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ABSTRACT OF THE DISSERTATION

Power, Thermal, Reliability and Variability Management of Mobile Devices

by

Pietro Mercati

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Tajana Šimunić Rosing, Chair

Today, there are more mobile devices than human beings on the planet. Mobiles

execute a wide variety of applications and are expected to perform in many different

environments, from the deserts to the mountain tops. Their goal is to meet user’s expec-

tations and deliver high quality of experience. Unfortunately, to achieve this they face

a set of interrelated problems. The heterogeneous components that execute varied tasks

can drain a battery in a matter of hours. Power dissipation raises the device temperature,

which can be a source of discomfort for the user. Temperature stress also dramatically

increases the impact of reliability degradation mechanisms on transistors and intercon-

nects, which can lead to early failure. These problems only worsen with CMOS scaling,

which reduces the accuracy of the fabrication process and increases the variability in

power, performance and degradation rate. Dynamic management mitigates such issues

xvi



by adapting the operating conditions at runtime. Strategies have been very well stud-

ied for traditional systems like desktops and servers, but unfortunately they cannot be

applied to mobiles, because they do not consider user experience. Existing dynamic

management for mobiles only begins to target the problems of power and thermal man-

agement, and offers limited solutions for reliability and variability management. This

is fundamental to guarantee power savings and prevent early failure in a scenario of

increasing variability.

In this dissertation, we propose the design and real implementation of a novel

unified framework for the comprehensive dynamic management of power, tempera-

ture, reliability and variability in mobile systems, subject to user experience require-

ments. We develop novel lightweight solutions for power and thermal management

that optimize for both application behavior and battery lifetime. We complement this

with our framework for the online emulation of reliability degradation and variability,

which enables the development and rapid prototyping of hardware management solu-

tions. We leverage our emulation framework to design and integrate dynamic reliability

and variability management for mobile systems. The presented solutions have been

implemented and tested on real devices. Our strategy can meet user experience require-

ments with a selected target battery lifetime extension of at least 25%. Also, it achieves

up to 35% savings in power consumption at the device level, with up to 1 year reliability

lifetime improvement for a multicore platform and up to 100% of performance improve-

ment on cluster architectures. Finally, on devices affected by variability it achieves up

to 160% performance improvement over the state-of-the-art while meeting the lifetime

constraints.
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Chapter 1

Introduction

Mobile devices experienced an impressive development during recent years, to

the point at which there are more smartphones and tablets than human beings on the

planet. From the first cell phones in the 70s and 80s that only had capability of sending

and receiving calls, today we can hold an entire computer on the palm of our hand. Mo-

dern smartphones integrate heterogeneous subsystems in their multiprocessor systems

on chip (MPSoC), such as CPU, GPU, DSPs, display, networking (Wifi, 4G, Bluetooth)

in a compact form factor. They can execute a variety of applications, from traditional

calls, to multimedia, gaming, browsing and more. Such different applications have var-

ied performance requirements and power consumption [74].

The ultimate goal of mobiles is to deliver quality user experience [49]. Opti-

mizing performance increases the activity of computation units and their peak power

consumption, which can drain the battery in a few hours. Power dissipation raises the

device temperature quickly, due to the compact form factor and the absence of active

cooling solutions. This can be a source of discomfort for the user, since human skin tol-

erates up to 45oC contact temperature [129]. Mobile devices have to provide the same

level of user experience in environments and seasons characterized by very different

external temperature, as opposed to desktops and server machines [130]. High tempera-

ture stress also dramatically increases the impact of reliability degradation mechanisms

of transistors and interconnects. Mechanisms such as Time Dependent Dielectric Break-

down (TDDB) and Negative Bias Temperature Instability (NBTI) depend exponentially

on temperature. They degrade the performance of circuits over time and lead them to

1
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early failure [153]. These interrelated problems only worsen with the scaling of CMOS

technology, which decreases the accuracy of the fabrication process. As a result, pro-

cessors with the same nominal characteristics, in reality have variability in performance,

power consumption and reliability degradation rate [116].

Past research investigated the dynamic management of these problems for tra-

ditional systems, such as single core and multicore processors for desktop and server

machines [157], [21], [23], [62], [176]. Unfortunately, these approaches cannot be ap-

plied to mobiles, because they do not consider user experience. More recent efforts look

at energy and temperature management for mobile devices [130], [129]. Very little work

looks at the joint control of these problems subject to user experience constraints. Lim-

ited solutions are presented for the dynamic management of reliability and variability.

A few publications explore the feasibility of implementation of these techniques on real

mobile devices [131], [86], [121].

In this dissertation, we propose the design and real implementation of a unified

framework for the comprehensive dynamic management of power, temperature, relia-

bility and variability in mobile systems, subject to user experience requirements. We

develop novel lightweight solutions for power and thermal management that account

for both application behavior and battery lifetime. We propose a framework for the on-

line emulation of reliability degradation and variability, which enables the development

and rapid prototyping of hardware management solutions. Finally, using this emulation

framework, we propose a dynamic reliability and variability management for mobile

systems. All the solutions presented in this dissertation have been implemented and

tested on real devices. We demonstrate that the proposed strategy meets user experi-

ence requirements with a selected target battery lifetime extension of at least 25%. It

can achieve up to 35% average savings in power consumption. We also show that it

achieves up to 1 year reliability lifetime improvement for a multicore platform, and up

to 100% of performance improvement on cluster architectures. Finally, we demonstrate

that it achieves up to 160% performance improvement over the state-of-the-art while

meeting the lifetime constraints on devices affected by variability.

Next, we discuss the key issues addressed by this dissertation: user experience,

power, temperature, reliability, variability. We highlight the main challenges in the con-



3

text of mobile devices and describe how these problems are related to each other. We

conclude the chapter by presenting our solution and the main results achieved.

1.1 Mobile Devices and User Experience

Providing quality user experience is the main goal of mobile devices [17]. This

depends on how quality is perceived by users. Quality user experience is achieved

when the device behavior meets user’s expectations. User’s perception is highly variable

across people of different age, gender, culture and ethnicity. It also depends on contex-

tual and environmental factors. To achieve higher energy efficiency, the device behavior

should dynamically adapt to the level of quality perception of the user. A model for user

experience is then needed to adjust operating conditions at runtime without generating

discomfort.

New dynamic management techniques should be implemented on real devices.

This is the only way in which it is possible to close the loop with the user and get a

real feedback in terms of user experience. Also, since the user experience for mobiles

highly depends on the content of the foreground application, for development and pro-

totyping it is reasonable to assume that each application has its own required level of

performance, and that such level reflects the single user’s expectations. For example,

for dynamic management, the Linux kernel has drivers that manage operating condi-

tions during system operations. Such drivers provide an interface between applications

and hardware regulators, and transparently enable the dynamic switching of variables

such as operating frequency of different components, number of active computing units,

idleness, power state residency and more [125]. The action of these drivers should be

regulated at runtime depending on application-specific user experience requirements.

To implement dynamic solutions at the level of the operating system and achieve fast

prototyping and user’s response, it is necessary to have access to the operating system

source code and to be able to identify and modify the components taking care of the

runtime management of hardware resources.

For video and gaming, resolution and frame rate play a fundamental role in qual-

ity perception [45]. For example, 60 frames per second (FPS) is a target for mobile gam-
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ing, as it corresponds to the refresh rate of the screen. The quality of experience then

drops drastically below 30 FPS [19]. FPS is not the only indicator for video quality.

Recent studies based on EEG monitoring revealed that also abrupt changes in quality

may cause discomfort for the user [142]. It has been shown that also changes in the en-

vironment surrounding the user have an impact on his perception of video quality [171].

Moreover, recent studies have pointed out differences in perception dictated by age and

gender [118].

Quality assessment of images is more challenging when considering 3D videos.

This should account for effects such as incorrect stereography, binocular rivalry and

depth misperception [139]. The study in [40] also investigated how configuration and

visualization parameters, such as as different disparities, amount of parallax, monitor

sizes and visualization angles, may influence the quality of experience of a 3D interac-

tive environment. Finally, quality perception shows interesting variations when visual

and audio content are delivered together. Studies on cross-modal interaction reveal that

audio and video content are highly interrelated [137]. For example, a low resolution

and low FPS video generate tolerable discomfort for users as long as the audio associ-

ated with it has high quality. Unfortunately, in general mobile applications do not have

simple and reliable metrics such as FPS to quantify user experience.

References [95] and [96] propose a simple and general, yet effective model.

Each application is characterized by a target set of maximum operating conditions,

which is profiled by interviewing a large sample of people using the most common

applications. For example, the authors find out that applications such as browser require

lower performance level to still be rated as “good” by users. In publication [87], this ap-

proach is improved by automatically distinguishing different phases. Therefore, online

management can provide further savings by lowering performance during application

phases that are less critical to user experience. Application performance is not the only

factor impacting user experience. High performance can drain the battery in a short

time, which can also be a cause of discomfort for the user [49].
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1.2 Mobile Power Management

Improving energy efficiency in mobiles is very challenging due to variable work-

load, environmental conditions and user experience requirements. A solution is repre-

sented by Dynamic Power Management (DPM), which adapts operating conditions at

runtime to improve energy efficiency while meeting performance requirements. In AC-

powered systems, such as desktops and servers, it results in a lower electricity bill and

reduced pollution. For mobiles, it is fundamental in order to achieve improved battery

lifetime, while meeting performance and usability requirements [115].

The main contributors to power consumption in mobiles are networking, display,

CPU and GPU [33]. Most of the subsystems in a mobile device have control variables

that can be tuned at runtime to change the impact on power consumption. For exam-

ple, most smartphones can dim the screen brightness and turn antennas on or off. For

computing units like CPU and GPU, modern MPSoC have the capability of switching

frequency dynamically and power gating individual cores.

Power management for systems like desktops and servers has been extensively

investigated in research, leading to the development of well-established techniques,

summarized in reference [23]. Research on power management for mobiles is more

recent and presents some major differences with respect to servers and desktops [158].

Other than being powered by a battery, mobiles are characterized by a tight interaction

with the user. The goal is not to always provide high performance, but rather to provide

the level of performance to meet user experience requirements. Mobiles have limited

resources, which requires management algorithms to have a low memory overhead and

execute in very short times. Most techniques implemented in real devices today are re-

active, meaning that they take control decisions based on the current and past history of

the system, leading to suboptimal decisions. Existing predictive techniques are difficult

to implement and require the development of runtime models that are accurate and have

a low overhead.

Power management is important not only for making the battery lifetime longer,

but also for reducing peaks that can quickly increase the device temperature. High

temperature can be also a source of discomfort, if the skin contact temperature exceeds

45oC. It also increases the impact of reliability degradation mechanisms which might
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lead to early hardware failure.

1.3 Temperature Modeling and Management

Power dissipated by electronic circuits is converted into heat causing an increase

in the device temperature. High temperatures negatively impact performance, raise leak-

age power consumption and can damage circuits [48]. When temperature reaches a crit-

ical threshold, the system needs to be cooled down. In servers and enterprise systems,

this is achieved with the use of fans and air conditioning. Most desktops and laptops also

use fans to quickly remove the heat spread by computing circuits. Since the tempera-

ture of circuits has a linear dependence on power, it can also be reduced by managing

operating conditions such as operating frequency and number of active cores.

In the case of mobiles, there are additional problems that make thermal control

particularly challenging. First, since mobiles are battery powered and have a reduced

form factor, they cannot implement active cooling solutions such as fans, but can only

rely on dynamic thermal management. Due to limited memory and computational re-

sources, thermal models for predictive approaches should have a low overhead, which

motivates the use of model identification techniques. Finally, high temperatures are

a concern for skin contact, since mobiles are handheld devices. For example, a tem-

perature on the back of a smartphone higher than 45oC is a source of discomfort for

users [130].

The strategy of adapting operating conditions at runtime to maintain temperature

in a safe range is Dynamic Thermal Management (DTM), and it is usually implemented

by the operating system. Thermal management has been well investigated for traditional

systems [21], [62], but these do not account for user experience. Thermal management

techniques can be reactive or proactive. Reactive techniques take decisions based on

the current and past thermal state of the system. For this reason, reactive thermal man-

agement must set a conservative threshold value, thus leading to performance penalties.

Proactive techniques, instead, leverage a thermal model to make predictions on the fu-

ture impact of control decisions, to fully exploit the available thermal margin. It keeps

the temperature as close as possible to the thresholds during intervals with heavy work-
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loads, and improve overall performance. The main challenge associated with proactive

thermal management is the identification of a thermal model for the target device, and

its use within a control loop [41].

A compact thermal model can be identified on the target device by exploiting

readings from integrated thermal sensors [22]. This is usually done by measuring tem-

perature and power on the target platform and identifying an input-output system as a

state-space model. It is possible to demonstrate that temperature can be represented

with a linear time-invariant model, which is easy to store and to execute at runtime on

a mobile device. Model identification of a compact thermal model is a practical and

effective solution to implement with dynamic thermal management, and it is well-suited

for mobile devices.

Similar to power management, it is important to deploy dynamic thermal man-

agement techniques on real devices to obtain feedback and determine user experience.

Thermal management is also useful to mitigate the impact of transistors and intercon-

nects degradation mechanisms. These have an exponential dependency on temperature

and can lead circuits to early failure. Unfortunately, thermal management alone does

not account explicitly for the impact of reliability mechanisms. This is fundamental to

meet product’s lifetime requirements.

1.4 Reliability Modeling and Management

Optimizing performance in mobiles increases the peak power consumption, caus-

ing the device temperature to raise quickly. This dramatically worsens the impact of

transistors and interconnects reliability degradation mechanisms, which depend on tem-

perature and voltage stress. Semiconductor devices are subject to degradation mecha-

nisms which harm their performance over time and eventually cause them to fail. CMOS

transistors are affected by Time Dependent Dielectric Breakdown (TDDB), Negative

Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI). Metal intercon-

nects are affected by Electromigration (EM) and Thermal Cycling (TC) [168]. With the

scaling of CMOS, the impact of degradation worsens as the dimensions of transistors

and interconnects shrink, leading them to early failure [65].
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The International Technology Roadmap for Semiconductors (ITRS) identifies

reliability issues due to aging as a primary concern for integrated circuit [75]. Uncer-

tainties in reliability can lead to performance, cost and time-to-market penalties and can

originate field failures that are costly to fix and damaging to reputation. In the past it

was possible to mitigate reliability issues with higher design margins, trading reliability

with power and timing without affecting performance much. With latest technologies,

however, increasing the design margin further would severely jeopardize performance.

This is the reason why in the last decade much effort was spent in developing inno-

vative solutions to guarantee high reliability at the process, design, OS, software and

application level [64].

Solutions for reliability at the process and design level are difficult to realize

in practice. Modifying the manufacturing process may not be affordable, while mak-

ing chip design more robust can significantly increase the design cost and decrease

profit margins [58]. Techniques at the compiler level, instead, introduce memory and

performance overhead. They rely on the application/compiler programmers ability to

adapt the software and enable reliability-aware execution [136], [123]. At the applica-

tion level, proposed techniques guarantee the correctness of execution with no hardware

overhead [52]. However, they are often application-specific, and thus they lack portabil-

ity.

All the degradation mechanisms depend on voltage and temperature stress and

can be described by a reliability function which at any point in time represents the prob-

ability that the device does not fail [153]. Given this, the degradation of devices can be

changed at runtime by managing operating conditions that influence voltage and tem-

perature. This requires having model-based estimation of reliability degradation over

time [176]. Such strategy is referred to as Dynamic Reliability Management (DRM).

The most promising abstraction layer on which to implement DRM strategies is

the operating system, in close cooperation with hardware. Modern operating systems,

in fact, have power management capabilities which handle factors that impact reliabil-

ity, power and temperature, with negligible overhead at runtime. A dynamic reliability

management policy developed for the operating system is relatively easy to implement,

portable to other devices, requires no hardware overhead and is application-independent.
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However, an effective solution for reliability management requires detailed information

about the status of the platform under control (through sensors), and also information

about the quality requirements of the running application. Thus, a cross-layer approach

is a promising solution for reliability.

Reliability can be monitored at runtime thorugh the use of degradation sen-

sors [80], [82], [147]. Unfortunately, such sensors today are not available on commercial

devices. Therefore, implementating DRM on real devices requires the online emulation

of reliability degradation. This leverages readings from built-it voltage and temperature

sensors as inputs for the reliability model and computes the current value. Such measure

can be then used in a control loop to adapt the lifetime degradation of the target device.

The scaling of CMOS and the consequent increase in degradation rate variabil-

ity make dynamic reliability management even more important. Because of this, the

distribution of circuit lifetimes becomes larger. DRM then is required to balance the

degradation of devices over time and avoid early failures.

1.5 Variability Modeling and Management

The problems of power consumption, temperature stress and reliability degra-

dation will only worsen with CMOS scaling and the consequent increase in variabil-

ity [58]. Variability in integrated circuits refers to the deviation of the actual value of a

design parameter from its nominal value, such as transistor channel length and thresh-

old voltage. Sources of variation are static and dynamic. Static variations are due to the

intrinsic inaccuracy of the fabrication process. Dynamic sources, such as ambient tem-

perature and system workload, change their impact over time. In multicore processors,

transistor-level static variability determines power and performance distributions across

cores of the same model [28]. Consequently, computing units have a power consump-

tion, operating voltage/frequency and degradation rate which are different from nominal

right after fabrication. The impact of variations becomes more dramatic as the scaling

of CMOS technology progresses and dimensions of transistors shrink. Counteracting

with higher design margins is extremely costly [75].

Simulators have been developed to help designers make chips more robust to
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variations [141], [113]. These tools can be integrated into the design flow to estimate

the resulting impact of variability. However, they cannot account for dynamic variations

and cannot capture the real workload behavior. Moreover, they require a highly de-

tailed architectural description, which may not be always available. Given that dynamic

variations play an important role, a good strategy is to leverage sensors to expose vari-

ability to higher levels of the software stack (e.g. the operating system) to manage it at

runtime [58]. This strategy is referred to as Dynamic Variability Management (DVM).

DVM can leverage common hardware sensors such as performance counters and tem-

perature sensors, or more sophisticated ones, such as degradation sensors and frequency

sensors (which are devices capable of monitoring path delays) [90]. The latter, however,

are only available on prototypes and research platforms.

Mobiles are characterized by interactive workloads, which are hard to simulate

and predict, as they strongly depend on user needs [49]. Moreover, the goal of mobiles

is to provide quality user experience, rather than high performance. It is crucial to be

able to estimate the impact of variability on user experience, which is not possible with

simulators. For the prototyping and implementation of dynamic variability management

techniques it is necessary to emulate the effect of variability online, to enable what-if

analysis on real devices.

1.6 Thesis Contributions

Mobiles need to meet the varied performance requirements of different appli-

cations to achieve quality user experience. This increases power consumption, which

drains the battery quickly and raises the overall system temperature. High tempera-

tures worsen the impact of reliability degradation mechanisms and can cause circuits to

fail prematurely. In addition, power consumption, operating conditions and degradation

rates are different from their nominal values due to variability. Existing solutions for

mobiles consider these aspects separately and offer limited solutions for reliability and

variability management. Developing and testing prototypes of reliability and variabil-

ity management require online emulation of these effect on real devices and with real

applications at long enough time scales. Our work solves this problem.
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Figure 1.1: Diagram of the proposed framework.

The goal of this dissertation is to present the design and real implementation of

a unified framework for the comprehensive dynamic management of power, tempera-

ture, reliability and variability in mobile systems, subject to user experience require-

ments. The reference framework for this dissertation is presented in Figure 1.1. The

framework receives the user experience requirements as input, which are in terms of

desired application behavior, battery lifetime and device temperature. Then, it makes

control decisions based on system feedback, which can be part of power, thermal, re-

liability and variability management. Controls include dynamic voltage and frequency

scaling of processors, task scheduling, power gating, adaptation of screen brightness.

The system feedback is obtained by sensors and counters, such as utilization metrics,

hardware counters, temperature sensors readings.

We propose a multi-rate comprehensive management framework that has two

subcontrollers, the long term and the short term controller. This design choice is

motivated by the fact that the time scale of interest for reliability changes and variability

effects are in the order of weeks and months, which is very different from milliseconds
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and seconds at which power and temperature change.

The short term controller activates at a fine-grain rate and aims to meet the fast-

changing application-level performance requirements dictated by user experience, while

optimizing for temperature and power. In doing this, it determines the solution to meet

the average targets provided by the long term controller, which account for variability

and reliability. These are used to update the thermal constraints at a fine-grain rate,

and the solution is adjusted by predicting power and temperature for the next intervals.

For this, we first propose a novel power characterization strategy for mobile devices

called application-dependent power states (AP-states). Based on that, we formulate a

management problem to improve performance under battery lifetime constraints, and we

implement the management framework on a real Android device. We call our framework

BLAST: Battery Lifetime-constrained Adaptation with Selected Target. The goal of the

framework is to maximize performance while ensuring the device battery lasts at least

for a user required lifetime. The implementation does modify the OS and can be ported

and installed on any Android device. We experimentally verify that our strategy can still

meets user experience requirements with a selected target battery lifetime extension of

at least 25%. This is presented in Chapter 2.

We also propose a joint power and thermal management solution, which takes

a proactive approach in reducing energy consumption while providing expected user-

experience. The proposed technique modulates the operating conditions based on users

application preferences and exploits the “change blindness” effect to reduce display

power consumption. Another important aspect of our implementation is that it does not

require any restructuring of the underlying operating system. A novel thermal model

of the entire smartphone is derived using model identification techniques, based on the

device’s operating conditions. This has the the purpose of monitoring and controlling the

operating conditions to keep the device temperatures within safe operating ranges. Our

ready-to-use management technique has been implemented on Google Nexus 5 and has

been demonstrated to achieve a 46% application-specific savings on power consumption

and up to 35% savings in power consumption at the device level. The mean temperature

estimation error is 1.17oC. This is presented in Chapter 3.

The long term controller activates at a coarse-grain rate and focuses on meeting
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the target reliability in the long term, based on information on variability in power con-

sumption, performance and degradation rate. Variability information is updated based

on the reliability degradation. The long term controller also computes target average

temperature and power values that are used as constraints by the short term controller.

The target on reliability is met if the average temperature and power are lower than

the target at the coarse-grain level. In this case, the short term controller returns the

unexploited margins which are used to increase the average targets for the next coarse-

grain control interval. We formulate dynamic reliability management as an optimization

problem that accounts for reliability, temperature and performance. We optimize for

multicores using convex optimization, and show that it is not feasible to implement on

real systems. For this reason, we propose Workload-Aware Reliability Management

(WARM), a fast DRM technique adapting to diverse workload requirements to trade

reliability and user experience. WARM is implemented and tested on a real Android

device. It leverages RelDroid, an infrastructure for the online emulation of reliability

degradation. RelDroid enables the design of workload-aware dynamic reliability man-

agement on real mobile devices with accurate reliability models. Our framework cap-

tures the effect of variable workload and environmental conditions and allows to emulate

longer degradation in a short time scale. We implement the framework on a real An-

droid device and exploit it to enable workload-aware dynamic reliability management.

WARM approximates the solution of the convex solver within 18% in the worst case,

while executing more than 40x faster. It integrates a Thermal Controller that allocates

tasks to meet thermal constraints. This is required since degradation strongly depends

on temperature. WARM task allocation achieves up to 1 year lifetime improvement for

a multicore platform. It can achieve up to 100% of performance improvement on cluster

architectures, such as big.LITTLE, while still guaranteeing the reliability target are met.

This is presented in Chapter 4.

Due to the scaling of CMOS, processors with the same normal characteristics ac-

tually have variability in power, performance and reliability degradation, which should

also be taken into account in the runtime management of hardware resources. For this,

we present VarDroid, a low-overhead tool to emulate power and performance variability

on real platforms, running on top of the Android operating system. VarDroid enables
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us to analyze the effect of variability in power and performance while capturing the

complex interactions characteristic of mobile workloads, thus relating to users quality

of experience. We present use cases to show the utility of VarDroid to test applica-

tions, device and OS robustness under the effects of variability. Our results show that

a variability-agnostic OS can incur in a performance penalty of up to 60% and a power

penalty of up to 20%. Then we use VarDroid to develop a novel dynamic variability

management technique, which leverages a variability-aware OS algorithm to assign the

workload to the cores and set the power/performance tradeoffs to meet the mobile pro-

cessors lifetime constraints while adjusting to variability and improving the overall user

experience. The proposed DVM solution uses sensors to monitor the variable operating

conditions and the degradation rate. We implement our algorithm in Android OS on

a mobile phone and show that it achieves up to 160% performance improvement over

the state-of-the-art while meeting the lifetime constraints. This is presented in Chap-

ter 5. Finally, Chapter 6 concludes this dissertation by summarizing the main results

and suggesting important areas of future work.



Chapter 2

Power Management with a Battery

Lifetime Constraint

Mobile devices today contain many power hungry subsystems and execute dif-

ferent applications. Power management implemented in today’s system is not aware of

the desired battery lifetime and has no visibility into which applications are executing.

In this chapter, we propose a novel power characterization strategy for mobile devices

called application-dependent power states (AP-states). Based on that, we formulate a

management problem to improve performance under battery lifetime constraints, and

we implement the management framework on a real Android device. We call our frame-

work BLAST: Battery Lifetime-constrained Adaptation with Selected Target. The goal

of such framework is to maximize performance subject to a required battery lifetime.

