappeared ¢
a time. Subjects matched the perceived width ofl@sory bar with one of seven possil
choices shown above the sawtooth dis|

Procedure

Subjects sat 170 cm away from the monitor withrtheacs stabilized with a chinres
Subjects were informed that they would be judghwidth of an illusory bar and comparing
to one of several choices. They were also toldgbatetimes the bar would be difficult to s
and that they should make theest guess from amongst the answer choices if thatthne case
They were then shown an example display with ailyeaden illusory bar of intermediate wid:
Once subjects confirmed that they could see thetheay initiated the experiment witt
keypress. Trials began immediately. A trial would lastilua subject made a response
pressing one of the numbered ke-7 that corresponded to the seven response chdidegsak

was provided every 50 trials. The experiment lagbe@C-30 minutes.

Results and Discussion
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The results are shown in FigL2.7. Average perceived bar width is shown for
experimental condition (sha®OA, blue points) and control conditiolog SOA, red points)
as a function of true bar width. Thashed, black line indates when perceived width matcl
true width.The data were averaged across subjects for eaditioorand fit with a linear mode
The fitting results are shown as dashed, gray im&sgure2.7. A linear model fit the dat
revealed a positive relatiship between perceived and true bar width irekperimenta
condition: perceived width = 0.746 * true width 025, F* = 0.997. Evaluated individuallyll
subjects showed monotonically increasing bar wedtiimates for increasing virtual bar wic
(slopes ranging from 0.63 @8E). In contrast, there was no relationship betweenoresgs an:
true bar widthin the control condition: perceived width = 0.06%te width + 0.080, = 0.518.
The slope of the regression line fit to the avedadta ws not significantly different from zel

(p=0.07). Individual subject slopes were in the en¢-0.01 to 0.19.

Figure 2.7. Perceived illusory contour width as a function nfet width averaged across
subjects. Width was computed from elemensh duration and SOA (see text for details). L
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were split for short (circles) and long (trianglé¥pAs. Error bars are standard errors of the
mean.

In Experiment 1, for the same inter-element spaoin@4 degrees and SOA of 80 ms
(frame duration = 20 ms, ISI = 60 ms), contouritfaratings were very low (1.6). Here, for the
same SOA, but for ISIs between 0 and 60 ms, suyeete not only able to see illusory
contours, but were also able to discriminate betwerent bar widths that differed only by
0.05 degrees. Within this set of tested displapipaters, the property that determines the
temporal integration window for SBF appears to®krather than SOA. It is possible that there
is an additional constraint imposed by SOA. Holdi8pconstant and increasing flash duration
would produce long SOAs that would correspond Yery wide, slowly moving bars.

In the control (long SOA) condition, subjects gaimilar responses regardless of
specified bar width. In this condition, both the/&@nd ISIs were outside the range that
produced high contour clarity ratings in Experimg&nWe therefore expected that subjects
would not see the illusory figures in these displdf/subjects were performing the task simply
by matching flash duration to bar width withoutisgeany illusory figures, then they should
have been able to do so for both the short and $8§s since the same flash durations were
used with both. However, subjects only matchedaadth for the short SOA, when ISIs were 60
ms or less. At least two subjects in the controlditton selected the same bar width on nearly
every control trial (one consistently selectedttiienest bar width, and the other consistently
selected an intermediate width). The data sugbestliere was no impression of bar width in
the control displays, and subjects resorted togjngstrategies.

Even if the displays produced different perceptis, possible that subjects used the
widths of the response choices as a cue. Becaarse flurations were the same for both SOAs,

the bars for the longer SOA were half the widthhafse for the shorter SOA. As a result, the
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difference between bar widths was also halved 0od& degrees to 0.025 degrees. No subject
reported noticing the different response choices i@lationship between response choice and
phenomenology. Poor performance for long SOAs naaelalso occurred because shorter bar
widths are more difficult to see or because thellemdifferences between bar widths made the
task more difficult. There are several reasons thig/was likely not the case. First, bar widths
of 0.1, 0.15, and 0.2 degrees were tested for B&tAs and width estimates were closer to true
widths in for shorter SOAs (e.g., bars of a 0.2rdegvidth were rated on average as having a
width of 0.17 degrees in the short SOA conditiord a width of 0.09 degrees in the long SOA
condition). Second, bias was smallest and accuwasyhighest for narrower bars for the short
SOA. Narrow bars in the short SOA condition wererdiore perceived more clearly. If narrower
bars were more accurately perceived, then respaheestd have been more accurate for the
long SOA condition, in which bar widths were halie size of those used in the short SOA, but
this was not observed.

In the experimental condition, for wider bars, theras a tendency to underestimate bar
width. Average perceived width for the widest b@82 deg) was 80% of true width (0.4 deg).
It is unclear from this experiment whether thisshmparticular to the estimation of metric
properties of illusory objects or whether it woaldo exist if subjects had to perform the task
with real objects.

An interesting observation is that subjects welle &idiscriminate between bars whose
widths differed by less than half of an elementanteter (0.13 degrees). In particular, perceived
width was significantly different for bars with gwidths of 0.1 and 0.15 degreg@)=3.21,
p=0.03, Cohen’®=0.23). This suggests that SBF allows edges tebtavered at sub-element

resolution. Note that all element changes in SBFdscrete (e.g., a dot was either fully present
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or fully invisible on any frame, with no graduaiMasing or uncovering). No studies as yet have
systematically investigated the effect of elemére,sand this could be a question for future

research.

General Discussion

In this paper, we set out to identify the minimahditions for spatiotemporal boundary
formation (SBF). We sought the simplest condititheg might produce perception of a single
oriented illusory edge fragment from the sequemtaisformation of texture elements. We
hypothesized that these minimum conditions for &Bght be met or approximated by a novel
display in which circles arranged in a sawtoottigratdisappeared and reappeared one at a time
(Figure 2.2). Such a display would ordinarily prodyperception of apparent motion between
elements (Movie 2.1), but with different timing pareters, it produced SBF -- perception of a
laterally translating, vertically oriented, illugopar (Movie 2.2). The display structure allowed
for precise and independent manipulation of theptanal and spatial intervals between element
transformation events. As a result, values forehmsrameters that led to one or the other percept
could be identified.

Using subjective ratings of illusory contour clarim Experiment 1, we found that the
perception of a moving illusory contour decreasetigally as the separation between elements
increased up to one degree of visual angle (Figuse For displays containing elements that
were arranged farther apart illusory contours weréonger seen. lllusory contour clarity was
also constrained by ISI, the temporal interval lsswelement transformations. Clarity ratings
gradually decreased with increasing ISI up to 60¥80 Displays in which ISIs were greater than

80 ms appeared to be ineffective in producing SBF.
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In Experiment 1, for all ISls tested, the corregfing SOAs — the time between the
transformation of one element and the next — werm& longer than the ISIs. It was therefore
unclear whether the limiting temporal factor wa0a80 ms ISI or an 80-100 ms SOA.
Experiment 2 was designed to distinguish betweesetltwo properties. The temporal and spatial
properties of the displays were used to computevitith of an illusory bar that would have led
to texture element transformations at those r&tegider bar, for example, would take longer to
pass over an element, resulting in a longer flaghttn (time that the element is white or
invisible). In an objective performance task, satganatched perceived illusory bar width with
the objective width computed from display paranseté/hen tested with an SOA of 80 ms,
which yielded poor contour clarity ratings in Exipeent 1, and varying I1SIs from 0 to 60 ms,
subjects were very accurate in estimating bar wiBipure 2.7). The results suggest that the
temporal constraints at this SOA are strongly ieficed by IS, since an SOA that produced
poor contour clarity ratings in Experiment 1 watedb yield accurate estimates of illusory bar
width, as long as ISIs were short. A control caoditwith higher SOAs and ISIs verified that
subjects were performing the task based on pemdivsory bar width, and not directly from
temporal properties of the display that may haveeskas a response cue. The control condition
yielded no evidence of SBF, as indexed by partidiganability to detect bar width accurately.

