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Fully 4-D Direct Joint Estimation of Compartmental Models
and Blood Input Function from Dynamic SPECT Projections

Bryan W Reutter, Grant T Gullberg, and Ronald H Huesman

Nuclear Medicine and Functional Imaging
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA 94720, USA

I. I NTRODUCTION

COMPARTMENTAL model analysis of dynamic cardiac
single photon emission computed tomography (SPECT)

data can provide a quantitative measure of myocardial perfusion
and can potentially provide better contrast between healthy and
diseased tissue, compared to static images [1]. Compartmental
analysis may also be useful for assessing tissue viability [2].

In previous work, we formulated a nonlinear estimation prob-
lem in which linear and conditionally linear parameters are esti-
mated directly from projection data with the use of least squares,
given iteratively estimated values for nonlinear washout param-
eters for one-compartment kinetic models for segmented vol-
umes [3, 4]. This approach removes parameter bias generated
by artifacts that appear in conventional image reconstructions
because of projection data inconsistency and data truncation by
cone beam collimators. The methods can be applied to any col-
limator or orbit geometry, provided that the acquired data yield
qualitatively correct images that can be used to segment the en-
tire projected field of view. To reduce the large computational
burden associated with straightforward solution of the embed-
ded linear least squares subproblem, we also developed an accel-
erated “semidirect” approach in which B-splines are first used to
model smooth time-activity curves for segmented volumes, and
then compartmental models are fit to the curves [5,6].

In the present work, we generalize the semidirect methods to
accelerate direct joint estimation of compartmental models for
tissue volumes and B-spline time-activity curve models for the
blood input function and other volumes that do not obey a com-
partmental model. We hypothesize that the additional temporal
regularization provided by compartmental models will improve
the accuracy and precision of uptake and washout parameters
for small tissue volumes such as myocardial defects.

II. PROJECTIONDATA MODEL

In the following model, the projected field of view is encom-
passed byM = M1 + M2 segmented volumes that contain
spatially uniform activity distributions. Time-activity curves for
volumesm = 1, . . . , M1 are modeled with the use of B-splines,
and curves for volumesm = (M1 + 1), . . . , M are modeled
with the use of compartments.

This work was supported by the National Heart, Lung, and Blood Institute of
the US Department of Health and Human Services under grant R01-HL50663
and by the Director, Office of Science, Office of Biological and Environmental
Research, Medical Sciences Division of the US Department of Energy under
contract DE-AC03-76SF00098. This work was developed in part with the use of
resources at the US Department of Energy National Energy Research Scientific
Computing (NERSC) Center.

The spline model for the time-activity curve for volumem is

Am(t) =
N∑

n=1

amnV n(t), (1)

where amn are model coefficients,V n(t) are B-spline basis
functions, andN is the number of basis functions. For con-
venience, the blood input volume is assigned indexm = 1.

For the one-compartment kinetic model, the relationship be-
tween the blood input function,A1(t), and the activity in the
tissue in volumem, Qm(t), is modeled to be

dQm(t)
dt

= km
1 A1(t)− km

2 Qm(t), (2)

wherekm
1 is the uptake rate parameter andkm

2 is the washout
rate parameter. For initial conditions of zero, the tissue activ-
ity is the convolution of the blood input function with a single
decaying exponential:

Qm(t) = km
1

∫ t

0

A1(τ)e−km
2 (t−τ)dτ. (3)

Total activity in volumem is given by

Rm(t) = fm
v A1(t) + Qm(t), (4)

wherefm
v is the fraction of vasculature in the volume.

The detected count rate at timet along rayi is modeled as

Pi(t) =
M1∑

m=1

Um
i (t)Am(t) +

M∑
m=M1+1

Um
i (t)Rm(t), (5)

whereUm
i (t) is the spatial projection along rayi of the indicator

function for volumem and incorporates physical effects such as
attenuation, geometric point response, and scatter.