The implementation does not require OS modifications and can be ported and installed

on any Android device. We experimentally verify that our strategy can still meets user

experience requirements with a selected target battery lifetime extension of at least 25%.

2.1 Introduction

Mobile devices such as smartphones and tablets contain a variety of power hun-

gry subsystems (CPU, GPU, camera, display, antennas, etc.) and execute applications

with different requirements: from browsing, to multimedia, to gaming and many more.

Power consumption heavily depends on the application running in foreground (e.g. the

15
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one showing on the display), as it mostly determines the usage of different parts of the

system. Also, it is the application which attracts users attention, thus influencing user

experience the most. Such intense activity contributes at making the battery lifetime as

short as few hours for most devices [145], [15]. Therefore, power management to trade

battery lifetime and user experience is a primary requirement for mobiles.

In the last decade, the target of mobile designers and developers has shifted from

high performance to high user experience. The concept of user experience depends on a

number of variables, from device specifications and performance to user personal profile

and level of attention. However, we can define it as the scenario in which device behav-

ior meets user expectations. Therefore, in the case of mobiles we can identify two main

factors determining user-experience: (i) application behavior and (ii) battery lifetime.

The first refers to the case in which the user is satisfied with application execution (for

example, a Youtube video that reproduces smoothly or a 3D game with high frames per

second). The second indicates the case in which the achieved battery lifetime is as long

as the one expected by the user. The two targets are contrasting, as there is a tradeoff

between them: if power is optimized for providing a minimum required level of user ex-

perience, this could mean trading on battery lifetime, if the level of expectation is high

(for example for a user playing 3D games). On the other hand, if the goal is to reach a

predefined battery lifetime, this could penalize the behavior of some applications. This

means that even if both are factors affecting user experience, either one of the two can

be the constraint of power management, but not both at the same time. A comprehensive

management solution requires the possibility of dynamically switching from one strat-

egy to the other, depending on the users main concern at the time: application behavior

or battery lifetime.

Recent publications mainly address the first problem [145], [99], [86], [108], [95].

These approaches all require some description of user-experience to adapt, which is pro-

vided either by the users configuration, or with user experience modeling. However, no

unique model for user-experience depending on application behavior is widely accepted

so far, they all suffer from inaccuracies due to the heterogeneity and high complexity

of user profiles [49]. To the best of our knowledge, no work addresses the problem of

maximizing performance while ensuring that a minimum battery lifetime for mobiles is
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met. Such scenario is better explained by a motivational example in the next subsection.

The power management of todays mobile devices is implemented at the OS level

and regards mainly CPU and GPU. These two are the most power consuming subsys-

tems [33]. Display is also very power hungry, but it should be managed independently

as it is critical to user-experience [108]. Therefore, we do not consider it in this chap-

ter. Other subsystems either have no power management control (e.g. antennas) or

have proprietary kernel code (e.g. modem, DSPs), which makes it difficult to modify

and evaluate. For example, the Android operating system, which is based on the Linux

kernel, has modules called Frequency Governors to implement the power management

policy for the CPU and GPU [125]. The performance governor always sets maximum

frequency, while the powersave governor always sets minimum frequency. Similarly,

the conservative governor allows for low power consumption, at the cost of potential

performance loss. Todays standard governor, the ondemand, scales frequency over time

depending on CPU (or GPU) utilization. Such approach has two main limitations: (i)

it is agnostic of which application is currently running on the device and (ii) it does not

account for battery lifetime.

In this chapter, we present BLAST: Battery Lifetime-constrained Adaptation

with Selected Target. BLAST is a novel power management framework for mobile

devices, which dynamically adapts to different applications while ensuring a predefined

(e.g. selected) battery lifetime. In this chapter we formulate an application and battery

lifetime-aware power management problem for mobile. We propose the concepts of

Application-dependent Power state (AP-state), battery discharging profile and energy

tank to determine power management decisions. Based on this, we develop BLAST:

a lightweight, ready-to-use, high-level and portable implementation on a real Android

smartphone, which does not require OS modifications and thus can be easily extended

to any mobile device. The proposed implementation is in the user space and it is com-

patible with any frequency governor in the kernel.

With a set of experiments conducted on real devices executing common Android

applications we demonstrate the effectiveness of our strategy in guaranteeing the pre-

defined battery lifetime and compare against device native power management. Also,

we show that our strategy can still meets user experience requirements with a selected
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target battery lifetime extension of at least 25%. This claim is demonstrated by testing

the framework with real users. The average rating of users is within 5% for a battery

lifetime improvement of 25%.

2.1.1 Motivating Example

Assume that two users X and Y are leaving work to get back home by train. They

both usually use their smartphone on the way home, but while user X enjoys playing 3D

videogames, user Y prefers to read emails or browse through news websites. The train

takes 1 hour to bring them home, and during that period of time they absolutely want

their smartphone to not run out of battery, no matter what the quality of application

behavior is. Once home, they are both going to put the device into charge.

Figure 2.1: Illustration of motivating example.

One obvious solution would be to lower the operating conditions, for example

by setting the powersave or the conservative governor. However, such approach presents

three downsides. First, it requires the user to be aware of what a governor is and how it

works, and to be able to install and use an interface application to change it. Second, the

use of the powersave governor is likely to extend the lifetime of the battery way beyond

1 hour, depending on the initial state of charge. This is because it is not aware of battery
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energy. As a result, the powersave governor may hurt application behavior more than

what is required to meet the constraint on battery lifetime. Third, the powersave gover-

nor is not aware of which application is executing. However, in the scenario described,

user Y (mail and news) is likely to consume less energy than user X (3D games). There-

fore, the performance level required to meet the same target lifetime is different for the

two users.

Our solution, on the contrary, only requires the user to set the desired minimum

battery lifetime (1 hour in this example), that is, the selected target. Then, the framework

automatically detects the battery state of charge and the executing applications, and reg-

ulates energy consumption thanks to the AP-states by adapting the maximum CPU and

GPU frequency. The result is that both user X and Y will have a working smartphone

for the next hour after leaving work. The presented example is better shown in the qual-

itative plots in Figure 2.1, which show the energy consumed over time for user X and Y

respectively when using a powersave or conservative governor and when using our pro-

posed solution. We also highlight the user experience achieved in the four cases (either

good, average or poor). Finally, note that the target lifetime for the proposed solution

should be selected in a defined range. This is better clarified by Figure 2.2. The lower

bound is represented by the battery lifetime obtained with all cores active executing at

maximum frequency (e.g. with performance governor), while the upper bound is given

by a single core active executing at minimum frequency (e.g. with powersave governor).

2.2 Related Work

Power management is an extensively investigated area of research, from server

systems, to desktops and laptops, to mobiles [23]. The characterizing aspect of mobile

devices with respect to other systems is the reduced form factor, which limits battery

size [33]. For this reason, researchers spent many efforts in the last decade in power

analysis, modeling and management for mobiles. Publications [145] and [33] analyze

phone power consumption and investigate the impact of different user activities and dif-

ferent applications. Work in [145] also demonstrates that CPU, GPU and screen are

the most power consuming subsystems in modern smartphones. Yoon et al. propose
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Figure 2.2: Range for selected battery lifetime target.

Appscope, a tool for Android energy metering, and characterize power consumption for

different applications in reference [172]. Paper [162] proposed a framework to estimate

power consumption of different applications from battery power traces. These publi-

cations highlight that energy consumption for mobiles is highly influenced by different

applications and that CPU and GPU are crucial in determining battery lifetime.

For this reason, power models for mobile devices have been proposed recently.

Reference [12] develops a power model based on user activity for an Android-based

smartphone, using regression techniques. Work in [26], [120] estimates power consump-

tion through adaptive modeling based on monitored performance activity, and integrate

it in the MPower app, which provides the user suggestions to improve power efficiency.

MPower collects measures on the target device and transmit them to a server for power

estimation. Performing the estimation online would result in performance overhead.
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In general power models may not be practical for runtime power management, due to

computation overhead.

Recent work on power management for mobiles focuses on user-experience de-

termined by application behavior. For doing this, some techniques allow the user to

configure personal preferences and application priority levels [122], [103]. Other tech-

niques, instead, are based on user-experience models. The strategy in [86] increases

CPU frequency in response to user interaction, to minimize perceived delay. Publi-

cation [145] presents a model for user typical activity session duration, and use it to

compare various power management strategies. Work in [166] proposes a scheduling

algorithm for energy-based fair queuing, aiming at optimizing activity and idle peri-

ods for user comfort. Such techniques achieve better energy efficiency only if users

requirements are not too strong, as they target application behavior. However, they do

not give guarantees on battery lifetime. Moreover, models for user experience may be

inaccurate, due to diversity of user profiles [49]. Our technique does not require user

experience models, as it targets battery lifetime. Moreover, it only requires the user to

configure the desired battery lifetime. Also, the implementation of such techniques re-

quires modifying the operating system, which may affect portability across devices. Li

et al. propose an intelligent and self-adaptive scheme for mobile power management,

called SmartCap [96]. The objective of SmartCap is to automatically configure the CPU

frequency subject to user experience requirements. The proposed approach is shown to

significantly outperform the standard ondemand governor. Our work is fundamentally

different as we try to maximize performance subject to a battery lifetime constraint.

SmartCap, on the other hand, aims at minimizing power consumption while meeting a

user experience (e.g. performance) constraint. As discussed in the introduction, these

two problems are complementary to each other. Also, Smartcap focuses on CPU solely,

while we include also GPU frequency control in our implementation.

Other techniques for mobile power management are developed for specific ap-

plications. Reference [131] presents a joint Dynamic Voltage and Frequency Scaling

(DVFS) for CPU and GPU targeting 3D games. Work in [94] makes Youtube more

energy efficient by intelligently scheduling download activities. Being specific to cer-

tain applications, such techniques cannot be extended to full phone power management.



22

Instead, our technique is developed to be compatible with any application.

A particular case is made for display power management. As shown in refer-

ence [145], display brightness plays a fundamental role in user experience; therefore it

should be managed independently from CPU, GPU and other subsystems. For example,

the authors of paper [37] develop a technique to adapt voltage scaling of OLED displays

to video streaming while accounting for user satisfaction. In this work we do not in-

clude display management, but we show how it can be integrated. Our work formulates

a management problem for mobiles considering battery lifetime as a constraint rather

than as an objective function, and implements a portable and lightweight framework for

managing power consumption on Android devices executing real applications.

2.3 Manager Formulation and Implementation

In this section, we first show the assumptions of our work and key observations.

Based on that, we describe the concepts of AP-states, battery discharging profile and

energy tank, and the management problem formulation. Finally, we describe the solution

strategy and the framework implementation.

The target platform of this work is a battery-powered mobile handheld device

equipped with DVFS-enabled CPU and GPU, controllable from the userspace. This is

common in modern devices, for which the operating system exposes control capabil-

ities at the sysfs interface, like setting the maximum frequency. Both CPU and GPU

have predefined voltage/frequency operating points. The battery power consumption

and charge level are sampled from the sysfs interface as well, without the need of ex-

ternal equipment. In this work we use the ondemand governor, except when clearly

stated. However, note that the proposed solution is implemented in the userspace thus it

is compatible with any frequency governor. This is better shown in the results section.

The key for formulating and solving a management problem constrained by bat-

tery lifetime is having a reference model for battery power consumption. Battery power

at a generic time t can be expressed as in Equation (2.1).

Pbatt(t) =
∑

i

Pi(t) (2.1)
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Here Pi is the power consumption of the ith subsystem. Unfortunately, com-

modity mobile devices usually do not have per-subsystem power information available

at runtime. Moreover, as mentioned in the introduction, not all subsystems can be con-

trolled at runtime to adjust power consumption. Therefore we rewrite battery power as

in Equation (2.2).

Pbatt(t) = Pc(t) + Pnc(t) (2.2)

Where Pc represents the power contribution that can be controlled at runtime

and Pnc is the contribution which cannot be controlled. In this work, we assume Pc to

be a function of CPU and GPU frequency, therefore Pc = Pc(t, fCPU , fGPU). As for

the non-controllable contribution Pnc, this is heavily determined by the behavior of the

application running in foreground, which determines CPU and GPU load, number of

active CPUs, antennas usage, task scheduling, and other factors in which we either have

no control or that are already managed by other entities in the device. For example,

in Android the number of active CPUs is controlled by the userspace daemon called

mpdecision.

Deriving a model for Pc(t) at each time t leads to inaccurate estimations for

two reasons: (i) only battery power consumption can be monitored from userspace in

commodity devices, therefore it is hard to isolate the two components Pc and Pnc from

observations, and (ii) the sampling rate at the userspace should be at least 1 second to

avoid excessive overhead. What matters is not instantaneous battery power consump-

tion, but rather its average over time, or consumed energy, shown in Equation (2.3),

and approximated in Equation (2.4). In this Equation, Pavg is the average battery power

consumed over the time period T .

Ebatt =

∫ t=t0+T

t=t0

Pbatt(T )dt (2.3)

Ebatt = PavgT (2.4)

The fundamental observation we make is that once the operating conditions are

fixed (in our case fCPU and fGPU ), then the average power consumption tends to stable
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values over time for different applications. To motivate this fact, we show a simple mea-

surement of battery energy in Figure 2.3 and 2.4. In this experiment, we measure the

battery power consumption on a Nexus 5 smartphone while executing Chrome (brows-

ing, scrolling and zooming) and Angrybirds for 150 seconds with CPU frequency fixed

at 1.5Ghz and GPU at 390Mhz. Then we calculate the average power consumption on

time windows of different durations. In Figure 2.3 we report the average power con-

sumption over a time window of different duration. We notice that the average is almost

the same for a given application, but changes for different apps. Referring to Equa-

tion (2.2), in this case the difference between the two applications is determined by Pnc,

as frequency is constant in both cases. In Figure 2.4 we measure the energy consumed

over time. For doing this we sample battery power consumption and battery capacity

and relate that to the total battery energy (derived from datasheets). We observed that

the energy consumed is almost linear over time, with different slopes for different appli-

cations. This is an example of the simple fact that playing 3D games for one hour drains

battery more than browsing.

Figure 2.3: Power consumption of Chrome and Angrybirds on Nexus 5.

Based on these two observations, we associate a value of average power con-
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Figure 2.4: Energy consumption of Chrome and Angrybirds on Nexus 5.

sumption to each pair f = (fCPU , fGPU), independently for each application. Then, we

create a table for each app such as the one shown in Table 2.1. In this table, PAPPi
(fj) is

called AP-state, and it is the average battery power consumed by application i in state j

and Tij is the total time spent by the device executing application i in state j. The values

of PAPP and T are updated at runtime based on the monitored operating conditions,

battery power and application executing in foreground. AP-states are stored in memory

and there is at most one list of AP-states for each application. Given this, the energy

battery consumption can be rewritten as in Equation (2.5).

Ebatt =
∑

i

∑

j

PAPPi
(fj)Tij (2.5)

In other words, an application running on the device contributes an average

value to the total energy consumption. This depends on the execution frequency and

is weighted with the time spent executing it. At this point, Equation (2.5) allows us to

formulate the management problem.

The management problem requires the specification of a target battery lifetime

tcharge and of an energy budget Ebudget. Note that the energy budget could be simply set
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equal to the remaining battery charge. The final goal of management is to not consume

more than energy Ebudget before time tcharge. The manager activates at a constant time

rate and we indicate with tk the current time step. The time of manager activation is

t0 and the initial battery energy is Estart. The problem can be formulated then as in

Equation (2.6).

max(fk+1) s.t. Ebattk+1
< Etargetk+1

(2.6)

Where fk+1 is the frequency selected for the next time interval and Etarget is

the constraint on battery energy consumption. The value of Etarget is calculated at each

time instant based on the concept of battery discharging profile. This is a function of

energy over time, starting from point (t0,Estart) and ending at point (tcharge,Ebudget). For

practical reasons, in this work we assume the discharging profile to be linear in time,

therefore Eprofk = mtk+Estart. This is motivated by the result shown in Figure 2.4, for

which battery discharging can be well approximated by a linear function. Note that the

concept is general and different discharging profile (e.g. piece-wise linear, quadratic,

etc.) may lead to a different management behavior.

If the device consumes less power than what is allocated for using at a certain

time instant tk, the energy left over is added to the energy tank Etank. On the other hand,

if it consumes more power, the excess energy is subtracted from Etank. Therefore, in

the end the target energy is given by Equation (2.7).

Etargetk+1
= Eprofk+1

+ Etankk+1
(2.7)

To solve this management problem we leverage a heuristic. Depending on which

application i is currently running, the heuristic selects the highest frequency fN and

checks whether the condition in Equation (2.6) is met for PAPPi
(fN). If not, it selects

fN−1 and checks again. If no valid frequency is found for the current time instant, then

the manager selects f0. The heuristic is feasible given the limited number of CPU and

GPU predefined operating frequencies.
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Table 2.1: AP-states

Frequency list Power Time count

f0 PAPPi
(f0) Ti,0

f1 PAPPi
(f1) Ti,1

... ... ...

fN−1 PAPPi
(fN−1) Ti,N−1

2.3.1 Framework Implementation

We implemented the management framework on a Nexus 5 smartphone. This

device has a Qualcomm Snapdragon 800 chipset, with a quad-core Krait 400 CPU. Its

maximum battery capacity is 31,257 Joules. The four cores have a frequency range from

300Mhz to 2.26Ghz in 14 fixed operating points, with fCPU13 being the maximum fre-

quency. It also has an Adreno 330 GPU with frequency range from 200Mhz to 450Mhz,

in 4 fixed operating points, being fGPU3 the maximum. For simplicity, the CPU and

GPU frequency pairs adopted for our AP-states are associated with the following rule:

(fCPU13−10 , fGPU3), (fCPU9−6 , fGPU2), (fCPU5−3 , fGPU1), (fCPU3−0 , fGPU0). Figure 2.5

presents the block diagram of our implementation.

The App Monitor is an independent program, which periodically checks the

executing processes and writes in the file Foreground App the name of the application

currently executing in foreground.

The AP-states Monitor periodically samples the operating conditions of the

multicore platform (CPU and GPU frequency) and the battery power with a rate of 1

second. Based on this and on the current foreground application, it updates the values

of AP-states and writes it back to the file AP-states. If APPj is executing, the current

sampled power is Pcurr and the current operating conditions are equal to fk, then the kth

AP-state of APPj is updated as in Equation (2.8). Also, the value of Tjk is increased by

1.

PAPPj
(fk) = PAPPj

(fk)
Tjk

Tjk + 1
+

Pcurr

Tjk + 1
(2.8)

The Power Controller loads the Target Battery Lifetime and the Initial Energy

Budget configured by the user when starting execution. Then, it periodically applies op-
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erating conditions (CPU and GPU frequency), by solving the problem shown in Equa-

tion (2.6) based on the values of energy tank, available energy (left from Estart) and

discharging profile. The activation rate of the power controller is also 1 second.

Figure 2.5: Block diagram of the implemented framework

Since the framework is implemented in the userspace, the minimum activation

rate to avoid overhead is 1 second. However, the activation rate of frequency governors

in the kernel space is much higher (20ms is the standard for the ondemand governor).

Then, we must guarantee that our Power Controller is compatible with any governor.

Therefore the output of the Power Controller is not a fixed frequency value, but it is a

maximum operating frequency for all the four cores. This can be set by writing values to

the appropriate sysfs file. Consequently, we decided to configure the AP-states Monitor

so that it updates AP-states based on the current maximum value of frequency among

the 4 cores. This choice guarantees that every time a certain maximum frequency con-

figuration fj is selected, the average contribution to the total power consumption will
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not be higher than PAPPi
(fj), which is exactly what we require to meet a certain tcharge.

The two programs that compose this implementation, i.e. the App monitor and

the AP-states Monitor/Power Controller, are written in C and cross compiled with An-

droid NDK tools to run on ARM-based platforms. To run the framework, it is sufficient

to load the binaries of the two programs in the device and execute them. No modification

to the operating system is required.

2.4 Results

In this section, we describe the experimental results obtained by measurements

on the target platforms. To perform comparisons on real applications, we wrote a pro-

gram that allows to record and replay display touch event traces. In this way, compar-

isons are performed on the same trace of events.

For the first experiment, we recorded two traces on the Nexus 5 from two popular

Android applications: Chrome and Angrybirds. We chose to show results for these

two applications because they are representative corner cases of typical mobile usage:

browsing and gaming. In the first, we are browsing through popular webpages. In the

second we are playing the game. The first two plots of Figure 2.6 report the discharging

curves for the two traces when no control is active. This allows us to fix an initial

reference tcharge equal to 400 seconds and energy budgets Ebudget of respectively 750

Joules and 800 Joules for Chrome and Angrybirds. Considering this we show how to

configure the control for battery stretch, that is, for a longer tcharge. The second two

plots of Figure 2.6 show three cases of battery stretch for the applications, respectively

+12.5% (450s), +25% (500s) and +37.5% (550s). Reported values are the real energy

consumed over time (bold green line) and the energy discharging profile Eprof (black

dotted line). For practical reasons, the x-axis only reports the final section of the curves.

We can notice that in all three cases, the total final consumed energy is less or equal than

the predefined target, therefore the power management goal is met. The only exception

is the case of +37.5% battery stretch for Chrome. In this case the final target exceeded.

This means that tcharge for this case was set too long and the controller cannot meet it

even with constant minimum frequency set. Moreover, a subjective evaluation suggested
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that while in the case of +25% stretch the application behavior is still satisfactory, in the

+37.5% stretch both applications become blurry.

Figure 2.6: Standard energy consumption and battery stretch

We also conducted an experiment in which we asked 15 students from the uni-

versity campus to check application behavior under battery stretch. To illustrate how

portable our framework is, this study has been conducted instead on a Qualcomm APQ8064

development tablet. We asked people to play the popular game Temple Run and to

browse on popular websites (CNN and BBC) for one minute under 0%, 25% and 50%

battery stretch conditions respectively. In order to avoid influencing their judgment,

users were not informed about the nature of the control and the goal of the experiment.

In addition, the battery stretch conditions are applied in a random order. At the end,

users were asked to rate their experience with a number from 1 (bad) to 10 (good). Fig-
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ure 2.7 reports the average value of scores for the two applications. What we observe is

that there is very low or no negative difference when the 25% stretch is applied, while

there is a more negative effect with 50% stretch. Our conclusion is that the control can

still meet a satisfactory experience for the user when the selected target battery lifetime

is extended by 25%.

Figure 2.7: Quality of experience rating

To further prove this point we refer to the fact that there is a well known relation

between Frames per Second (FPS) and user experience in the case of gaming applica-

tions [131]. For this reason, we observe the behavior of FPS during the execution of

Temple Run in the three cases of 0%, 25% and 50% target extension in our Qualcomm

tablet. FPS can be monitored in Qualcomm devices thanks to a built-in feature that

enables the system to write values to logcat. Figure 2.8 reports the FPS traces for 30
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seconds of execution. In the case of 0% extension, the FPS is close to 60, which is the

maximum value allowed by Android, and represent the highest quality of user experi-

ence. In case of 25% extension, the FPS is around 50, which represent a lower, but still

acceptable user experience (as confirmed by results in Figure 2.7). Finally, for a 50%

extension, the FPS drops even below 40, which starts to represent a source of discomfort

for the user.

Figure 2.8: Frame per second (FPS) traces with different target lifetimes

To show more into details how the management policy works, we report in Fig-

ure 8 the Nexus 5 execution frequency of the 4 CPU cores and the maximum frequency

set by the controller for the case of +25% battery stretch in 200 seconds of the Angry-

birds trace. Our controller does not fix the frequency, but only limits the range of the

underlying frequency governor (black dotted line).

Figure 2.9: CPU operating frequency for Angrybirds +25% battery stretch

To show the tradeoff between tcharge and performance, we execute a set of ex-
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periments on popular Android benchmarks on the Nexus 5: Antutu, Geekbench3, GFX

and Vellamo Browser. Antutu is a suite of benchmarks comprising CPU, 2D and 3D

evaluation. Geekbench3 is a CPU evaluation tool which tests both single and multicore

performance (Gb3 single and Gb3 multi). GFX is a suite of graphics benchmarks from

which we selected t-rex (GFX trex). Finally, Vellamo Browser is a benchmark testing

device performance while using Chrome. All these benchmarks provide a final score

which is an indicator of performance quality. Figure 2.10 shows the scores obtained

for the presented benchmarks with varying values of tcharge (respectively at 15%, 25%

and 50% extension), normalized over the maximum score (which is obtained when the

control is not active).

From the results, we can notice that as battery lifetime is extended, the score of

the benchmark (i.e. the device performance) decreases. In addition, we can notice that

different applications show different sensitivities, which motivates further the choice of

differentiating AP-states based on applications.

Figure 2.10: Benchmark evaluation of battery lifetime and performance tradeoff

Finally, in the next experiment we want to demonstrate the compatibility of our
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framework with different kernel frequency governors. For doing this we execute the

Vellamo Browser benchmark with a target time tcharge of 300 seconds (corresponding to

a 25% extension over the non-controlled scenario) and a budget Ebudget of 550 Joules.

