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QUAN'I'UM CORRECTIONS (WITHIN THE CLASSICAL PATH APPROXIMATION) 

TO THE BOLTZMANN DENSITY MATRIX 

\ by 

Steven M. Hornstein and William H. Miller* 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistryj University of California, 

Berkeley:, California 94720 

ABSTRACT 

A previously derived classical path approxim~tion for diagonal matrix 

elements Of the Boltzmann density matrix (i.e., the particle density) is 

expanded in a power series in fl about the classical density. Comparing 

term by term with Wigner's expansion of the exact quantum mechanical 

density, one sees that the first quantum correction to the classical 

density (which involves first and second derivatives of the :potential 

energy) is given correctly by the classical path approximation. Wigneris 

expression for the second correction term, however, involves the first 

f'our derivatives of the potential, and the classical path approximation 

gives only the part of this term that involves the first three derivatives. 

·. 
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I. Introduction 

Recent work has demonstrated the value of the classical path approxi-

mation to quantum mechanical problems. This classical-limit approach, 

in which the Feynman sum over all paths is replaced by a sum ov~r only 

' 
the classical path (or paths), has yielded accurate results in scattering 

problems1 and quantum statistical mechanics. 2 

In this Letter we investigate in more detail a recently derived 

classical path approximation for the Boltzmann density matrix
2

. The 

particle density (i.e., the diagonal elements of the density matrix) 

given by this approximation was seen to be considerably more accurate than 

the ordinary classical density, being quali~atively correct (and reason­

ably quantitative) even·in the low temperature limit where the classical 
'' 

density is completeiy inadequate. Furthermore, in regions where the 

potential energy function has only first and second non-vanishing 

derivatives, the classical path approximation was seen to give the exact 
\ .. 

quantum mechanical result for the density. 

To gain more insight into the nature of the classical path approxi-

mation and its level of accuracy, this paper systematically expands the 

classical-path density in a power series in fl, and explicit expressions 

are obtained for the first two "quantum correction" terms to the ordinary 

classical density. Comparing with the exact quantum expressions for these 

correction terms obtained by Wigner3, one sees that the first quantum 

correction to the classical density (which involves first and second 

derivatives of the potential) is given correctly by the classical path 

approximation. The second correction term, however, involves the first 

four derivatives of the potential energy and the classical patl:]. 

( 

' 
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approximation gives only the part involving its first three derivatives. 
• I 

II. Expansion of the Classical Path Approximation 

For a single particle in a one-dimensional potential well the particle 

. - H 
density p~(x)~('x!e 13 lx> is given in the classical path approximation 

. by2 (~ ~ 1/kT) 

l 

pl3 (x) = n
13 

(x) - 2 exp [ -cp
13 

(x) J 

where 

X 
1 

2 l f 
cf>. (x) ·= ~V(x ) + 2(2m/M )2 

13 ° X 
dx' [V(x') - V(x

0
) ] 2 

0 

l X 
n

13 
(x) = 4rr(fl2 

/2m)2 [V(x
0

) - V(x)) J 
X 

0 

3 

dx' [V(x') - V(x ) f 2 . 
0 

(1) 

(2) 

(3) 

The turning point x is the fUnction of x and 13 defined by the equation 
0 

X 

X~= 1 1 

dx' [V(x') - V(x ) f 2 , 
0 

(4) 
0 

where the "quantum parameter" (dimensions 
2 

length /energy) is 

2 2 x= n 13 /2m. (5) 

It is easy to show
2 

that in the limit X.-0 Equations (1)-(4) 

reduce to the usual classical density 

p~ CL(x) " c:rm~ )"' exp [ -~V( x) )• (6) 

Here we wish to expand Equatj_ons (2)-(4) in a power series in A to obtain 
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Equation (J) in the form 

(7) 
1 

i.e., the goal is to obtain explicit expressions for the "quantum correc- L
1 

tion" functions Ck(x,f3),k == 1,2, ... 

