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Abstract

Pruning Optimization for Efficient Top-k Document Retrieval with Learned Sparse

Representations

by

Yifan Qiao 乔逸凡

Efficiently searching for relevant documents on a large dataset typically employs an

initial retrieval stage to extract the most relevant candidates. This process often utilizes

a sparse data structure known as an inverted index, coupled with a simple yet fast rank-

ing method, to identify the top-k matches for a given query. Recent advancements in

retrieval methodologies have seen the integration of learned sparse representations, lever-

aging transformer-based language models to expand and weigh document terms, thereby

enhancing the semantic alignment between query and document vocabularies. However,

the distribution of these neural model generated weights differs from traditional term-

frequency-based BM25, posing challenges for dynamic pruning algorithms for inverted

index traversal, and significantly impeding retrieval speed. Moreover, these techniques

often exacerbate document representation sparsity, further slowing down retrieval algo-

rithms. Addressing these challenges, this thesis focuses on accelerating document retrieval

algorithms through representation sparsification, BM25-guided document pruning, and

cluster-based sparse retrieval strategies.
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Chapter 1

Introduction

Information retrieval system plays a vital role in people’s digital lives. With the

rapid growth of digital contents’ size, it becomes more and more important to retrieve

relevant documents efficiently and effectively. In terms of effectiveness, given a query, to

retrieve the most relevant document(s) from a large corpus, we need a tool to measure the

similarity between the given query to any document in the corpus. Then, for efficiency,

the retrieval system should be able to do some pruning work along the way to search, to

avoid calculation of similarities among all documents.

1.1 Search Based on Keyword Matching

In early days, search is based on the word matching between a query and documents,

and search engines mainly use sparse retrieval signals to capture the similarity. The sparse

retrieval signals usually comprises statistical information including term frequency (TF),

inverse document frequency (IDF). These signals are then combined by ranking functions

developed from probabilistic retrieval framework, to estimate the similarity between a

query and a given document. The common ranking functions include TF-IDF, and
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Introduction Chapter 1

BM25 [1].

In order to search in an efficient manner, many researchers have contributed ideas

in pruning. Statically, documents are organized in the structure of an inverted index.

An inverted index comprises posting lists for each query word. The posting list of a

given query word records all the document identifiers where the corresponding document

contains the query word, and the term frequency information of this word. During search

time, only those posting lists that are relevant to the search query need to be visited,

meaning that those documents have no overlapping words with the query can be pruned

before search. Dynamically, more pruning can be done during search time. Usually,

a priority queue is used to collect top-k documents with the highest similarity score,

where k is the number of documents that will be retrieved. If at any time, the maximum

possible score of a document or a block of documents cannot exceed the lowest score

(which is called threshold) in the priority queue, those documents can be pruned away,

to save search time cost. Notable dynamic pruning work includes WAND [2], BlockMax-

WAND [3], and MaxScore [4] algorithms.

1.2 Semantic Search

With the power of Large Language Models (LLM), machines can intelligently respond

to natural language questions with natural language answers. Rather than memorizing

all possible answers in LLMs, a more feasible and flexible approach is to search for the

context first, and send all the relevant documents along with users’ query as prompt to

LLMs. This technique, called Retrieval Augmented Generation (RAG), becomes a hot

topic recently in the information retrieval community. The natural language queries, or

semantic search queries, differ from prior keyword matching queries, tend to be composed

of a complete sentence, and it’s possible that synonyms rather than exact words shown

2
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up in the desired document are employed by the query. Supporting semantic search

queries by the search system also benefits traditional search, where users don’t have to

remember or know the exact word used in the document they want to retrieve. However,

since users may rephrase their queries in any ways, traditional term frequency based

keyword matching algorithms are not sufficient anymore.

Instead of representing a word by a scalar, or a one-hot vector, word embeddings

are introduced to use dense vectors to represent the semantic meaning of a word. These

embeddings are usually unsupervised trained on large corpora using Continuous Bag of

Words (CBOW). Words are semantically similar should have close distances (L2 distance

or cos-similarity) in the embedding space. Algorithms are then developed to measure

the similarity of a query and a document based on their individual word embeddings,

including DRMM [5], KNRM [6], and Conv-KNRM [7].

BERT-based language models [8] utilize attention mechanisms to capture the inter-

action among tokens in the same document. MonoBERT [9] proposed to concatenate the

query text with the document text, feed the concatenated text to BERT encoder, and

apply a projection layer on top of the BERT encoded [CLS] token to predict the similarity

between the query and the document. This approach takes advantage of the attention

mechanism which calculates the interaction between query terms and document terms,

and propagate and summarize the information to the final representation of the [CLS]

token. This kind of structures, where queries and documents are concatenated before

the language model, is called cross-encoders. Generally, it yields the highest quality of

relevance measurements. However, due to the early concatenation, it requires one BERT

inference for each document, which can be prohibitively expansive for retrieval, where

there can be millions of candidates need to be evaluated. Practically, people usually

apply a lightweight retriever to obtain a list of k most relevant documents, and use the

cross-encoder as a ”re-ranker” to only re-rank those k documents.
3
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In order to push the interaction into later stages, to make room for pre-calculation of

inference of documents during indexing time, bi-encoders are invented. In the setup of

bi-encoder, queries and documents are fed separately into the languge model like BERT,

and one single dense vector is used to represent the whole meaning of the query/document

text. The document embeddings thus can be pre-calculated and indexed without any

information from the query. During online retrieval, the query is passed through the

language model one time, to generate the query embedding. Then, approximate nearest

neighbor search (ANN) is applied to find the nearest document vectors in the document

corpus to retrieve the relevant documents to that query. Famous bi-encoders include

DPR [10], SimLM [11], and RetroMAE [12, 13]. ANN frameworks (e.g. FAISS [14]) tak-

ing advantage of GPU’s parallel computing capabilities achieve reasonably good retrieval

latency for retrieval on large corpora. This retrieval scheme is usually referred to as dense

retrieval.

1.3 Learned Sparse Retrieval

Dense retrieval is able to support semantic search, and can be fast with GPU supports.

However, infrastructure cost for constructing a large-scale retrieval system with GPUs

can be expansive, supporting of efficient semantic search on CPU-only machines is still

in demand. People then went back to the traditional sparse retrieval framework with

inverted index, and fuse the semantic representation produced by language models to it,

producing learned sparse retrievers.

In dense retrieval, usually, the relevance score is calculated by the dot product of

the query representation and document representation, where “representation”means

a dense vector with commonly seen sizes of 768 (BERT-based) or 1536 (OpenAI). The

traditional term frequency based retrieval function can also be fit into this framework,

4
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with the only difference being the representation of the queries and documents are sparse,

and the dimension of the vectors is the size of the vocabulary. Each entry of the sparse

vector stores the term frequency of the corresponding word in the query/document text.