An important feature of these experiments is thay tring to bear both subjective and
objective methods for evaluating illusory contoergeption. Each has potential advantages and
disadvantages. SBF is a perceptual phenomenon:olikatvers see matters. But whereas we
assume that perceptual reports convey informatmutawhat is seen, they also potentially
reflect many other factors, including variationsriteria or use of scales by participants, their

understanding of instructions, and possibly thgpdiheses about what the experimenter is
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looking for. Objective paradigms, on the other handvhich participants’ performance can be
compared to an objectively correct answer, may meadily avoid some criterion issues, and
can be more revealing about underlying mechanibotspnly if the task really depends on the
relevant perceptual representations. If there drerstrategies for succeeding at a task, all bets
are off. In the present work, the concordance efgfatial and temporal parameters that produce
clear perception of contours in Experiment 1 wité parameters that allow successful
performance in Experiment 2 strongly supports tleaithat the methods are converging on
contour perception through SBF.

Taken together, the experiments reveal severallpogperties of SBF. SBF can arise in
very simple displays with few elements arranged regular pattern and does not require the
formation of a closed contour: A single edge fragtrean be seen. Whether apparent motion or
an illusory figure is seen is determined by theigpand temporal intervals between texture
element transformations (Experiment 1). These walerare the spatial and temporal integration
limits within which oriented edges can be extractHte dimensions of the shape that is
perceived can be determined by the spatial anddsahproperties of the elements with which it

interacts (Experiment 2).

How are illusory contours and shapes seen in SBF?

In these displays, illusory edge orientation anidcity were recovered from sequential
transformations of elements. The spatial and teaigm@arameters governing the displays
determined whether the percept was of apparenbm@tiovie 2.1), a vertically oriented,
moving illusory bar (Movie 2.2), or a tilted illugpobar (Movie 2.3 — here, the timing between
element transformations varied). These resultsigeodirect support for a class of models of

SBF first proposed by Shipley and Kellman (19948 M%ver two decades ago. They proved
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formally that three, non-collinear texture elemegahsformations where sufficient to define the
local orientation of a contour fragment, and thesotrized that two pairs of element
transformations in some local region (involvingews as three element transformations) might
be the mechanism producing perception of an orikedge fragment and its current motion. On
this view, locally generated edge fragments ardosec constituents of shape perception in
SBF. Here, we have shown that SBF can indeed genguwah local edge fragments from small
numbers of element transformations, provided tleeeats occur within particular spatial and
temporal windows.

These findings offer new insight about the peraeptf contours and objects from sparse
texture element changes. Most previous work hatusixely looked at 2D virtual shapes in SBF
(e.g., Shipley & Kellman, 1993; Cicerone, Gowdy &K 1995; Cooke, Cunningham &

Bulthoff, 2004; but see Chambeaud, Martin, & Baag2014). The confirmation that SBF can
occur for short edge fragments indicates that $tagiments may indeed be recovered without
more global shape information and that such fragsare the likely basic units in SBF. The
clear spatial and temporal constraints on thisggesuggest modular mechanisms. In a separate
paper, we consider how this computation is implee@neurally and suggest that filters for
recovering motion energy from moving contrast-defirrdges (Adelson & Bergen, 1985; van
Santen & Sperling, 1984) may also function as diliges when edge orientation is not given by
static stimulus properties. On this hypothesis,ioménergy filters have a dual function, one that
is not readily discernible when stimulus orientati® explicitly given by contrast: they are also
edge filters. Moreover, on this hypothesis, SBRdsan esoteric perceptual illusion, but is
actually more indicative of basic processes impleted across the visual field for extraction of

edges, motion, and the relationship of these. @Qfs®y many details of this conjectured edge-
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motion duality in basic visual filtering remainibe worked out, including how a variety of
aperture and cross-scale ambiguity problems getves.

The spatial integration limits found in Experiméntonstrain the maximum length of a
single edge fragment. However, the experimentsididdentify the minimal length that can be
perceived. From causal observation, the heightefllusory bars in Experiment 1 was
constrained by the height of the sawtooth pattieen the vertical separation between the
element at a peak and trough). The smallest heigihie sawtooth tested was 0.4 degrees of
visual angle. In Experiment 2, illusory bar widthere resolvable at a sub-element level (smaller
than 0.13 degrees); however, bar width may havesiwodo with the perception of an illusory
surface than minimum length. It is also worth ngtihat minimum length may be constrained by
element size: since three non-collinear elememtfaeded to be able to determine edge
orientation, perhaps edge length is determine éyrtmimum distance that one of the elements
needs to be shifted in order to appear as not lmitigear with the other two. This distance may
depend on element size. Other experiments haveSBE&hapes with curved contours (e.g.,
Shipley & Kellman, 1994) and their illusory boun@grappear smooth, suggesting that
minimum edge length is likely smaller than the esltested here. Further work is therefore
needed to determine the minimum length of an iludagment that can be extracted.

Once a fragment is extracted, it is related tomoftagments and the missing boundary
regions between fragments is interpolated. Thentate®ons and velocities of several fragments
can be used to determine the global motion diraaifcthe set of fragments (Shipley & Kellman,
1998). Contour interpolation of illusory edge fragms may be determined by the same
geometric constraints of relatability that govearterpolation of real contours (Kellman &

Shipley, 1991). Because several events need ta before an edge can be extracted, these
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fragments will never be available all at once. Ratthe visual system needs a method for
maintaining a persisting representation of a fragino@ce extracted and updating its position
relative to other fragments extracted at a lateetiA model has been proposed for how such
spatiotemporal interpolation may occur betweerblescontour fragments and occluded contour
fragments that had been visible at a prior timéniieg Kellman, & Shipley, 2006). Global form
in SBF would be constructed in the following manrféj local edge fragments recovered from
sequences of element transformations within a sspalfiotemporal window, (2) relatable
contour fragments are interpolated to produce @mstt boundary, (3) the global motion of the

completed object is recovered from the individualkions of the edge fragments.

Perceptual postdiction

An interesting property of the sawtooth displaytheat when the illusory bar is seen, both
its trailing and leading edge are visible. GiveattBlements disappear quantally and one at a
time, this is actually quite surprising. Considee tlisplays used in Experiment 2. In order to
determine bar width, an element must first reapp®ace the width determines the duration that
an element is invisible or occluded. However, tagdtrailing edge is seen continuously, even
while elements are still invisible and thereforéobe the width can be determined. This is a form
of “postdiction” by which the visual system constisia surface representatiafter the offset of
a stimulus (Choi & Scholl, 2006; Kawabe 2011). Hasion always occurs in apparent motion,
in which an observer sees intermediate states whee exist. These intermediate states can be
positions, as when an object appears to move batiwaelocations, or can be more complex, as
in the perception of intermediate shapes when arsgand triangle are flashed alternatively

(Kolers & von Griinau, 1976). Postdiction also osaom an element-by-element scale in SBF in
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that while no apparent motion is seen between alesnthe magnitude of a velocity vector
between two elements can only be determined dftes¢cond element has disappeared.

It is additionally surprising that no apparent matis seen since the displays, especially
when ISIs are 0, which corresponds more closefyregular apparent motion stimulus in which
an element disappears on the same frame as thedprgelement reappears. Correspondence
models of apparent motion and first-order motiotedmrs would both predict that motion
should be seen between elements (e.g., Ullman,)1Bi6&vever, a number of studies have found
that form perception can alter or suppress motenegption (Bruno & Gerbino, 1991;
Lorenceau & Alais, 2001; Petersik & McDill, 1981aRachandran & Anstis, 1986). The
integration of local motion signals into a boundargy prevent them from being seen (Shipley
& Kellman, 1997). In particular, when element tri@nsation events can be interpreted as
occlusions, apparent motion is suppressed (Ekrdlogzikowsky, 2010; Holcombe, 2003;
Sigman & Rock, 1974). Outside of the integratiomg®, however, the percept reverts to inter-
element apparent motion. Since at least two nolmeak signals are needed to define an edge,
inter-element apparent between the first two elémg@he first motion signal), is suppressed
only after the third element disappears and a seowstion signal is generated. Although it has
been theorized that three transformations arecsesffi to determine the orientation of an edge
that caused those transformations, subsequenestatk needed to determine the minimum

number of successive element required.