In Figure 2.11 we show the curve of consumed energy in three different cases, in which

respectively are active the ondemand, interactive and conservative governor. This com-

Figure 2.11: Comparison of different frequency governors

parison shows that our controller is compatible with different governors and in all cases

the target on battery lifetime is met. It also shows that in the case of Vellamo benchmark

the conservative governor shows a better energy efficiency with respect to the other two

governors, as it achieves a higher score with a lower power consumption. This can be

justified assuming that for the conservative governor, the Vellamo benchmark control-

lable power component prevails over the non-controllable one.

2.5 Conclusion

In this chapter we presented BLAST: Battery Lifetime-constrained Adaptation

with Selected Target. BLAST is the first application-aware power management frame-

work for mobile devices which controls operating conditions in order to meet a prede-
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fined battery lifetime. We also presented a lightweight and portable implementation on a

real Android device, compatible with different Frequency Governors. The experiments

show that our solution is effective in guaranteeing the predefined target battery lifetime

and that it still meets user experience requirements with a selected battery lifetime ex-

tension set to 25%. The average rating of real users is within 5% for a battery lifetime

extension set to 25%.

Chapter 2 contains material from “BLAST: Battery Lifetime-constrained Adap-

tation with Selected Target”, by Pietro Mercati, Vinay Hanumaiah, Jitandra Kulkarni,

Simon Bloch and Tajana Šimunić Rosing, which appears in Proceedings of the 12th EAI

International Conference on Mobile and Ubiquitous Systems: Computing, Networking

and Services on 12th EAI International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services (MOBIQUITOUS’15) [111]. The dissertation

author was the primary investigator and author of this paper.



Chapter 3

User-aware Joint Power and Thermal

Management

In the previous chapter, we presented a solution to maximize performance sub-

ject to a target battery lifetime. In this chapter, we address the complementary problem

of maximizing battery lifetime subject to application-specific performance requirements

for user experience, and include thermal constraints. The proposed proactive joint power

and thermal management solution leverages a novel thermal model of the entire smart-

phone to keep device temperatures within safe operating ranges. The mean tempera-

ture estimation error is 1.17oC. Our ready-to-use management solution has been imple-

mented on Google Nexus 5, and has been demonstrated to achieve a 46% application-

specific and 35% device-level power savings. A custom frequency governor is also im-

plemented for fine-grain power management, which enabled an additional 27% power

savings.

3.1 Introduction

Modern smartphones and tablets are composed of heterogeneous subsystems

(CPU, GPU, Display, Modem, 4G, WiFi, etc.), which execute a wide variety of ap-

plications such as multimedia (YouTube, camera), gaming (Angrybirds, Temple Run),

social media (Hangouts, Whattsapp), browsing (Chrome). Many of these subsystems

are power hungry and drain a lot of battery energy in executing the apps, causing incon-

36
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venience to users in forcing them to charge their batteries more than once a day. Apart

from limited battery charge time, tight form factors of the phone coupled with the ab-

sence of any active cooling mechanisms (such as fans) make the thermal management

crucial to (i) maintain the circuit integrity, (ii) avoid inconveniences to the user [143].

CPU, GPU and display are the primary contributors to both power consumption

and temperature [145], [34]. CPU and GPU are the device core computational elements,

thus they have high switching activities. When operated at high frequencies and volt-

ages, they exacerbate the dynamic power consumption. This also increases temperature,

which depends on on-chip power density [21]. The display has a significant contribution

to power consumption due to its relatively large form factor.

The focus of mobiles designers and developers is shifting from high performance

to high user experience [38]. The quality of user experience is a broad concept which

depends on a large number of variables, from personal tastes and preferences, to device

operating conditions, to the applications currently running. User experience is hard to

measure, but it can be easily defined as the situation in which the device behavior meets

user expectations. Expectation and experience change depending on which application

is executing in foreground on the mobile device. For example, the level of expectation

of a user playing games is higher than that of a user browsing through websites. As

a consequence, the level of performance that the device should provide to meet user

expectation is different in these two scenarios (higher for gaming, lower for browsing).

This means that in this example we can obtain a power reduction by simply operating

the device at a lower performance when browsing and at a standard performance when

gaming, without impacting user experience. Potential for power savings also comes

from change blindness. This is defined as the inability of users to notice small changes

in the brightness of the display over large time intervals. Therefore, even if starting from

a standard brightness at the beginning of a session, brightness can be slowly reduced to

save power [145], [59].

Power management techniques which have been recently proposed in literature

do address user experience, but they have major limitations that make them impracti-

cal, e.g. (i) the techniques are very specific to certain applications [13], [131]; (ii) they

are not feasible to implement or they are not compatible with the existing standard ap-
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proaches, thus they would require expensive OS restructuring [134], [121]. For such

reasons, the actual power management of mobile devices has not changed much over

the years.

Thermal management refers to a set of techniques aiming at keeping the temper-

ature of electronic systems under control. It is a very actively researched area, spanning

from high performance multi-clusters to mobile devices [143], [130], [62]. Thermal

management can be broadly classified into reactive, if decisions are based on the current

or the immediate past temperature, or proactive, if decisions are based on the predicted

future temperature. Proactive thermal management requires a thermal model for pre-

dicting future temperatures. Most of the thermal modeling techniques proposed in the

literature use the actual power measurements to predict temperature. Unfortunately, in

mobile devices such power measurements are not available, as they do not have power

sensors. An alternative involves deriving power consumption through power models,

which depend on the device performance metrics. However, power models suffer from

inaccuracies and could be too computationally expensive for runtime management.

Considering this background, we identify limitations in the standard power and

thermal management schemes present in mobile devices today. Assuming the Android

operating system (OS) as a reference, power management at the Linux kernel level is ac-

tuated by frequency governors, which switch voltage and frequency at a high rate (in the

order of milliseconds) to match workload requirements and meet the set goals, such as

high performance or low power consumption. Today, a standard governor, called onde-

mand, scales frequency according to CPU utilization [124]. On the other hand, thermal

management is handled at the user space level. In Qualcomm-based devices such as the

Google Nexus 5 and APQ8064 based tablets, temperature is controlled by a user space

daemon called Thermal Engine (TE), interfaced with temperature sensors. If a certain

temperature threshold is exceeded, the TE reacts by applying a set of actions defined in

its configuration file, such as limiting the frequency range or shutting down the device.

This power and thermal management infrastructure is subject to limitations. Power and

thermal management are not coordinated and thermal management is purely reactive.

Also, power management is agnostic of which applications are currently running and

treats all of them in the same way.
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In this work, we propose a novel user-centric proactive joint power and thermal

management, designed for mobile devices, with the following contributions. We design

management to be proactive and implement temperature prediction on the device itself.

We develop a general procedure to derive a simple yet accurate thermal model of the en-

tire phone, based on observable quantities like CPU and GPU frequencies, and display

brightness. Thus, it does not require actual power measurements. Our thermal model has

a mean error of 1.17oC. We account for change blindness in our comprehensive power

and thermal management. We propose a lightweight and ready-to-use implementation

for the user space manager, which is compatible with the standard Android environ-

ment and requires no OS modifications. Finally, we implemented a custom frequency

governor, which provides cross-layer interface to our user space manager. The custom

frequency governor shortens the activation interval from 1 second to tens of milliseconds

and provides additional power savings.

We test our management technique in comparison with the standard available

power and thermal management schemes on a real Android device, the Google Nexus 5,

with a set of common applications. The results shows that our solution can achieve up

to 46% of application-specific power savings and up to 35% of average power savings

on average at the device level. Moreover, we show that our custom governor achieves

27% additional power savings with respect to the ondemand governor.

3.2 Related Work

Battery lifetime is a key limiting factor for mobiles. There has been a large focus

in developing energy efficient solutions in the last few years. Some of the existing litera-

ture addresses the problem of energy efficiency at the application level. Reference [102]

presents a tool to automatically identify energy hotspot in Android applications. Ref-

erence [11] presents a method for appropriate wakelock acquire and release placement

to achieve higher energy efficiency. Work presented in [89] requires the maintenance

program to explicitly specify the suspected energy consumption hotspots in a mobile

application, so that parts of it can be automatically offloaded to the cloud. Such ap-

proaches require app developers to be aware of system energy consumption.



40

Other publications implement energy efficient solutions at the middleware and

the OS level. An overview of such techniques is presented in [36]. Reference [84]

presents a temperature-aware frequency scaling strategy that can be alternatively con-

figured for performance optimization or power optimization. Reference [98] presents

a prediction technique to estimate memory access rate and select operating frequency

accordingly. Similarly, Reference [97] presents techniques to achieve energy efficiency

by scaling frequency according to memory access rates. However, none of the afore-

mentioned publications account for user experience in the area of mobile devices.

The attention of both industry and research on user experience in addition to

performance has grown consistently in the last decade, and many publications aim at

achieving both high user experience and energy efficiency for mobile devices. Various

papers aim at measuring and modeling user experience [38], [145], [49] by collecting

user feedback and correlating with users’ personal profile. The message that emerges

from this area of research is twofold. First, it is extremely challenging to measure and

model user experience. Second, since the primary focus in mobile phones is to ensure

quality user experience, power management should account for it. As claimed in Ref-

erence [71], to date there is a weak understanding of which factor influence the mobile

user’s quality of experience.

For this reason, some of the existing techniques adopt a practical strategy and

allow users to configure power management based on personal preferences. The au-

thors of [121] propose a novel task allocation infrastructure, which accounts for user

experience as the user can assign different levels of priorities to different applications.

Similarly, authors of [104] propose a way to identify and select different priority lev-

els for applications and suggest how this can be used to optimize power management.

Reference [95] delivers a power capping technique for mobile devices, which relies on

a self-adaptation scheme driven by system activity. The presented technique is effective

in achieving power savings, but it neglects thermal management.

Another class of approaches instead of providing configuration interface to the

user, models user experience depending on perceived delays and alternation of activity

and idle periods. Reference [86] proposes an event-driven power management frame-

work which increases CPU frequency in response to interactive events, in order to mini-
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mize user’s perceived delay. Work in [99] presents a power management strategy which

uses hardware timers to capture idle and activity time intervals. A model for a typ-

ical user session activity is proposed in [145]. The authors then use the proposed

model to compare various power management strategies. Also, the above work ex-

ploits change blindness to reduce display power consumption. The technique described

in [166] employs a novel scheduling algorithm called energy-based fair queuing (EFQ),

which achieves energy proportionality in battery-constrained systems while improving

user experience. Another power efficient scheduling approach is presented in [134]. The

approach takes advantage of heterogeneous platforms to allocate tasks with different en-

ergy impact. While they achieve better energy efficiency, these approaches require an

event-detection and timing infrastructure which involves modifications at the OS level.

This makes the implementation challenging and can affect the portability of the frame-

work between different devices. This is even exacerbated when the power management

policy involves task allocation. In fact, the scheduler is one of the most critical sections

in an OS. Modifying it is risky and time expensive [105].

Some recent publications address power management in mobile phones for spe-

cific applications. Reference [131] presents a unified dynamic voltage scaling (DVS)

algorithm for CPU and GPU, which takes advantage of the execution profiles of 3D

games to improve energy efficiency. The technique presented in [126] also focuses

on GPU-intensive workloads. Power management techniques presented in [47], [46]

reduce power consumption for gaming by adapting to the current and the predicted pro-

gram state. Work in [94] optimizes power consumption for YouTube by intelligently

scheduling download activities. The technique in [13] adopts tone mapping technique

to adapt brightness and reduce LCD backlight level for mobile games, without compro-

mising user experience. A similar technique is presented in [83]. Even though these

techniques successfully target power reduction and user experience, they are developed

specifically for a target application, thus they cannot be generalized.

Thermal management is a broad area of research, especially in the field of high

performance multiprocessors [143], [62]. Reference [62] proposes an optimal closed-

loop power control algorithm for multicore systems, that keeps the temperature in a safe

range. Reference [21] presents a distributed energy-aware thermal management solu-
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tion exploiting model-predictive control. Thermal model identification has also been

investigated. Reference [22] proposes a gray-box identification technique to extract the

thermal model of a many core platform. Few publications target thermal management

for mobile devices. Reference [169] presents a thermal simulator for smartphones which

can be used to generate accurate thermal maps. The methodology employed is static and

cannot be used for dynamic management of temperature. In [130], the authors present

a thermal model of a mobile system and use it to develop a thermal management strat-

egy. The thermal model presented in [170] focuses on the thermal interaction with the

battery subsystem. None of the above works present a coordinated power and temper-

ature management solution. To the best of our knowledge, our proposed work is the

first prototype of a ready-to-use implementation of a user-aware proactive joint power

and thermal management technique, which can optionally be interfaced with a custom

frequency governor enabling cross-layer management.

3.3 Thermal Modeling Methodology

Most mobile devices consist of heterogeneous computing elements equipped

with temperature sensors. They have a set of operating conditions F that can be con-

trolled at runtime, which influence the device power consumption and temperature at

various locations of the phone.

In this work, we control only the CPU frequencies, GPU frequency, and display

brightness, since CPU cores, GPU and display are the major contributors to the power

consumption, devices temperature and user-experience [145]. The above set of operat-

ing conditions is denoted by F = [fc0, fc1, fc2, fc3, fGPU , β], where fci is the frequency

of CPU core i, fGPU is the GPU frequency, and β ∈ {0, 1, . . . , 255} is the display

brightness level. Indeed, most mobile devices today have embedded multi-core proces-

sors with per-core voltage and frequency control capability [32]. In the following, all

vectors and matrices are denoted with bold text.

The reference device used in this work is Google Nexus 5. This device has a

quad-core Qualcomm’s Krait processor with Adreno 330 GPU and runs the Android

operating system. The smartphone has 11 temperature sensors, referred to as thermal
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zones, whose values are exposed through sysfs interface of Linux kernel. The set of

temperatures are denoted by vector T = [T0, . . . , T10].

The thermal model of a processor is described by the compact modeling tech-

niques such as HotSpot, which uses electro-thermal analogy to describe heat spreading

and storing phenomena [68]. The simplified state space representation is shown in Equa-

tion (3.1) [143], [62].

dT(t)

dt
= A

′
T(t) +B

′
P(t), (3.1)

where A
′ and B

′ are constant matrices. They are related to the thermal conduc-

tance (G) and capacitance (C) matrices as follows: B
′ = C

−1; A′ = −B
′
G. Power

consumption is represented by P. It is not necessary to have same dimensions for both

T and P. We discretize the above equation for a constant sampling interval ∆t and we

obtain the results of Equations (3.2) and (3.3). Here k indicates the kth time instant, and

I denotes identity matrix of the same size as A′.

Tk −Tk−1

∆t
= A

′
Tk−1 +B

′
Pk, (3.2)

Tk = ((A′ − I)Tk−1 +B
′
Pk)∆t. (3.3)

We assume that the operating conditions have linear dependency with power

with negligible loss in accuracy. This is because many commercial mobile devices do

not have power sensors, i.e. BFk = B
′
Pk∆t. Replacing A = (A′ − I)∆t results in an

alternative thermal model equation, reported in Equation (3.4).

Tk = ATk−1 +BFk. (3.4)

The advantage with the above modeling approach is that the operating conditions

are usually exposed to the user space and they can be switched without the need for any

operating system (OS) modification.

To extract the above thermal model for a real device, such as Google Nexus

5, we developed a simple profiling tool which periodically samples temperatures and

operating conditions. The sampling rate was set to 1 second. This is implemented as

a bash script that runs on the phone and can be launched with a terminal emulator or
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an application manager. The tool reads the files related to the 11 temperature sensors

and those related to the 6 selected operating conditions mentioned before, and then it

writes values to a file. The output file is then fed to a least-square solver implemented

in MATLAB to derive matrices A and B.

Figure 3.1: Top figure: Cooling transient temperature trace; Bottom figure: matrix A

Extracting the model consists of computing matrices A and B. The procedure

we propose involves solving two least squares regression problems similar to refer-

ence [62]. The first problem is obtained by imposing F = 0, which gives the expression

of Equation (3.5).

Tk = ATk−1 (3.5)

The solution of Equation (3.5) gives matrix A. This can then be substituted in

(3.4) and solved for B. The computation of matrices A and B is done only once for a

given phone, as the coefficients are dependent only on the geometry of the phone and

the material composition. The computation is done offline as the resources available on

a mobile device are limited.
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Figure 3.1 shows a sample temperature trace used for determining matrix A

(top figure), and the resultant matrix is shown in the bottom figure. In practice it is

not possible to set F = 0, as this would mean switching off the device. To obviate

this, we set F = F
min, where F

min is the set of minimum operating conditions that

guarantee functionality for the profiling tool, e.g., Fmin = [fmin
c0 , 0, 0, 0, 0, 0]. As shown

in Figure 3.1, the temperature trace used to derive A should capture the device cooling

rate. On the other hand, the trace recorded for deriving B should capture the real user

activity. Results for matrix B are analogous to those shown in Figure 3.1.

Figure 3.2 shows the case of a trace used to validate the model and its accuracy,

which is expressed in terms of root mean square error (RMSE). The trace consists of

temperatures collected for 500 seconds of execution of AnTuTu benchmark for 3 con-

secutive runs [2]. The top two plots show the real temperature trace, while the middle

two plots show the model-predicted temperature and the predicted temperatures using

the immediate previous temperature, respectively. The model-predicted temperature is

derived thanks to the thermal model described in Equation (3.4). Most reactive thermal

management schemes predict temperatures using the immediate previous temperatures.

Finally, the bottom two plots show the maximum and the mean prediction errors

obtained in the above two cases. From the plots, we can see that our model-based pre-

diction has a mean RMSE error of 1.17oC, which is an improvement of 55% with respect

to previous temperature-based prediction. Also, our model achieves 80% reduction in

peak error with respect to previous temperature-based prediction.

3.4 Management Formulation and Implementation

In this section, we present the formulation of the joint power-thermal manage-

ment problem, present our solution, and describe the power-thermal manager and its

implementation. The joint power and thermal management problem formulation is de-

scribed in Equations (3.6) and (3.7).
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Figure 3.2: Results showing the accuracy of the proposed thermal model
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min
Fk+1

∣

∣F
req
k+1 − Fk+1

∣

∣ , (3.6)

s.t. Tk+1 ≤ Tthr. (3.7)

In the above formulation, Fk+1 represents the set of operating conditions that

will be applied at the next time step and it is the output of the management problem.

F
req
k+1 is the set of required operating conditions at the next time step, and it is a function

of the application executing in foreground and of the level of user expectation. We

assume that if Fk+1 ≥ F
req
k+1, then the user experience is met. The term Tk+1 represents

the vector of system temperatures at the next time step, which are predicted using the

model presented in Section 3.3. The temperature threshold Tthr is also a function of the

foreground application and of the user expectation. In this work the threshold is a single

value, but we can extend the idea by defining one threshold per each sensor. A different

choice of vectors F and T is consistent with the problem general formulation. The goal

of this management problem is to never give more performance than what is required

from a user’s perspective. This is the key source of power reduction in our solution.

Figure 3.3 shows the block diagram of the proposed management technique.

The main components are the Manager and the Application Observer. The proposed

implementation runs in Linux user space and requires no modifications at the operating

system level. In the following subsections, we describe the main components more into

details.

3.4.1 Sysfs Interface

The sysfs interface is the main interface between the Linux kernel and the user

space, in which the OS kernel exposes data such as current operating conditions and

temperature sensors values. In the current versions of Android/Linux it is also possible

to set operating conditions through the sysfs interface, such as CPU frequency, GPU

frequency and display brightness. Therefore, the power and thermal management can

be completely implemented in the user space, without modifying the OS.
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Figure 3.3: Block diagram of the proposed power-thermal manager

3.4.2 Manager

The Manager is the component that finds the optimal operating conditions for the

mobile device. When starting execution, it loads matrices A and B. The two matrices

are computed offline according to the procedure described in Section 3.3.

The manager wakes up at a fixed time rate and reads the current temperatures

Tk from the sysfs interface. It also reads the required operating conditions F
req
k and the

thermal threshold Tthr from the user experience configuration files. Using these data

it first computes Tk+1 using Equation (3.4), then it computes the operating conditions

Fk+1 by solving the problem described in Equations (3.6) and (3.7) and applies them by

writing values to the sysfs interface. The manager also writes data to the stats file,

for debugging purposes. The Manager source code is written in C code and it is cross-

compiled with Android Native Development Kit (NDK) tools to run on our target device,

the Google Nexus 5 [1]. The default activation rate is 1 second, as this was found to be

a good tradeoff between performance and overhead. To make the manager as less in-
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trusive as possible, we decided to set a maximum bound on CPU and GPU frequencies,

rather than fixing a constant value. This design choice guarantees the compatibility with

the kernel-level power management schemes actuated by frequency governors. Indeed,

these modules activate at a much higher rate (the Ondemand governor activates every

20 ms) [124]. The manager the determines the value Fk+1 through a simple heuristic

algorithm. The manager first predicts temperature by computing Equation (3.4) with

Fk+1 = F
req
k+1. If the required operating conditions F

req
k+1 are such that they do not cause

the temperatures to exceed the threshold, then the manager applies Fk+1 = F
req
k+1. Oth-

erwise Fk+1 is reduced and predicted temperature is checked again until the threshold is

met. The strategy is to reduce Fk+1 and take advantage of the fact that CPUs in mobile

devices have predefined voltage and frequency operating points. GPU frequency is not

reduced, because the manager assumes that if the required GPU frequency is high, then

it means that the foreground application involves graphics and requires the requested

performance. In this case, penalizing the GPU may sacrifice the user experience.

Display brightness is handled separately, according to the concept of change

blindness. When a new application is launched, display brightness β is set to the re-

quired value. After that, the manager progressively reduces the brightness until reach-

ing a predefined minimum value βmin. The rate at which β is reduced and the minimum

value βmin are parameters that can be tuned in the manager configuration. The chosen

values should guarantee that the user does not perceive brightness changes and degrade

user experience [145].

3.4.3 Custom Governor

The proposed user space manager is compatible with any frequency governor, as

it only limits the maximum frequency. However, the standard governors are not able to

distinguish between different applications. The main reason is that they cannot access

information about the task currently scheduled (e.g. there is no cross layer interaction).

In particular, the governors do not know the process ID (PID) of the scheduled task. We

extend our user space implementation with a custom frequency governor and a cross-

layer infrastructure, which allows passing such information from the user space to the

kernel space.
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Figure 3.4: Interaction between the manager and the custom governor

Figure 3.4 shows the main components of such implementation. The Manager

is the user space component, which was described in the previous subsection. In the

source code for this component, we added a function devoted to get the PID of the

current foreground application, open the kernel driver (fg driver) and write the value

of the pid to the kernel space. The kernel driver is a Linux driver implementing a write

method to store the value of the current foreground application in the shared kernel

variable pid fg. The driver is implemented in C code and cross-compiled for ARM-

based platforms with Android tools.

The custom governor is a frequency governor, which periodically checks the PID

of the task currently scheduled (pid gov). If pid fg and pid gov are equal, then the gov-

ernor selects the maximum frequency (which is constrained by the user space manager),

otherwise it selects the minimum. In this way, the controller is able to switch operating

conditions based on different applications at a finer time granularity. In fact, the gover-

nor periodically activates with a rate equal to the kernel scheduling tick (100 Hz). The

custom governor has been implemented starting from the structure of the Ondemand

governor. We made two major modifications with respect to it. First, we introduced the

variable pid gov (standard governors do not have information about process IDs). Sec-
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ond, we replaced the Ondemand algorithm with the selection criteria described above.

The scheduler is the standard Linux scheduler (in the version of the operating

system that we used is the Completely Fair Scheduler). The only modification that we

applied here is to define the shared variable pid gov. Then, every time the core function

scheduler tick() is invoked, the pid of the task currently scheduled is saved to pid gov.

Since the variable is shared in the kernel, the value will be immediately available for the

governor as well. We do not apply any modification to the scheduling algorithm.

Such implementation is easy to port between different devices. In fact, the kernel

driver and the custom governor can be compiled and mounted for any Android device

which supports the cpufreq driver. The kernel driver can be mounted using the insmod

command. As for the governor and the modifications to the scheduler, these require

recompiling the operating system and flashing the new kernel image in the device.

3.4.4 Application Observer

The Application Observer monitors which application is currently running in

the foreground on the device. Based on this and on the User Experience (UXP) config-

uration provided by the user, it periodically updates the required operating conditions

F
req
k+1 and the thermal threshold Tthr for the current execution, by writing them to the

appropriate file locations. The source code for the application observer is also written

in C code and cross-compiled with NDK tools. In the current implementation, the Ap-

plication Observer wakes up at a fixed rate (default is 1 second) and executes the top

command. The output of this command is the list of running processes with their prop-

erties. In particular the PCY field in the top denotes whether a process is in foreground

(flag ”fg”) or in the background (flag ”bg”). Usually there is not only a single process

with an ”fg” flag, but rather there is a list of them, and the application executing on the

display is one of them. For this reason the observer parses the output of top and writes

the names of all foreground processes to the file fg Name, and the list of process IDs to

the file fg PID. Then it compares the list of current foreground processes with the UXP

configuration. The UXP configuration contains the list of required operating conditions

configured by the user for a set of applications, together with the desired thermal thresh-

old. If any application in the UXP configuration appears in the fg Name file, then the
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corresponding required operating conditions are written to the file containing F
req, and

the corresponding thermal threshold is written in the file containing Tthr.