With this in mind, in learned sparse retrieval, the sparse vectors do not have to store

statistical information like term frequency, instead, it can store the semantic similarity

of the corresponding word to the whole query/document text. Learned sparse retrievers,

for example, SPLADE [15, 16, 17], and LexMAE [18], produce such sparse vectors by

projecting each token’s language model-encoded output back to the sparse space by

calculating its dot product to the embedding of each token in the vocabulary, and pooling

them together into one sparse vector for the whole query/document. Regularization is

applied on the pooled sparse vector for sparsity, which has an effect on the trade-off

between relevance effectiveness and efficiency.

Since the documents are again represented as sparse vectors, just like traditional term

frequency based scores, they can be offline indexed and stored into the inverted index

format. During online search time, traditional dynamic pruning algorithms including

WAND [2], BlockMax-WAND [3] and Maxscore [4] can be used for acceleration as well.

Piratically, learned sparse retrievers often yield better efficiency than dense retrievers.

Other advantage of learned sparse retrievers over dense retrievers include better inter-

pretability, and better zero-shot performance on dataset with no or few training samples.

1.4 Efficiency Optimization and Pruning

To efficiently search on a large corpus, there is a large body of research on reducing

the footprint of inverted index at the offline time or avoiding visiting the entire index

to minimize retrieval latency, and this category of efficiency optimization is called prun-

ing. Commonly, there are two types of pruning, static pruning and dynamic pruning.

5
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Static pruning happens before the system obtains user queries. Such techniques usually

remove the low-impact documents presented in each posting list to shrink size. Exam-

ples include document spam filtering, term-centric pruning [19, 20] and document-centric

pruning [21] for posting lists. Hybrid thresholding (HT) discussed in Chapter 2 is a static

pruning technique, where a learnable threshold controls the sparsity of the learned sparse

representation, hence reduces the index size.

Dynamic pruning, on the other hand, happens during online search, when the user

query is presented. Usually, documents are pre-organized into grouped structures includ-

ing blocks, or clusters, and statistical information including maximum or average value,

are pre-calculated and stored for each group to summarize the documents contained in

this group. During online inference, if the algorithm finds out that it is unlikely that

there exists a highly relevant document to the user query based on the statistical infor-

mation of a group, all the documents within that group can be pruned without further

search. For dense retrieval, documents are grouped into clusters, based on the similarities

between dense vectors. Common pruning techniques for ANN search include IVF [22]

and HNSW [23]. For sparse retrieval, documents are usually grouped into blocks based

on pre-assigned document ids in each posting list. Each block can be of the same size (for

BlockMax WAND, BMW [3]), or variable sizes (VBMW [24]). Similarly, the statistical

information is pre-calculated for each block and stored as metadata. Pruning algorithms

including BMW and MaxScore [4] can then take advantage of these information to dy-

namically prune documents or blocks away. Chapter 3 is a direct optimization for these

algorithms. Chapter 4 further combines the clustering idea in dense retrieval, with the

dynamic pruning techniques on the inverted index structure.

6
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Figure 1.1: Web search

1.5 Applications of Efficient Sparse Retrieval

Sparse retrievers have been widely used for large scale web search in industry. Fig-

ure 1.1 shows a simplified framework of modern large scale search engine. Inside the

back-end, documents are split into shards, and each retriever is responsible for retrieving

the most relevant documents in the corresponding shard. In order to lower the cost of

operation and decrease latency for end users, the core part, retrievers, need to be fast

and effective. Learned sparse retrieval can fit rather easier into this framework, com-

pared to dense retrieval, due to its similarity to the traditional sparse retrieval. Another

issue to consider is that CPU-only machines are better than GPU machines for cost and

feasibility when building the data center, where learned sparse retrievers have a huge

advantage in speed than dense retrievers.

Another application for the learned sparse retrieval to shine is in the retrieval aug-

mented generation (RAG) framework shown in Figure 1.2. Document retrieval is an

important part, where relevant documents to the user query need to be fetched first.

These documents are then used as the context for LLMs to generate answers to the

query. Learned sparse retriever has better interpretability and generalizability than

dense retrievers, which can potentially benefit the RAG framework.
7
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1.6 Summary of Contributions

Dept. of Computer Science

Document  
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Search 
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Model Sparsification with 
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Figure 1.3: Workflow of learned sparse retrieval

Figure 1.3 shows the overall workflow of learned sparse retrieval systems. During

offline indexing time, each document d in the corpus will be encoded into sparse vec-

tors by language models like SPLADE, and stored into the inverted index structure.

During online search, user query q will be encoded into sparse vectors by SPLADE,

and corresponding posting lists of the non zero entries of the encoded vector stored in
8



Introduction Chapter 1

the inverted index will be traversed and evaluated by dynamic pruning algorithms, for

example, MaxScore.

In this retrieval framework, multiple components can be optimized for better effi-

ciency. First of all, the sparsity of the sparse representation vectors plays a vital role

on the efficiency of the retrieval system, because the more sparse the representation is,

fewer tokens are present in the index, shorter the posting list will be. Chapter 2, as

shown in the orange block in Figure 1.3, enhances the sparsity of the language model,

by taking the sparsity objective into the retriever training procedure with a dynamic

learnable threshold for static index pruning. Secondly, the dynamic pruning algorithms

including MaxScore and BlockMax-WAND are designed for traditional statistical signals

like term frequency or BM25, while the values in the learned sparse representations have

significantly different distributions to the previous statistical signals, making dynamic

pruning algorithms less effective. Chapter 3 thus improves these dynamic pruning algo-

rithms by treating the term frequency information as a guidance of pruning and actually

accumulating relevance scores based on learned representations, which is shown in green

in Figure 1.3. Lastly, the inverted index could benefit from the clustering structure com-

monly used for dense vectors. Chapter 4 organizes documents into clusters based on the

dense vector representations, and pre-compute statistical meta scores for cluster-level

pruning during online search time to improve efficiency. It is displayed in the blue box

Figure 1.3.

9



Chapter 2

Representation Sparsification with

Hybrid Thresholding for Fast

SPLADE-based Document Retrieval

2.1 Introduction

Recently learned sparse retrieval techniques [25, 26, 27, 28, 29, 15, 16, 30] have become

attractive because such a representation can deliver a strong relevance by leveraging

transformer-based models to expand document tokens with learned weights and can take

advantage of traditional inverted index based retrieval techniques [24, 31]. Its query

processing is cheaper than a dense representation which requires GPU support (e.g. [32,

33]) even with efficiency optimization through approximate nearest neighbor search [22,

34, 35].

This paper focuses on the SPLADE family of sparse representations [15, 16, 30] be-

cause it can deliver a high MRR@10 score for MS MARCO passage ranking [36] and

a strong zero-shot performance for the BEIR datasets [37], which are well-recognized

10
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IR benchmarks. The sparsification optimization in SPLADE has used L1 and FLOPS

regularization to minimize non-zero weights during model learning, and our objective

is to exploit additional opportunities to further increase the sparsity of inverted indices

produced by SPLADE. Earlier static inverted index pruning research [19, 20, 21] for a

lexical model has shown the usefulness of trimming a term posting list or a document by

a limit. Yang et al. [38] conduct top token masking by limiting the top activated weight

count uniformly per document and gradually reducing this weight count limit to a tar-

geted constant during training. Motivated by these studies [19, 20, 21, 38] and since they

have not addressed the learnability of a pruning limit through relevance-driven training,

this paper exploits a learnable thresholding architecture to filter out unimportant neural

weights produced by the SPLADE model through joint training.