Conclusion

Using both subjective and objective methods, #peements reported here provide
strong evidence that the illusory global forms s@espatiotemporal boundary formation begin

with a more local process of extracting orientegeeffagments from small sets of local element
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transformations. This process is constrained bl bigar spatial and temporal properties,
suggesting modular mechanisms for local edge regdv@m sparse stimulus information. It is
possible that this computation may be performeddigctors that have been previously
characterized as motion energy filters; in the absef oriented edge information in static
views, these or related filters may be used toaexedge orientation. Further research will be
needed to investigate whether this conjecturepudive to be useful in understanding the relation

of SBF to basic visual mechanisms.
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Chapter 3: Modeling Spatiotemporal Boundary Formation
Abstract

Transformations of widely separated visible elersgsiich as appearance/disappearance,
color change, orientation change or motion, cae gise to robust percepts of continuous
contours, shape, and global motion. Shipley andikat (1994) found that the well-known
example of accretion and deletion of texture igyamle of many element transformation types
produces these effects and called the more geperegsspatiotemporal boundary formation
(SBF). Efforts to model SBF have included formalqds that orientations and motion direction
of local edge fragments could be recovered fromlissets of element changes (Shipley &
Kellman, 1994, 1997), but little work has examir&®¥F in simplified situations, and no models
have taken into account noise in human detectidheobasic inputs to SBF. Accordingly, no
model has been able to predict accurately humang@BBrmance. Here, we measured
orientation discrimination thresholds for thin,eried edges as a function of element density,
display duration, and frame duration. Thresholdsesed with increasing density and display
duration and increased as frame duration increA¥edmplemented an ideal observer version
of the Shipley & Kellman (1997) model, and it exdee human performance, predicting
perfectly edge orientation on a trial-by-trial lsasolely from element positions and the times of
their transformations. In a second experiment, veasured human precision in detecting inputs
to the model (distance, angular separation, ane tietween the transformations of pairs of
elements). A model that added encoding imprecigothese parameters to the estimated from
experiment 2 to the ideal observer closely fit hardata from experiment 1 with no free
parameters.

Introduction

78



The boundaries of objects can indicated by mang,cz@me of the most common being
discontinuities in luminance contrast, color, defdihlesz, 1971) or texture (Kaplan, 1969;
Julesz, 1975) at the object boundary. Other cuesame from dynamic information as objects
or observers move in the world, such as a motigallpa and the accretion and deletion of
texture (Braunstein, Andersen, & Riefer, 1982; @ipKaplan, Reynolds, & Wheeler, 1969;
Kaplan, 1969; Ono, Rogers, Ohmi, & Ono, 1989; RedgefGraham, 1983; Yonas, Craton, &
Thomspon, 1987). The boundaries of a textured senf@ay be undetectable if it is in front of a
similarly textured surface. Once one of the suddmegins to move, however, the elements of the
farther surface are gradually occluded and reveati¢de boundaries of the nearer surface. Such
occlusions can result in the perception of illusboyndaries, surfaces, and global motion
(Andersen & Cortese, 1989; Cicerone & Hoffman, 19Qicerone, Hoffman, Gowdy, & Kim,
1995; Cunningham, Shipley, & Kellman, 1998a, 19980dppiastis, Hoffman, Prophet, & Singh,
2000; Prazdny, 1986; Shipley & Kellman, 1993, 19B897; Rovden, Baker, & Allman, 1988).

As elements are accreted or deleted, they providated contour information about the
occluding boundary. Shipley and Kellman (1993, )99#gested that accretion and deletion of
texture is a special case of a more general proBess of changes in some property of visible
elements can produce perception of continuousoifuboundaries, global form, and global
motion, a process they callsgatiotemporal boundary formatid®BF). A wide variety of
element transformations can produce similar peraeptof boundaries and surfaces, including
discrete (i.e., all-at-once) element disappearaameeell as changes in orientation, shape, color,
or position (Shipley & Kellman, 1993, 1994).

How are global shapes seen in SBF? It has begoged that shape in SBF depends on

two processing stages. First, information from edahthanges in certain small neighborhoods
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produces local edge fragments having specific tatens. Second, these edge fragments
connect across gaps according to well-known intatjpm processes that operate in the
perception of illusory and occluded contours (Kelin& Shipley, 1991; Kalar et al, 2010;
Palmer, Kellman & Shipley, 2006; Shipley & Kellmar§94; Erlikhman & Kellman, submitted).
Whereas the second stage involves processes ¢haelirunderstood, the first has remained
mysterious. Although Shipley & Kellman (1994) desed mathematically minimum conditions
for SBF (three non-collinear element transforma)ofittle empirical research has examined
SBF with single edges and relatively few elemeviidually all previous studies of SBF have
used closed objects with smooth contours as sti(alithough see Barraza & Chen, 2006).
Recently, we demonstrated that oriented, illusaiyesfragments can be recovered from
extremely minimal displays in which elements ararged in a jagged wave or sawtooth pattern
and disappear and reappear sequentially, onaraegErlikhman & Kellmansubmitted. These
results support the two-level theory of SBF, speaily in implicating a process that recovers
local oriented edge fragments. These local edggrfeats are likely the basic units from which
larger shapes are constructed in SBF. In this pagesought to develop a model of how such
edges may be extracted. First, we describe howB&ndBplay is constructed and discuss several
properties. Next, we consider and test an ideatmes model of how edges can be extracted in
SBF displays. In the first experiment, we measwmgehtation discrimination thresholds for
SBF-defined edges across a variety of display ptigse Human sensitivity relative to the ideal
observer model was suboptimal. We consider segersatraints and noise factors that could
have affected human performance. In a second erpetj we empirically measured noise to
low-level features of the displays, such as elerseparation. A model that incorporated the

constraints and the spatial and temporal noisenpeters measured in the second experiment
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was able to accurately predict human performandledriirst experiment across all tested disy

conditions.

Spatiotemporal Boundary Formation (SBF)

Figure 31 shows an example of an SBF display. Totted line in Figure3.1 defines the
boundary of a virtual object. The elements are gdnstationary and the virtual object mo
across the display. As the object movies, elentbaiismove across the boundary chang
some property such as color. Tthange is instantaneous and discrete (i.e., noughadrhe
percept is of a moving figure with crisp illusorgundaries. In urdirectional transformatior
(Figure 31), elements inside the boundary of the object hlagesame value along some feat
dimension (e.g., color) and those outside have aréift one. In I-directional transformation:
elements are randomly assigned one of two valugswaiich to the other upon entering
exiting the boundary of the moving object. The ityaof the illusoy contour boundary depen
on element density, luminance differences betwésments, the velocity of the occludil

surface, and frame duration (Andersen & CortesB89;18hipley & Kellman, 1994; Cicerone

al., 1995).
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Figure 3.1.Depiction of a squa “pseudosurface” moving over a field of circulardk:
elements. All elements inside the square regionnaoae state and all those outside ar
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another. Each individual frame contains a collecobwhite circles in an amorphous group. As
the square moves (frames 2 and 3), elements egt@nith exiting the region change states. The
resulting percept is of a moving, colored regiothvarisply defined illusory contours. Figure
from Erlikhman & Kellman gubmittegl.

There are many other cases in which the visuaésyst able to recover structure from
sparse information. For example, gradual, dynaroatusion of one surface by another can be
used to create “kinetic illusory contours” (Anderst Cortese, 1989; Bruno & Bertamni, 1990;
Bruno & Gerbino, 1991; Kellman & Cohen, 1984; Sty 1989). In these displays, spatially
disparate portions of a figure become visible dree téme as it moves in front of another surface.
Regions of the figure that are never visible aterpolated and an illusory surface is perceived,
despite many of the object’s regions never beisile simultaneously. Similarly, in multi-
aperture or slit-viewing displays, portions of djext’s surface are gradually revealed as the
object moves behind many small apertures (Anstitidnson 1967; Aydin, Herzon, & Ogmen
2008; Mateeff, Popov, & Hohnsbein, 1993; Palmeiplely, & Kellman, 2006). In such
displays, information about the object’s surfaced lboundaries are also only available
sporadically, must be represented when occludatirelated to other, visible regions when they
become available.