3.4.5 The User Experience (UXP) Configuration

The UXP Configuration is obtained by the configuration manager which requires

a user to execute an application of his/her choice under the maximum operating condi-

tions. While the user is executing the application in foreground, the configuration man-

ager progressively lowers the operating conditions. When the user notices a degradation

in the user experience of the application, s/he notifies the configuration manager, which

registers the least acceptable operating conditions for that application. Alternatively,

the procedure can start from the minimum operating conditions and increase them until

the user experience of the application behavior reaches acceptable levels. The user is

also asked to choose the default operating conditions for the device. These are used in

the case the Application Observer does not find any correspondence between the list

of foreground processes and the applications in the UXP configuration. The approach

though it requires the user’s effort (relatively low) in setting up the UXP configuration,

it has the advantage of being personalized for that user. Such a provision is not available

in other UXP model-based approaches such as [86], [99]. Finally, thermal thresholds

are selected based on the accepted values typically used for thermal management, e.g.

Qualcomm’s Thermal Engine daemon.

3.4.6 Manager Installation and Execution

To install the management framework on an Android device it is just required

to copy the executables for the Manager and for the Application Observer to a location

in the phone file system. After that it is sufficient to launch both and let them run in

the background. To insure the correct behavior, other power or thermal management

program running in the User Space should be stopped first. However, we have verified

that the manager is compatible co-running with Qualcomm’s mpdecision. This is a

service that automatically handles CPU hotplug based on computational load.
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3.5 Experimental Results

The target platform for the evaluation of the proposed user space solution is a

Google Nexus 5 smartphone. This device is equipped with the Qualcomm Snapdragon

800 chipset, featuring a quad-core Krait 400 CPU. The four cores have a range of fre-

quency from 300 MHz up to 2.26 GHz, with predefined voltage and frequency operating

points. It also has an Adreno 330 GPU, with frequency from 200 MHz up to 450 MHz.

The display is a Full HD with In-Plane Switching (IPS) LCD [4] with 255 brightness

levels. The phone was rooted to get root privileges to control the frequencies of CPU

and GPU, and display brightness.

The evaluation has been conducted selecting applications among the most popu-

lar ones: Chrome, Gmail, Angrybirds, Hangouts, Dialer (standard phone call), Camera,

YouTube [49], [5]. To ensure that comparisons are consistent and reproducible, we

wrote an application that allows to record and replay sequences of events on the device

(e.g. touches on the display, pressing the power button, pressing the volume button,

etc.).

In this device they are already executing by default two other user space man-

agers: the Thermal Engine and mpdecision. Moreover, the standard Ondemand gov-

ernor is operating at the Kernel level. The Thermal Engine operates by limiting the

maximum operating conditions, based on current temperature. To avoid interference

with our manager, it should be stopped. Unfortunately, this program cannot be stopped

and it is necessary to reduce its functionalities by replacing its configuration file with an

empty file. As for mpdecision, this program switches on and off CPU cores based on

utilization metrics. Since it does not perform frequency scaling, it should be kept active

and compatibility should be guaranteed.

Figure 3.5 reports an extract of 20 seconds of an execution trace monitored while

applying the proposed manager, to describe the details of the behavior of the proposed

manager. For this experiment we are executing Google Chrome application with the

required operating conditions F
req = [1 GHz, 1 GHz, 1 GHz, 1 GHz, 200 MHz, 150].

The first plot reports the temperature traces of the 11 sensors present in our device. For

simplicity, no legend is reported here. In general the exact location of sensors is not

disclosed. In this case, the thermal threshold was set to 80oC, so temperature is kept
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Figure 3.5: Behavior of the proposed manager
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in a safe range. The second plot reports the behavior of CPU and GPU frequencies.

Once the application is launched (at 2 sec), the Application Observer detects it running

in foreground and selects the corresponding required operating conditions. No thermal

management is activated in this case, so the manager always selects Fk+1 = F
req
k+1. The

black dotted line in the second plot represent the required CPU operating frequency,

which is the maximum bound set by the manager. Indeed, the Ondemand governor at

the Kernel level is free to switch frequency at a higher rate. Moreover, when a CPU

core frequency is equal to zero, then it means that mpdecision has switched the core off.

At 11th second we can notice that the frequency of CPU 2 exceeds the bound imposed

by the manager. This is due to the combination of Thermal Engine, mpdecision, and

Ondemand governor activities, but it does not affect the temperatures much. Finally, the

third plot shows the behavior of display brightness. When an application is launched,

the required level is set (150 in this case). After that, change blindness is exploited and

brightness is progressively reduced by 5 every seconds until the predefined minimum

value βmin is reached (70 in this case).

In Figure 3.6 we show what happens when the manager detects a thermal emer-

gency (e.g. the threshold Tthr is exceeded by some sensor predicted temperature). While

executing a sample trace of the popular game Angrybirds, we monitor the temperatures

and the CPU maximum frequency (e.g. the output of the manager) in two different

cases. In the first case (on the left) the thermal threshold for the target application is set

at 70oC, in the second case, the threshold is 60oC. For simplicity, only the temperature

of the two sensors which detect thermal excess is reported, namely T9 and T10. In both

cases, the maximum operating conditions are modulated by the manager in order to keep

the predicted temperature lower than the threshold. The threshold can be also tuned to

provide different performance tradeoffs.

Figure 3.7 reports our results in terms of power savings. Table 3.5 shows the

configurations used for various applications in our evaluation of the proposed power-

thermal manager. We record and replay event traces for each application and measure

power consumption respectively with the default Thermal Engine and with the proposed

user-centric manager. In both cases, mpdecision is active and the Ondemand governor

is set. Power consumption is monitored by sampling the battery voltage and current
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Figure 3.6: Example of the proposed manager handling thermal emergenices

Figure 3.7: Power savings resulting from the use of the proposed manager
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Table 3.1: Configuration values used for various applications in the proposed manager

Application CPU freq. GPU freq. Display

(MHz) (MHz) brightness

Chrome 1000 200 150

Camera 1500 350 150

Gmail 800 200 70

Hangouts 900 200 100

Dialer 1300 200 55

YouTube 1500 450 150

Angry Birds 2260 450 255

Default 500 200 100

values at the sysfs interface. In devices where this is not available, it is required to

use an external power monitor. The traces are for a single application with 1 minute

duration. Then we also compare power consumption on longer traces which combines

all the considered applications (labeled as “Long” in the bar graph), which have 10

minutes duration. The values of power consumption in Figure 3.7 are average values.

For all the considered applications, our manager provides a power saving w.r.t.

the standard power management, up to 46% in the case of Hangouts. The only exception

is the case of Angrybirds. In this case the user expectation is very high, so the required

operating conditions are set at the maximum. In the case of Long traces, our manager

provides up to 35% average power saving w.r.t. the standard power management.

3.5.1 Improvements with the Custom Governor

In this experiment, we intend to evaluate the proposed custom governor in terms

of power savings and we show that it is able to achieve further energy efficiency with

respect to the standard ondemand governor. As described in Section 3.4.3, the custom

governor selects the maximum frequency if the Process ID of the currently scheduled

process matches the one of the foreground application. Otherwise it selects the mini-

mum frequency.

To demonstrate the portability of our framework, we decided to execute the fol-
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Figure 3.8: Trace of CPU frequencies when using the custom governor

lowing set of experiments on a different platform. We chose the APQ8064 Development

Tablet. This device has a quad core Krait CPU with frequency settings from 380 MHz

up 1.67 GHz per core. The platform also contains an Adreno 320 GPU. The CPU Cores

and the GPU have independent voltage/frequency (V/f) settings and fixed operating V/f

points. The operating system of the tablet is Android 4.1.2 (Jelly Bean), with Linux

kernel 3.4.0

Figure 3.8 shows the details of the operation of the custom governor. The re-

ported is the operating frequency of the 4 cores of the target platform, together with

the upper bound imposed by the user space manager, while executing 5 seconds of the

browser application. The frequency is sampled every 100 ms. The frequency is switched

to the maximum only if the PID of the scheduled task matches the one of the foreground

application (the browser).

To compare the governors in terms of energy efficiency, we first record execution

traces of different applications: Angrybirds, Facebook app, Gallery, and the browser.

The duration of traces is 2 minutes for Angrybirds and the browser, and 1 minute for
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Figure 3.9: Comparison of power savings of different governors with the proposed

custom governor

Facebook and Gallery. The recorded traces involve a sequence of interactions such as

opening a new page, slide the next picture, open a different tab, scrolling and zooming.

Then we replay the trace while keeping the user space manager and the app observer

active in all scenarios, and only changing the CPU frequency governor. We use respec-

tively our custom governor, the ondemand governor and the performance governor. The

latter essentially sets a constant maximum frequency and it leads to the highest power

consumption. For practical reasons, results are normalized with respect to the power

consumption obtained with the performance governor. To better capture the difference

in power consumption given by governors, in this experiment the mpdecision daemon is

deactivated, and all the 4 cores are turned on and configured with the same governor.

Figure 3.9 compares the values of average power consumption for the recorded

app traces when applying different governors. The duration of the trace does not change

when different governors are used and the average power (which is periodically sam-

pled) gives a comparison in terms of energy as well. The values of power consumption

obtained with the performance governor for the traces are 3.87 W, 3.77 W, 2.77 W,
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3.37 W, respectively. The result show that the combination of user space manager and

custom governor achieves a further 27% of power savings with respect to using the

ondemand governor.

3.6 Conclusion

In this chapter we proposed and presented a ready-to-use solution for user-

centric proactive power and thermal management. The solution reduces power con-

sumption, thus increasing battery lifetime subject to application-specific performance

requirements for user experience. This is a complementary problem with respect to

the one solved in Chapter 2, which focused on maximizing performance subject to a

target battery lifetime. The approach proposed in this chapter is able to adapt to max-

imize user experience and reduce power consumption while keeping temperature in a

safe range. Temperature prediction is based on a novel observable-based thermal model

which achieves a mean accuracy of 1.17oC. The proposed technique has been imple-

mented on a real Android device and tested on a set of real life applications. The ex-

perimental results show that our manager achieves up to 46% reduction in application-

specific power consumption and up to 35% reduction in average power consumption,

when compared to standard power and thermal management. Chapters 2 and 3 focus

on the fine-grain time scale characteristic of workload changes, and are part of the short

term controller represented in Figure 1.1. In the next chapter we investigate reliability

emulation and management in the long term controller, and its interaction with the short

term controller.

Chapter 3 contains material from “User-centric joint power and thermal man-

agement for smartphones”, by Pietro Mercati, Vinay Hanumaiah, Jitandra Kulkarni,

Simon Bloch and Tajana Šimunić Rosing, which appears in Proceedings of the 6th In-

ternational Conference on Mobile Computing, Applications and Services (MobiCASE),

2014, Austin, TX, 2014. [108]. The dissertation author was the primary investigator and

author of this paper.



Chapter 4

Reliability Emulation and

Management

We presented solutions for power and thermal management which consider user

experience in a complementary way. However, they do not consider the impact of tem-

perature on reliability degradation explicitly. With CMOS scaling beyond 14nm, reli-

ability is a major concern for IC manufacturers. Reliability-aware design has a non-

negligible overhead and cannot account for user experience in mobile devices. An alter-

native is Dynamic Reliability Management (DRM), which counteracts degradation by

adapting the operating conditions at runtime. In this chapter, we propose a techinique

which leverages the major gap between the time scales of workload variations and reli-

ability loss, thus suggesting the multi-rate structure comprised of a long term controller

and a short term controller. We formulate DRM as an optimization problem that ac-

counts for reliability, temperature and performance. We develop an optimal policy for

multicores using convex optimization, and show that it is not feasible to implement on

real systems. For this reason, we propose Workload-Aware Reliability Management

(WARM), a fast DRM technique adapting to diverse workload requirements to trade

reliability and user experience, implemented and tested on a real Android device. It

approximates the solution of the convex solver within 18% in the worst case, while ex-

ecuting more than 400x faster. WARM integrates a Thermal Controller that allocates

tasks to meet thermal constraints, since degradation strongly depend on temperature.

We show that WARM is within 5% of temperature constraints in 87.5% more cases

61
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than the state-of-the-art. Our task allocation strategy achieves up to 1 year lifetime im-

provement for a multicore platform and 100% of performance improvement on cluster

architectures, such as big.LITTLE, while still guaranteeing the reliability target.

4.1 Introduction

The world of integrated circuits today is facing an era of incredible development.

Modern ICs are manufactured in the 14nm technological node [8]. Mobile devices, such

as smartphones and tablets, integrate different processing elements (CPUs, DSPs, accel-

erators, GPUs) and execute applications and programs with varied quality of experience

requirements for the user. The stop in supply voltage scaling and the increase in power

density have caused the increase of chip temperature and the impact of degradation

mechanisms [156].

As the technology scales, the impact of mechanisms such as Time Dependent

Dielectric Breakdown (TDDB), Negative Bias Temperature Instability (NBTI) and Hot

Carrier Injection (HCI) becomes dramatic [29]. Degradation worsens under voltage and

temperature stress and it is influenced by environmental conditions, such as ambient

temperature, and workload variations.

Degradation mechanisms are described by the Mean Time To Failure (MTTF) of

devices [76], [153]. A common practice is to assume that all the devices of the same kind

have the same MTTF. However, with scaling, the mean lifetime of processors becomes

shorter and the distribution of lifetimes becomes larger, so it is less and less accurate to

assume the same MTTF. The result is the production of devices whose lifetime is more

difficult to predict [27]. This has an impact on warranty costs and on trust and reputation

of companies. Design techniques cannot completely address these problems, due to

workload variability, frequent user interactions and changing environmental conditions.

Imposing high design margins results in a loss of performance and higher costs.

The last decade has seen a great development of mobile systems. Modern smart-

phones and tablets support graphics, wifi communication, web browsing and multime-

dia, thanks to powerful systems-on-chips, e.g. [6], [77]. They run a great variety of

workloads with different performance requirements and they are subject to variable
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voltage/frequency stress [159]. Since processor degradation depends on temperature

and voltage, a runtime control is needed to correctly manage the reliability of a device

over time [58]. Since many degradation mechanisms depend exponentially on temper-

ature, thermal control is a key requirement. Reliability of processors can be estimated

by monitoring voltage and temperature, and providing these values to a mathematical

model. Alternatively, recent work presents sensors for monitoring degradation [147],

and embeds them in prototypes [160], [148].

Dynamic Reliability Management (DRM) is a technique to trade off degradation

and performance at runtime, to meet a target lifetime. Reliability is defined at any

point in time as a real number between 0 and 1 corresponding to the probability of

not having failures. Usually, a reliability threshold is defined a priori. If the estimated

reliability at the target lifetime is greater than the threshold, the lifetime constraint is

met. Reliability can be modeled as a function of technological parameters, voltage,

temperature and time [177]. In DRM, reliability is periodically estimated and per-core

operating conditions are controlled to limit the degradation source (i.e. temperature and

voltage) [153], [176], [110].

A recent DRM technique uses arrays of local controllers that independently set

the voltage of the associated core [110]. The novelty of this approach is to discriminate

between highly critical (H) and less critical (L) tasks, depending on their impact on user

experience. Each local controller works in two time scales: Long Intervals (LI) and

Short Intervals (SI). The Long Term Controller (LTC) monitors the degradation status

and calculates average voltage constraints that guarantees the lifetime requirement. The

Short Term Controller (STC) changes the voltage and frequency frequently so that (i)

the average voltage over a LI is below the constraint and (ii) when high performance

are required, the voltage can be boosted for a limited time. This approach only observes

temperature, but does not control it, leading to suboptimal decisions. Moreover, the

approach only exploits voltage and frequency, but does not leverage task allocation/mi-

gration.

All modern operating systems like Linux, Windows and iOS have dedicated

components for CPU power management, to target energy efficiency and high perfor-

mance. Linux uses governors to control operating conditions. Governors are kernel
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modules, part of the cpufreq driver, which is interfaced with hardware regulators en-

abling voltage and frequency switching [125]. Android, the most popular operating

system for mobile devices, based on the Linux kernel, can select between different gov-

ernors, targeting goals such as providing maximum performance or saving energy. For

example, the powersave governor forces the processor to run at minimum frequency,

while the performance governor forces it to run at maximum frequency. A more com-

plex governor, the ondemand [125], samples the CPU utilization at a given rate and

scales the frequency accordingly. Standard governors are not aware of running applica-

tions, and cannot make distinctions based on their priority. They have no DRM capa-

bility, but previous work shows that they can implement user experience-aware per-core

DRM with low overhead [105]. Android also implements mechanisms to allocate and

migrate tasks.

In this chapter for the first time we formulate an optimization problem for tem-

perature and workload-aware reliability management and solve it with a multilevel con-

troller employing convex optimization. It comprehensively manages reliability and tem-

perature subject to diverse performance requirements of applications. We then show

that convex solvers are not suited for system requiring response times on the order

of milliseconds, because of their computational overhead. For this reason we propose

Workload-Aware Reliability Management (WARM), a heuristic that efficiently solves

the optimization problem by leveraging a cascade of controllers that act on different

time scales. The fundamental contribution of WARM with respect to previous work

in [110], [105], [176] is the addition of a thermal controller that manages temperature

by leveraging task allocation on a multicore platform. This is extremely important, given

that most degradation mechanisms affecting reliability have a strong and exponential de-

pendency on temperature. WARM leverages RelDroid, an infrastructure for the online

emulation of reliability degradation. RelDroid enables the design of workload-aware

dynamic reliability management on real mobile devices with accurate reliability mod-

els. Our framework captures the effect of variable workload and environmental condi-

tions and allows to emulate longer degradation in a short time scale. We implement the

framework on a real Android device and exploit it to enable workload-aware dynamic

reliability management. Our results show that WARM approximates the solution of
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the optimal policy within 18% error in the worst case, while executing more than 400x

faster. We also show that, since temperature is a major concern for degradation, WARM

meets temperature constraints within 5% in 87.5% more cases than the state-of-the-art.

4.2 Related Work

The International Technology Roadmap for Semiconductors (ITRS) [8] recog-

nizes reliability due to aging as a primary concern for integrated circuits. Uncertainties

in reliability can lead to performance, cost, and time-to-market penalties and can lead

to field failures that are costly to fix and damaging to reputation. In the near future,

Time Dependent Dielectric Breakdown (TDDB) and Negative Bias Temperature Insta-

bility (NBTI) are a primary concern. TDDB (also referred to as oxide breakdown or

dielectric breakdown) is a degradation mechanism that results in a low-impedance path

through the gate dielectric of a transistor. Failures related to TDDB are manifest as

abnormally high off-state leakage current, changes in circuit switching delay or even

failure to switch (hard breakdown). It depends on temperature, voltage and oxide thick-

ness [66], [167]. NBTI results in an increased absolute threshold voltage of p-channel

MOSFETs, and hence a degradation in drain current and performance. Most research

attributes the threshold shift to two mechanisms. The first mechanism involves interface

traps and oxide charge formation due to negative gate bias at elevated temperatures. The

second mechanism involves breaking of Si-H bonds at the Si/SiO2 interface by a com-

bination of electric field, temperature and holes. It results in dangling bonds or interface

traps at that interface and positive oxide charge that may be due to H+ [69]. NBTI has

been the subject of extensive research [127]. In this work, we focus on TDDB, which

is shown to have a much faster degradation rate compared to NBTI [60]. However, the

proposed solution can be applied to any degradation mechanism can be modeled with a

reliability function.

Traditionally, aging is handled at design time, with the adoption of high design

margins under the assumption of worst-case conditions. However, it will not be possible

any longer for designer to take into account a worst case design window, because this

would jeopardize the performance of circuits too much [8]. A more promising approach
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lowers the design margins and exposes degradation at the software stack to manage it at

runtime [58].

Runtime control of operating conditions and task allocation have been success-

fully used in the recent years for Dynamic Power Management (DPM) and Dynamic

Thermal Management (DTM). The latter is a technique aiming at keeping the operat-

ing temperature of the chip in a safe range. Researchers developed different techniques

from simple reactive ones, to more elaborated approaches like model predictive con-

trol [150], [21]. Today DTM is employed in almost all commercial devices and can be

handled by all operating systems.

Dynamic Reliability Management (DRM), instead, is a technique where a pro-

cessor can dynamically trade performance to adapt aging. DRM is different from DTM

in that it allows to meet a target lifetime. This is introduced in [153], where a microar-

chitectural reliability model is the reference for dynamic adaptation. The authors report

how DTM and DRM lead to different control behaviors. Work in [78] highlights the lim-

itations of [153] of focusing on a short time scale and of using benchmark applications

for experiments. In turn, it proposes a PID-based DRM algorithm which exploits DVFS

for peak performance improvement under high demand. The DRM here exploits a lin-

ear extrapolation to project lifetime total damage. They evaluate with macro-level user-

collected processor usage profiles. This work assumes that the future workload is equal

to the previous one and is sensitive to sudden workload variations. Zhuo et al. [177]

proposed a process variation and temperature-aware reliability model for TDDB, which

can estimate processor reliability from temperature and voltage history. In [176] the

authors presented a DRM framework that extends this model to periodically predict the

future value of reliability at the target lifetime. Based on the difference between the

predicted reliability and the target one, the controller sets a maximum operating volt-

age. This approach is less sensitive to workload variations compared to previous work

because it exploits a confidence-based workload estimation. Since the policy sets the

maximum voltage, it is not able to guarantee speed bursts for high performance de-

manding tasks, causing user experience degradation. Recent work in [152] explores the

tradeoff between performance and reliability in multicore processors by introducing the

throughput-lifetime product (TLP) and proposes dynamic reliability variance manage-
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ment (DVRM) to enhance multicore lifetime. The approach in [119] employs an ef-

ficient Bayesan classifier to detect reliable configurations online and uses architectural

adaptation to select the one with best performance thanks to a performance prediction

model. These papers present results deriving from simulations. For this reason they

assume workload and platform models. Workload models are known a priori, but they

may not be available for general purpose architecture. This limits the feasibility of im-

plementation of the proposed approaches on a real platform. DRM is not available in

commercial devices today.

Recent work proposes hardware degradation monitors. In [24] the authors pro-

pose the design of a wear out detection unit for automatic compensation. Reference [147]

presents in-situ sensors for NBTI and TDDB. These devices are based on a ring oscil-

lator driven by transistors under stress. The frequency of the ring oscillator varies de-

pending on the impact of degradation. Work in [148] uses the output of these sensors in

a control loop for managing dynamically the impact of NBTI degradation. The authors

of [164] present Radic, a novel built-in sensor for reliability analysis. based on this,

they deploy an aging adaption system to prevent failures. These publications effectively

counteract degradation, but they do not consider the existence of different workload re-

quirements to achieve good user experience. This is achieved by the technique in [110],

which is a workload-aware DRM technique for multiprocessors based on a two-level

controller. This technique monitors system reliability on a long time scale and adapts

operating conditions to workload quality requirements on a short time scale, preserving

from user experience degradation. This is shown to outperform state-of-the-art tech-

niques, as it provides full performance to critical applications. This work focuses on

TDDB, exploiting the model presented in [176] for simulating the presence of degrada-

tion sensors. It does not assume a priori knowledge of workload, but leverages a runtime

binary characterization of workload requirements. Thus it is feasible to implement.

A number of recent publications propose reliability-aware scheduling techniques.

Work in [67] proposes a task allocation technique for MPSoC which maximizes lifetime

subject to performance constraints. The authors of [25], instead, focus on NOC-based

platform and devise a scheduling algorithm for joint energy and reliability optimization.

In these publications, however, lifetime is considered as an objective function and max-
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imized, rather than as a constraint. Work in [127] formulates and solves the problem of

energy efficient, aging-tolerant task allocation for a variability affected platform running

rate-constrained multimedia applications, adapting to system degradation conditions. In

this work, reliability is a constraint rather than an objective function. Such a formula-

tion is more meaningful from a manufacturer perspective [8]. These publications do not

exploit DVFS and the existing power management infrastructure. Also, the scheduler

of operating systems such as Linux is a very critical section. The implementation of

scheduling techniques is highly challenging in real devices and the results presented in

the referenced works come from simulations.

Alternative DVFS and task scheduling approaches have been proposed to mit-

igate thermal hotspots, also improving the system reliability. In reference [138], the

thermal behavior of a multicore processor is first modeled through a state-space system,

which accounts for the thermal coupling between cores. Next, the model is reduced

into a representation suitable to formulate an Integer Linear Problem (ILP). The ILP’s

goal is to allocate N tasks onto N cores while maximizing the per-core frequency and

meeting a thermal constraint. A similar approach is proposed in [61]. In this paper, an

heterogeneous multicore processor running a queue containing N non-identical tasks is

considered. The authors use a more detailed thermal model which leads to a non-linear

optimization problem. These publications are effective in controlling temperature, but

are not aware of degradation, which may lead to either reliability violations and perfor-

mance degradation.

Another class of related work focuses on management for soft errors (for ex-

amples, bit-flips caused by radiations). Such errors can compromise data integrity and

accuracy of computations, but they do not affect aging. Work in [174] investigates

the effects of energy management using DVFS on real-time embedded systems. The

authors find that, for critical applications, DVFS may increase the fault rate dramati-

cally. Based on this, the authors of reference [173] propose two effective scheduling

algorithms for real-time tasks that maintain a very low fault rate, without impacting on

energy efficiency. Our work is orthogonal, as we target mobile devices and degradation

mechanisms that induce circuit aging.