The contribution of this paper is a learnable hybrid hard and soft thresholding scheme

with an inverted index approximation to increase the sparsity of SPLADE-based docu-

ment and query feature vectors for faster retrieval. In addition to experimental validation

with MS MARCO and BEIR datasets, we provide an analysis of the impact of hybrid

thresholding with joint training on index approximation errors and training update ef-

fectiveness.

2.2 Background

For a query q and a document d, after expansion and encoding, they can be repre-

sented by vector w⃗(q) and w⃗(d) with length |V |, where V is the vocabulary set. The rank

score of q and d is computed as R(q, d) = w⃗(q) · w⃗(d) =
∑|V |

i=1 w
q
i ×wd

i . For sparse vectors

with many zeros, retrieval can utilize a data structure called inverted index during online

inference for fast score computation [24, 31]. The SPLADE model uses the BERT token

space to predict the feature vector w⃗. In its latest SPLADE++ model, it first calculates

11
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the importance of i-th input token in d for each j in V : wij(Θ) = Transform(h⃗i)
T E⃗j + bj,

where h⃗i is the BERT embedding of i-th token in d, E⃗j is the BERT input embedding

for j-th token. Transform() is a linear layer with GeLU activation and LayerNorm. The

weights in this linear layer, E⃗j, and bj are the SPLADE parameters updated during

training and we call them set Θ. Then the j-th entry wj of document d (or a query) is

max-pooled as wj(Θ) = maxi∈d{log(1 + ReLU(wij(Θ)))}. Notice that wj ≥ 0.

The loss function of SPLADE models [15, 16, 30] contains a per-query ranking loss

LR and sparsity regularization. The ranking loss has evolved from a log likelihood based

function for maximizing positive document probability to margin MSE for knowledge

distillation. This paper uses the loss of SPLADE with a combination that delivers the

best result in our training process. LR is the ranking loss with margin MSE for knowledge

distillation [39]. The document token regularization LD is computed on the training

documents in each batch based on FLOPS regularization. The query token regularization

LQ is based on L1 norm. Let B be a set of training queries with N documents involved

in a batch. LQ =
∑

j∈V
1
|B|
∑

q∈B wq
j ; LD =

∑
j∈V (

1
N

∑N
d=1 w

d
j )

2.

Related work. Other than SPLADE, sparse retrieval studies include SNRM [25],

DeepCT [26], DeepImpact [27], and uniCOIL [28, 29]. The sparsity of a neural

network is studied in the deep learning community. Soft thresholding in [40] adopts

a learnable threshold with function S(x, t) = ReLU(x − t) to make parameter x zero

under threshold t. A hard thresholding function H(x, t) = x when x ≥ t otherwise 0.

Approximate hard thresholding [41] uses a Gauss error function to approximate H(x, t)

with smooth gradients. Dynamic sparse training [42] finds a dynamic threshold with

marked layers. These works including the recent ones [43] are targeted for sparsification

of parameter edges in a deep neural network. In our context, a token weight wj is an

output node in a network. The sparsification of output nodes is addressed in activation

map compression [44] using ReLU as soft thresholding together with L1 regularization.
12
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The work of [45] further boosts sparsity with the Hoyer regularization and a variant

of ReLU. The above techniques have not been investigated in the context of sparse

retrieval, and the impact of thresholding on relevance and query processing time with

inverted indices, requires new design considerations and model structuring for document

retrieval, even the previous work can be leveraged.

2.3 Hybrid Thresholding (HT)

Doc d

SPLADE 
Model

Query q

(a) Training loop

Inverted 
Index

(b) Indexing and inference

Online 
query 
weights

Extended 
Loss 

Function

Model update

           Soft thresholding

         Sigmoid thresholding

SPLADE Soft thresholding

       Hard thresholding

Pos. or neg. 
   doc d 

SPLADE

Query q

Learned 
thresholds

Figure 2.1: Hybrid thresholding with an index approximation

Design considerations. To zero out a token weight below a learnable threshold,

there are two options: soft thresholding [40], and approximate hard thresholding [41].

For query token weights, we find that soft thresholding does not affect relevance signifi-

cantly. For document token weights, our study finds that compared to soft thresholding,

hard thresholding can retain relevance better since it does not change token weights

when exceeding a threshold. Since the subgradient for hard thresholding with respect to

13
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a threshold is always 0, an approximation needs to be carried out for training. For search

index generation, an inverted index produced with the same approximate hard threshold-

ing as training keeps many unnecessary non-zero document token weights, slowing down

retrieval significantly. Thus we directly apply hard thresholding with a threshold learned

from training, as shown in Figure 2.1. There is a gap between trained document token

weights and actual weights used in our inverted index generation and online inference,

and we intend to minimize this gap (called an index approximation error).

Thus our design takes a hybrid approach that applies soft thresholding to query

token weights during training and inference and applies approximate hard thresholding

to document token weights during training while using hard thresholding for documents

during index generation. For approximate hard thresholding, we propose to use a logistic

sigmoid-based function instead of a Gauss error function [41]. This sigmoid thresholding

simplifies our analysis of the impact of its hyperparameter choice to index approximation

errors, and to training stability.

2.3.1 Trainable and approximate thresholding

Training computes threshold parameters tD, and tQ for documents and queries, re-

spectively. From the output of the SPLADE model, every token weight of a query is

replaced with S(wq
j , tQ), which is ReLU(wq

j − tQ), and every document token weight is

replaced with Ĥ(wq
j , tD) before their dot product is computed during training as shown

in Figure 2.1(a). Sigmoid thresholding Ĥ is defined as:

Ĥ(wd
j , tD) = wd

jσ(K(wd
j − tD)) where σ(x) =

1

1 + e−x
. (2.1)

Here K is a hyperparameter to control the slope steepness of step approximation that

jumps from 0 to 1 when exceeding a threshold.

14
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The indexing process uses hard thresholding to replace all document weights that

are below threshold tD as 0 as depicted in Figure 2.1(b). The above post processing

introduces an index approximation error E = |Ĥ(wd
j , tD) − H(wd

j , tD)|. We derive its

upper bound as follows. Notice that wj ≥ 0, and for any x ≥ 0, 1 + x ≤ ex.

E = wd
jσ(K(wd

j − tD)) =
wd

j

1 + eK(tD−wd
j )

≤
wd

j

2 +K(tD − wd
j )
.

When wd
j ≥ tD, we can derive that

E = wd
j (1− σ(K(wd

j − tD))) = wd
jσ(K(tD − wd

j ))) ≤
wd

j

2 +K(wd
j − tD)

.