Spatiotemporal boundary formation is an even mgteme case in terms of the paucity
of available information for the construction ofged and surfaces. In SBF, the position of object
boundaries is only revealed by their interactiothvelements. Because elements transform all at
once and are not gradually occluded, there is rmt@d contour information at those locations.
This creates a very difficult kind of aperture gdesh, what has been referred to as a “point
aperture problem?”, in whichoththe orientation and velocity of an edge are inueieate

(Shipley & Kellman, 1994, 1997; Prophet, HoffmarC&cerone, 2001). In the traditional

aperture problem, the task is to construct a viidigld from many local signals recovered from
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the motion of oriented edge fragments. In the papdrture problem, there are no oriented edge
fragments. The visual system must simultaneousiguerboththe orientation and the velocity
of edge from spatially and temporally sparse asdrdie element transformations. Next, we

consider one proposed solution to this problem.

Modeling SBF

A model of SBF has been proposed for how locaéraed edge fragments can be
extracted from the sequential transformation ofnelets (Shipley & Kellman, 1994, 1997).
These illusory fragments may then be related aaddfions between interpolated by the same
processes that govern contour grouping and intatipol for real contours (i.e., relatability)
resulting in a representation of a completed olgeatour (Kellman & Shipley, 1991; Palmer,
Kellman, & Shipley, 2006). Erlikhman and Kellmaubmittedl have provided evidence for the
first stage of this process and have shown thatesiedges can indeed be recovered.

A geometric proof of the point aperture problemassible given the positions and times
of three, non-collinear element transformationse,dhentation of an edge that caused those
transformations can be computed assuming a corexdiget velocity and orientation (Shipley &
Kellman, 1997). An intuition for the proof appeand-igure 3.2. Figure 3.2a depicts a sequence
of element transformations for three elements (&b#, 2, and 3) caused by a moving edge.
When two elements transform (in this case, disapgee reappear) in succession, a
transformation vectow;,, is formed between them. The magnitude of theorestdetermined
by the spatial and temporal separation of the toameations. We use the term “transformation
vector” in lieu of motion vector to emphasize thpparent motion isot seen between
individual elements during SBF. The transformatidm third element defines a second

transformation vector»3, between the second and third elements. If the dhithese two
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transformation vectors are placed on the same Bigtre 3.2b), then the orientation of the
vector connecting their heads{ - v23) has the orientation of the illusory edge, prodideat the
edge was moving at a constant velocity and hadatant orientation between transformation

events.

(a)

Figure 3.2.A sequence of frames in which a moving edge sgogaly transforms three
elements (changing from black to white). (a). Thesnents disappear, one at a time.andvys
are transformation vectors defined by the spahdltemporal separation between elements. (b).
Transformation vectong;; andv,3z can be combined to define the orientation of tleeing edge.
Figure from Shipley, T. F. & Kellman, P. J. (1998patio-temporal Boundary Formation: the
Role of Local Motion Signals in Boundary Perceptigision Research37(10), 1281-1293.

The orientation of the illusory edge, can be expressed with the following equation:

9= tan—l( Vza:sm P23~ Vlzism (Dlzj (1)
V37 COSP,3—Vy, " COSP 4,

Whereg; is the angle formed between a horizontal line ipgshrough elementand a line
connecting elementto elemeng, andy; is the magnitude of the transformation vector betwe
the two elementss; can be computed from the distance between twoeglesiy;) and the time

between the transformations of those elemefifg)(
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(2)

One interesting difference between this solutioth e solution to the classical aperture
problem in motion perception (Nakayama & Silvermb®88a, 1998b; Shimojo, Silverman &
Nakayama, 1989) is that the aperture problem adyires two frames from a motion sequence
and two local velocity estimates from differentiyemted edges along different regions of the
object boundary. Edge orientations are given byreashinformation. Here, only a single edge is
being recovered, so all element transformation &vare occurring along the length of an edge.
Moreover, both the local edge orientation, as wasglthe edge’s motion, must be recovered from
discrete element changes. At least three eventhree frames if one event occurs per frame, are
needed in order to recover the edge orientatiome@alge orientation is recovered, the motion
direction of the edge is itself ambiguous, i.eerénis an aperture problem for the recovered edge
segment (Shipley & Kellman, 1994). This aperturgtem for the global motion of the object
can be solved if several edge segments along fleetdibundary are recovered. One of the
surprising features of SBF is that the object b@aupds continuously seen even though edge
segments are recovered sporadically. In typicasiclmmnations of the aperture problem, contrast-
defined edges are always visible, and it is ontyadter of integrating local motion signals that
can be extracted from any pair of frames.

The model makes several assumptions. First, dttieee transformation events are
needed. The orientation of the illusory edge isigonius for any two events because there are
an infinite number of combinations of edge orieiota and velocities that could cause the same
temporal interval between two element transfornmastiGecond, the three elements cannot be
collinear. If they were, them,:= ¢, and substituting into equation 1 leads to the Egua= ¢,

that is, that the estimated edge orientation is#me as the orientation of the line connecting all

85



three elements. Correct edge orientation cannoed®/ered from a collinear triplet of elements
for the same reason that orientation cannot bevezed from the transformations of only two
elements, namely that many combinations of edgmtaiions and velocities could have caused
the transformations. The collinearity restrictiggphes only tosuccessivelement

transformations. Elements can be arranged in daegtid and SBF would still occur

(Fidopiastis et al., 2000), as long as the elemiatistransformed in sequence were not collinear.
Third, the orientation and velocity of the movindge are constant between transformation
events. If velocity or orientation change betwdanfirst and second or second and third
elements in a triplet, then the triplet can betedas two independent pairs of elements, and the
same problem in determining orientation for a paielements arises.

Several findings support the hypothesis that melilkesignals, or vectors relating pairs
of element transformations elements serve as thd o an edge extraction process. We refer to
these signals as motion-like because actual looctibmbetween element transformations are not
perceived in SBF. If element transformations alercchanges, the perception of illusory
boundaries can be disrupted by the addition ofispsaiflickering or moving elements in other
regions of the display (Shipley & Kellman, 1997pr@@inuously moving elements should be
readily distinguishable from the stationary ones that change color at the object boundary
(when the object boundary passes across thenynaghd not be expected to have an effect on
boundary formation. However, these spurious transitions greatly reduced contour clarity,
suggesting that additional motion signals interfeith those used to construct edges. Contour
clarity has also been found to depend on the vel@ibntrast of elements. In particular, if
element transformations are isoluminant color cleandlusory contour perception is greatly

reduced (Cicerone, et al. 1995; Miyahara & Cicerd®97). First-order motion perception is

86



also known to be poor under isoluminance (CropP@52Cropper & Derrington, 1994,
Derrington & Henning, 1993).

Experiment 1

Despite mounting behavioral evidence in suppo# bésic edge-extraction process,
using vectors relating element transformationgramitial step to SBF, no working model that
could take an SBF display as input and producea kedge orientation as output has previously
been implemented or tested. Doing so would reqgiigplays that focus more specifically on
construction of a single orientation, whereas nposir work on SBF has used 2D shapes. As
mentioned earlier, perception of shape and contisuitusory boundaries in such displays
probably involves two stages of processing, thestrantion of local edge fragmerdaadthe
connections of those fragments via spatiotempatafpolation processes that connected
oriented edge fragments across gaps (Palmer @086). Here, we focus on the first stage to
evaluate models of it. We generated a display iithvthe SBF-defined shape was a single, thin,
oriented bar that moved across a field of bladlcutar elements (Figure 3.3). Whenever the bar
passed the midpoint of an element, that elemeapgsared (became white) all at once and
remained invisible (white) for two frames at whipbint it reappeared (cf. Shipley & Kellman,
1993, 1994, 1997). This resulted in a sequencéeafent transformations as the bar moved
across the display. The sequence could then bebrdwn into triplets of events from which
bar orientation could be computed using equatiohllthat is needed to determine edge
orientation are the relative element positions thiedtemporal interval between their

transformations.
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Figure 3.3.lllustration of stimuli used in Experiment 1. Arvisible, oriented bar move
laterally across a field of black elements on at&vhackground. Whenever it passed
midpoint of an element, that element disappearedaime white; indicated by dashed circl
second panel) all at once. The element remainetkfor two frames and then reappea
(became black). The perception was of a movingsdty, white ba

Human orientation discrimination thresholds wereasuged as a function of seve
display parameters: element density, number of ehtitnansformatin events, and frarr
duration. These have previously been shown to tttfecperception of illusory contours in S
(Shipley & Kellman, 1994). If the model is correittshould be able to accurately mo
performance under a variety of display settincd be affected by the same properties that a
human performance. The model described in equatizas used tpredict edge orientation on
trial by trial basis irsimulated experimental trials. This enabled the matation of ar

orientation discrimin@on threshold for the model, which was directlyrqmared to human dat

We discuss the properties of the model aftesenting the behavioral results.