Reliability management for embedded systems is the subject of very recent
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work. Reference [43] presents a hierarchical manager that exploits Q-learning to jointly

control temperature and energy consumption. The proposed strategy is also demon-

strated to improve the lifetime reliability. Work in [42] proposes a simplified tempera-

ture model to develop a gradient-based efficient heuristic to determine multicore oper-

ating conditions with the goal of minimizing energy consumption and maximizing the

system lifetime. The presented strategies are effective in improving system reliability,

but they cannot account for user-experience.

Previous work in [110] proposed a two time-scale DRM framework and a follow-

ing publication described its implementation as a Reliability Governor on a real Android

device [105]. These techniques have three main limitations, which may lead to subop-

timal decisions. First they do not control temperature, but only voltage and frequency.

This is very critical because degradation mechanisms have an exponential dependency

on temperature. Second, they scale voltage and frequency, but cannot leverage task al-

location/migration. This is an effective strategy to balance temperature in a multicore.

Third, they have not been compared to an optimal approach.

In previous chapters, reliability is not considered. In this chapter, for the first

time we formulate and solve an optimization problem that accounts for reliability and

thermal constraints, while meeting application-specific performance requirements for

quality of experience (QoE). We then present WARM, a fast hierarchical heuristic that

approximates the optimal solution, and implement it in the Android software stack. We

add a thermal controller to WARM that uses task allocation and migration to effectively

balance degradation among different cores and achieve higher performance. In the An-

droid implementation, we decouple reliability emulation from reliability control. We

implement an application manager that enables taking short term decisions based on the

currently scheduled task. Finally, in experimental results, we compare our technique on

a real Android device against state-of-the-art governors on a broad range of applications.

We achieve up to 1 year reliability lifetime improvement for a multicore platform, and

up to 100% of performance improvement on cluster architectures.
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4.3 Mathematical Models

The main degradation mechanisms affecting integrated circuits are Time Depen-

dent Dielectric Breakdown (TDDB), Negative Bias Temperature Instability (NBTI), Hot

Carrier Injection (HCI), Electromigration (EM) and Thermal Cycling (TC). The aver-

age time before the failure of a device is denoted as Mean Time To Failure (MTTF).

Models have been developed for MTTF for each degradation phenomenon, which show

a strong dependence on temperature. For example, the MTTF for TDDB is described

by Equation (4.1):

MTTFTDDB = A0 exp−γEox exp
Ea

kT
(4.1)

Where A0 is a constant determined empirically, Eox is the electric field across

the dielectric, γ is the field acceleration parameter and Ea is the activation energy. The

MTTF for NBTI is described by Equation (4.2):

MTTFNBTI = A0

(

1

V

)γ

exp
Ea

kT
(4.2)

Where γ is the voltage acceleration factor and V is the applied voltage. The

MTTF for HCI is described by the Eyting model, expressed in Equation (4.3) for N-

channel devices:

MTTFHCI = BI−N
sub exp

Ea

kT
(4.3)

Where Isub is the peak substrate current during stressing, N is a material depen-

dent constant and B is a scale factor, function of technological parameters. Temperature

is a parameter in all the previous equations and the dependency of MTTF on temperature

is exponential, so it is very critical for degradation.

MTTF for each degradation mechanism is related to a reliability function as

expressed by Equation (4.4). Compared to MTTF, reliability is a function of time, so

it is more suited for the purpose of dynamic management [176]. When considering

the effect of multiple mechanisms acting together, multiple reliability functions can be

combined into a single one [153]. In this work we focus on TDDB, as it is considered
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to be one of the key sources of degradation [8]. We describe the reference reliability

model for TDDB [177] that is used in our implementation.

MTTF =

∫

∞

0

R(t) (4.4)

4.3.1 TDDB Reliability Model

Time Dependent Dielectric Breakdown (TDDB) is a major concern for modern

integrated circuits, given the important dependence it has on gate oxide thickness [8]. As

technology scales, the gate oxide layer is thinner, increasing the risk of breakdown and

shortening devices lifetime. Because of its non reversibility and increasing impact, it

is a very representative degradation phenomenon. The oxide breakdown time to failure

is inherently a statistically distributed quantity. TDDB time is modeled as a random

variable with a Weibull probability distribution function. The reliability of a single

transistor subject to oxide degradation can be expressed as [154]:

R(t) = e−a( t
α)

β

(4.5)

where t is the time-to-breakdown, a is the device normalized area with respect to

the minimum area, and α and β are respectively the shape parameter and scale param-

eter of the Weibull distribution (sometimes also referred to as Weibull slope). The scale

parameter α represents the characteristic life, which is the time where 63.2% of devices

fail, and it depends on voltage and temperature. The shape parameter β, instead, is a

function of the critical defect density, which in turn depends on oxide thickness, tem-

perature and applied voltage. In [44] the shape parameter is shown to vary linearly with

the oxide thickness x, so R(t) can be expressed as follows.

R(t) = e−a( t
α)

xb

(4.6)

In the remaining of this chapter, for simplicity, we will refer to b as shape pa-

rameter. It is constant for a given oxide thickness, and depends only on voltage and

temperature. Due to process variations, the oxide thickness is actually a distributed
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quantity. Therefore, the single ith device reliability can be expressed as a conditional

probability:

R(t|xi) = e−a( t
α)

xib

(4.7)

Based on this, the reliability of the entire chip Rc can be then expressed as the

product of all of the single device reliabilities as:

Rc(t|x) =
m
∏

i=1

R(t|xi) = e
∑m

i=1 −ai

(

t
αi

)bixi

(4.8)

where x is the vector of all oxide thicknesses and m is the number of transistor of the

chip. For eliminating the dependence on x, a m-dimensional integral would be required.

This problem has high complexity, as m could be millions. The work in [177] proposes

a way to reduce the complexity of this problem, while still including process variation

effects on oxide thickness. It is based on the observation that different regions of the

chip share similar temperatures. A block is defined as region of the chip with almost the

same temperature. Given this definition, the reliability functions of the single devices

belonging to the same block have the same scale and shape parameters. Given that N is

the total number of blocks, Rc(t|x) can be rewritten as:

Rc(t|x) = e
∑N

j=1

∑mj
i=1 −ai,j

(

t
αj

)bjxi,j

(4.9)

A further simplification is introduced by defining the Block Level Oxide thickness Dis-

tribution (BLOD). Collecting all the oxide thicknesses of all the devices in a block, it is

possible to build a frequency histogram. The histogram, then, can be fitted to a Gaussian

curve, which is the BLOD. Each BLOD has mean ui and variance vi. It can be noticed

that, since it is unfeasible to actually measure oxide thicknesses and build a frequency

histogram, means and variances of BLODs are random variables. However, the number

of random variable in the problem is reduced from m (millions) to 2N (some units).

The chip reliability can be approximated as:

Rc(t|x) = Rc(t|u,v) (4.10)

The simplification steps described in [177] allow to remove the dependence and express

the chip reliability as a sum of double integrals in the space of means and variances of
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BLODs, as:

Rc(t) =1−N+

N
∑

j=1

∫

∞

−∞

∫

∞

−∞

e−Ajg(uj ,vj)fuj ,vj(uj, vj)dujdvj
(4.11)

where N is the number of blocks composing the chip, Aj is the normalized area with

respect to the minimum of the jth block, fuj ,vj is the joint distribution of means and

variances of BLODs and g(uj, vj) results from the simplification procedure and reads:

g(uj, vj) = exp

(

ln(
t

αj

)bjuj + (ln(
t

αj

))2b2jvj/2

)

(4.12)

The joint distribution fuj ,vj can be expressed as the product fuj ,vj = fuj
× fvj with

good approximation, as shown in [177]. The distribution fu is Gaussian, while for the

variances we have:

vj ∼ vj,0 + âχb̂ (4.13)

where χ is a chisquare distribution with b̂ degrees.

Since the quantity Rc is static (meaning that, for how it is formulated, it considers

that the same voltage and temperature are applied from time t = 0). To exploit the

value of reliability in a control loop, it is necessary to consider temperature and voltage

changes over time. This is possible by discretizing the time axis and calculating at each

time step the system (dynamic) reliability as:

Rk =Rk−1−

(Rc(tk−1, Tk−1,k, Vk−1,k)−Rc(tk, Tk−1,k, Vk−1,k))
(4.14)

where k indicates the generic kth time instant, Tk−1,k and Vk−1,k are the temperature

and voltage experienced by the system between the time instants k − 1 and k, Rc is the

static reliability. In this way, the system reliability is calculated as a recursive sum of

progressive damages.

When applying this model, we consider each core of the multicore platform as a

single block, thus N = 1. Equation (4.11) reduces to:

Rc(t) =

∫

∞

−∞

∫

∞

−∞

e−Ajg(uj ,vj)fuj ,vj(uj, vj)dujdvj (4.15)
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Equation (4.14) is used in our framework as a black box to asses the reliability status of

the processors, given temperature and voltage values, using 4.15 to evaluate the static re-

liability Rc. The value Rk resulting from Equation (4.14) goes from 1 to 0 and is consid-

ered as a measure of the system degradation status. Equation (4.14), used to update the

reliability value, is general and does not depend on a specific degradation mechanism.

Therefore, our framework is valid for every degradation mechanism or combination of

multiple mechanisms as long as it can be described by a function Rc(t) such as that in

Equation (4.15). For example, to extend the framework to include NBTI and HCI, we

assume that we have models to describe the reliability functions associated with these

mechanisms, respectively RNBTI and RHCI . As described in references [78], [79], the

total system reliability function is given by the product of the functions associated with

the single mechanisms as Rc(t) = RTDDB(t) · RNBTI(t) · RHCI(t).

4.3.2 Thermal Model

The heat propagation across a multicore processor is modeled using the heat

diffusion relationship reported in Equation (4.16). In this equation, T (~r, t) and P (~r, t)

are the temperature and power at location r = (x, y, z) and time t. Parameter ρ is

the material density, cp is the material specific heat, and kT is the material thermal

conductivity [22]. The heat propagation across a multicore processor is modeled using

the heat diffusion relationship reported in Equation (4.16). In this equation, T (~r, t) and

P (~r, t) are the temperature and power at location r = (x, y, z) and time t. Parameter

ρ is the material density, cp is the material specific heat, and kT is the material thermal

conductivity [22].

ρ(~r)cp(~r, t)
δT (~r, t)

δt
= ∆ · [kT (~r, t)∆T (~r, t)] + P (~r, t) (4.16)

Equation (4.16) can be spatially and temporally discretized. Let T [k] ∈ ℜN

be the temperature at instant k for N locations and P [k] ∈ ℜM be the known powers

of M sources (e.g. the power consumed by each of the cores). Let also Ts[k] ∈ ℜS

be S observable temperatures (i.e., the temperatures measured via sensors), and A, B,

C transformation matrices. Then, the equivalent discrete-time state-space linear time-

invariant (LTI) system can be expressed as in Equations (4.18) and (4.17) [22].
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T [k + 1] = AT [k] + BP [k] (4.17)

Ts[k] = CT [k] (4.18)

The representation of Equations (4.17) and (4.18) is useful to deploy effective

control strategies aimed at meeting a thermal constraint while improving performance

and reducing the power consumption by operating DVFS and task scheduling [21].

4.3.3 Power Model

For a core, the power is the sum of two contributions: dynamic and leakage.

The dynamic power can be modeled through Equation (4.19) where α an C are the

activity factor and the switching capacitance. As the frequency f depends linearly on

Vdd, the dynamic power can be approximated as a cubic function of frequency, similarly

as in [149].

Pdyn = αCV 2
ddf ≃ af 3 (4.19)

The leakage power can be modeled through Equation (4.20) where the coeffi-

cient b is a technology dependent constants, channel length and width; the coefficient k

is the Boltzmann constant, the electron charge, and the threshold voltage; and Igate is

the gate leakage current that can be assumed constant.

Plkg = Vdd(bT
2 exp(

k

T
) + Igate) (4.20)

A simplified model, that accounts for both dynamic and static power is shown in

Equation (4.21). The strength of this model is that it can be easily fit to real measure-

ments.

P = Pdyn + Pleak = a · f 3 + b · f (4.21)



76

4.4 Optimal Controller Architecture

In this section, we describe the structure of the optimal controller. We divide the

problem into Long Intervals (LI), in the order of days it takes for reliability to change,

and Short Intervals (SI), in the order of milliseconds for scheduling decisions.

Figure 4.1 shows the structure of an optimal dynamic reliability controller. It

consists of an Optimal Long Term Controller (OLTC), which selects the target average

voltage and temperature for each core for the next LI, and an Optimal Short Term Con-

troller (OSTC), which determines task allocation and frequency levels at each SI. The

Figure 4.1: Block diagram of optimal DRM controller

OLTC activates at the beginning of a LI and provides each core with a voltage and a

temperature reference values, TLTC and VLTC . Then, the OSTC activates at each SI and

determines voltage/frequency levels and task allocation so that the average temperature

and voltage in the LI are respectively lower than TLTC and VLTC , The OLTC problem

for finding TLTC and VLTC is formulated as follows.
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min
TLTC ,VLTC

‖Rp(tlife)‖ (4.22)

s.t. Rp(tlife) ≥ Rtarget (4.23)

In this problem, Rp(tlife) indicates the predicted reliability at the target life-

time [110]. Based on such formulation, the OLTC finds the pair of values TLTC and

VLTC which are used as constraints in the OSTC problem. The constraint on reliability

is met if, at the end of each LI, the average observed temperature and voltage are lower

than constraints (TLTC , VLTC) [110].

For the formulation of the OSTC problem, we assume that the target device has

N cores, each one executing a task j (j = 1, . . . , N ) that requires a frequency f ∗

j [k] at

the short interval k. For each core i, its average frequency over a LI, labeled as fLIi , must

not be greater than the value fLTCi
. This corresponds to the maximum frequency that

is possible to obtain at voltage VLTCi
. This is a reasonable assumption given that pro-

cessors supporting DVFS usually have predefined voltage-frequency operating points.

Moreover, its average temperature over a LI should not be greater than the reference

TLTCi
.

We also assume such a system to work alongside the native system scheduler,

which selects at most N tasks. The problem is then to allocate N tasks onto N cores

and select the frequency fi[k] of the core i at each SI k. If the actual tasks are less than

the cores, we consider a number of idle tasks to sum up to N . Similarly as in [110],

some tasks are labeled as highly critical (H) for user experience, thus they require to

execute at a frequency as close as possible to f ∗

j [k]. These can be, for example, tasks

belonging to the foreground application. All others are labeled as less critical (L). Given

these assumptions, at each SI, the following optimization problem is formulated.

min
F,Xalloc

‖F −Xalloc · F
∗‖2 (4.24)

s.t. F [k] ≤ FrefHH
(4.25)

T [k] ≤ T̄refHH
for k = k0, ..., k0 + L (4.26)

T [k] ≤ Tc (4.27)

In the problem above, F [k] is the vector of core frequencies F [k] = [f1[k], . . . fN [k]]
′

at time instant k, where k = k0, ..., k0 + L. F ∗ is the vector of required frequencies
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F ∗[k] = [f ∗

1 [k], . . . f
∗

N [k]]
′ at instant k. Xalloc is a matrix which elements xij assume

value 1 if core i executes task j and 0 otherwise. The matrix Xalloc ∈ R
N×N of elements

xi,j has only one element equal to 1 on each column and row. This is because every core

executes one task. The solution to the problem is given by matrix Xalloc and vector F .

The term FrefHH
is a vector with the dimension equal to the number of cores, in which

the generic element frefHH
is determined as in Equation (4.28).

frefHH
=







fref if task is L

fMAX if task is H
(4.28)

Similarly, the term T̄refHH
is a vector with the dimension equal to the number of

cores, in which the generic element TrefHH
is calculated as in Equation (4.29).

TrefHH
=







Tref if task is L

Tc if task is H
(4.29)

In the above equation, the values of fref and Tref are updated at each SI, based on

the rules shown in Equations (4.34) and (4.31) respectively. The goal of Equations (4.28)

and (4.29) is to relax the constraints of the optimization problem for H tasks, so that the

solver can find a solution that provides a higher frequency for H tasks. We use the

thermal model of Equations (4.17) and (4.18). We also assume to have a power and

thermal sensor on each core. Therefore, A,B,C ∈ R
N×N while C = I .

The problem has real (i.e. F ) and binary (i.e. Xalloc) decision variables. For a

fixed Xalloc, the problem is convex, because frequency and power can only have positive

values. The problem is solved for all the possible instances of Xalloc to choose the one

that provides the best solution.

As illustrated in [30], an optimization problem belongs to the class of convex

problems if the objective function and the constraint functions are convex. To prove

this, we assume Xalloc = X ′ is fixed. First of all, we prove that the objective function

f0(F ) = |F − X ′F ∗|2 is convex. This is clearly true, as the function is a square.

Then, constraint in Equations (4.25) is linear, which is a subclass of convex functions.

Constraints in (4.26) and (4.27) are also convex with respect to frequency. This can be

verified by substituting Equations (4.19) and (4.20) and considering that frequency is

always greater than zero.
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To find the solution, the OSTC iterates through each possible Xalloc and com-

putes the optimal F . Then, it returns the pair of Xalloc and F that provides the lowest

value for ‖F −Xalloc · F
∗‖2.

4.5 WARM Controller Architecture

Convex solvers are too computational expensive to be used in runtime manage-

ment policies, since the system should take control decisions in the order of millisec-

onds. For this reason, we develop WARM, a heuristic solution that approximates the

optimal solution, but is more than 400x faster. WARM consists of three components:

Figure 4.2: WARM block diagram

The first is a set of local and independent Short Term Controllers (STCs) that find F

and switch the operating frequency of the cores at each SI. The second is a Thermal

Controller (TC), which determines the allocation of tasks for a Medium Interval (MI),

sub-second or a few seconds. This is a key component, since degradation depends expo-

nentially on temperature. On the top of these two actions, a set of Optimal Long Term

Controllers (OLTCs) based on convex optimization estimates the degradation status of



80

the cores and sets the operating condition constraints for a LI (i.e., TLTC and VLTC). In

the following, we explain the behavior of each component more into details.

4.5.1 Long Term Controller

The Optimal Long Term Controller (OLTC) activates at each Long Interval, sam-

ples data from aging sensors, monitors the degradation status, and calculates the average

temperature and voltage. The OLTC predicts future reliability with these values, using

the technique described in [110]. This is determined by assuming a predicted constant

voltage and temperature for the remaining lifetime. Since reliability loss occurs on a

long time scale, we consider a LI to be on the order of days. Based on this, it solves the

problem presented in Equation (4.22) using convex optimization and provides a refer-

ence voltage/frequency V/fLTC and a reference temperature TLTC , which are the inputs

for STC. The constraint on reliability is met if the average applied voltage VLI is less or

equal to VLTC and the average temperature TLI is below TLTC , for each core, at the end

of the LI. Since the OLTC activates in the order of days, the use of convex optimization

represent a negligible overhead.

4.5.2 Thermal Controller

Previous work in [110], [105] is based on only a long term controller and a short

term controller, and it has two main limitations. First, it cannot balance temperature

across different cores of a multicore platform, because it cannot exploit task allocation.

Second, it cannot enforce the constraint on TLTC , because it does not control temperature

directly. To solve these problems, WARM has a centralized Thermal Controller (TC)

that monitors core temperatures and updates the values of average temperature Tavg and

reference temperature Tref with Equations (4.30) and (4.31).

Tavg(i) =
(Tavg(i− 1) ∗ (i− 1) + T (i))

i
(4.30)

Tref (i) = min

(

(TLTC ∗ tLI − Tavg ∗ i)

(tLI − i)
, Tc

)

(4.31)

In these equations, i indicates the ith SI inside a LI, T (i) is the temperature at

the ith SI, tLI is the duration of a LI (measured in SIs), TLTC is the reliability-induced
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constraint on average temperature and Tc is the core critical temperature. Given this,

the TC takes decisions at a coarser time granularity. The activation periods for the TC

are called Medium Intervals (MI) and are in the order of tens of SI, representative of

temperature changes over time. When the TC activates, it determines the task allocation

by assigning the tasks with higher priority (e.g. H tasks) to cooler cores. This is equiv-

alent to determining the matrix Xalloc. Then, it forces the frequency fL to assign to L

tasks for the next MI to the minimum, in case the current temperature T gets higher than

Tref . This helps reducing the thermal stress for the next MI, thus reducing the value of

Tavg for the current LI. In this way, the TC limits the performance of L tasks to execute

only if the temperature is out of a safe range from the point of view of reliability (e.g.

relative to Tref ). By limiting the performance of L tasks, the TC spends a MI to lower

the average temperature.

4.5.3 Short Term Controller

The Short Term Controller (STC) activates at each Short Interval (SI) and selects

the voltage to apply at a fast time rate. A SI ideally corresponds to the scheduling tick of

a real system. As already described, the frequency to apply for the execution of L tasks

is selected at each medium interval following the rule specified in Equation 4.33. Then,

the STC selects the applied frequency as described by Equation (4.32). In this equation,

the value of fL is selected by the rule in Equation (4.33).

fapp =







fL if task is L

fH if task is H
(4.32)

fL =







fMIN if T > Tref

min(fref , freq) otherwise
(4.33)

Here, the first case with fMIN is enforced by the TC. For the second case, freq

is the required execution frequency of the task, while fref is updated at each SI with the

rule specified in Equation (4.34). Moreover, the value of fH corresponds to freq for the

current task. Finally, fref is computed as in Equation (4.34).
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fref (i) = min

(

(fLTC ∗ tLI − favg ∗ i)

(tLI − i)
, Tc

)

(4.34)

Where fLTC represents the reliability-induced constraint on frequency favg is

updated at each SI similarly as Tavg. If the system is running into a power-critical

scenario that requires the intervention of power management, the applied frequency fapp

can be lowered, so the target reliability would still be met. If the task executed is H, this

would occur at the cost of QoE degradation, but in any case the proposed DRM would

not exacerbate the power consumption.

In this work we assume without loss of generality that applications are either H

or L. However, the controller can operate correctly even if quality requirements change

at a fast rate even for the same application, as long as it is slower the STC activation

rate. For example, an H application could have an L phase (like the menu screen of a

mobile game). This could be identified online by integrating the DRM with the app-

phase recognition engine proposed in [87] to enable further reliability improvement.

4.6 Android Implementation

All the components of WARM have been implemented in the Android software

stack to execute on real devices. Figure 4.3 shows the block diagram of the proposed

implementation. WARM consists of three subcomponents: the Application Monitor,

RelDroid and the WARM reliability manager. In the following we describe each com-

ponent into details.

Application Monitor: The Application Monitor consists of the configuration

file (App Monitor Config in the figure), the App Monitor and the App Driver. The User

can optionally fill a list of favorite applications, which is saved into the configuration

file. This is because not all the applications may be critical for the user, due to sub-

jective judgment. The Monitor periodically checks the applications currently active in

foreground, and if it finds a matching in the list of favorite applications, it outputs the

ID of the corresponding process. This is passed to the kernel space through the driver,

and it is stored in a shared variable.

RelDroid: RelDroid implements the infrastructure for monitoring reliability.
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Figure 4.3: WARM Implementation

Since commercial devices do not have degradation sensors, reliability needs to be emu-

lated online through temperature and voltage readings, which are the input for the model

discussed in Section 4.3. In the kernel space, the Reliability Module samples the values

of voltage and temperature at each scheduling tick and updates the average values. In

the userspace, the Reliability Model activates periodically (at a user-defined rate) and

reads the average voltage and temperature values from the module through a dedicated

Reliability Driver. Finally, the Reliability Model implements the model presented in

Section 4.3 to update the values of reliability and writes the values to a log file.

WARM: WARM consists of the Optimal Long Term Controller (OLTC), the
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Thermal Controller (TC) and the Short Term Controller (STC). The LTC selects

the reference average voltage and temperature for the next Long Interval (LI) with a

PID based control. The TC activates at each Medium Interval (MI) and switches the

allocation of active processes on cores to balance temperature. This is accomplished

by the set affinity mechanism, which automatically increases the affinity of tasks to run

on a specific core. Both the LTC and the TC are implemented in C language and cross

compiled with Android NDK toolchain to run on the target ARM architecture. Finally,

the Short Term Controller (STC) is implemented as a cpufreq governor, called WARM

Governor. To implement this, we modified the code of the ondemand governor and

replaced the original algorithm with the rule described in Section 4.5.3. The kernel and

userspace components of WARM communicate with each other through the WARM

driver.

4.7 Experimental Setup

Our Android test platform is the Odroid XU3 development board, shown in pic-

ture 4.4. This board has a Samsung Exynos 5422 Octa core based on ARM big.LITTLE

architecture, with a Cortex-A15 2.0Ghz quad core cluster and Cortex-A7 quad core

cluster. It also has a Mali-T628 MP6 GPU, supporting OpenGL ES 3.0/2.0/1.1 and

OpenCL 1.1 Full profile. The platform has a 2MB L2 cache and a 2GB LPDDR3 RAM

at 933MHz (14.9GB/s memory bandwidth), PoP stacked. The OS is Android 4.4.4 with

Linux kernel 3.10.9.