Let σ− denote σ(K(wd
i − tD)). 0 < σ− < 1. In both of the above cases, the error upper

bound is minimized when K is large. This is consistent with the fact that error E is

monotonically decreasing as K increases because ∂E
∂K

= −wd
j σ−(1 − σ−) |wd

j − tD|≤ 0.

When |wd
j − tD| is big, the error is negligible and when |wd

j − tD| is small, the error could

become big with a small K value. But as shown later, an excessively large K value could

cause a big parameter update during a training step, affecting joint training stability.

Let Dlen and Qlen be the non-zero token weight count of document d and query q,

respectively. For our hybrid thresholding, Dlen =
∑

j 1wd
j≥tD

, Qlen =
∑

j 1wq
j≥tQ . Here

1x≥y is an indicator function as 1 if x ≥ y otherwise 0. When increasing tD and tQ, Dlen

and Qlen decrease. Thus for a batch of training queries B, the original SPLADE loss

is extended as: L = ( 1
|B|
∑

q∈B LR) + λQLQ + λDLD + λTLT . The extra item added is

LT = log(1+e−tD)+log(1+e−tQ). We retain the original LQ and LD expressions because

as wq
j or wd

j decreases, more weights can quickly be zeroed out.
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2.3.2 Threshold and token weight updating

We study the change of tD, tQ, wd
j , and wq

j after each training step with a mini-

batch gradient descent update. The analysis below uses the first-order Taylor polynomial

approximation and follows the fact that sigmoid thresholding Ĥ and soft thresholding

function S are used independently for a query and a document in the loss function.

Symbol α is the learning rate. Let “d ◁ q” mean d is a positive or negative document of

query q.

∆tD = tnewD − toldD = −α
∂L

∂tD
= −α

(
1

|B|
∑
q∈B

∂LR

∂Ĥ

∂Ĥ

∂tD
+ λT

∂LT

∂tD

)

= α

(
1

|B|
∑
q∈B

(
K

∂LR

∂Ĥ

∑
d◁q

∑
i

wd
i (1− σ)−σ−

)
+ λT

e−tD

1 + e−tD

)
.

∆tQ = tnewQ − toldQ = −α
∂L

∂tQ
= −α

(
1

|B|
∑
q∈B

∂LR

∂S

∂S

∂tQ
+ λT

∂LT

∂tQ

)

= α

(
1

|B|
∑
q∈B

(
∂LR

∂S

∑
i

1wq
i≥tQ

)
+ λT

e−tQ

1 + e−tQ

)
.

∆wd
j = wd,new

j − wd,old
j ≈

∑
θ∈Θ

∂wd
j

∂θ
∆θ = −

∑
θ∈Θ

∂wd
j

∂θ
α
∂L

∂θ

= −α
∑
θ∈Θ

∂wd
j

∂θ

(
1

|B|
∑
q∈B

(
∂LR

∂Ĥ

(∑
d◁q

∑
i

∂Ĥ

∂wd
i

∂wd
i

∂θ

)
+

∂LR

∂S

(∑
i

∂S

∂wq
i

∂wq
i

∂θ

))
+ λD

∂LD

∂θ
+ λQ

∂LQ

∂θ

)
.

Notice that ∂Ĥ
∂wd

i
= σ− +Kwd

i σ
−(1− σ−). The above results indicate:

• A significant number of terms in ∆tD and ∆wd
j involve linear coefficient K. This

is verifiably true also for ∆wq
j . Although a large K value can minimize the index

approximation error |Ĥ(wd
j , tD)−H(wd

j , tD)|, it can cause an aggressive change of
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token weights and thresholds at a training iteration, making training overshoot and

miss the global optimum. Thus K cannot be too large, and our evaluation further

studies this.

• If ∂LR

∂Ĥ
≥ 0, ∆tD ≥ 0, and the document threshold increases, decreasing Dlen.

Otherwise document token threshold may decrease after a parameter update step

during training, and the degree of decreasing is reduced by a positive value e−tD

1+e−tD
.

Based on the sign of ∂LR

∂S
, we can draw a similar conclusion on ∆tQ.

2.4 Evaluation

Our evaluation uses MS MARCO passages [36] and BEIR datasets [37]. MS MARCO

has 8.8M passages while BEIR has 13 different datasets of varying sizes up-to 5.4M. As a

common practice, we report the relevance in terms of mean reciprocal rank MRR@10 for

the MS MARCO passage Dev query set with 6980 queries, and the normalized discounted

cumulative gain nDCG@10 [46] for its DL’19 and DL’20 sets, and also for BEIR. For

retrieval with a SPLADE inverted index, we report the mean response time (MRT) and

99th percentile time (P99) in milliseconds. The query encoding time is not included.

For the SPLADE model, we warm up it following [30, 47], and train it with λQ = 0.01

and λD = 0.008, and hybrid thresholding. We use the PISA [48] search system to

index documents and search queries using SIMD-BP128 compression [49] and MaxScore

retrieval [50, 31]. Our evaluation runs as a single thread on a Linux CPU-only server with

Intel i5-8259U 2.3GHz and 32GB memory. Similar retrieval latency results are observed

on a 2.3GHz AMD EPYC 7742 processor. The checkpoints and related code will be

released in https://github.com/Qiaoyf96/HT.

Overall results with MS MARCO. Table 2.1 is a comparison with the baselines

on MS MARCO passage Dev set, DL’19, and DL’20. It lists the average Dlen value, and
17
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Table 2.1: Overall results on MS MARCO passages
Methods MRR MRT(P99) MRT(P99) nDCG nDCG Dlen

Dev k = 10 k = 1000 DL’19 DL’20
SPLADE 0.3966 48.3(228) 127(408) 0.7398 0.7340 351
/DT [41] 0.3922 102(457) 262(786) 0.7392 0.7319 444
/Top305 [38] 0.3962 42.4(202) 114(369) 0.7353 0.7288 277
/Top100 [38] 0.3908 21.8(106) 62.5(196) 0.7192 0.7119 99
/DCP50% [21] 0.3958 30.0(145) 83.9(271) 0.7385 0.7321 175
/DCP40% [21] 0.3933 25.9(124) 73.3(235) 0.7335 0.7280 140
/DCP30% [21] 0.3912 21.6(101) 61.8(193) 0.7287 0.7217 105
/Cut0.5 0.3924 21.9(104) 62.6(195) 0.7296 0.7212 144
/Cut0.8 0.3885 15.6(70.4) 43.8(128) 0.7207 0.7118 112
/HT1 0.3955 22.8(108) 62.3(195) 0.7322 0.7210 140
/HT3 0.3942 14.2(67.2) 40.6(123) 0.7327 0.7228 106
/HT1-2GTI [51] 0.3959 10.0(49.1) 27.6(92.2) 0.7330 0.7210 140
/HT3-2GTI [51] 0.3942 6.9(33.9) 19.3(62.1) 0.7320 0.7228 106

top-k retrieval time with depth k = 10 and 1000. Row 3 is for original SPLADE trained

by ourselves with an MRR number higher than 0.38 reported in [30, 47]. Rows 12 and

13 list the result of our hybrid thresholding marked as HTλT
and K = 25. With λT = 1,

SPLADE/HT1 converges to a point where tQ = 0.4 and tD = 0.5, which is about 2x

faster in retrieval. HT3 with λT = 3 converges at tQ = 0.7 and tD = 0.8, resulting 3.1x

speedup than SPLADE while having a slightly lower MRR@10 0.3942. No statistically

significant degradation in relevance has been observed at the 95% confidence level for

both HT1 and HT3. The inverted index size reduces from 6.4GB for original SPLADE

to 2.8GB and 2.2GB for HT1 and HT3 respectively. When applying two-level guided

traversal 2GTI [51] with its fast configuration, Rows 14 and 15 show a further latency

reduction to 6.9ms or 19.3ms.