The first step is to change variables of integration in Equations 

(2)-(4) from x 1 to the dimensionless variable z, x 1 = x + z &., where 
0 

&.5 x- x; the limits of all the integrals then become 0 to 1. The 
0 

integrands in Equations (2)-(l~) are then expanded in a power series in 

&. and inh:tjrated term by term; Equation (lr), for examp1o, becomes 

1 l { 2 2 
)..2 == 2(6xjV 1 

)
2 l + &.(5/12) (V"/V') + &. - [(43/160) (V"/V 1

) 

(ll/6o)(v• "/V') J + o(&3)} , . · (4') 

where V1 = V1 (x), V' 1 = V1 '(x), etc. Equation (4 ), a power series in 

&. for ).. , can be inverted to obtain 6x as a power series in ).. : 

&. = ('AV'/4) { 1- >.(5/24)V'' + >.
2

[(6l/l41+o)(v' 1
)
2 + (ll/48o)v•v• 1 

• J 

+ O('A3)} . (8) 

Inserting Equation (8) into the &-expansions of Equations (2) and (3) 

then gives a )..-expansion for these quantities: 

<f>f3(x) == f3[V- 'A.(V')
2
/l2 + >..2 (V')~"/60 + O('A3)] (2') 

41$ (n
2
/2m) { l + 'A.V"/3 + >..

2
[(V' I )

2
/30 

+0(>..3)}, 

n
13 

(x) V'V' I '/15] 

. (Y) 

or 

,] 
r 
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D~ (x) -~ = (;!"np)} {1 - XV" I 6 + ~ 2[ (V") 
2 ll•O + V' V" 'I 30] 

+ O(A.j)} • (3 II) 

Combining Equations (2 1
) and(3 1 ~) in v;ith Equation (l) gives the density 

in the form of Equation (7), vlhere the first two quantum correction 

functions are identified as 

2 cl (x,f3) == ~ [V 1 (x) J /12 - ~I I (x)/6 (9) 

C2(x,0). 13 2
[V 1 (x)J4

/288 

+ V1 (x)V 1 1 '(x)/30 

(ll/360)p [V 1 (x) ]
2

V 1 '(x) + [V 1 1 (x) ]
2
/40 . 

(10) 

Higher terms can be similarly generated. 

The exact quantum expressions for these correction terms have been 

determined by Wigner3, and one sees that Equation (9) for the first 

quantum correction is the same as Wigner 1 s result. Wigner's expression 

for C!2(x,f3L however, is the same as that in Equation (10) but with the 

term -V 1 '''(x)/60f3 added to it. 

III. Discussion 

Knowing from Wigner 1 s work3 that the first quantum correction to 

the classical density involves only first and second derivatives of the 

potential, one could have predicted beforehand that the classical path 

apploximation would give the exact quantum result for this first correc_-

tion term - for it has been noted above that the classical path approxima-

tion is exact (for a:Ll values of .\) if the potenti:al has only first and 

second non-zero derivatives. Thus it is not surprising, too, that the 

part of the second correction term which involves the first two derivatives 

of the potential :is eiven corrcetly. The mJrl)rising featm~e, which 
I 

could. not have bC:~en antici:patecl, is tlla t iJJc• part of 
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c2 (x,~) \vhich involves the third derivative is also given correctly. 

The classical path approximation was seen not to be capable, however, of 

producing the i'ourth derivative term in the quantum expression for 

These ob.servations are another example of the fact that the classical 

path approximation is not a high temperature (smali (3) approximation in 

the present statistical mechanical application, mr a short time approxi-

mation in scattering situations; rather it is an approximation that the 

potential energy is a slowly varying function. The second correction 

term c2 (x,f3), therefore, will be given quite accurately by Equation (10) 

if the fourth derivative of the potential is small compared to the three 

lov1er derivatives. This notion that the classical path approximation is 

basically <:m approximation of a slov;ly varying potential is also a well-

4 
known idea i'row ordinary WKB theory . 
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