Method

Design
A betweensubjects design was used to test the effects eé ttiisplay properties ¢

orientation discrimination of SE-defined edges. Displays varied in element densiiynper of
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elements per square region), number of transfoomavents, or frame duration. Each group of
subjects was exposed to only one of the threealisphnipulations. All subjects performed an
edge orientation discrimination task, judging wieethn SBF-defined edge was tilted clockwise
or counterclockwise away from vertical. Orientats®nsitivity was measured for six densities,

six element quantities, and three frame durations.

Participants

Subjects were 45 students from the University dif@aia, Los Angeles, split into
groups of 15 for each of the three experimentatit@ns. Subjects were compensated with
course credit for participating. All reported hayinormal or corrected-to-normal vision. Al

subjects were naive to the purposes of the expetgne

Apparatus

Stimuli were created and displayed using the MATLg®Bgramming language and the
Psychophysics Toolbox (Brainard, 1997; Pelli, 19%timuli were presented on a Viewsonic
G250 CRT monitor, which was powered by a MacPrath & 2.66 GHz Quad-Core Intel Xeon
processor and an NVidia GeForce GT120 graphics @drel monitor was set to a resolution of

1024x768 pixels and a refresh rate of 60 Hz.

Stimulus

Displays contained black, circular elements withiaaneter of 10 pixels (0.25 degrees of
visual angle) on a white background. The elememi®\placed within a 614.4 pixel by 614.4
pixel region (15.19° x 15.19°) centered on the cot@pmonitor. The elements were pseudo-
randomly arranged by dividing the display area entyrid of equally sized regions and placing a

single element at a random position within eachoregrhis placement method ensured that
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there were no large areas in the display that thekements and also prevented their overlap
while preserving a somewhat uniform distributioreothe entire display (cf. Shipley &
Kellman, 1993, 1994).

A one-pixel-wide bar was specified that spannedndight of the display. On each
frame, the bar moved laterally 5 pixels (0.125 ttagie, 7.5 deg/sec). Whenever the bar passed
the midpoint of an element, that element disappk@recame white) for two frames (33.2 ms)
and the bar paused. After two frames, the elemeappeared (became black) and the bar
continued moving. Elements appeared and disappeéaecttely without gradual occlusion. The
resulting percept was of a horizontally translatiigsory bar. Whether the bar started on the
left side of the display and moved rightvice versavas randomized across trials. The movie
lasted until the bar reached the opposite endeostineen. The bar only traveled across the
screen once, so each element transformed onlyiroee A new arrangement of elements was
generated for every trial.

On each trial, the bar was tilted clockwise or deuriockwise with respect to the
vertical. The degree of tilt was set by an adapgitagrcase procedure (Psi method (Kontsevish &
Tyler, 1999) implemented in the Palamades ToollBuiné & Kingdom, 2009)) that was used to
find the 75% orientation discrimination threshdldhether the bar was rotated clockwise or
counterclockwise was randomized across trials.

Three properties of the displays were manipulaésiment density (number of elements
in the display area), number of transformation ¢évesnd frame duration. One property was
manipulated at a time, resulting in three experit@leronditions. In the density condition,
element density was varied by drawing 9, 16, 25436 or 64 elements in the display area.

These quantities corresponded to densities of 0.0, 0.11, 0.16, 0.21, and 0.28 elements per
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squared degree visual angle. A separate staircaseised for each density to determine
orientation discrimination thresholds. The six stases were interleaved and terminated after 50
trials.

In the event number condition, element density ngld constant at one element per 0.28
square degrees of visual angle (the highest deimsihe density condition). Each display
contained 64 elements. The trial lasted until Husaory bar came into contact with 9, 16, 25, 36,
49, or 64 elements. Starting horizontal positiod amtion direction of the bar were randomized
with the constraint that there would be enough el@siin the direction of motion that would
allow for the required number of element conta&tswith density, six interleaved staircases
were used to determine orientation discriminatimesholds for each element quantity.

In the temporal condition, 64 elements were plagil the highest density used from
the density and event conditions. Frame duratiogr®W6.7, 33.3, or 66.7 ms. Subjects were
allowed to make a response at any point duringrtebecause at long frame durations the
movies lasted for a long time. Three interleavedrchses were used, one for each frame
duration. The shortest frame duration was the daanee duration that was used in the other
conditions. As such, there was one display typewlas identical in across all three conditions

(64 elements, 64 events, 16.7 ms frame duration).

Procedure

Subjects sat in a dark room at a distance of &a.5ram the monitor. The only
illumination came from the monitor. Subjects warstiucted that they would be making
orientation judgments about slanted edges and sleren examples of real edges that were
tilted clockwise and counterclockwise. After eatimalus presentation, a response screen

appeared asking whether the line was tilted closkwar counterclockwise. Subjects made a
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response by pressing a key on the keyboard. Befgmning experimental trials, subjects first
performed 10 practice trials at the highest elerdensity and quantity. Feedback was provided
after each practice trial. Once complete, subjeet® told that they would receive no further
feedback and that in the rest of the experimenaieaspects of the displays would change such
as the total number of elements, the display dumabr the speed of the illusory line. Short rest

breaks were provided throughout the experimentyei®0 trials.

Results and discussion

Orientation discrimination thresholds for eachid three conditions are shown in Figure
3.4 (black lines). The 75% correct orientation dietation thresholds were computed for each
subject for each condition and averaged acrossighjin the density condition, thresholds
decreased as a function of density with the higtieeshold of 19.08° for the lowest density and
3.17¢° for the highest. In the element quantity ¢oow, displays with 36 or more element
transformations had similar thresholds: 3.54, 3a8@ 3.36° for 36, 49, and 64 transformations
respectively. Displays with 16 or 25 element transiations had slightly higher thresholds at
5.20° and 4.20° respectively. Displays with onlgenelement transformations had the highest
thresholds, 8.8°. In the frame duration condit@verage thresholds were similar for the two
fastest durations, 3.90° and 3.66° respectivelyvéi@r, sensitivity was worse for the longer,
66.7 ms frame duration, at 5.70°. Displays withlighest density, largest number of element
transformations, and shortest frame duration (6fehts, 64 events, frame duration = 16.7 ms)

appeared in all three conditions. Thresholds wete/den 3 and 4 degrees across all conditions.
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Figure 3.4 Average orientation discrimination thresholdstfoee display conditions tested
Experiment 1. Thresholds are shown as a functiaerhent density (a), number of events
and frame duration (c). Human performance datalaog/n in black. Bars dicate the 959
confidence intervals. Ideal observer performanaha@vn in blue

For each condition, data were submitted to a w-subject, oneway ANOVA to test for

the effect of the manipulated display propertyréasing density (Fig. 4(a), blaline),

decreased thresholds (Mauchly’s tg?(14) = 43.85 < 0.001, GreenhousBeissek = 0.37,
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F(1.86, 26.06) = 87.7MSE= 16.65,p < 0.001,112IO = 0.86). Similarly, increasing the number of
element transformations (Fig. 4(b), black line)r@esed thresholds (Mauchly’s tqﬁl(:14) =
77.7,p<0.001, Greenhouse-Geissetr 0.36,F(1.81, 27.13) = 10.08/SE= 19.4,p:O.001,nZp

= 0.40). Increasing the inter-frame interval ins@@thresholds+(2, 28) = 7.78MSE= 2.37,p

= 0.002,n2p = 0.36) (Fig. 4(c), black lines).