We discuss other baselines listed in this table. Row 4 named DT uses the thresholding

scheme from [41]. Its training does not converge with its loss function, and its retrieval

is much slower. Rows 5 and 6 follow joint training of top-k masking [38] with the top 305

tokens as suggested in [38] and with the top 100 tokens. Rows 7, 8 and 9 marked with
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DCPx follow document centric pruning [21] that keeps x of top tokens per document

where x=50%, 40%, and 30%. We did not list term centric pruning [19, 20] because [21]

shows DCP is slightly better in relevance under the same latency constraint. Rows 10

and 11 with “/Cut0.5” and “/Cut0.8” apply a hard threshold with 0.5 and 0.8 in the

output of original SPLADE without joint training. The index pruning options without

learning from Rows 5 to 11 can either reduce the latency to the same level as HT, but

their relevance score is visibly lower; or have a relevance similar to HT but with much

slower latency. This illustrates the advantage of learned hybrid thresholding with joint

training.
.

Table 2.2: Zero-shot performance on BEIR datasets
SPLADE SPLADE/HT1 SPLADE/HT3

Dataset nDCG MRT nDCG MRT nDCG MRT
DBPedia 0.430 135 0.435 64.2 0.426 32.3
FiQA 0.354 6.5 0.345 4.0 0.336 3.2
NQ 0.547 81.8 0.545 45.9 0.539 28.6
HotpotQA 0.678 481 0.680 265 0.678 140
NFCorpus 0.351 0.5 0.352 0.3 0.346 0.2
T-COVID 0.719 16.0 0.730 10.1 0.695 7.5
Touche-2020 0.307 15.0 0.306 9.3 0.313 4.5
ArguAna 0.440 20.8 0.463 7.8 0.500 4.1
C-FEVER 0.234 1375 0.219 681 0.213 332
FEVER 0.781 1584 0.778 559 0.764 264
Quora 0.806 17.5 0.776 9.2 0.792 4.5
SCIDOCS 0.151 6.9 0.155 3.0 0.151 2.0
SciFact 0.676 5.7 0.681 2.4 0.672 1.4
Average 0.498 - 0.497 2.0x 0.494 3.6x

Table 4.4 lists the zero-shot performance of HT when k = 1000 by applying the

SPLADE/HT model learned from MS MARCO to the BEIR datasets without any ad-

ditional training. HT1 has a similar nDCG@10 score as SPLADE without HT, while

having a 2x MRT speedup on average. HT3 is even faster with 3.6x speedup, and its

nDCG@10 drops in some degree to 0.494.
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(a) Documents (b) Queries

Figure 2.2: Weight/threshold/sparsity changes during training

Figure 2.2 depicts the average values of wd
j , tD, and Dlen on the left and wq

j , tQ, and

Qlen on the right during MS MARCO training under HT1. x-axis is the training epoch

number. It shows that Dlen and Qlen decrease while tD and tQ increase as training

makes progress and SPLADE/HT1 converges after about 20 epochs.

Design options. Table 2.3 lists performance under 4 thresholding combinations

from Row 3 to Row 7. S[x] means soft thresholding function S() is applied to x for both

training and indexing where x can be documents (D) or queries (Q). Ĥ[x] means sigmoid

thresholding Ĥ is applied in both training and indexing. ĤH[x] means Ĥ is applied in

training and H is applied in indexing. ϕ[x] means no thresholding is applied to x during

training and indexing. When thresholding is not applied to queries, ĤH[D] is 1.3x faster

than S[D] when k = 10 and k = 1000 while their relevance scores are similar. Shifting

of document weight distribution by soft thresholding significantly affects retrieval time.

Rows 6 and 7 fix ĤH[D] setting, and show that soft thresholding is more effective in

relevance than hard thresholding for query tokens. Shifting of query weight distribution

has less effect on latency while gaining more relevance through model consistency between

training and indexing.
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Table 2.3: Impact of design options. MS MARCO passages.
HT Config. MRR MRT(P99) MRT(P99) Qlen Dlen
λT = 1 k = 10 k = 1000
Soft vs. hard thresholding in 4 combinations. Fix K = 25.
ϕ[Q], S[D] 0.3941 31.7(157) 91.5(315) 14.3 145
ϕ[Q], ĤH[D] 0.3942 24.1(111) 70.7(219) 13.5 142
S[Q], ĤH[D] 0.3955 22.8(108) 62.3(195) 11.3 140
ĤH[Q], ĤH[D] 0.3904 24.9(106) 62.6(182) 9.0 142
Vary K. Ĥ[D] vs. ĤH[D]. Fix S[Q].
ĤH[D], K = 2.5 0.3947 22.8(110) 62.6(199) 11.5 149
Ĥ[D], K = 2.5 0.3963 41.4(198) 112(358) 11.5 421
ĤH[D], K = 25 0.3955 22.8(108) 62.3(195) 11.3 140
Ĥ[D], K = 25 0.3961 28.7(136) 76.9(239) 11.3 208
ĤH[D], K = 250 0.3946 21.9(102) 60.5(189) 11.2 135
Ĥ[D], K = 250 0.3947 23.1(112) 63.9(203) 11.2 159
Usefulness of LQ and LD. Fix S[Q], ĤH[D], and K = 25.
w/o LQ 0.3956 56.2(245) 166(502) 20.1 138
w/o LQ, LD 0.3954 99.4(434) 254(772) 25.9 421

Hyperparameter K in sigmoid thresholding Ĥ. Table 2.3 compares ĤH[D]

with Ĥ[D] when varying K from Row 8 to Row 14. In these cases, training always uses

Ĥ while indexing uses Ĥ or H. When K is small as 2.5, applying Ĥ to both training

and indexing yields good relevance, but retrieval is about 1.8x slower because much more

non-zero weights are kept in the index. When K becomes large as 250, training does not

converge to the global optimum due to large update sizes, resulting in an MRR score

lower than K=25 even with no index approximation. K = 25 has a reasonable MRR

while ĤH[D] is up-to 26% faster than Ĥ[D].