The model for the projection data is obtained by integrating
(5) overL contiguous time intervals that span the data acquisi-
tion from timet0 = 0 to timetL = T :

pil =
∫ tl

tl−1

Pi(t)dt. (6)

If the time intervals are short enough so that each segmented
volume projection functionUm

i (t) is approximated well by a
piecewise constant function with amplitudeum

il during time in-
terval[tl−1, tl], then the following approximation can be made:

pil ≈
M1∑

m=1

um
il

∫ tl

tl−1

Am(t)dt +
M∑

m=M1+1

um
il

∫ tl

tl−1

Rm(t)dt.

(7)
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Substituting (1), (3), and (4) into (7) and replacing the approxi-
mation with equality, one obtains the projection data model

pil =
M1∑

m=1

um
il

N∑
n=1

amnvn
l +

M∑
m=M1+1

um
il fm

v

N∑
n=1

a1nvn
l

+
M∑

m=M1+1

um
il km

1

N∑
n=1

a1nṽmn
l ,

(8)

where the factorsvn
l =

∫ tl

tl−1
V n(τ)dτ and the factors̃vmn

l =∫ tl

tl−1

∫ t

0
V n(τ)e−km

2 (t−τ)dτdt are integrals of unconvolved and
convolved temporal B-spline basis functions, respectively, that
can be evaluated quickly for equilength time intervals [7].

The projection data model given by (8) is nonlinear in the
washout rate parameterskm

2 contained in the factors̃vmn
l for

volumes modeled with compartmental models, and is linear in
the spline time-activity curve coefficientsamn for the other non-
blood-input volumes. The compartmental model uptake rate pa-
rameterskm

1 and vascular fractionsfm
v are conditionally linear,

given values for thekm
2 and the coefficientsa1n for the blood in-

put function. Conversely, thea1n are conditionally linear, given
values for thekm

2 , km
1 , andfm

v .

III. L EAST SQUARESCRITERION AND ITERATIVE

MINIMIZATION ALGORITHM

The projection data model parameters can be estimated rel-
atively quickly by minimizing the sum of squared differences
between the measured and modeled projections:

χ2 =
I∑

i=1

L∑
l=1

(p∗il − pil)2, (9)

wherep∗il are the measured projections andI is the number of
projection rays acquired simultaneously by the detector(s).

A. Iterative Search of the Nonlinearkm
2 Parameter Space and

Joint Estimation of Other Parameters

A modified Newton-Raphson minimization algorithm [8] can
be used to iteratively search the space of nonlinear washout rate
parameterskm

2 for values that minimize (9), starting at val-
ues obtained from semidirect estimation. Holding the blood
time-activity curve coefficientsa1n constant while searching the
washout parameter space, one can jointly estimate all other pa-
rameters as described in Section III-B. At the expense of more
computation one can also include thea1n in the iterative search
space, rather than hold thea1n constant. Similarly, one can
jointly estimate the blood curve and all other spline curve coeffi-
cients as described in Section III-C, while searching the washout
parameter space and either holding constant or searching for the
compartmental model parameterskm

1 andfm
v .

Joint estimation of linear and conditionally linear parameters
can be accelerated by up to three orders of magnitude for typi-
cal data acquisitions that use a multi-rotation circular (or other
periodic) detector trajectory. In the following, the time index
l = 1, . . . , L is replaced with the indices{jk; j = 1, . . . , J ; k =
1, . . . , K}, whereJ is the number of angles per rotation and
K is the number of rotations. The indexk is dropped from the
now-periodic spatial projection factors denoted byum

ij .

B. Accelerated Linear Estimation of thekm
1 , fm

v , and Non-
Bloodamn, Given thekm

2 and Blooda1n

To solve for values of thekm
1 , fm

v , and non-bloodamn that
minimize (9), given values for thekm

2 and blooda1n, one can
express (8) in matrix form as

αF1a1 +
M1∑

m=2

Fmam +
M∑

m=M1+1

(fm
v Fma1 + km

1 Λma1) = p,

(10)

whereFm andΛm areIJK×N matrices whose{[i+(j−1)I+
(k− 1)IJ ], n}th elements areum

ij vn
jk andum

ij ṽmn
jk , respectively;

am is anN×1 column vector whosenth element isamn; andp
is anIJK×1 column vector whose[i+(j−1)I +(k−1)IJ ]th
element ispijk. The conditionally linear parameterα has been
included to allow one to adjust the blood input amplitude while
minimizing (9). One can then incorporate the adjusted ampli-
tude into the original model parameters by multiplying thea1n