The device has 4 integrated voltage/current/power monitoring sensors imple-

mented on the PCB and driver support. They allow to measure the voltage, current and

power respectively of LITTLE cluster, big cluster, GPU and memory subsystem. The

LITTLE and big cluster have DVFS capability and can switch voltage and frequency

using the cpufreq utility between predefined operating points. Figure 4.5 shows the

voltage-frequency curves for the two clusters. This has been obtained by changing the

frequency of the cores and sampling the integrated voltage sensor. The platform has

4 temperature sensors for the big cluster and 1 for the GPU, which exact placement is

unknown, but no sensor for the LITTLE cluster. We perform an experiment to associate
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Figure 4.4: Odroid XU3 board

a sensor to each big core. To do this, we selectively run a power virus application with

one big core active at a time for 5 seconds, and observe which sensor records the high-

est temperature. We also implement a virtual platform leveraging thermal and power

models to simulate the control policies. This is required due to the complexity of con-

vex solvers. Figure 4.6 shows the block diagram of the virtual platform implementing

a control loop. The trace of required frequency F ∗ is randomly generated and provided

as an input. These are used to compute the power consumption of each core with the

derived power model. The power is then used in the state-space model to predict the

temperature of each core. Finally, the control policy adapts the frequencies to meet the

set of constraint of the management problem.

To simulate temperature, we employ the state space model used in [130]. For

power, we derive the model by fitting the relation in Equation (4.21) with real exper-
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Figure 4.5: Voltage-frequency ranges

imental data. Such model accounts for both dynamic and leakage contributions. The

fitting procedure estimates the parameters a and b by applying a least square algorithm

to train power and frequency traces. The virtual platform has been implemented in Mat-

lab version R2014a (8.3.0.532) and executed on a Lenovo T440s Thinkpad. The laptop

has a 4th Gen Intel Core i5-4300U processor (3MB Cache, up to 2.90GHz). The vir-

tual platform in our evaluation has 4 cores and is configured based on measurements

from the Cortex A15 cores of the ARM big.LITTLE architecture. We specify and solve

convex optimization with CVX [56], [55].

4.8 Experimental Results

In this section we report our experimental results. First, we illustrate how the Op-

timal Long Term Controller behaves. Then, we compare the optimal and the proposed

WARM short term control in a simulation environment. We also show the benefits of

WARM as compared to state-of-the-art techniques in [110], [176]. Then, we discuss

the overhead associated to the implementation of WARM in a real operating system.
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Figure 4.6: Block diagram of virtual platform

On the real system, we highlight the benefits of the TC migration compared to the tech-

nique in [105]. Finally, we evaluate the performance and reliability trade-offs of WARM

compared to other CPU governors. The results presented in subsections 4.8.A-C are ob-

tained through simulations on the virtual platform presented in the previous section. The

results in subsections 4.8.D-F, instead, are obtained on the real Odroid XU3 platform.

4.8.1 Optimal Long Term Controller

The Optimal Long Term Controller activates at each long interval, solves the

problem expressed in Equation (4.22), and provides values VLTC and TLTC to the STC.

The problem is solved using convex optimization. In this experiment we implement the

solver in the Matlab virtual platform for a single core, and activate the OLTC to meet

a final target reliability of 0.8 at a target lifetime of 5 years. The activation rate for the

OLTC is 30 days. Figure 4.7 shows in the first plot the controlled reliability curve for

the target core, where the final value is above the target. In the second and third plot

are shown the voltage and temperature respectively. Both the value of controlled and

average are reported. For the two time intervals highlighted in the figure, we assume that

the device is active, but not used, so that temperature and voltage are at the minimum
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value. In this case the device leaves a reliability margin unexploited, and the OLTC

reacts by providing higher targets in the subsequent intervals.
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Figure 4.7: Behavior of Optimal Long Term Controller

4.8.2 Optimal Vs. Heuristic

With the virtual platform described in Section 4.6, we compare optimal and

WARM policies. We generate two random input traces: a trace of required frequen-

cies freq and a trace of required quality flags H/L. We then provide such traces as input

to the simulator. Figure 4.8 shows the average temperature and average frequency of the

four cores over the time period of the simulated long interval. The values for TLTC and

fLTC for this simulation are respectively 40oC and 1400 MHz (reported with a black
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straight line in the figure), for a LI with the duration of 200 SIs. The figure show that

both policies are effective in meeting the reliability-induced average constraint in that

the average temperature and frequency are below the constraint at the end of the LI.

Moreover, we evaluate the performance of the two policies using the metric defined in

Equation (4.35) [110].
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Figure 4.8: Comparison between optimal and heuristic policies

δ(q) =

∫ tLI

0
fapp(t)dt

∫ tLI

0
freq(t)dt

(4.35)

Where q can be for H or L alone, or both indicated with a ∗. Metric δ measures how

close the performance provided by the policy is close to the required one, distributed

across the whole long interval. The closer it is to 1, the better.

Table 4.1 reports the comparison of such values for the two policies respectively.

For this experiment, we execute the two policies (Optimal and WARM) on a trace of

required frequencies equal to the maximum on a LI with 200 SIs. Then, we vary the

average target temperature TLTC and frequency fLTC and the percentage of H tasks in

the trace. The results in the table allow us to conclude that the proposed heuristic is
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effective in approximating the results given by convex optimization. When the convex

approach gives better score, the heuristic is in at most 18% from the convex approach

in the worst case. Also, we verify that, on the simulation platform, the heuristic is more

than 400X faster than the convex optimization approach. This confirms that the heuristic

is feasible to implement on a real system for runtime management.

Table 4.1: Comparison between convex and heuristic approaches

TLTC = 45,

fLTC = 2000

TLTC = 60,

fLTC = 1700

TLTC = 120,

fLTC = 1400

Opt WARM Opt WARM Opt WARM

δ(H) na na na na na na

0% Hδ(L) 0.696 0.692 0.778 0.743 0.700 0.700

δ(∗) 0.696 0.692 0.778 0.743 0.700 0.700

δ(H) 0.831 0.655 0.917 0.835 1 1

10% Hδ(L) 0.660 0.624 0.753 0.732 0.664 0.664

δ(∗) 0.688 0.631 0.776 0.747 0.700 0.700

δ(H) 0.720 0.654 0.825 0.813 1 1

30% Hδ(L) 0.689 0.665 0.776 0.747 0.582 0.582

δ(∗) 0.698 0.662 0.791 0.768 0.710 0.710

δ(H) 0.717 0.633 0.819 0.746 1 1

50% Hδ(L) 0.674 0.629 0.759 0.691 0.499 0.499

δ(∗) 0.696 0.631 0.789 0.718 0.743 0.743

δ(H) 0.718 0.625 0.813 0.728 1 1

70% Hδ(L) 0.638 0.644 0.724 0.686 0.415 0.415

δ(∗) 0.690 0.631 0.782 0.713 0.812 0.812
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4.8.3 Comparison with State-of-the-Art

In this section we provide a comparison of the proposed WARM technique

against the state-of-the-art techniques in [176] and [110] to highlight the advantages

of WARM. The two techniques are both effective in guaranteeing the predefined tar-

get lifetime, but they have the following limitations. The technique in [176] cannot

distinguish between applications with different quality requirements, and only fixes a

maximum bound on operating voltage and frequency. For this it may cause degrada-

tion of user experience. We denote this technique as Fmax. The technique in [110] can

distinguish H and L applications, but temperature is only observed. It may incur into

violations of the constraint on average temperature. This would also affect performance,

as the control in the LTC would lower the constraint on average voltage/frequency for

future long intervals. We denote this technique as Tobs. Figure 4.9 shows a comparison
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Figure 4.9: Comparison between WARM heuristic and state-of-the-art policies

Fmax [176] and Tobs [110]

of the three techniques with on a random trace of tasks with 10% of H tasks [110]. In

this experiment, we set TLTC = 45oC and FLTC = 1600, on a simulated long interval
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of 200 short intervals (indicated as jiffies, which correspond to scheduling ticks). The

results show two key advantages of the new heuristic over the previous two. First, Fmax

cannot meet the desired performance whenever the required frequency for H tasks is

higher than FLTC . This would results in degradation of user experience. Second, both

Fmax and Tobs violate the constraint on temperature, as the value of average temperature

at the end of the long interval is higher than TLTC . Finally, we show that our proposed

technique can adapt to temperature variations. Looking at the graphs of applied fre-

quencies (central column) we observe that they are different for WARM and Tobs. This

is because WARM employs task migration to exploit higher performance from cooler

cores while maintaining the temperature below the limit critical for reliability.

In the next experiment, we analyze temperature violations more into details. We

execute a trace of required frequencies equal to the maximum for a LI with 200 SIs,

and we keep the average target frequency equal to the maximum fLTC = 2000MHz.

Then we vary the average target temperature TLTC and the percentage of H tasks. For

each policy, we count the number of cores for which, at the end of the LI, the average

temperature is within 5% from the target. On a total of 40 cases, WARM succeeds in 35

of them, which is 87.5% better than the state-of-the-art. The detailed results are reported

in Table 4.2.

4.8.4 Implementation Overhead

Table 4.3 reports a detailed evaluation of all the overheads involved with the im-

plementation of WARM on the target Odroid board. All the overheads are measured

with the WARM infrastructure executing with a single little core active, executing at

minimum frequency. All results are presented on an average of 100 samples, with a

standard deviation lower than 5%. In the following, we provide a description of each of

the actions profiled. We get the values of temperature sensors from the original device

driver thermal exynos.c. The values are stored in a variable that is shared with the Reli-

ability Module. From the moment in which the value is recorded, until it is available to

the Reliability Module, 160 cycles are elapsed. Similarly, the integrated voltage sensors

are read in 170 cycles. In the WARM Governor itself, the STC algorithm runs for 74

cycles. The action of switching frequency, which is performed by any governor, lasts
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Table 4.2: Average target temperature violations

TLTC [
oC] 40 50 60 70 80 90 100 110

WARM 1 0 0 0 0 0 0 0
0% H

Fmax 4 4 4 4 4 4 1 0

Tobs 4 4 4 4 4 4 1 0

WARM 1 0 0 0 0 0 0 0
10% H

Fmax 4 4 4 4 4 4 1 0

Tobs 4 4 4 4 4 4 1 0

WARM 1 1 0 0 0 0 0 0
30% H

Fmax 4 4 4 4 4 4 1 0

Tobs 4 4 4 4 4 4 1 0

WARM 1 0 0 0 0 0 0 0
50% H

Fmax 4 4 4 4 4 4 1 0

Tobs 4 4 4 4 4 4 1 0

WARM 1 0 0 0 0 0 0 0
70% H

Fmax 4 4 4 4 4 4 1 0

Tobs 4 4 4 4 4 4 1 0

for 16824 cycles (corresponding to 8.4us on average). All the previous overheads are

obtained by sampling the ARM cycle counter in the kernel space.

In user space, we record the execution time of the TC routine, with which, the

medium term temperature targets are updated and tasks are migrated. The time elapsed

is 1.5 ms. Considering that the activation rate of the TC is 1 second, this represents

only a 0.15% of time overhead. Also, every second the application manager passes to

the kernel space the ID of currently application active in foreground. This operation

takes 10214 cycles (corresponding to 5.1us on average). Similarly, we record the LTC

execution time, which results in 342ms. Considering that the LTC activates in the order

of days, this is a very low overhead. In userspace, timing overheads are measured using

the gettimeofday function. In this work we target mobile CPUs, which today can have 8



94

cores (like the ARM big.LITTLE processor in the Odroid XU3). Given the low overhead

of the implemented solution, reported in Table 4.3, it is possible to implement it on every

mobile device.

Table 4.3: Implementation overheads

Overhead Metric

Temperature sensor reading 160 cycles

Voltage sensor reading 170 cycles

Frequency change 16824 cycles

STC algorithm 74 cycles

Passing process ID 5 us

LTC execution 342 ms

TC execution 1.5 ms

4.8.5 Benefits of Task Migration

In this subsection we present the benefits of including the Thermal Controller

and its task migration in the reliability management policy with respect to the previous

technique proposed in [105]. To this aim, we present the effects of both inter- and intra-

cluster migration in the ARM big.LITTLE architecture.

For intra-cluster, we execute a single CPU-intensive task on a big core. To isolate

only the effect of temperature control through migration, we keep the frequency constant

to the maximum value and we keep only two cores active (core4 and core7). First, we

employ the technique in [105], which is static (i.e. it cannot leverage reliability-aware

migration). The right plot of Figure 4.10 shows the reliability curves for the two cores,

which result to be unbalanced. In this and following experiments, to derive the relia-

bility curves in a reasonable experimental time we activate the LTC every 10 seconds.

Then, in the model we update reliability as if 30 days are passed [105]. We repeat

the same experiment while activating the migration policy. Thanks to this, WARM is

able to migrate the task between the two cores when the temperature exceeds the limit

critical for reliability. The reliability curves for this case are shown in the left plot of
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Figure 4.10. The migration policy of WARM is able to keep the degradation among

cores more balanced, thus a more efficient utilization of the performance budget of a

multicore platform. Therefore, reliability-aware intra-cluster migration by itself may

increase the lifetime of a multicore platform of more than 1 year, for a final reliability

of both 0.8 and 0.6. For inter-cluster, we execute the Vellamo Metal benchmark, labeled

Figure 4.10: Effect of intra-cluster migration

as an H application. This is a benchmark evaluating the performance of the CPU that

provides a final score which we use for comparison. We first execute the benchmark

with the technique from [105]. Since this technique has static allocation, by default it

executes the benchmark int the master cluster (which is the LITTLE one). We repeat the

experiment while activating WARM, which can also leverage task migration. WARM,

thanks to the application manager, recognizes that Vellamo Metal is a H application and

automatically places it in the big cluster. Figure 4.11 reports the results. The plot on the

right shows the reliability curves for the most degraded core of the big cluster. The plot

on the left reports the final score obtained with the Vellamo benchmark. The result is

that the technique from [105] leaves a reliability margin unexploited, at a significant cost

in terms of performance. The plot on the left reports the scores for the Vellamo Metal

in the two cases. The proposed technique, in this case, achieves 100% of performance

improvement.
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Figure 4.11: Effect of inter-cluster migration

4.8.6 Comparison with Standard Governors

In this subsection we show the comparison of our WARM governor against stan-

dard governors. First, we want to show that the performance provided by WARM for

critical applications is comparable to that provided by the performance governor. To this

aim, we execute a set of popular benchmarks for Android: AnTuTu, Vellamo Browser,

Vellamo Metal, GeekBench and CFBench. Such benchmarks provide a score at the end

of execution that we use as a comparison metric, similarly as in [111]. We first execute

the benchmarks respectively with performance (giving a highest score) and powersave

governor (giving the lowest score). Finally, we execute it with WARM. Figure 4.12

shows the benchmark scores (normalized as the increase with respect to the score ob-

tained with the powersave governor) obtained with the three configurations. In all cases,

the score obtained with WARM is in 4% of that obtained with performance governor.

In the last experiment we show an example of how the implemented WARM technique

behaves with real applications when compared to standard governors. For this experi-

ment we run the Antutu benchmark with different frequency governors, among which

our WARM reliability governor. For the execution with the reliability governor, Antutu

is labeled as an H application. Together with Antutu, we execute a background pro-

gram that forks and allocate a periodic task on each core, labeled as L. This simulate the

presence of background activity on a mobile device. Figure 4.13 shows the reliability
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Figure 4.12: Performance of WARM governor

curves in the case of powersave (blue), reliability (pink), ondemand (light blue), inter-

active (green) and performance (red) governor. Performance and powersave governor

give respectively the longest and shortest lifetime. The WARM Governor is able to meet

the target of reliability of 0.8 before the target lifetime of 5 years (corresponding to 60

long intervals of 30 days each). Ondemand and interactive both fails at meeting such

constraint.

Figure 4.13: Reliability with different governors
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Figure 4.14: AnTuTu scores with different governors

Figure 4.14 shows the corresponding scores obtained with each governor, nor-

malized to the maximum, obtained with the performance governor. The result shows

that WARM not only achieves the target reliability, but also provides performance very

close to the maximum.

4.9 Conclusion

In this chapter, we presented a framework for online reliability emulation and

leverage it to develop a dynamic reliability management solution. The proposed so-

lution exploits the long time scale of reliability changes and explores the interaction

between long term and short term controller. This builds onto the short term solutions

presented in Chapters 2 and 3 for power and thermal management. We develop an

optimal controller for comprehensive temperature, performance and reliability manage-

ment that leverages the CVX convex solver. We also show that convex solvers are not

suited for implementation on a real device, due to computational overhead. Motivated

by this, we develop WARM, a multilevel heuristic controller that approximates the solu-

tion of the optimal within 18% in the worst case, while executing more than 400x faster.

WARM leverages task allocation to control temperature, while exploiting voltage and
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frequency scaling to provide maximum performance to critical applications. We show

that, since temperature is a major concern for degradation, WARM meets temperature

constraints within 5% in 87.5% more cases than the state-of-the-art. Also, WARM task

allocation achieves up to 1 year lifetime improvement for a multicore. We show that

it can achieve up to 100% of performance improvement on cluster architectures, while

guaranteeing the reliability target. In the following chapter, we include variability in

power, performance and degradation rate which arise from fabrication process inaccu-

racy and increase with CMOS scaling.

Chapter 4 contains material from “WARM: Workload-Aware Reliability Man-

agement in Linux/Android”, by Pietro Mercati, Francesco Paterna, Andrea Bartolini,

Luca Benini and Tajana Šimunić Rosing, which appears in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and System [106]. The dissertation author was the

primary investigator and author of this paper.

Chapter 4 contains material from “Workload and user experience-aware dynamic

reliability management in multicore processors”, by Pietro Mercati, Andrea Bartolini,

Francesco Paterna, Luca Benini and Tajana Šimunić Rosing, which appears in Proceed-

ings of the 50th Annual Design Automation Conference (DAC ’13). ACM, New York,

NY, USA [110]. The dissertation author was the primary investigator and author of this

paper.

Chapter 4 contains material from “A Linux-governor based Dynamic Reliability

Manager for android mobile devices”, by Pietro Mercati, Andrea Bartolini, Francesco

Paterna, Luca Benini and Tajana Šimunić Rosing, which appears in Proceedings of

Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,

2014 [105]. The dissertation author was the primary investigator and author of this

paper.

Chapter 4 contains material from “An On-line Reliability Emulation Frame-

work”, by Pietro Mercati, Andrea Bartolini, Francesco Paterna, Luca Benini and Ta-

jana Šimunić Rosing, which appears in Proceedings of the 2014 12th IEEE International

Conference on Embedded and Ubiquitous Computing (EUC ’14). IEEE Computer So-

ciety, Washington, DC, USA [109]. The dissertation author was the primary investigator

and author of this paper.



Chapter 5

Variability Emulation and

Management

Variability is a major challenge for integrated circuits, that strongly affects power,

temperature and reliability. In the previous chapters we assumed that power consump-

tion, performance and degradation rate are at their nominal value. This is clearly not the

case in today’s devices. This chapter first presents VarDroid, a low-overhead tool to em-

ulate power and performance variability on real platforms, running on top of the Android

operating system. VarDroid enables analyzing the effect of variability in power and per-

formance while capturing the complex interactions characteristic of mobile workloads,

thus relating to user’s quality of experience. We present use cases to show the utility of

VarDroid to test applications, device and OS robustness under the effects of variability.

Our results show that a variability-agnostic OS can incur in a performance penalty of up

to 60% and a power penalty of up to 20%. Then, we use online variability emulation

to develop a variability-aware OS scheduling algorithm that assigns the workload to the

cores and sets the power/performance tradeoffs to meet the mobile processor’s lifetime

constraints while adjusting to variability and improving the overall performance. We im-

plement our algorithm in Android OS, integrating it with VarDroid on a mobile phone

and show that it achieves up to 160% performance improvement over the state-of-the-art

while meeting the lifetime constraints.

100



101

5.1 Introduction

Variability in integrated circuits refers to the deviation of the actual value of a

design parameter from its nominal value, such as transistor channel length and thresh-

old voltage. Variability is a key concern in modern integrated circuits, as it worsens

with scaling of transistor dimensions [27]. Sources of variation are static and dynamic.

Static variations are caused by manufacturing process imprecision, causing ICs to have

frequency, power consumption and degradation rate different from their nominal val-

ues [141], [113], [127]. Dynamic variations, such as voltage and temperature, impact

IC over time [153], [176], increasing aging phenomena, such as Negative Bias Temper-

ature Instability (NBTI), Electromigration (EM), Hot Carrier Injection (HCI) and Time

Dependent Dielectric Breakdown (TDDB) [75]. In multicore processors, transistor-

level static variability determines power and performance distributions across cores

of the same model. Consequently, cores have a power consumption, operating volt-

age/frequency and degradation rate which is different from nominal right after fabrica-

tion [28], [70].

Given that dynamic variations play an important role, a key idea is to lever-

age sensors to expose variability to higher levels of the software stack (e.g. the op-

erating system) to manage it at runtime [58]. This strategy is referred to as Dynamic

Variability Management (DVM). DVM can leverage common hardware sensors such

as performance counters and temperature sensors, or more sophisticated ones, such as

degradation sensors and frequency sensors (which are devices capable of monitoring

path delays) [90], [35], [175]. The latter, however, are only available on prototypes and

research platforms. Simulators have been developed to help designers make chips more

robust to variations [141], [113]. These tools can be integrated into the design flow to

estimate the resulting impact of variability. However, they cannot account for dynamic

variations and cannot capture real workloads behavior. Moreover, they require a highly

detailed architectural description, which may not be always available. It is required a

tool to emulate the impact of variability and to test DVM strategies on real commercial

devices [148].

Dynamic Variability Management (DVM) techniques have been proposed to

counteract frequency variations [128], [157]. However, these techniques do not account
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for processors lifetime requirements, with the risk of violating them. Moreover, they ac-

count only for static variations and do not account for dynamic temperature variations.

Dynamic Reliability Management (DRM), instead, aims at guaranteeing a target relia-

bility within a predefined target lifetime. The works in [153], [176] counteracts aging

at runtime by Dynamic Voltage and Frequency Scaling (DVFS). In [110] and [105] the

authors present a DRM technique for homogeneous multiprocessors which is workload-

aware, thanks to a borrowing strategy and the use of on-chip sensors for reliability

monitoring, and they implement it on a real Android device. However, these DRM

techniques have the following fundamental limitations: (i) they cannot counteract un-

balanced degradation among cores of the same multiprocessor, (ii) they cannot take

advantage of diverse frequency of the cores and (iii) they neglect potential performance

improvement under temperature variations. Moreover, they do not account for variabil-

ity when allocating task.

In this chapter, we describe VarDroid, a low-overhead framework to emulate

the effect of performance and power variability on real Android devices, to capture

the effects of environmental changes and interaction with users, which is not possible

with simulators. Thanks to this, VarDroid can estimate the impact of variability on

power and quality of user experience. Also, the Variability-induced Power Breakdown

(VIP) allows us estimate the ratio of dynamic and leakage power due to variability. We

present the assumptions of our work, the details of the implementation, and use-cases to

demonstrate the feasibility and ease of use of our framework. Figure 5.1 better explains

the motivation and goal of VarDroid. At the transistor level, variability mainly affects

channel length and threshold voltage. At the circuit level, this has an impact on path

delay and power consumption. As a preliminary study, we implement a circuit consist-

ing of AND and OR gates using 32-nm technology with HSPICE simulator. For each

transistor, we consider a variation in both channel length and threshold voltage which

follows a Gaussian distribution with 3σ equal to 10% of the original value, similarly

as in [10]. A Monte Carlo simulation with 5000 iteration produces the distributions of

path delay (which affects operating frequency) and leakage power. The figure shows

that such distributions are also well fitted by Gaussian curves. Finally, at the processor

level, previous work [28], [141], [113] (on the left) focuses on simulating the effect of
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Figure 5.1: VarDroid context and motivation

variability on a multiprocessor starting form detailed data on transistor parameters and

propagates it to the processor level. In the end, it achieves Gaussian distributions for

power and performance (i.e. operating frequency) for a large number of processors. In

our work, instead, we emulate variability on a real device, by injecting perturbations in

the Operating System (denoted as VarDroid input). Thanks to this, we do not require

detailed low-level information about transistor variability. Nevertheless, we will show

that we still obtain Gaussian distributions for power and performance, thus matching the

results of state-of-the-art simulator and low level models. To clarify this, we describe

models for power and frequency as a reference. In our experiments, we use VarDroid to

investigate the robustness of applications with respect to variability, the impact of vari-

ability on user experience and the tolerance of current OS migration policy. Our results

show that performance of applications may drop by up to 35% in presence of variability
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and that a variability-agnostic OS can incur in a performance penalty of up to 60% and

a power penalty of up to 20%.

Using the proposed variability emulation framework, we present a novel Dy-

namic Variability Management policy for the comprehensive runtime management of

degradation rate variability, frequency variability, frequency degradation over time, application-

specific quality requirements for user experience, lifetime constraints, ambient temper-

ature variation. For the latter, our DVM policy features T-boost, a novel strategy that

allows to improve performance during periods of high temperature. Our solution uses

sensors for frequency and aging to improve variability control robustness, through a

variability-aware OS scheduling and frequency scaling algorithm. The goal is to max-

imize performance against variations, while meeting the target reliability for each core

within its predefined target lifetime.

We implement our policy on a real Android device and show its effectiveness

against comparison techniques. The results show that our policy achieves up to 160%

performance improvement on variations-affected platforms relative to state-of-the-art.

We implement the proposed task allocation strategy leveraging non-invasive Linux fea-

tures on a real Android device and evaluate its effectiveness against state-of-the-art ap-

proaches through an extensive set of experiments. To the best of our knowledge, this

is the first comprehensive sensor-based dynamic variability management technique for

mobile devices.