Retaining LQ and LD. Last three rows of Table 2.3 shows that the query length is

higher when LQ is removed from the loss function, and documents get longer when LD

is removed further. The result means LQ and LD are useful in sparsity control together

with LT .
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2.5 Concluding Remarks

Our evaluation shows that learnable hybrid thresholding with index approximation

can effectively increase the sparsity of inverted indices with 2-3x faster retrieval and

competitive or slightly degraded relevance (0.28% - 0.6% MRR@10 drop). Its trainability

allows relevance and sparsity guided threshold learning and it can outperform index

pruning without such an optimization. Our scheme retains a non-uniform number of

non-zero token weights per vector based on a trainable weight and threshold difference

for flexibility in relevance optimization. Our analysis shows that hyperparameter K in

sigmoid thresholding needs to be chosen judiciously for a small index approximation error

without hurting training stability.

If a small relevance tradeoff is allowed, more retrieval time reduction is possible when

applying other related orthogonal efficiency optimization techniques [47, 31, 52, 51,

53, 54]. Applying hybrid thresholding HT3 to a checkpoint of a recent efficiency-

driven SPLADE model [47] with 0.3799 MRR@10 on the MS MARCO passage Dev set,

decreases the response time from 36.6ms to 21.7ms (1.7x faster) when k=1000 while

having 0.3868 MRR@10. This latency can be further reduced to 14.2ms with the same

MRR@10 number (0.3868) when 2GTI [51] is applied to the above index.

A future study is to investigate the use of the proposed hybrid thresholding scheme

for other learned sparse models [27, 28, 29].
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Chapter 3

Optimizing Guided Traversal for

Fast Learned Sparse Retrieval

3.1 Introduction

Document retrieval for searching a large dataset often uses a sparse representation

of document feature vectors implemented as an inverted index which associating each

search term with a list of documents containing such a term. Recently learned sparse

representations have been developed to compute term weights using a neural model such

as transformer based retriever [26, 55, 15, 16, 56, 28] and deliver strong relevance results,

together with document expansion (e.g. [57]). A downside is that top k document

retrieval latency using a learned sparse representation is much large than using the BM25

model as discussed in [56, 58]. In the traditional BM25-based document retrieval with

additive ranking, a dynamic index pruning strategy based on top k threshold is very

effective by computing the rank score upper bound on the fly for each visited document

during index traversal in order to skip low-scoring documents that are unable to appear in

the final top k list. Well known traversal algorithms with such dynamic pruning strategies
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include MaxScore [4] and WAND [2], and their block-based versions Block-Max WAND

(BMW) [3] and Block-Max MaxScore (BMM) [59, 60].

Mallia et al. [31] propose to use BM25 to guide traversal, called GT, for fast learned

sparse retrieval because the distribution of learned weights results in less pruning oppor-

tunities and they conducted an evaluation with retrieval model DeepImpact [56]. One

variation they propose is to compute the final rank scoring as a linear combination of the

learned weights and BM25 weights, denoted as GTI. GT is a special case of GTI and this

paper treats GTI as the main baseline. Since the BM25 weight for a document term pair

may not exist in a learned sparse index, zero filling is used in Mallia et al. [31] to align

the BM25 and learned weight models. During our evaluation using GT for SPLADE v2

and its revision SPLADE++ [16, 30], we find that as retrieval depth k decreases, BM25

driven skipping becomes too aggressive in dropping documents desired by top k ranking

based on learned term weights, which can cause a significant relevance degradation. In

addition, there is still some room to further improve index alignment of GTI for more

accurate BM25 driven pruning.

To address the above issues, we improve our earlier pruning study on dual guidance

with combined BM25 and learned weights [52]. Our work generalizes GTI by constraining

the pruning influence of BM25 and providing an alternative smoothing method to align

the BM25 index with learned weights. In Section 3.4, we propose a two-level parameter-

ized guidance scheme with index alignment, called 2GTI, to manage pruning decisions

during MaxScore based traversal. We analyze some formal properties of 2GTI on its rel-

evance behaviors and configuration conditions when 2GTI outperforms a two-stage top

k search algorithm for a query in relevance.

Section 3.5 and Section 3.6 present an evaluation of 2GTI with SPLADE++ [15, 16,

30] and uniCOIL [28, 29] in addition to DeepImpact [56] when using MaxScore on the MS

MARCO datasets. This evaluation shows that when retrieval depth k is small, or when
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the BM25 index is not well aligned with the underlying learned sparse representation,

2GTI can outperform GTI and retain relevance more effectively. In some cases, there is

a tradeoff that 2GTI based retrieval may be slower than that of GTI while 2GTI is still

much faster than the original MaxScore method without BM25 guidance. 2GTI is also

effective for the BEIR datasets in terms of the zero-shot relevance and retrieval latency.

In Section 3.7, we have extended the use of 2GTI for a BMW-based algorithm such as

VBMW [24]. We demonstrate that 2GTI with VBMW can be useful for a class of short

queries and when k is small.

3.2 Background and Related Work

The top-k document retrieval problem identifies top ranked results in matching a

query. A document representation uses a feature vector to capture the semantics of a

document. If these vectors contain much more zeros than non-zero entries, then such a

representation is considered sparse. For a large dataset, document retrieval often uses

a simple additive formula as the first stage of search and it computes the rank score of

each document d as: ∑
t∈Q

wt · w(t, d), (3.1)

where Q is the set of all search terms, w(t, d) is a weight contribution of term t in

document d, and wt is a document-independent or query-specific term weight. Assume

that w(t, d) can be statically or dynamically scaled, this paper views wt = 1 for simplicity

of presentation. An example of such formula is BM25 [1] which is widely used. For a

sparse representation, a retrieval algorithm often uses an inverted index with a set of

terms, and a document posting list of each term. A posting record in this list contains

document ID and its weight for the corresponding term.

25



Optimizing Guided Traversal for Fast Learned Sparse Retrieval Chapter 3

Threshold-based skipping. During the traversal of posting lists in document re-

trieval, the previous studies have advocated dynamic pruning strategies to skip low-

scoring documents, which cannot appear on the final top-k list [2, 61]. To skip the

scoring of a document, a pruning strategy computes the upper bound rank score of a

candidate document d, referred to as Bound(d).

If Bound(d) ≤ θ where θ is the rank score threshold in the top final k list, this docu-

ment can be skipped. For example, WAND [2] uses the maximum term weights of docu-

ments of each posting list to determine the rank score upper bound of a pivot document

while BMW [3] and its variants (e.g. [24]) optimize WAND use block-based maximum

weights to compute the score upper bounds. MaxScore [4] uses term partitioning and the

top-k threshold to skip unnecessary index visitation and scoring computation. Previous

work has also pursued a “rank-unsafe” skipping strategy by deliberately over-estimating

the current top-k threshold by a factor [2, 62, 63, 64].