We performed post hoc, Bonferroni corrected, twieda paired-tests comparing the
thresholds from the worst condition to the resthef conditions. Performance in the density
condition was worse in the lowest density conditompared to all others (gé < 0.001). The
threshold for the smallest number of transformai(g) was larger than for all other numbers
except for 16 elements (gdé < 0.01). In frame duration condition, there wassignificant
difference between the two shortest frame duratibiesvever, sensitivity for the longest
duration was worse than either of the shorter de{@§.7 vs. 33.3 m$(14)=3.88,p=0.0017 ;

33.3 ms vs. 66.7 n$14)=3.42 p=0.0042). Performance for displays that had idahfeatures
for all three conditions was not significantly @ifént across conditionps>0.05).

The results replicated previous findings that elenaensity and frame duration affect
shape perception in SBF (Shipley & Kellman, 19%has also been shown that the virtual
object may be a single edge or thin bar if the el@isiare arranged in a regular pattern with
equal spacing and inter-element transformationgitgelikhnman & Kellmansubmittedl. Here,
we demonstrate that single edges can be recoveesdnhen elements are arranged randomly
with varying transformation times. These findingad support to the notion that edges are
indeed extracted as a first step in constructimgpiex shape representations in SBF. One
interesting finding was that in the event quantitndition, performance continued to increase as

a function of the number of events up to approxatya25 events, after which performance
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leveled off. An earlier study of SBF also foundttparformance in a shape identification task
improved as a function of number of frames shovat,dmly up to five frames, after which
performance was constant (Shipley & Kellman, 1998 number of events needed to reach
best performance might depend on the difficultyhef task, complexity of the shape, and

distance that the object travels per frame.

Ideal Observer Model

The ideal observer model described by equationslusad to predict bar orientation on a
trial-by-trial basis for each of the conditionsErperiment 1. On each trial, the relative distances
(Ayj), angular relationships{), and timing 4T;;) of element transformations were recorded for
all elements directly from the displays by simuigtthe motion of an illusory edge. The
sequence of events was divided into triplets ampg edlientation was computed for each triplet.
Fromn elements each of which transformed omeg,triplets were created, each triplet
providing an estimate of bar orientatiéh All elements except for the first and last appdan
multiple triplets. The median of the orientatioimsites in a single trial was used to generate a
“clockwise” or “counterclockwise” response. If theedian was 90°, one of the two responses
was chosen randomly. The responses were then gabitotthe same staircase procedure for
each of the experimental conditions and displayrggt. This resulted in estimates of orientation
discrimination sensitivity for the model that coldd directly compared to human sensitivity
measures. Importantly, while the model output wasrgentation, the comparison to human data
was at the level of discrimination thresholds.

The model was able to predict edge orientation gepurately, producing orientation
discrimination thresholds below one degree fodatsities (blue line, Figure 3.4). However, in

examining individual orientation estimates derivexn a triplet, there was some deviation from
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true orientation. Average orientation estimate rewas 1.85° per triplet. When the median was
taken across all orientation estimates computed &b triplets in a single trial, error was 0.37,
0.28, 0.24, 0.20, 0.17, and 0.14° for the six el@ndensities from smallest to largest
respectively. Error was reduced for higher derndigplays because there were more triplets that
contributed to the final estimate. The model’s perfance may have been imperfect because the
bar advanced in discrete steps of 5 pixels every a6 (i.e., every frame). This introduced error
in the amount of time between element transformagients, which could only be in multiples

of the frame rate. To test this explanation, a spaset of simulations was run for which the
velocity of the bar was used to compute the timemén element should have transformed.
Using these “true” times, average orientation esteéerror was less than 0.1° per triplet. The
model is therefore able, in principle, to perfeatBtermine edge orientation from three element
transformation events. In all subsequent modetimg timing correction was not applied because
true bar velocity cannot be knowarpriori. Even without the correction, however, the model’'s
median orientation estimates differed little (lé¢szn 0.5°) from true orientation, and the final
model thresholds were well below those of humarentess, even for the highest density
(3.17°).

It is possible that simultaneous element transftionaevents could have affected both
human and model performance. Simultaneous eventd be used to perform the task perfectly:
because the stimulus was a thin bar, simultanegerst® could only have occurred if the
orientation of the edge was the same as the aegieebn the event positions. Knowing the
angle would therefore be sufficient to determinesthler the edge was oriented clockwise or
counterclockwise. Such a strategy would be padicid the displays used in this experiment. If

the contour of the virtual object was curved or posed of more than a single edge, a straight
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line connecting the positions of simultaneous eventdifferent parts of the curve or on
different edges would not correspond to the shapaisour. Nevertheless, if observers
discovered that they could use simultaneous everds the task, then one might have expected
performance to have been near-perfect, especalllyifher densities which had the highest
frequencies of simultaneous events on a per-tasish On average, there were 0.21, 0.74, 1.93,
4.06, 7.56, and 12.73 simultaneous events perftradach of the six element densities
respectively. However, even at the highest denaitgrage human thresholds were around 3.5°.
If two simultaneous events over the course ofa were sufficient to perform the task, we may
have expected better performance. Furthermorepubedae virtual edge spanned the height of
the display, simultaneous events were often fartaphe average distance between
simultaneous events for the highest density wa8°3@iven that simultaneous events lasted for
only 33.2 ms and that the elements were smallpitldvhave been difficult for observers to
detect them at all.

As a further check, we also performed a controkeexpent (not reported here) in which
only a single element disappeared on every framigjeSts reported seeing an illusory edge and
orientation discrimination thresholds were veryitamo those found in Experiment 1. The
model was also able to perfectly predict edge tait@on in these displays. Human and model
performance therefore did not depend on the presehsimultaneous transformation events to

drive performance.

Experiment 2

Experiment 1 indicated that observers could veropeately discriminate between edge
orientations of illusory edges defined by SBF amat their sensitivity depended on the spatial
and temporal properties of the displays. Humangoerance, however, was far worse than the

ideal observer model, especially for low densigptiys and displays with few transformation
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events. One limitation on human performance coeldfmtial and temporal integration limits
beyond which events cannot be combined to recal@e erientation. In sparse displays, edges
may not be formed because elements are far apantdne another and the temporal intervals
between their transformations are long. Similaggnation limits exist, for example, in apparent
motion, where the perception of motion between &lternatively flashing elements is
constrained by the inter-element distance andl#raent flash timing (Wertheimer, 1912; Korte
1915). Under minimal conditions, when few elemdrdasform one at a time, perception of
illusory contours is strongly degraded for inteeraknt distances greater than one degree of
visual angle or inter-stimulus intervals greateami80 ms (Erlikhman & Kellmarsubmitted.
For dense displays with random arrangement of al&syand large, extended objects similar to
those used in Experiment 1, perception of SBF imggavith the number of frames that can be
fit into a 165 ms temporal window, with additioriEdmes adding little or no additional benefit.
In the event quantity condition in Experiment 1rfpenance improved with increasing number
of events up to 25-36, beyond which there was mieddbenefit to sensitivity. This may reflect a
maximum threshold on the number of events thateansefully integrated. Additionally, both
Experiment 1 and prior work demonstrate a gradediction in SBF perception as a function of
the display’s spatial and temporal properties, sstigg an effect of noise. Inaccurate
representations of the distance between elemamtexdmple, would affect the computation of
the inter-element velocity signal and ultimatelg #stimate of the bar’s orientation.

There are several possible low-level sources denim these displays. Accurate
representation of the edges position and veloelyires precise estimates of element positions
and transformation times. The ideal observer meldeled that even slight deviations from

correct temporal values could cause a 1.8° errtrarorientation estimate. Additional sources of
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noise arise from imprecise measurement of intanefe position or the angular separation
between elements. Temporal, spatial, and angudéardies are the three variables in equation 1
used to derive edge orientation. Experiment 2 vessgthed to empirically measure sensitivity to
these quantities in SBF-like displays. Noisy measwant of low-level stimulus properties has
previously been used to account for error in visgeed perception (Hurlimann, Kiper, &
Carandini, 2002; Stocker & Simoncellli, 2006) ane celiability of spatial and orientation
signals in biological motion (Thurman & Lu, 2014 hese low-level sources of noise may result
in mis-estimation of edge orientation, resultingpoorer sensitivity. Including them in the model

might be able to account for the suboptimal humenfiopmance.