by α, dividing thefm
v andkm

1 by α, and resettingα to one.
Equation (10) can be written more compactly as

Gθg = p, (11)

where

G =
[
G1 G2 G3

]
G1 =

[
F2 · · · FM1

]
G2 =

[
F1a1 FM1+1a1 · · · FMa1

]
G3 =

[
ΛM1+1a1 · · · ΛMa1

]
θT

g =
[
aT

2 · · · aT
M1

α fM1+1
v · · · fM

v kM1+1
1 · · · kM

1

]
.

The least squares criterion (9) then becomes

χ2 = (p∗ −Gθg)T(p∗ −Gθg), (12)

wherep∗ is anIJK × 1 column vector whose[i + (j − 1)I +
(k − 1)IJ ]th element isp∗ijk. The vector of values for thekm

1 ,
fm

v , non-bloodamn, andα that minimizeχ2 is

θ̂g = (GTG)−1GTp∗. (13)

One can accelerate the computation of (13) by first calculating
some of the intermediate sums shown in Table I. Elements in
blocks of the symmetric[(M1−1)N+2M2+1]×[(M1−1)N+
2M2 + 1] matrixGTG can then be calculated by evaluating the
following sums for the indicated blocks:

GT
1 G1 :

∑J
j=1 µmm′

j νnn′
j

GT
1 G2 :

∑J
j=1 µmm′

j (α12)n
j

GT
1 G3 :

∑J
j=1 µmm′

j (α13)mn
j

GT
2 G2 :

∑J
j=1 µmm′

j (α22)j

GT
2 G3 :

∑J
j=1 µmm′

j (α23)m
j

GT
3 G3 :

∑J
j=1 µmm′

j (α33)mm′
j .

(14)

The factorsµmm′
j and(αrs)j are defined in Table I, where two

sets of formulæ are given for computing the(αrs)j . The set
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TABLE I

INTERMEDIATE SUMS USEFUL FOR ACCELERATED COMPUTATION OF(13) AND (19)

Description Sum Index range Number of multiply-and-adds

blood input function A1
jk =

N∑
n=1

a1nvn
jk

j = 1, . . . , J
k = 1, . . . , K

JKN

blood input convolved withe−km
2 t Ã1m

jk =
N∑

n=1

a1nṽmn
jk

j = 1, . . . , J
k = 1, . . . , K

m = (M1 + 1), . . . , M
JKM2N

inner product of temporal spline
basis functionsn andn′

νnn′
j =

K∑
k=1

vn
jkvn′

jk
j = 1, . . . , J

n, n′ = 1, . . . , N
JK

N(N + 1)

2

inner product of convolved temporal
splinemn and temporal splinen′ ν̃mnn′

j =

K∑
k=1

ṽmn
jk vn′

jk

j = 1, . . . , J
m = (M1 + 1), . . . , M

n, n′ = 1, . . . , N
JKM2N2

inner product of convolved temporal
splinesmn andm′n′

˜̃νmnm′n′
j =

K∑
k=1

ṽmn
jk ṽm′n′

jk

j = 1, . . . , J
m, m′ = (M1 + 1), . . . , M

n, n′ = 1, . . . , N
JK

M2N(M2N + 1)

2

inner product of blood input
and temporal splinen

(α12)n
j =

∑K
k=1 A1

jkvn
jk

=
∑N

n′=1 a1n′ν
nn′
j

j = 1, . . . , J
n = 1, . . . , N

JKN
or

JN2

inner product of convolved blood
functionm and temporal splinen

(α13)mn
j =

∑K
k=1 Ã1m

jk vn
jk

=
∑N

n′=1 a1n′ ν̃
mnn′
j

j = 1, . . . , J
m = (M1 + 1), . . . , M

n = 1, . . . , N

JKM2N
or

JM2N2

inner product of blood input and itself
(α22)j =

∑K
k=1 A1

jkA1
jk

=
∑N

n=1 a1n(α12)n
j

j = 1, . . . , J
JK
or

JN

inner product of convolved blood
functionm and blood input

(α23)m
j =

∑K
k=1 Ã1m

jk A1
jk

=
∑N

n=1 a1n(α13)mn
j

j = 1, . . . , J
m = (M1 + 1), . . . , M

JKM2

or
JM2N

inner product of convolved blood
functionsm andm′

(α33)mm′
j =

∑K
k=1 Ã1m

jk Ã1m′
jk

=
∑N

n=1 a1n
∑N

n′=1 a1n′ ˜̃ν
mnm′n′
j

j = 1, . . . , J
m, m′ = (M1 + 1), . . . , M

JK
M2(M2+1)