Learned sparse representations. Earlier sparse representation studies are con-

ducted in [25], DeepCT [26], and SparTerm [55]. Recent work on this subject includes

SPLADE [15, 16, 30], which learns token importance for document expansion with spar-

sity control. DeepImpact [56] learns neural term weights on documents expanded by

DocT5Query [57]. Similarly, uniCOIL [28] extends the work of COIL [29] for contextu-

alized term weights. Document retrieval with term weights learned from a transformer

has been found slow in [31, 58]. Mallia et al. [31] state that the MaxScore retrieval algo-

rithm does not efficiently exploit the DeepImpact scores. Mackenzie et al. [58] view that

the learned sparse term weights are “wacky” as they affect document skipping during

retrieval thus they advocate ranking approximation with score-at-a-time traversal.

Our scheme uses a hybrid combination of BM25 and learned term weights, motivated

by the previous work in composing lexical and neural ranking [65, 66, 67, 68, 69]. GTI

adopts that for final ranking. A key difference in our work is that hybrid scoring is used
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for two-level pruning control and its formula can be different from final ranking. The

multi-level hybrid scoring difference provides an opportunity for additional pruning and

its quality control. Thus the outcome of 2GTI is not a simple linear ranking combination

of BM25 and learned weights and two-level guided pruning yields a non-linear ensemble

effect to improve time efficiency while retaining relevance. Our evaluation will include a

relevance and efficiency comparison with MaxScore using a simple linear combination.

This paper mainly focuses on MaxScore because it has been shown more effective

for relatively longer queries [50]. We also consider VBMW [24] because it is generally

acknowledged to represent the state of the art [58] for many cases, especially when k is

small and the query length is short [50].

3.3 Design Considerations
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Figure 3.1: Recall@k and MRR@10 when k varies.

Figure 3.1 shows the performance of the original MaxScore retrieval algorithm with-
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out BM25 guidance, GTI, and the proposed 2GTI scheme in terms of MRR@10 and

recall@k when varying top k in searching MS MARCO passages on Dev query set. Here

k is the targeted number of top documents to retrieve and it is also called retrieval depth

sometime in the literature. Section 3.5 has more detailed dataset and index information.

For both SPLADE++ and uniCOIL, we build the BM25 model following [31] to expand

passages first using DocT5Query, and then use the BERT’s Word Piece tokenizer to to-

kenize the text, and align the token choices of BM25 with these learned models. From

Figure 3.1, there are significant recall and MRR drops with GTI when k varies from

1,000 to 10. There are two reasons contributing to the relevance drops.

1. When the number of top documents k is relatively small, the relevance drops sig-

nificantly. As k is small, dynamically-updated top k score threshold becomes closer

to the maximum rank score of the best document. Fewer documents fall into top

k positions and more documents below the updated top k score threshold would

be removed earlier. Then the accuracy of skipping becomes more sensitive. The

discrepancy of BM25 scoring and learned weight scoring can cause good candi-

dates to be removed inappropriately by BM25 guided pruning, which can lead to

a significant relevance drop for small k.

2. The relevance drop for SPLADE++ with BM25 guided pruning is noticeably much

more significant than uniCOIL. That can be related to the fact that SPLADE++

expands tokens of each document tokens differently and much more aggressively

than uniCOIL. As a result, 98.6% of term document pairs in SPLADE++ index

does not exist in the BM25 index even after docT5Query document expansion while

this number is 1.4% for uniCOIL. Thus, BM25 guidance can become less accurate

and improperly skip more good documents.

With the above consideration, our objective is to control the influence of BM25
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weights in a constrained manner for safeguarding relevance prudently, and to develop

better weight alignment when the BM25 index is not well aligned with the learned sparse

index. In Figure 3.1, the recall@k number of 2GTI marked with blue squares is simi-

lar to that of the original method without BM25 guidance. Their MRR@10 numbers

overlapped with each other, forming a nearly-flat lines, which indicates their MRR@10

numbers are similar even k decreases. The following two sections present our solutions

in addressing the above two issues respectively.
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Figure 3.2: (a) and (b): Example of two-level pruning in MaxScore. (c) Two-level
guided traversal for MaxScore.

3.4 Two-level Guided Traversal

3.4.1 Two-level guidance for MaxScore

We assume the posting list of each term is sorted in an increasing order of document

IDs in the list. The MaxScore algorithm [4] can be viewed to conduct a sequence of

traversal steps and at each traversal step, it conducts term partitioning and then examines

if scoring of a selected document should be skipped. We differentiate pruning-oriented

actions in two levels as follows.

• Global level. MaxScore uses the maximum scores (upper bounds) of each term

and the current known top k threshold to partition terms into two lists at each
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index traversal step: the essential list and non-essential list. The documents that

do not contain essential terms are impossible to appear in top k results and thus can

be eliminated. In the next step of index traversal, it will start with the minimum

unvisited document ID only from the posting lists of essential terms. Thus index

visitation is driven by moving such a minimum document ID pointer from the

essential list.

We consider this level of pruning as global because it guides skipping of multiple

documents and explores inter-document relationship implied by maximum term

weights. Figure 3.2(a) depicts an example of global pruning flow in MaxScore with

4 terms and each posting list maintains a pointer to the current document being

visited at a traversal step. The term partitioning identifies two essential terms

t3 and t4. The minimum document ID among the current document pointers in

these essential terms is d3, and any document ID smaller than d3 is skipped from

further consideration during this traversal step. The current visitation pointer of

the posting list of non-essential lists also moves to the smallest document ID equal

to or bigger than d3.

• Local level. Once a document is selected for possible full evaluation, the ranking

score upper bound of this document can be estimated and gradually tightened us-

ing maximum weight contribution or the actual weight of each query term for this

document. This incrementally refined score upper bound is compared against the

dynamically updated top k threshold, which provides another opportunity to fully

or partially skip the evaluation of this document. We differentiate this level of skip-

ping decision as local because this pruning is localized towards a specific document

selected. Figure 3.2(b) illustrates an example of local pruning in MaxScore. d3 is

the document selected after term partitioning and the maximum or actual weights
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contributed from all posting lists for document d3 are utilized for the local pruning

decision.

Instead of directly using BM25 to guide pruning at the global and local levels, we pro-

pose to use a linear combination of BM25 weights and learned weights to guide skipping

at each level as follows, which allows a parameterizable control of their influence.

• We incrementally maintain three accumulated scores for each document Global(d),

Local(d), and RankScore(d). Global(d) is for global pruning, Local(d) is for local

pruning, and RankScore(d) is for final ranking.

Global(d) = αRankScoreB(d) + (1− α)RankScoreL(d)

Local(d) = βRankScoreB(d) + (1− β)RankScoreL(d)

RankScore(d) = γRankScoreB(d) + (1− γ)RankScoreL(d)

where 0 ≤ α, β, γ ≤ 1, RankScoreB(d) follows Expression 3.1 using BM25 weights,

and RankScoreL(d) follows Expression 3.1 using learned weights. The RankScore

formula follows the GTI setting in [31], and 2GTI with α = β = 1 behaves like

GTI. 2GTI with α = β = γ is the same as MaxScore retrieval and it uses learned

neural weights only when γ = 0.