Method

Participants
Subjects were 3 volunteers from the University afiférnia, Los Angeles, and one of the
authors, GE. All reported having normal or corrdet@-normal vision. Two of the subjects were

experienced psychophysical observers.

Design
A method of constant stimuli design was used tosueasensitivity to spatial, temporal,

and angular separation between pairs of circuanehts flashed successively for various
distances, temporal intervals, and angles. Subpestermed a two-interval, forced choice task

in which they selected the interval that contaitiedlflashed pair of elements that were either
closest together in space, closest together in timehich formed the smallest angle relative to
horizontal. Seven spatial distances from 20 todi#6ls (0.5 to 3.5 degrees of visual angle) were
used as references. Each reference was compat&cdtber distances to obtain points on a

psychometric function. A similar procedure was ukedix reference temporal intervals (50 to
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300 ms) and five reference angular differences¢15°). For each reference, a cumulative
Gaussian function was fit to the data to obtainmeesad standard deviation estimates. Spatial,

temporal, and angular sensitivity data were cadi@dietween subjects.

Stimuli

The apparatus was the same as that for Experiln&ttmuli consisted of a background
array of 400 randomly placed white, circular eleisgdiameter = 0.25°) on a black background
and two pairs of target elements which were idahtiz the background elements. All elements
appeared within a 13.69° by 13.69° area centerd¢lddeomiddle of the screen. Each trial was
composed of two intervals. In each interval, trerents of one pair flashed (disappeared) for 50
ms and then reappeared one at a time. The posdimhimes of flashes defined the spatial,
temporal, and angular relationship between elemardgair. One pair of elements defined a
reference distance, temporal interval, or angld,the other a corresponding comparison value.

In the spatial task, seven reference distances wea@: 20, 40, 60, 80, 100, 120, and 140
pixels (0.50, 1.00, 1.49, 1.99, 2.49, 2.98, an® 8dgrees of visual angle, respectively). These
were the Euclidean distances between elementsaiobtine target pairs. Comparison distances
for the other pair were offset by between -50 abghixels (-1.24° to 1.24°) from the reference
distance. Ten comparison distances were used ¢brreference to cover a range of values to
along the psychometric function. Whether targetnelets in the first and second interval were
separated by the reference distance and compatistamce respectively or vice versa was
randomized across trials. Each element pair watecmhon a random position within the
display area. The angle formed between the elenreatpair and the horizontal was

randomized across trials, but was the same for jpaitis of elements within a trial.
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A similar pairing of reference and comparison wasdifor temporal and angular
separations. For the temporal task, six referencatibns were used: 50, 100, 150, 200, 250, and
300 ms. Ten comparison durations were used for edelence, with offsets in the range of -180
to 180 ms. For this task only, the monitor refrestie was set to 100 Hz to allow intervals to
occur in steps of 10 ms. For angular separatior,reference angles were used from 15° to 75°
in steps of 15°. Ten comparison angles were ugegbith reference, with offsets in the range of
-22° to 22°. For both temporal and angular tadesyents within a pair were 3.75° apart.
Element pairs in the temporal task appeared abrarahgular positions across trials, but the
formed the same angle within a trial (across pakagh reference-comparison pair for each task
was tested 20 times. Trial order was randomized.

Before target elements in a pair flashed, a retineudf a square (7.45° by 7.45°)
centered on the elements appeared for 300 ms.viRiliit had found that without this attentional
cue, observers often missed the disappearancesadrdooth elements in a target pair. This
attentional cue occurred at the beginning of eatdrval, before the first element of an element
pair flashed. Even with the attentional cue, it wasetimes difficult to detect an element flash.
In order to prevent guessing in such cases, syeate allowed to press a key to repeat a trial.
The same reference and comparison values were luseal new display was generated with
background and target elements appearing in neuiggesand with the interval order

randomized.

Procedure
Subjects sat at a distance of 89.5 cm from the tooand had their heads stabilized by a
chin-rest. Subjects were given verbal instructithrad they would be making discrimination

judgments between the spatial, temporal, or angliséances defined by the flashing of two dots
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in a field of dots. A trial began with all elemenbsckground and target, displayed on the screen.
After 300 ms, the outline of a red, square appeeeedered on the first target element pair. This
marked the beginning of the first interval. The aguremained on the screen for 300 ms and
then disappeared. After a further 300 ms, the @lsnent of the first element pair disappeared
for 50 ms and reappeared. The second element peihéhen disappeared for 50 ms. In the
temporal duration task, a pause was inserted thitereappearance of the first element and
before the disappearance of the second. This mhaiseed the temporal interval about which
subjects made a judgment. Once the second eleeegpeared, all elements remained on the
screen for another 300 ms, at which point the sgaaterval began. An attentional square was
again shown for 300 ms and the second pair of elesflashed one at a time. After the last
target element reappeared, the display remainedeoscreen for another 300 ms and was then
replaced by a blank, black screen. White text utséd subjects to make a response by pressing
one of two keys on the keyboard to indicate whetheifirst or second interval contained the
pair of target elements that were farthest apastial task), that flashed furthest apart in time
(temporal task), or that formed the smallest amgte the horizontal (angular task). If subjects
missed one or more target element flashes, theg instructed to press a third key to repeat a
trial. Subjects were explicitly instructed not &peat trials in which they were unsure of the
answer, but saw all four target element flashebjegts were given a break every 100 trials. An
illustration of a trial sequence is shown in Fig8re. The three noise conditions were run

independently in separate sessions. Each sessimul lapproximately one and a half hours.
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Figure 3.5 An illustration of a trial in Experiment Each row depicts one interval. A region
region of the display was cued in which elememdfarmations would occur (first panel).
element within that region would disappear (seqoatkel, indicated by dashed boundary)
reappear (third panel). econd element would disappear, also within the cegion (fourtt
panel). The two elements define a spatial, angalat,temporal value, which is compared to
in a subsequent interval (second ro

Results and Discussion

For each referenceesmparson pair the percentage of largest distance, |amygation,
and smallest angle responses was computed foroédlel three tasks respectively. Cumula
normal distributions were fit to the data for eaeference and for each subject separately a
nondinear least squares procedure and the mean amdbsthdeviation of the functions we
estimated. The standard deviation estimates appdables3.1-33 for all subjets in each of

the three tasks.

Observer] 0.5 deg| 1 deg| 1.5 de(| 2 deg| 2.5 deg| 3 deg| 3.5 deg
GE 0.16 0.18 | 0.24 0.26 | 0.44 0.33 | 0.47
RO 0.27 0.35 | 0.35 0.32 | 0.42 0.41 |0.79
SC 0.20 0.20 |0.19 0.29 |0.25 0.37 | 0.35
YX 0.75 0.54 | 0.68 0.96 | 0.88 1.00 | 1.58
Avg. 0.35 0.32 | 0.36 0.46 | 0.50 0.53 | 0.80

Table 3.1.Standard deviation estimates for each subjectarsgiatial task for each of the se
reference distances.

Observen 50 ms| 100 ms| 150 m¢ | 200 ms| 250 ms| 300 ms
GE 68.54 | 133.45 | 99.80 91.59 107.02 | 86.23
RO 48.28 | 27.8014 | 50.83 51.53 69.63 62.15
SC 116.63 | 61.89 67.92 72.83 96.19 120.48
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YX 182.43 |1 181.26 | 147.96 | 192.33 | 137.94 | 153.60

Avg. 103.97 | 101.10 | 91.63 102.07 | 102.70 | 105.61

Table 3.2.Standard deviation estimates for each subjedtarigmporal task for each of the six
reference temporal durations.