5.2 Related Work

5.2.1 Variability Emulation

In the last decade, variability has been the subject of numerous publications,

from device-level simulation up to approximate computing for applications. Architectural-

level variability simulators have been developed, such as VARIUS [141], VAM [113],

and VARIUS-NTV [81]. These tools can be integrated with simulators such as GEM5,

but they require detailed architectural description. Garg et al. [51] propose a framework

to analyze the impact of variability at the system level to help designers determining the

tradeoff between performance and clock domain granularity. These techniques extract
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random values for architectural parameters and inject variability in the configuration of

the simulator. The main drawback of such an approach is that simulations are very slow,

as a few seconds of clock time for a real device could take hours.

An alternative approach in represented by variability emulation, which consists

in injecting variations on a real device. In ERSA [92], errors are injected in architec-

turally visible registers. Similarly, in [132] a large fault injection campaign is conducted

in the openSPARC T1 core logic. In [93], a combined hardware and software solution

aims at identifying anomalous software behavior in presence of hardware faults. How-

ever, solutions based on hardware prototypes and FPGAs present low flexibility and

portability. Work in reference [88] proposes VESPA, a variability emulation framework

for SoC performance analysis. The proposed solution addresses the challenge of trans-

lating component-level characteristics into system-level performance distribution. The

approach is evaluated for a 802.11 MAC processor and an MPEG encoder. Moreover,

VESPA is used to assess the performance distribution of processors design prior to fabri-

cation, given the design synthesis. Therefore is not effective in capturing real workload

and the effects of real environment. Work in [165] proposes VarEmu. Implemented as

an extension of the QEMU operating system, this can be used to evaluate variability-

aware software techniques. VarEmu extracts timing and cycle count from the emulated

code. This information is fed into a variability model with configurable parameters that

determines energy consumption and fault variations in the virtual machine. VarEmu

relies on models for power estimation, which have to be adapted to different platforms

and may present accuracy problems. None of the previous work on variability emulation

addresses mobiles and the crucial need of capturing interactive workload on variability-

affected devices. Our approach is different in that we inject faults directly in the native

OS of real mobiles in the form of a VarDroid input.

Recent publications on Dynamic Variability Management (DVM) propose schedul-

ing and DVFS algorithms for embedded platforms [127] and for Android-based de-

vices [107]. However, these solutions do not account for real workload and real user

interaction. Emulation in Android has been addressed before for reliability [105], [109].

Work in [105] implements a kernel module to virtualize the presence of degradation sen-

sors to emulate the effect of degradation mechanisms. Our work is orthogonal to [105],
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in that we focus on performance and power variability, while the technique in [105] aims

at emulating degradation. At this time, no publication presents power and performance

variability emulation capable of running on real mobiles. In this work, we develop and

implement a framework for emulating the effects of performance and power variability

on real Android devices, while capturing real mobile workloads. Finally, we show how

to use it to test system robustness against variability.

5.2.2 Variability Management

The approach of exposing and managing variations at runtime has been exploited

in the recent years through Dynamic Thermal Management (DTM) [21] and Dynamic

Reliability Management (DRM) [153], [176], [110]. DTM techniques monitor temper-

ature and change dynamically the operating conditions to avoid overheating, but they do

not guarantee a target lifetime constraint. DRM techniques, instead, manage tempera-

ture and voltage to guarantee a predefined target lifetime.

DRM approaches in [78], [176] monitor aging with a voltage and temperature

dependent reliability model, trade off performance and reliability to meet a target life-

time by limiting the maximum operating voltage thanks to a PID controller. These

approaches do not consider user experience. Moreover, they target only a single core

scenario. In [110] and [105] the authors present a DRM technique for homogeneous

multiprocessors which is workload-aware, thanks to a borrowing strategy and the use of

on-chip sensors for reliability monitoring, and they implement it on a real Android de-

vice. However, this technique does not take into account frequency and degradation rate

variations across cores of the same multicore platform, resulting in reliability unbalance.

In our experiments we showed that this could lead from 40% to 120% of performance

loss in a variation affected platform.

Work in [128], [157] proposes static solutions for the parallel streaming work-

load task allocation problem. However, they do not account for independent tasks

with different execution requirements. In this case a dynamic control is more effec-

tive. In [127] the authors consider aging-aware workload allocation for homogeneous

multicores, but they focus on the NBTI phenomena and simulated multimedia applica-

tions. We instead consider TDDB as mechanism of degradation. In fact, work in [60]
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shows that TDDB exhibits a much faster degradation rate with respect to NBTI. The

technique in reference [163] keeps the temperature of the cores below a threshold in

order to maximize the lifetime. However, such a formulation does not give guaran-

tees on the actual lifetime of a device and can heavily penalize performances. Most of

the reliability-aware techniques in literature do not consider different degradation rates

among the cores of a platform due to variability. Furthermore, they do not make use of

aging sensors [148], [175] and frequency monitors [35]. The publications reviewed here

consider as target platforms single core processors or homogeneous multiprocessors.

However, mobile devices today are equipped with heterogeneous MPSoCs. Finally,

none of these approaches accounts comprehensively for frequency and degradation rate

variation, ambient temperature variation, lifetime constraints and different workload re-

quirements.

5.3 VarDroid Variability Models

Variability in integrated circuits manufacturing has two components: D2D (die-

to-die) and WID (within-die) [141]. WID variations can be further separated into sys-

tematic and random variations. At the microarchitectural level, the elements of key

importance for variability are the transistor threshold voltage Vth and the effective chan-

nel length Leff of transistors. More recently, C2C (core-to-core) variations have been

considered [28]. Following this model, low-level variations in Vth and Leff result in op-

erating frequencies and power consumption which are distributed among cores. Since

Vth and Leff can be considered normally distributed with good approximation, power

consumption and critical path delay (thus, operating frequency) can be considered nor-

mally distributed among cores as well [141]. Power is the sum of dynamic and leakage

contributions. Dynamic power has a well-known dependency on frequency and volt-

age [85]. Leakage power, instead, depends on leakage current, which can be modeled

as in Equation (5.1).

Ileak = b

(

kT

q

)2

exp

(

q(Voff − Vth)

ηkT

)

(5.1)

Where q is the electron charge and k is the Boltzmann constant. The terms b, η
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and Voff are empirically determined parameters. As shown in [141], the knowledge of

Vth variance can be exploited to assess the impact on chip leakage power. As a result,

the value of the ratio between perturbed and nominal leakage can be expressed as in

Equation (5.2).

Pleak

Pleak0

=
Vleak

Vleak0

= exp

(

1

2

(

qσ

ηkT

)2
)

(5.2)

Where Pleak0 and Ileak0 are the nominal values of leakage power and current.

This indicates that the variation in leakage depends on the standard deviation σ of Vth.

As for critical path delay, this is related to the switching delay of an inverter gate, which

is expressed by Equation (5.3).

Tg = a
LeffV

µ∗(V − Vth)α
(5.3)

Where a is an empirically determined parameter, α is typically 1.3 and µ∗ is the

mobility of carriers. Given the critical path delay Tg, which depends on gate switching

delays, the maximum frequency at which a processor can be clocked is given by its

inverse fMAX = 1/Tg.

In this work, we refer to Equations (5.1), (5.2) and (5.3) to characterize VarDroid

configurations of the target platform. This is done assuming a diverse impact of variabil-

ity in Leff and Vth, expressed as the ratio µ/σ of the underlying Gaussian distribution.

Finally, at the processor level, variability results in Gaussian distributions of maximum

frequency (e.g. performance) and power. VarDroid naturally captures dynamic varia-

tions, such as workload and environmental conditions (such as SoC and ambient tem-

perature), given that it is implemented on real devices.

5.4 VarDroid Architecture

Figure 5.2 shows the block diagram of the proposed implementation. It has two

main components: the VarDroid Engine and the VarDroid Monitor. The VarDroid

Engine is the software element which perturbs the system to emulate the effect of

variability and has four components: the input configurations PERT, SCHED and INJ,
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Figure 5.2: VarDroid block diagram

Figure 5.3: VarDroid input configuration
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and the Variability-Induced Power breakdown emulator (VIP). The components are de-

scribed into details in the following.

Operating conditions perturbation (PERT): The operating frequencies of cores

are limited by PERT to mimic the effect of performance variability. We generate a Gaus-

sian distribution for fMAX , extract and assign randomly one value to each core. In this

way, operating conditions are limited as if the multicore was affected by variations on

performance. This emulates a scenario in which Leff and Vth of transistors have vari-

ability, which reflects in fMAX variability (i.e. performance), as described by Equa-

tion (5.3). The operating condition perturbation is implemented at the userspace level,

and exploits the sysfs fields exposed by the cpufreq driver that allows to set an upper

bound on operating frequency. The selected fMAX represents the input of PERT to the

system. Figure 5.3 shows that PERT perturbs the behavior at a high level (i.e. system

level), by selecting an upper bound for operating conditions.

Extra scheduling (SCHED): SCHED forces the scheduling of extra periods to

interleave the normal execution of applications. It is implemented as a program that

alternates periods of execution and sleep (implemented with nanosleep). The effect

of SCHED is varied by tuning the nanosleep duration, which affects the SCHED duty

cycle. SCHED can be configured with an Idle application for performance variation

(a program executing a long sequence of NOPs) and a Power application for power

consumption variation (a sequence of cpu-intensive operations). In the first case, the

emulated scenario is similar to the one achieved with PERT, in which Leff and Vth vari-

ations result in frequency variations. In the second case, the scenario includes power

variability, both dynamic and leakage. Figure 5.3 shows that SCHED occupies some

scheduling intervals with spurious applications. Both PERT and SCHED are imple-

mented as C programs and cross-compiled with Android NDK toolchain to run on the

target platform.

OS fault injection (INJ): INJ is implemented by inserting in the OS kernel

source code execution bubbles that perturb performance. The bubble is a fixed sequence

of instruction which is inlined in the kernel source code. A single bubble executes a

sequence of 20 NOPs (for the current design of VarDroid) at the beginning of each

scheduling tick. The impact of variability can be tuned by choosing the number of bub-
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bles (referred to as bubble length). INJ also emulates the scenario in which variability

in Leff and Vth results in performance variability. The fault injector is implemented as

an inlined function which is invoked in the scheduling tick() function in the scheduler

source code (core.c). Figure 5.3 shows that INJ occupies part of the scheduling interval

itself with spurious instructions. We denote the VarDroid input ν in the three configura-

tions respectively as the percentage of frequency degradation over fMAX for PERT, the

nanosleep duration for SCHED and the bubble length for INJ.

The three input configurations have complementary benefits. PERT and INJ can

emulate performance variations, but are not effective in emulating power variations. INJ

emulates performance variations at a finer granularity compared to PERT, but requires

recompiling the Linux kernel. PERT and SCHED, instead, can be more easily ported, as

they are userspace programs. Note that the three input configurations inject variability

at different layers of the software stack, and consequently at different time granularity,

as Figure 5.3 shows.

Variability-induced Power Breakdown (VIP): Beside the three input config-

urations, VarDroid features VIP, a framework to estimate the proportion of dynamic

to leakage power depending on input variation on performance. The main motivation

for the design of VIP is that on a real platform, we can only measure the total power

consumption, but we cannot distinguish the dynamic and leakage contributions. This

is important, because the variation on parameters Leff and Vth determines a variation

in the ratio between dynamic and leakage power. It is well known that dynamic power

Pdyn is directly proportional to frequency, and VarDroid establishes a relation between

the input variability ν and fMAX . Since fMAX depends on Vth, this can be derived from

ν as well. The leakage power Pleak depends exponentially on Vth. Overall, this allows

deriving the ratio Pdyn/Pleak as ν varies, as expressed by Equation (5.4).

Pdyn

Pleak

≈ σ
f(ν)

exp(g−1(βf(ν)))
(5.4)

Where σ, β are fitting parameters. The function g can be derived from Equa-

tion (5.3), and it is so that g(Vth) = f(ν), while f(ν) can be fitted experimentally. As ν

increases, the ratio should also increase, as this reflects a scenario in which Vth is higher

than nominal. VIP computes a ratio, thus it does not depend on which power is actually
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consumed and measured. We will better characterize VIP in the results section.

The VarDroid Monitor infrastructure has been implemented by modifying the

one described in [105]. It has a kernel sampling function, a monitor driver to transfer

data to the user space and a monitor daemon to regulate the data transfer. The monitor

infrastructure is able to get one sample per each scheduling tick (10ms in our setup) and

transfers data to the userspace with low overhead. Finally, the Matlab backend allows

parsing and plotting of results.

5.5 Vardroid Experimental Evaluation

We implemented VarDroid on the Odroid XU3 board. This board has a Samsung

Exynos 5422 Octa core based on ARM big.LITTLE architecture, with a CortexTM-A15

2.0Ghz quad core cluster and CortexTM-A7 quad core cluster [3]. The platform has a

2MB L2 cache and a 2GB RAM. The OS is Android 4.4.4 with Linux kernel 3.10.9.

5.5.1 VarDroid Validation

The key idea for validating Android is to show that when varying the VarDroid

input (for each one of the three configuration) we obtain a Gaussian distribution of

frequency and power consumption, similar as in [28]. This proves that a variation of

the VarDroid input reflects a scenario in which transistor parameters Leff and Vth are

subject to variability.

For validating VarDroid, we conduct a series of experiments using single-threaded

microbenchmarks. The cpu-bound executes a series of ALU operations without access-

ing memory, the L2-bound executes a series of loads from the L2 memory and the mem-

bound similarly executes a series of loads from the main memory. To avoid the effect

of migrations, microbenchmarks exploit the set affinity mechanism to run on a specific

core.

Performance Variability: In the following experiments, we keep only one LIT-

TLE core active, running at fixed maximum frequency. Analogous results can be ob-

tained for big cores. Figure 5.4 shows the normalized execution time of the three mi-

crobenchmarks for the three VarDroid configurations. The execution time of the bench-



113

marks increases as the VarDroid input increases. This means that VarDroid effectively

makes the processor behave as if it had a maximum frequency lower than the nominal.
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Figure 5.4: Microbenchmarks execution times

To further validate this behavior, we run the cpu-bound benchmark with random

VarDroid input extracted from a normal distribution, in the three configurations. In Fig-

ure 5.5, the plots on the left show the histogram of VarDroid input. Then we collect

the execution times and build a histogram, shown in the plots on the right. In the case

of SCHED, we employed a smaller number of samples and a version of the cpu-bound

benchmark of longer duration. The resulting shape match with the low-level models

discussed from Section 5.3 and the example of Figure 5.1. In this way VarDroid emula-

tion shows results as if the benchmarks were executed by different instances of the same

processor, affected by performance variability. No variation in execution time is present

when VarDroid is disabled.

Power Variability: Next, we verified the effect of VarDroid on power variabil-

ity. In Figure 5.6 we show the histogram of random input for the SCHED Power con-

figuration (e.g. nanosleep duration) and the corresponding histogram of average power

consumption. In this experiment, we are measuring only the power consumption of the

LITTLE cluster, but a similar result can be obtained for the big cluster. One sample of

power consumption is computed by averaging the power over a period of 120 seconds,

with a given SCHED power input. Also in this case, the histograms match the behavior

expected from low-level models of Section 5.3.

In Figure 5.7, we perform the same measurement while executing a sequence of

cpu-bound benchmarks. The second plot shows the power variability, while the third

plot shows the execution time variability. The variation in the execution times is very
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Figure 5.5: VarDroid performance distribution

low (in the 2% of the mean value). This means that the SCHED power setting can be

effectively used to decouple power and performance variability effects.

Finally, Figure 5.8 shows the qualitative behavior of the VIP ratio. For simplic-

ity, the relations involved in Equation (5.4) are assumed linear. Dynamic and leakage

power are scaled in the [0,1] interval and the final ratio is normalized with respect to the

minimum. The final behavior is that of a log-normal distribution. As reported in [85]

the log-normal shape is generated by the exponential increase in leakage current, thus

matching with the model described by Equations (5.2) and (5.3). Note that the distri-

bution of the VarDroid input can be tuned to achieve a desired power and performance

variation.



115

0 500 1000
0

5

10

15
Vardroid SCHED Power

#
 o

f 
o
c
c
u
ra

n
c
e
s

Nanosleep duration [msec]
0.12 0.14 0.16 0.18
0

5

10

15
Power variability − LITTLE cluster

#
 o

f 
o
c
c
u
ra

n
c
e
s

Power [W]

Figure 5.6: SCHED power variability of little cluster

0 500 1000
0

5

10

15
Vardroid SCHED Power

#
 o

f 
o
c
c
u
ra

n
c
e
s

SCHED Power nanosleep duration [msec]
0.16 0.18 0.2

0

5

10

15

20
Power variability

#
 o

f 
o
c
c
u
ra

n
c
e
s

Power [W]
0.94 0.96 0.98 1
0

10

20

30
Cpu−bound microbenchmark

#
 o

f 
o
c
c
u
ra

n
c
e
s

Execution time [sec]

Figure 5.7: Power variability with cpu-bound benchmark

5.5.2 Use Cases

In the following experiments, we present use cases in which we can exploit

VarDroid. The proposed emulation framework can be used to expose weaknesses of

applications and operating systems, also relative to user experience, and to develop and

tune dynamic variability management strategies accordingly.

Application Robustness: VarDroid can be used to investigate the impact of

variability on real application performance and power consumption. In Figure 5.9b, we

present the scores obtained with the mobile benchmark Antutu v5.6.1 [2] with increas-

ing impact of INJ. Scores of mobile benchmarks are a common metric to compare the
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Figure 5.8: Variability-induced Power breakdown distribution

Figure 5.9: Performance degradation and VIP in Antutu benchmark

quality of execution of different devices. As expected, all the scores decrease as the

INJ input increases, by up to 35%, also in accordance with the results obtained on mi-

crobenchmarks. Therefore, VarDroid can be used by application developers to test the

performance of their apps in a real device affected by variability. Figure 5.9c shows the

ratio between dynamic and leakage power obtained with VIP. The base case is assumed

to have 50% of dynamic and 50% of leakage power, in accordance with ITRS [8]. In

this case, the function f is derived from the results in Figure 5.3 from INJ microbench-

marking, also shown in Figure 5.9a. As expected, the ratio Pdyn/Pleak increases with

the VarDroid input.

User Experience: Since VarDroid is implemented on a real device, it can cap-

ture real workload dynamics and user interaction, therefore it can be used to assess the

impact of variability on user experience. For this experiment, we record and replay a 10

seconds-long touch event trace of a popular Android 3D game (Temple Run [7]), in or-

der to reproduce the same workload [54]. Then, we execute the trace with different INJ

configurations, and measure Frame per Seconds (FPS) by monitoring the SurfaceLinger

service. Indeed, it is well recognized that FPS in 3D gaming is a good metric for quality

of experience [131]. In particular, the closer to 60fps (which is the maximum allowed

by Android), the better. The results in Figure 5.10 show the different FPS traces. As
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Figure 5.10: VarDroid impact on FPS

expected, the FPS lowers as the INJ input increases. In particular, in a scenario of severe

variability impact (bubble length of 150k), user experience is heavily affected, as FPS

drops below 50.

Variability Tolerance of the OS: VarDroid can be used to detect limitations and

bugs of existing OS design. In this experiment, we focus on the workload migration pol-

icy employed in ARM big.LITTLE architectures [3]. In such architecture, a hysteresis

mechanism regulates the task migration between LITTLE and big cores, with a high a

and a low utilization threshold. When the high threshold is exceeded, the task is mi-

grated to the big core, and is returned to the LITTLE core if utilization decreases below

the low threshold. The limitation of such mechanisms is that migration thresholds are

fixed. Because of this, the execution can incur significant performance penalties.

To show this, we implemented a single threaded cpu-bound synthetic work-

load that periodically alternates between three execution phases, respectively with low,

medium and high utilization. Then, we execute it with only one LITTLE core and one

big core active. The workload is initially allocated on the LITTLE core and execute

low and medium phases. The high phase instead triggers the migration to the big core.

We execute the program with increasing INJ input, and measure execution times. Fig-

ure 5.11a shows the normalized execution times of the medium phase. Results show a

penalty of up to 60%. A lower migration threshold in this case would have avoided such
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Figure 5.11: Migration (a) performance and (b) power penalty

penalty. The variability tolerance of the migration policy in this case could be improved

by changing the migration threshold dynamically. In a scenario in which platforms can

actually detect the variability at runtime thanks to dedicated sensors [90], thresholds

should be adapted dynamically.

As a final example, we make the case in which the LITTLE core can choose to

migrate the workload between two big cores, a core X of the big cluster with nominal

power consumption (which is 1.5W from our measurements) and a core Y with higher

power consumption due to variability. Results in Figure 5.11b show that a variation-

agnostic migration policy can incur in a power penalty of up to 20%.

5.6 Dynamic Variability Management

In this section we employ the VarDroid framework to design and implement a

novel Dynamic Variability Management technique. We first explain how variations are

modeled for this specific framework, then we present our Dynamic Variability Manage-

ment and show how it counteracts the various kinds of variations, while meeting the

target lifetime.

We target two different kinds of variations which are present in mobile multipro-

cessors. Frequency variation is caused both by static variations in the manufacturing

process and by degradation phenomena. The result is that cores of the same multipro-

cessors actually have different achievable frequency over time.
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Static variations affect the way in which the propagation delay degrades. Tools

for static variability characterization have been proposed [113], on top of which it is pos-

sible to build higher level models [128] for operating frequency, leakage and dynamic

power. Static variations have been shown to impact on per core performance [70].

We consider multicores affected by Time Dependent Dielectric Breakdown. The

effect of TDDB on transistors propagation delay is modeled in reference [39] as a time

dependent gate-to-source resistance RBD. As TDDB takes place, RBD decreases to-

gether with the voltage on the gate of the transistor, and the propagation delay increases.

The increase in propagation delay, then, causes the achievable operating frequency to

decrease. Figure 5.12(a) shows the increase of propagation delay for devices with dif-

ferent degradation rates, but not affected by static variations (e.g. they have the same

starting point). In Figure 5.12(b), we highlight the case of devices with the same degra-

dation rate, but affected by static variations (e.g. different starting points). A realistic

case, then, will show the combination of both effects.

Recent work in [35] proposes low-area and low-overhead sensors that can be

integrated on multicore processors to monitor the achievable frequency. The availability

of such devices allows to expose variability to the software stack by detecting the core

achievable frequency, and enables runtime management.

Degradation rate variation causes cores of the same multiprocessors to have

different lifetimes and different reliability. This is due both to variability in the manufac-

turing process, to unbalanced workload allocation, and to the impact of environmental

conditions, such as ambient temperature. Figure 5.13 shows an example which moti-

vates the use of workload allocation to counteract degradation rate variability. In this

example we have to allocate three equal tasks to three cores. In the plots, the x-axis is

time, while the y-axis is core reliability. In the first case, no degradation rate variation is

present, and the three cores have the same reliability loss. In the second case cores have

different degradation rates. In particular, core 1 degrades faster, while core 2 degrades

slower with respect to the case with no variations. In this case, a variability-agnostic

allocation causes reliability unbalance. Our technique (third case), instead, aims to bal-

ance the reliability loss by allocating tasks.

Moreover, considering the model for TDDB presented in [176], we observe the
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Figure 5.12: Propagation delay degradation under (a) different degradation rates and

(b) static variations.

behavior of the scale parameter of the Weibull distribution of TDDB failures. The scale

parameter indicates the characteristic lifetime of devices subject to TDDB. Figure 5.14

reports the behavior of the characteristic lifetime as temperature and voltage varies

across the typical range of a mobile processor. As it can be noticed, when tempera-

ture is high, DVFS does not allow for significant reliability saving. This observation

allows our technique to achieve even higher performance, as we will discuss in the next

subsection.

Figure 5.15 shows the complete DVM framework. Our target platform is a het-

erogeneous multiprocessor, modeled as an array of cores Ω = [ω1, ω2, ..., ωNCORE
]. Due

to variations, cores have different degradation rates and operating frequencies. Each

core is characterized by its type [σ1, σ2, ..., σNCORE
]. Each task can be assigned only

to a specific type of cores. Each core has independent voltage and frequency settings.

This is common in modern MPSoCs [31]. Moreover, cores have sensors for frequency

and degradation monitoring. Tasks are classified based on their quality requirements in

Highly Critical (H) and Less critical (L) as in [110]. H tasks require maximum perfor-

mance to guarantee user experience.

At the top we have a degradation monitor. It activates every reliability period
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Figure 5.13: Comparison of variation-agnostic and variation-aware task allocation

(in the order of days) and it monitors the degradation status of each core by reading

degradation sensors. Given a certain predefined target lifetime, it outputs a reference

voltage VTARGET for each core, as they have independent voltage settings. VTARGET is

the target average applied voltage for the next reliability period. A similar approach is

used in [110] and [105] and has been shown to be effective in guaranteeing the target

lifetime. We refer to these works for further details. Note that the effect of different

degradation rates will result in different values of VTARGET among cores.

VTARGET is the input to the DVM algorithm, shown into details in Algorithm 1.