2
or

J
M2(M2+1)

2
N(N + 1)

inner product of spatial projection
functionsm andm′ µmm′

j =

I∑
i=1

um
ij um′

ij
j = 1, . . . , J

m, m′ = 1, . . . , M
IJ

M(M + 1)

2

inner product of spatial projection
functionm and projection data ϕm

jk =

I∑
i=1

um
ij p∗ijk

j = 1, . . . , J
k = 1, . . . , K
m = 1, . . . , M

IJKM

inner product of spatial projection
functionm and spatial sum

of vascular projections
(β12)m

j =

M∑
m′=M1+1

fm′
v µm′m

j
j = 1, . . . , J

m = 1, . . . , M
JM2M

inner product of spatiotemporal
projection functionmn and spatial sum

of uptake projections for splinen′
(β13)mnn′

j =

M∑
m′=M1+1

km′
1 µm′m

j ν̃m′n′n
j

j = 1, . . . , J
m = 1, . . . , M1

n, n′ = 1, . . . , N

2JM1M2N2 multiplies
JM1M2N2 adds

inner product of spatial sum
of vascular projections and itself (β22)j =

M∑
m=M1+1

fm
v (β12)

m
j j = 1, . . . , J JM2

inner product of spatial sums
of vascular projections for splinen
and uptake projections for splinen′

(β23)nn′
j =

M∑
m′=M1+1

km′
1 (β12)m′

j ν̃m′n′n
j

j = 1, . . . , J
n, n′ = 1, . . . , N

2JM2N2 multiplies
JM2N2 adds

inner product of spatial sums of uptake
projections for splinesn andn′

(β33)nn′
j =

∑M
m=M1+1

[
km
1 ×∑M

m′=M1+1 km′
1 µmm′

j
˜̃νmm′nn′

j

] j = 1, . . . , J
n, n′ = 1, . . . , N

JM2(2M2+1)
N (N−1)

2
mults

JM2(M2+1)
N(N−1)

2
adds

that uses summations over the rotation indexk typically requires
fewer operations:JK(N + M2 + 1)(N + M2 + 2)/2 multiply-
and-adds, given the factorsA1

jk andÃ1m
jk defined in Table I.

For I � K[(N + M2)/(M1 + M2)]2, most of the overhead
for the accelerated computation lies in calculating the interme-
diate sumsµmm′

j . Thus, computation is reduced by a factor
of aboutK[((M1 − 1)N + 2M2)/(M1 + M2)]2, compared to
straightforward matrix multiplication ofGTG. This reduction
corresponds to the number of rotations,K, times the square of
the average number of linear and conditionally linear parame-
ters per segmented volume. Speedup ranges from a factor of
aboutKN2 when M1 � M2 (i.e., when most of the time-

activity curves are modeled withN splines), to a factor of about
4K whenM1 = 1 (i.e., when compartmental models with two
conditionally linear parameters are used for all curves except the
blood input function).

One can also accelerate computation of elements in blocks
of the [(M1 − 1)N + 2M2 + 1] × 1 column vectorGTp∗ by
evaluating the following sums for the indicated blocks:

GT
1 p∗ :

∑J
j=1

∑K
k=1 ϕm

jkvn
jk

GT
2 p∗ :

∑J
j=1

∑K
k=1 ϕm

jkA1
jk

GT
3 p∗ :

∑J
j=1

∑K
k=1 ϕm

jkÃ1m
jk ,

(15)
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where the factorsϕm
jk are defined in Table I. Compared to

straightforward matrix multiplication ofGTp∗, this reduces
computation by a factor of about((M1 − 1)N + 2M2)/(M1 +
M2) (i.e., the average number of linear and conditionally linear
parameters per segmented volume).