Observern 15° | 30° 45° 60° 75°
GE 696 794 |[12.85(9.27 | 7.87
RO 7.89 | 13.51 | 9.88 | 14.31 | 10.23
SC 6.14 | 6.41 |8.17 | 12.13 | 6.610
YX 5.45114.84 | 20.58 | 19.33 | 13.46
Avg. 6.61 | 10.67 | 12.87 | 13.76 | 9.54

Table 3.3.Standard deviation estimates for each subjed¢tarahgular task for each of the five
reference distances.

Typically, empirical noise estimates are used taehone individual’'s performance at a
time because sensitivity varies from subject tgesttbThis can be seen, for example, in subject
YX’s standard deviation estimates for distance isi@itg (Table 3.1), which are two to three
times larger than those of the other subjects aathseference distances. However, as a first
step, we sought to test as simple and general &lnasgossible. Standard deviation estimates
were therefore averaged across all referenceslbsuabgects resulting in average estimates of
0.47 degrees of visual angle, 101.18 ms, and 1@08%patial, temporal, and angular separation
respectively. On the one hand, these average gjeaniay have overestimated the amount of
noise and glossed over subtle differences as difunaf reference value (e.g., increasing
variability with increasing inter-element distanc®n the other hand, average values may be
more appropriate to apply to the data from Expeninie in which subjects were naive observers
who were not specifically instructed to pay attentio inter-event properties. Instead of
examining subject-specific fits, we therefore ueglaverage data from Experiment 2 to attempt

to predict performance from a completely differgraup of subjects from Experiment 1.

Model Results
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The ideal observer model introduced in Experimewa$ modified by adding two
constraints and three sources of noise. The finsstraint was on the number of integrated
elements from which the final orientation estimates derived. In the event quantity condition,
additional elements beyond 25-36 did not affecsgmity. We therefore restricted the number
of elements to be integrated to 25. A sequencé® alodsecutive element transformations was
sampled for each trial, and orientation estimatesevderived only from triplets within that set of
elements. The second constraint was temporal letsipontaining inter-event times greater than
165 ms were excluded from the final set from wlilal average orientation was computed.
Previous work using similar displays found thatgegtion of SBF was greatly reduced beyond
this limit (Shipley & Kellman, 1994).

The average noise parameters estimated in Expari2zngare applied by including
additive noise to the spatiad), temporal 4T), and angularg) inter-element properties as
indicated in equation 1. It was assumed that n@a®normally distributed with a mean of zero
and a standard deviation given by the noise estisndérived in Experiment 2. For spatial and
temporal noise, truncated normal distributions wesed to ensure that the sampled values were
non-negative. Each condition in Experiment 1 wasutated ten times and the average of the

threshold estimates from the ten simulations aogvahn Figure 3.6.
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parameter estimates from Experiment 2. Error baa®%% confidence intervals. Model d
reflect the average of 10 simulated experiment.t
Model performance was measurey computingthe root mean squared error between
human data and the model fit. The overall fits waghly accurate across all conditions: elen

density RMSE = 3.42; event quantity RMSE = 0.88nfe duration RMSE = 0.83. As

comparison, for the deity condition, we examined models that did notude the elemer
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guantity and temporal constraints, as well as nstihelt only included those constraints and
added no noise. Both constraint-only and noise-ordgels provided worse fits to the data:
constraint-only RMSE = 11.18; noise-only RMSE =183.

Increasing noise as a function of inter-elemenasspn in Experiment 2 suggests that
spatial noise may be multiplicative in nature ratiian additive. A role for multiplicative
computation has been suggested for looming sid@abbiani, Krapp, Koch, & Laurent, 2002),
contrast-gain control (Albrecht & Geisler, 1991; ati@nen & Koenderink, 1991), and
orientation selectivity (Beaudot & Mullen, 2005) Test whether multiplicative noise might
better capture human performance, the distancefidetaExperiment 2 were log-transformed
refit with a cumulative normal, and the standardiak®on for each distance for each subject was
computed. The average across all references apectsitvas 0.30. The model was then rerun
and compared to human data from Experiment 1. Tidépticative noise model was able to fit
the density condition slightly better than the &gdinoise model (RMSE = 3.11), but was worse
for the number of events (RMSE = 1.74) and frammtilon (RMSE = 2.15) conditions.

General Discussion

The current study provides new evidence in suppioatmodel of spatiotemporal
boundary formation (SBF) that extracts local, aeeinedge fragments by solving the point
aperture problem. We have recently demonstratedviatally that such edge fragments can
indeed be recovered in minimal displays in whidments disappear and reappear one at a time,
suggesting that they serve as the basic units Whroh global shapes are constructed in SBF
(Erlikhman & Kellman submitted. Although a model had been proposed for how such
fragments may be recovered solely from the postmfrelements and times of their
transformations (i.e., by solving the point apestproblem), the model had not been

implemented or applied to behavioral data (Shigldfellman, 1994, 1997). Here, we present
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the first evidence that not only can such a moé&tmine edge orientation given accurate input,
but that it can also very precisely model humarigoerance across a variety of conditions using
only a few constraints and sources of noise. Ingmaly, this was possible without any parameter
fitting. In addition, although the model made potiins about edge orientation on a trial-by-trial
basis, the final comparison to human data was padd on orientation discrimination
thresholds that were generated by a staircase guoe€lt is all the more impressive that it was
possible to fit these data with a mechanistic model

An ideal observer model demonstrated that edgetatien could be unambiguously
determined from three, non-collinear element tramsétions. In Experiment 1, special displays
were created in which only a single illusory edgeswisible. It was possible to model human
sensitivity to the edge’s orientation across aetgrof display conditions known to affect
perception of SBF by introducing two integratiomstraints and noise to the estimates of
element positions and event timings. The two camnsis were: (1) element transformations had
to occur within 165 ms of each other, a cutoff beyavhich illusory contours are not seen
(Shipley & Kellman, 1994), and (2) orientation asites were computed from a subset of 25
events. In Experiment 1, orientation sensitivitysveamilar for displays containing 25 events or
more. The amount of variability or noise in measgrinter-element distance, angular separation
between elements, and the temporal interval betweents (the three variables in model) were
estimated on a separate group of subjects (Expetig)eand their averages were used to predict
performance in Experiment 1.

There are several limitations to the model. Fits§ assumed that the velocity and
orientation of the illusory edge is constant. Weeheecently shown that SBF supports a wide

range of transformations of the pseudosurface dnefuscaling, rotation, acceleration, and non-
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rigid transformation (Erlikhman, Xing, & Kellmam pres3. Second, the model only gives the
orientation for a single edge. In displays with iapes or curved edges, the model would need
some spatial parameter that limits the integradfbelement transformations to small
neighborhoods to allow for the extraction of edgferimation along all portions of the contour.
For example, if the illusory figure is a circlegththere must be some way of keeping separate
element transformations on opposite sides of tlabeciFuture work is needed to address these
concerns.

For a moving object, two frames from a motion sexgeeare sufficient to solve an
aperture problem that occurs locally for each cone.g., Weiss, Simoncelli, & Adelson, 2002).
Such a solution is impossible for the point ap&rforoblem, particularly in SBF displays in
which edges can be seen even when only a singteealeransforms from frame to frame
(Erlikhman & Kellman submittedl. If a biological process instantiates the comoite
performed by the model, it must be integrating eetiransformation events over an extended
region of space and period of time. This bringsitod a class of motion-energy models with
spatiotemporal filters that are thought to refieetiral properties and which can detect moving,
contrast-defined edges over time (Adelson & Berd®85; Challinor & Mather, 2010; van
Santen & Sperling, 1984). However, such modelsipregarest-neighbor apparent motion
between transforming elements. An alternative jpagsgiis that a set of large, oriented motion
filters that capture the transformation of sevetaments may be used to determine edge
orientation. Evidence for the existence of sudeifdl have been found in primates in V1
(Maracar, Raiguel, Xiao, & Orban, 2000; Schmid, 0%2 (Lu et al, 2010; Chen et al., 2014)
and MT (Marcar & Cowey, 1992; Marcar, et al., 1996an explanation in terms of these

detectors is possible, then SBF is not simply aee visual illusion, but is actually the result

109



of a fundamental visual process involved in theaetion of edges, motion, and their interaction.
We are currently exploring the possibility of linkgg models of SBF to the known properties of
oriented motion energy filters.
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