At each scheduling period, it adjusts frequency and voltage of each core with the follow-

ing criterion. Given VTARGET , at each scheduling tick the system updates a reference

value of voltage VREF as:



122

0.8 0.9 1 1.1 1.2
0

2

4

6

8

10

Voltage [V]

C
h
a
ra

c
te

ri
s
ti
c
 l
if
e
ti
m

e
 [
y
e
a
rs

]

 

 

T=35
o
C

T=40
o
C

T=45
o
C

T=50
o
C

T=55
o
C

Figure 5.14: Behavior of characteristic lifetime

VREF =
VTARGET ·∆t − VMEAN · t

∆t − t
(5.5)

Where VMEAN is the mean voltage applied from the beginning of the reliability

period, t is the time elapsed from the beginning of the reliability periodm and ∆t is the

duration. This voltage is the key to the borrowing strategy described in [110].

T-boost denotes our temperature variation-aware strategy, which is based on the

observation that at high temperature lowering the voltage is less beneficial to reliability

than at low temperature, as highlighted in the previous subsection. T-boost is defined

by two temperature thresholds, TLOW and THIGH . We observe that, from the reliability

model defined in [176], running at a temperature lower than TLOW allows to reserve

a time budget tBOOST , measured in scheduling periods, for running at maximum volt-

age/frequency when the temperature is above THIGH . Our DVM algorithm checks the

value of temperature and increases tBOOST by 1 tick if it is lower than TLOW . If the

temperature is over THIGH , it activates T-boost and lowers tBOOST by 1 unit. When

T-boost is active, maximum frequency is selected. Such an approach allows for long

term reliability sprinting when the device experiences temperature variations.
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Figure 5.15: DVM framework

If T-boost is off, the algorithm selects minimum voltage/frequency if the core is

idle, voltage VREF and corresponding frequency if core is running a L task and maxi-

mum voltage/frequency if the core is running a H task.

Also, the algorithm takes the first task to be scheduled and considers whether

it is H or L. In the first case, maximum performance is required, therefore cores are

ranked with respect to their frequency variation. This is possible thanks to the presence

of frequency monitors [35]. In this way, the H task is assigned to the core that at each

scheduling period can achieve the higher frequency. In the second case, the algorithm

tries to balance workload allocation with respect to reliability. In fact, in this case, cores

are ranked with respect to VREF . Since VREF keeps track of the reliability borrowing,

cores with higher VREF have more reliability margin to spend. Such a formulation

allows to counteract frequency and degradation rate variations, it allows to counteract

temperature variations, it is lighweight and fully implementable at the OS level.
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Algorithm 1 Dynamic Variability Management Algorithm
At each scheduling

for each kind of core σ∗ do

for each core ω of kind σ∗ do

if core is idle then

V/f(ω) = V/fMIN

end if

if T − boost OFF then

if executing L then

V/f(ω) = V/fREF

end if

if executing H then

V/f(ω) = V/fMAX

end if

else

V/f(ω) = V/fMAX

end if

—————

if new task φ then

if φ is L then

rankVREF
(Ω)

Ω[1]← φ

end if

if φ is H then

rankf (Ω)

Ω[1]← φ

end if

end if

Update VREF

end for

end for

5.7 DVM Experimental Evaluation

Our test device is the Qualcomm MSM8660 mobile development smartphone.

This device has Snapdragon S3 processor, with a dual Scorpion core and a Adreno 220

GPU, manufactured in 45nm technology. Cores have voltage range from 0.8V to 1.2V

and frequency range from 0.81Ghz to 1.18GHz, with fixed V/f operating points. The

two cores and the GPU have independent per-core DVFS capability. The smartphone

has Android OS 4.0.3, with Linux kernel 3.0.8. Voltage and frequency settings for

the GPU are not exposed to the user, therefore in the experiments we can only control

voltage and frequency of the two Scorpion cores. To perform experiments, we have im-

plemented testbench applications: Discrete Cosine Transform (DCT), Inverse Discrete

Cosine Transform (IDCT) and Image Rotation (ROT), executing on test vectors. These

computational kernels are broadly used in many digital processing and imaging applica-

tions (such as JPEG decoding) and are a representative, flexible and common workload,

useful for performance comparison [128]. The applications have been cross-compiled
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to run on the Android environment. Table 5.1 reports respectively the execution time

(ET) at minimum and maximum frequency of each application.

Table 5.1: Testbench execution times

DCT IDCT ROT

ET@fMIN 15.13s 10.03s 13.07s

ET@fMAX 5.22s 3.55s 4.16s

In order to implement this policy on an Android system, we have developed

a high-level DVFS/scheduling daemon, running in the userspace. Figure 5.16 shows

the block diagram of our implementation. The high-level daemon exploits the Linux

set-affinity mechanism to allocate tasks to cores. This mechanism has been adapted

to work on an Android environment. Userspace applications have no direct control on

voltage and frequency, as these are changed by governors, which are modules of the

kernel space. Therefore we made the DVFS/scheduling daemon able to communicate

with the userspace governor, which is a governor that provides a built-in interface to

the userspace. An application can issue commands to the userspace governor through

the sysfs interface. In this way, the deamon is also able to switch voltage and frequency.

The scheduling period is set at 1 second to approximate the Linux reassignment granu-

larity [134]. The daemon reads temperature at each scheduling period from the Linux

virtualized thermal device, which provides the mean temperature of the chip.

In our experiments, the time of arrival of tasks is modeled as a Poisson dis-

tributed random number with mean TAMEAN , as in [63]. We observe four test cases,

with different mean time of arrival of executing tasks TAMEAN and different percentage

of highly critical tasks %H . The test cases are reported in Table 5.2. The experimental

time is a single reliability period, with a duration of 500 seconds.

Table 5.2: Test cases

case 1 case 2 case 3 case 4

TAMEAN [s] 50 50 10 10

%H 10 40 10 40

First we compare our policy against a DVM technique which is not subject to
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Figure 5.16: Block diagram of DVM implementation

lifetime constraints, such as the one in [128]. This technique performs energy-aware

scheduling, by allocating workload on the most power efficient free core. Then, this

technique always sets the maximum frequency, in order to provide high performance.

Figure 5.17 shows the execution frequencies of the cores in case we apply our policy

(Lifetime Aware) and in the case in which the Lifetime Agnostic policy is applied. Our

policy, in the upper half of the figure, modulates the operating voltage/frequency to

meet the lifetime constraints, and distributes workload among cores. The other policy,

instead, tends to concentrate the workload on the most energy efficient core (core 0 in

this example), with the result that the mean applied voltage in the reliability period vio-

lates the constraint imposed by VTARGET , which is required to meet the target lifetime.

Then, we compare our DVM technique (Variations-Aware) to the dynamic re-

liability management technique in [110] (Variations-Agnostic), in three different sce-

narios: for a platform affected by variation of degradation rate, for a platform affected

by frequency variation and for a platform with both effects. We show that even if both

techniques guarantee the target lifetime, our technique achieves best performance be-

cause it always assigns tasks to the most performing core. For each case we measure
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Figure 5.17: Instantaneous and average performance of the lifetime aware allocation

and the lifetime agnostic allocation respectively

the mean execution time for the test applications in three different variability conditions,

denoted by different values of the ratio σ/µ of the normal distribution characterizing the

variations [114].

Figure 5.18: Robustness against degradation rate variability
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Figure 5.18 shows the results for the comparison in case of a platform with

variation on degradation rates, for the test case 1. For each value of the σ/µ ratio

we execute the same trace of testbench applications and we collect execution times of

each task, both in the Variations-Aware and in the Variations-Agnostic case. Given this,

we compute the performance improvement as the difference between the normalized

execution times obtained with the two techniques. The result is that Variations-Aware

has up to 120% of performance improvement in the case with σ/µ = 0.2. Even in the

case in which σ/µ = 0, our technique performs better. This benefit is given by the

scheduling policy of algorithm 3 which assigns tasks to healthier cores first, which also

provide higher performance. The variation-agnostic policy, instead, cannot schedule

tasks, therefore it does not achieve an optimal result.

Figure 5.19: Frequency variability

Figure 5.19 shows the case in which the test platform is affected by frequency

variations. In this case our variations-aware technique can rank cores with respect to

their achievable frequency. Therefore, H tasks are always executed by the core which

provides higher frequency.
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Table 5.3 reports the mean execution for the IDCT application in the four test

cases and for σ/µ = 0.2. The higher performance improvement is achieved in case 1.

When TAMEAN is higher, in fact, the inefficiency of the variability agnostic technique

is more evident, due to the absence of allocation capabilities.

Table 5.3: Normalized mean execution time for IDCT

σ/µ = 0.2 case 1 case 2 case 3 case 4

VARIATION-AGNOSTIC 2.75 2.40 1.81 1.98

VARIATION-AWARE 1.11 1.02 1.13 1.14

Figure 5.20, shows the case in which the combined effect of the both variations

on frequency and degradation rate are present. The figure also reports the performance

improvement for IDCT. In this case, for σ/µ = 0.2 we have a performance improvement

of 40% for ROT up to 160% for IDCT.

Figure 5.20: Robustness against the combined variations on frequency and degradation

rate. Maximum performance improvement per variability level is reported
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Figure 5.21: T-boost behavior

Figure 5.21, finally, shows the adaptive property of T-boost on temperature vari-

ation. In this experiment, TLOW is set to 37oC while THIGH to 47oC. These values

have been determined experimentally by measuring the temperature in various work-

load and environmental conditions. The plot on the top of the figure shows the behavior

of temperature over time, while the plot on the bottom shows the execution frequency

of CORE 0 (just one core is reported for the sake of clarity). At the beginning, temper-

ature is below TLOW , therefore the time budget tBOOST increases. At 100 seconds, by

using a 400w lamp placed at 10 cm to the phone, we start heating up the smartphone

which leads to the increase the processor temperature. Figure 5.21 shows that when

temperature goes above THIGH , then T-boost activates and the DVM algorithm provides

maximum frequency. Note that in a given reliability period the processor experiences

very high temperature, the VTARGET for the next period will be lower. Moreover the

range of temperature in which T-boost operates (defined by the choice of THIGH and

TLOW ) is lower than processor critical temperatures, which are around 100oC.
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5.8 Conclusion

In the previous chapters of this dissertation we proposed power, thermal and

reliability management for mobile devices. We assumed that power consumption, per-

formance and degradation rate are the same for all devices and equal to their nominal

value. Unfortunately, this is not true in general with the scaling of CMOS technology.

In this chapter we also account for variability and integrate it in runtime management.

We first presented VarDroid, a tool for power and performance emulation for mobiles,

implemented on top of the Android operating system. It is validated with microbench-

marks for performance and power variability. We presented use cases to show how it

can be used to analyze the robustness of applications against variability, evaluate the

impact of variability on user experience and highlight the limitations of OS design on

heterogeneous architectures. Using VarDroid for online emulation, we proposed a novel

Dynamic Variability Management technique which leverages a per-core DVFS control

along with a multicore task allocation to improve the performance of variability-affected

mobile multicore processors while meeting lifetime constraints. The technique has been

implemented on a real Android smartphone. The presented experiments show that the

proposed DVM achieves up to 160% of performance improvement over state-of-the-art

techniques, while meeting the lifetime requirements.

Chapter 5 contains material from “Dynamic Variability Management in Mobile

Multicore Processors under Lifetime Constraints”, by Pietro Mercati, Francesco Pa-

terna, Andrea Bartolini, Luca Benini and Tajana Šimunić Rosing, which appears in

Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD),

Seoul, 2014 [107]. The dissertation author was the primary investigator and author of

this paper.

Chapter 5 contains material from “VarDroid: Online Variability Emulation in

Android/Linux Platforms”, by Pietro Mercati, Mohsen Imani, Francesco Paterna, An-

drea Bartolini, Luca Benini and Tajana Šimunić Rosing, which appears in Proceedings

of the 26th edition on Great Lakes Symposium on VLSI (GLSVLSI ’16). ACM, New

York, NY, USA [112]. The dissertation author was the primary investigator and author

of this paper.



Chapter 6

Conclusion

6.1 Thesis Summary

Today, mobile devices are experiencing an incredible development, and this

trend does not seem to stop. They integrate heterogeneous computing units (CPU and

GPU), display, speakers, networking and can execute a variety of applications, brows-

ing, multimedia, gaming, beyond traditional phone calls. Unfortunately, despite such

amazing development, mobile devices face a set of interrelated problems. To deliver

quality experience, mobiles consume a significant amount of power, which can drain

the battery in a few hours. High peak power increases the device temperature quickly,

which is a source of discomfort for the user. Temperature stress also worsens the impact

of transistors and interconnects reliability degradation mechanisms, such as Time De-

pendent Dielectric Breakdown (TDDB), Negative Bias Temperature Instability (NBTI),

Hot Carrier Injection (HCI) and Electromigration (EM). Such mechanisms degrade the

performance of circuits over time and eventually lead to hard failures, which are costly

to fix and damaging to companies reputation. These problems worsen with the con-

tinuous scaling of CMOS technology and the consequent reduction of transistor and

interconnect dimensions. This increases the parameter variability between circuits with

the same nominal characteristics. As a consequence, devices that are supposed to have

the same capabilities, actually have power, performance and degradation rates that are

variable. Existing solutions for mobiles considers these aspects separately.

In this dissertation we presented the design and real implementation of a unified

132
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framework for the comprehensive dynamic management of power, temperature, relia-

bility and variability in mobile systems, subject to user experience requirements (see

Figure 1.1). We propose a multi-rate comprehensive management framework that is

composed by two subcontrollers, respectively the long term controller and the short

term controller. This design is motivated by the fact that the time scale of reliability

changes and variability effects (on the order of weeks and months) is very different with

respect to the time scale of workload, power and temperature changes (on the order of

seconds and milliseconds).

In Chapters 2 and 3 we presented solutions for power and thermal management

which consider user experience in a complementary way. Chapter 2 aims at maximizing

performance subject to a target battery lifetime. We experimentally verify that our strat-

egy can still meets user experience requirements with a selected target battery lifetime

extension of at least 25%. Chapter 3 reduces power consumption subject to application-

specific performance requirements for user experience. In addition, it leverages a com-

pact thermal model to perform joint power and thermal management. We achieved

a 46% application-specific savings on power consumption and up to 35% savings in

power consumption at the device level. The techniques presented in these two chapters

are part of the short term controller.

Then, in Chapter 4 we presented WARM, a framework for online reliability emu-

lation and leverage it to develop a dynamic reliability management solution. It leverages

the major gap in the time scales of reliability changes and workload dynamics by explor-

ing the interaction between long term controller and a short term controller. It integrates

a Thermal Controller that allocates tasks to meet thermal constraints. This is required

since degradation strongly depends on temperature. We show that WARM meets tem-

perature constraints within 5% in 87.5% more cases than the state-of-the-art. Its task

allocation achieves up to 1 year lifetime improvement for a multicore platform. WARM

can achieve up to 100% of performance improvement on cluster architectures, such as

big.LITTLE, while still guaranteeing the reliability target.

Power, thermal and reliability worsen with variability. Our work takes variability

into account for runtime management. In Chapter 5 we first presented VarDroid, a

framework for the online emulation of variability on real devices. We presented use
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cases to show the utility of VarDroid to test applications, device and OS robustness

under the effects of variability. Our results show that a variability-agnostic OS can

incur in a performance penalty of up to 60% and a power penalty of up to 20 Then,

we used VarDroid to develop a novel technique for dynamic variability management,

which improves the long-short term controller interaction to improve performance. The

proposed DVM solution uses sensors to monitor the variable operating conditions and

the degradation rate. We implement our algorithm in Android OS on a mobile phone

and show that it achieves up to 160% performance improvement over the state-of-the-art

while meeting the lifetime constraints.

6.2 Future Work Directions

The problems of power, temperature, reliability and variability will be even more

relevant for the Internet of Things era. Solutions developed for mobiles need to be

adapted to the distributed nature of the IoT to guarantee scalability, modularity and ex-

tendability [57]. In the recent years, smart devices outnumbered human beings. There

will be 50 billions of interconnected devices in 2020 [133], with an average of 6.5 de-

vices per person. Recent studies say that the IoT market is expected to grow from

$157.05 billion in 2016 to $662 billion in 2021, at a Compound Annual Growth Rate

(CAGR) of nearly 33 percent during that time interval [9]. The IoT spans across ap-

plications in every field of human life: industry, environment, agriculture, smart cities,

smart homes, healthcare and more [14]. In every application, the goal of IoT is to de-

liver Quality of Service (QoS) to the user, which can be defined in terms of accuracy,

availability, stability and user satisfaction. The IoT faces dramatic challenges that put

limitations to its growth. It is built by different devices coming from different vendors,

so standardization is required for seamless integration. The large amount of data flowing

also poses problems of interoperability, data collection and analysis. The communica-

tion of sensitive data creates problems related to security and privacy. A large part of IoT

devices is powered by batteries that need to be frequently changed or recharged, making

energy efficiency a primary requirement. Moreover, the large networks of devices com-

posing the IoT require continuous maintenance for the replacement of defective parts,
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with high associated costs [16].

Most of IoT applications are user-focused, hence delivering quality user expe-

rience is fundamental. The assumption of this dissertation is that user experience can

be embedded in a certain required level of performance which is dictated by the level

of expectation of the user with respect to different applications (see Chapter 3). In ad-

dition, we assumed that tasks belonging to the foreground application require higher

performance with respect to background tasks, since foreground applications are those

focusing user’s attention (see Chapter 4 and 5). An automated framework for the online

identification of user’s requirements is a necessity for future IoT devices.

Both IoT and mobile devices integrate more heterogeneous components and can

use multiple controls. The control algorithms can be improved by leveraging control

theory for the management of multiple heterogeneous variables and for the design of

digital controllers that guarantee stability and convergence [50].

Finally, energy efficiency of both IoT and mobile devices can be further im-

proved with Approximate Computing [117]. Approximate Computing relies on the

tolerance of systems and users to some loss of quality in a range of applications, and

relaxes the need for fully precise operations, with the effect of enabling higher energy

savings. Compared to the traditional design space, characterized by the two dimensions

of energy consumption and performance, approximate computing introduces a third di-

mension, which is error (or, conversely, accuracy). Approximation has been extensively

used in areas such as lossy compression and numeric computation [161] and today it is

gaining a lot of success in many research areas, from circuit and hardware, to applica-

tions, compilers, OS and programming languages.

6.2.1 Dynamic Management of the IoT Infrastructure

Dynamic management of systems has been used extensively for energy, thermal

and reliability management in traditional devices such as personal computers, mobiles

and data centers [21], [110]. A flexible framework for IoT energy and reliability man-

agement is still missing. Future work should address these two key problems in IoT:

energy efficiency and reliability. For this, it is necessary to formulate the problem of

managing the IoT networks while reducing energy consumption subject to QoS and
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reliability constraints. A framework to solve this problem should rely on model identifi-

cation techniques to extract reference values and employ convex optimization to adjust

control decisions. This requires developing models for reliability, power, quality of ex-

perience/service and control decisions for the IoT, which can be efficiently executed at

runtime. All these models should be a function of a set of utilization metrics, which are

parameters that strongly influence the power consumption of the system. These are, for

example, the activity ratio of the device, the residency of processor power states, oper-

ating frequency, transmitting and receiving rates. Once the models are available, we can

formulate an optimization problem in which we minimize power/energy consumption

subject to quality of experience and reliability constraint in variability-affected devices.

6.2.2 Automated Detection of User Preferences

Maintaining a target quality of experience is the goal of IoT applications. Since

the IoT is a user-centric paradigm, the target is defined as the minimum performance

that meets user expectation and provides quality experience. For each application and

for each IoT network, the quality should be modeled and expressed as a function of the

relevant utilization metrics. To build such a function, we need user feedback at runtime.

This can be obtained directly from users, with online evaluations on personal mobile

devices.

An alternative is to perform automatic recognition of facial expressions and emo-

tions. This task can be accomplished by a few recently developed algorithms. Work

in [20], [100] presents a comparison of machine learning methods applied to fully au-

tomatic recognition of facial expressions. Work in [146] accomplishes emotion recog-

nition by combining multiple visual descriptors with paralinguistic audio features for

multimodal classification of video clips. The features extracted are combined through

Multiple Kernel Learning and the clips are classified using an SVM into one of the seven

emotion categories: Anger, Disgust, Fear, Happiness, Neutral, Sadness and Surprise.

Solutions for automatic expression recognition have been implemented and release in

the form of free software [101]. Facial expressions can be effectively used to infer user

emotion and, therefore, to collect automatic feedback on the level of user satisfaction.

Work in reference [155] presents a mobile application for real time facial expres-
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sion recognition running on a smartphone with a camera. It can automatically classify

human emotions. Such information can be used to train a user experience model that

can be leveraged for runtime optimization.

We also assumed that the desired battery lifetime is set by the user (see Chap-

ter 2). Future work should automatically predict the next recharging opportunity [18], [135].

This can be achieved initially by deriving models based on existing datasets [144]. Such

models can then be refined with online training and leveraged at runtime to predict the

next battery recharge.

For temperature, we assumed that there are thermal threshold which constraint

the optimization problems for runtime management. These thresholds implicitly ac-

count for skin contact temperature which can be a source of discomfort if it exceeds

45oC. Future work should address an automatic solution to derive thermal threshold

based on thermal model identification [130].

6.2.3 Optimization of Heterogeneous Control Variables

Modern processors for both IoT and mobile devices have heterogeneous control

variables with different activation rate due to hardware limitations. For example, while

frequency scaling is actuated in less than 1 millisecond, power gating for switching cores

on and off might require tens or even hundreds of milliseconds. A single rate controller

might not be able to adapt to fast changing workload requirements, if too slow, while it

might loose optimization opportunity coming from slowly changing variable, if too fast.

A promising solution is represented by the use of multi-rate controllers.

Multirate controllers are able to outperform single-rate linear time-invariant con-

trollers thanks to their time-varying nature, but they might need powerful processors for

online computation. For implementing on a real system, it is essential to obtain a com-

putationally efficient multirate digital control scheme [91]. A multirate control structure

accommodates multiple information available at different rates and implement the re-

quired control computations within the limited capabilities of online management in

an operating system [53]. A control-theoretic approach is required for the distributed

nature of the IoT and to guarantee scalability.
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6.2.4 Approximate Computing

The availability of new hardware components with novel control variables offers

new possibilities for dynamic management at the operating system level. For example,

associative resistive memories have been recently employed to achieve in-memory ap-

proximate computing to improve energy efficiency [72]. Resistive configurable associa-

tive memories can be leveraged in computation with GPU and accelerators to quickly

retrieve the result of computations and improve performance. These can be configured

using selective voltage over-scaling to accept 1 or 2-bit hamming distance error and im-

prove energy efficiency [73]. Also, the idea of approximate computing can be applied

to storage. In hardware approximate storage can be implemented with relaxed retention

time NVM [151] or fast read and write operation [140]. Therefore, approximation can

be adapted at runtime by using hardware controls. Future work should first investigate

the relation of approximation with power, temperature, reliability, variability and user

experience. Intuitively, increasing the level of approximation helps reducing the power

consumption and consequently temperature and reliability degradation. However, a high

level of approximation might compromise user experience. Variability will impact the

hardware components that tune approximation. The models that describe the impact of

approximation can then be used to implement a comprehensive management solution

on a broad range of applications. This can be achieved through the development of a

novel approximate computing architecture for mobiles. The framework has two major

modules which are part of the system software and enable approximate computing with

existing mobile operating systems. The first module is a user perception management

service, which performs user perception estimation and user perception-aware display

management. It can be applied to both system-level and user-level programs. The sec-

ond module is an approximate computing service, which dynamically adapts running

applications to leverage the approximate computing opportunities offered by the under-

lying hardware and improve energy efficiency, while meeting the user experience target.
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and Tajana Šimunić Rosing. Vardroid: Online variability emulation in an-

droid/linux platforms. In Proceedings of the 26th Edition on Great Lakes Sympo-

sium on VLSI, GLSVLSI ’16, pages 269–274, New York, NY, USA, 2016. ACM.

[113] M. Miranda, B. Dierickx, P. Zuber, P. Dobrovoln, F. Kutscherauer, P. Roussel,

and P. Poliakov. Variability aware modeling of socs: From device variations to

manufactured system yield. In Quality of Electronic Design, 2009. ISQED 2009.

Quality Electronic Design, pages 547 –553, march 2009.

[114] D. Mirzoyan, B. Akesson, and K. Goossens. Process-variation aware mapping

of real-time streaming applications to mpsocs for improved yield. In Quality

Electronic Design (ISQED), 2012 13th International Symposium on, pages 41

–48, march 2012.

[115] Sparsh Mittal. A survey of techniques for improving energy efficiency in embed-

ded computing systems. CoRR, abs/1401.0765, 2014.

[116] Sparsh Mittal. A survey of architectural techniques for managing process varia-

tion. ACM Comput. Surv., 48(4):54:1–54:29, February 2016.



150

[117] T. Moreau, A. Sampson, and L. Ceze. Approximate computing: Making mobile

systems more efficient. IEEE Pervasive Computing, 14(2):9–13, Apr 2015.

[118] N. Murray, Y. Qiao, B. Lee, G. M. Muntean, and A. K. Karunakar. Age and

gender influence on perceived olfactory amp; visual media synchronization. In

2013 IEEE International Conference on Multimedia and Expo (ICME), pages

1–6, July 2013.

[119] T. S. Muthukaruppan and T. Mitra. Lifetime reliability aware architectural adap-

tation. In 2013 26th International Conference on VLSI Design and 2013 12th

International Conference on Embedded Systems, pages 227–232, Jan 2013.
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