The system of equationsGTGθ̂g = GTp∗ can then be
solved relatively quickly for the parametersθ̂g, with the use of
the Cholesky decomposition ofGTG [9].

C. Accelerated Linear Estimation of the Blood and Non-Blood
amn, Given thekm

2 , km
1 , andfm

v

To solve for values of theamn that minimize (9), given values
for thekm

2 , km
1 , andfm

v , one can first express (8) in matrix form
as[

F1 +
M∑

m=M1+1

(fm
v Fm + km

1 Λm)

]
a1 +

M1∑
m=2

Fmam = p

(16)

and then write (16) more compactly as

Hθh = p, (17)

where

H =
[
H1 G1

]
H1 = H11 + H12 + H13

H11 = F1

H12 =
∑M

m=M1+1 fm
v Fm

H13 =
∑M

m=M1+1 km
1 Λm

θT
h =

[
aT

1 aT
2 · · · aT

M1

]
.

The least squares criterion (9) then becomes

χ2 = (p∗ −Hθh)T(p∗ −Hθh), (18)

and the vector of values for theamn that minimizeχ2 is

θ̂h = (HTH)−1HTp∗. (19)

One can accelerate computation of blocks of the symmetric
M1N ×M1N matrixHTH as follows. The symmetricN ×N
blockHT

1 H1 is the sum of the following matrices and the trans-
poses ofHT

11H12, HT
11H13, andHT

12H13:

HT
11H11 :

∑J
j=1 µ11

j νnn′
j

HT
11H12 :

∑J
j=1(β12)1jν

nn′
j

HT
11H13 :

∑J
j=1(β13)1nn′

j

HT
12H12 :

∑J
j=1(β22)jν

nn′
j

HT
12H13 :

∑J
j=1(β23)nn′

j

HT
13H13 :

∑J
j=1(β33)nn′

j ,

(20)

where the factors(βrs)j are defined in Table I. The asymmetric
N × (M1 − 1)N blockHT

1 G1 is the sum of the matrices

HT
11G1 :

∑J
j=1 µm1

j νnn′
j

HT
12G1 :

∑J
j=1(β12)m

j νnn′
j

HT
13G1 :

∑J
j=1(β13)mnn′

j .

(21)

The symmetric(M1 − 1)N × (M1 − 1)N block GT
1 G1 has

elements given by the first sum in (14).
The use of straightforward matrix multiplication requires

about2IJKM2N multiply-and-adds to calculateH1, followed
by aboutIJK(M1N)2/2 multiply-and-adds to calculateHTH.
For smallM2 andM1 � M2, most of the overhead for the ac-
celerated computation lies in calculating the intermediate sums
µmm′

j and the speedup is by a factor of aboutKN2. For small
M1 andM2 � M1, there is significant additional overhead in
calculating the intermediate sums˜̃νmnm′n′

j and the speedup is
reduced to a factor of aboutKN2[I/(I + KN2)][4/(M2N)].

Computation of blocks of theM1N×1 column vectorHTp∗

can also be accelerated. TheN × 1 block HT
1 p∗ is the sum of

the following vectors:

HT
11p

∗ :
∑J

j=1

∑K
k=1 ϕ1

jkvn
jk

HT
12p

∗ :
∑J

j=1

∑K
k=1

[∑M
m=M1+1 fm

v ϕm
jk

]
vn

jk

HT
13p

∗ :
∑J

j=1

∑K
k=1

[∑M
m=M1+1 km

1 ϕm
jkṽmn

jk

]
.

(22)

The(M1−1)N ×1 blockGT
1 p∗ has elements given by the first

sum in (15). Compared to straightforward matrix multiplication
of HTp∗, this reduces computation by a factor of aboutN .

IV. FUTURE DIRECTIONS

Work is underway to implement these direct joint estimation
methods. Various strategies for updating conditionally linear pa-
rameters will be investigated and the effects on convergence of
the fit will be studied. The accuracy and precision of compart-
mental parameters obtained with the direct method will be com-
pared to that obtained with the semidirect method.
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