• With the above three scores for each evaluated document, we maintain three sep-

arate queues: QGl, QLo, QRk for documents with the k largest scores in terms

of Global(d), Local(d), and RankScore(d) respectively. The lowest-scoring docu-

ment in each queue is removed separately without inter-queue coordination. These

queues are maintained for different purposes: the first two queues regulate global

and local pruning while the last queue is to produce the final top k results. When a
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document based on local pruning is eliminated for further consideration, this docu-

ment is not added to global and local queues QGl and QLo. But this document may

have some partial score accumulated for its RankScore(d), and it is still added to

QRk in case this document with the partial score may qualify in the top k results

based on the latest RankScore(d) value.

These three queues yield three dynamic top-k thresholds θGl, θLo, and θRk. They

can be used for a pruning decision to avoid any further scoring effort to obtain or

refine RankScore(d).

Revised MaxScore pruning control flow: Figure 3.2(c) illustrates the extra

control flow added for the revised MaxScore algorithm. Let N be the number of query

terms. We define:

• Given N posting lists corresponding to N query terms, each i-th posting list con-

tains a sequence of posting records and each record contains document ID d, its

BM25 weight wB(i, d) and learned weight wL(i, d). Posting records are sorted in

an increasing order of their document IDs.

• An array σL of N where σL[i] is the maximum contribution of the learned weight

to any document for i-th term.

• An array σB of N where σB[i] is the maximum contribution of the BM25 weight to

any document for i-th term.

• N search terms are presorted so that ασB[i] + (1 − α)σL[i] ≤ ασB[i + 1] + (1 −

α)σL[i+ 1] where 1 ≤ i ≤ N − 1.

Global pruning with term partitioning. For each query term 1 ≤ i ≤ N , we

find the largest integer pivot from 1 to N so that
∑pivot−1

j=1 (ασB[j] + (1− α)σL[j]) ≤ θGl.
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All terms from pivot to N are considered as essential. If a document d does not contain

any essential term, the upper bound of Global(d) ≤
∑pivot−1

j=1 ασB[j]+ (1−α)σL[j] ≤ θGl.

This document cannot appear in the final top k list based on the global score. Then this

document is skipped without appearing in any of the three queues.

Once the essential term list above the pivot position is determined, let the next

minimum document ID among the current position pointers in the posting lists of all

essential terms be document d. We also call it the pivot document.

Local pruning. Next we check if the detailed scoring of the selected pivot document

d can be avoided fully or partially. Following an implementation in [70], we describe

this procedure with a modification to use hybrid scoring as follows and it repeats the

following three steps with the initial value of term position x as the pivot position and x

decreases by 1 at each loop iteration.

• Let PartialScoreLocal(d) be the sum of all term weights of document d in the post-

ing lists from position x toN after linear combination. Namely PartialScoreLocal(d) =∑N−1
i=x βwB(i, d) + (1− β)wL(i, d) when i-th posting list contains d, and otherwise

this value is 0.

As x decreases, the term weight of pivot document d is extracted from the posting

list of x-th term if available.

• Let PartialBoundLocal(d) be the bound for partial local score of document d in the

posting lists of the first to x-th query terms.

PartialBoundLocal(d) =
x∑

j=1

βσB[j] + (1− β)σL[j].
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• At any time during the above calculation, if

PartialBoundLocal(d) + PartialScoreLocal(d) ≤ θLo,

further rank scoring for pivot document d is skipped and this document will not

appear in any of the three queues. Figure 3.2(b) depicts that the partial bound and

partial score of Local(d3) for pivot document d3 are computed to assist a pruning

decision.

Complexity. 2GTI’s complexity is the same as MaxScore and GTI. The in-memory

space cost includes the space to host the inverted index involved for this query and the

three queues. The time complexity is proportional to the total number of posting records

involved for a query multiplied by log k for queue updating.

A posting list may be divided and compressed in a block-wise manner and Block

MaxScore can use 2GT similarly while a previous study [50] shows Block-Max MaxScore

is actually slower than MaxScore under several compression schemes. We will discuss the

use of 2GT in block-based BMW in Appendix 3.7.

3.4.2 Relevance properties of 2GTI

2GTI ensembles BM25 and learned weights for pruning in addition to rank score

composition, producing a top k ranked list which can be different than additive ranking

with learned weights or their linear combination of BM25 weights. Thus 2GTI is not

rank-safe compared to any of such baselines. Two-level pruning is driven by different

combination coefficients α, β, and γ configured in 2GTI and their value gap provides an

opportunity for additional pruning while 2GTI tries to retain relevance effectiveness. Is

there a relevance guarantee 2GTI can offer in case such pruning skips relevant documents

erroneously sometimes? To address this question analytically, this subsection presents
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three properties regarding the relevance outcome and competitiveness of the 2GTI based

retrieval.

Our analysis will use the following terms. Given query Q, let Rx be a ranked list of all

documents of the given dataset sorted in a descend order of their rank scores based on a

linear combination of their BM25 weights and learned weights with coefficient x, namely∑
t∈Q x ∗ wB(t, d) + (1 − x)wL(t, d) for document d. Specifically, there are three ranked

lists: Rα, Rβ, and Rγ. 2GTI maintains 3 queues QGl, QLo, and QRk with 3 dynamically

updated top k thresholds, θGl, θLo, θRk. Let ΘGl, ΘLo, ΘRk be the final top k threshold

of these 3 queues at the end of 2GTI. Namely it is the rank score of k-th document in

the corresponding queue. The following fact is true:

θGl ≤ ΘGl, θLo ≤ ΘLo, and θRk ≤ ΘRk.

Theorem 1 Assume the subset of top k documents in each of Rα,Rβ, and Rγ is unique

after arbitrarily swapping rank positions of documents with the same score. Then any

document that appears in top-k positions of Rα, Rβ, and Rγ is in the top-k outcome of

2GTI.

Proof: For any document d that appears in the top k positions of all three ranked

lists, Global(d) ≥ ΘGl ≥ θGl, Local(d) ≥ ΘLo ≥ θLo and RankScore(d) ≥ ΘRk ≥ θRk.

If document d is eliminated by global pruning during 2GTI retrieval, Global(d) =

ΘGl = θGl and the Rα-based rank score of both document d and (k + 1)-th document in

ranked list Rα has to be ΘGl. Then the subset of top k documents in Rα is not unique

after arbitrarily swapping rank positions of documents with the same score, which is a

contradiction.

With the same reason, we can argue that document d cannot be eliminated by local

pruning or rejected by θRk when being added to QRk during 2GTI retrieval. Then this
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document has to appear in the final outcome of 2GTI.

The following two propositions analyze when 2GTI performs better in relevance than a

two-stage search algorithm called R2α,γ which fetches top k results from list Rα, and

then re-ranks using the scoring formula of Rγ.

Theorem 2 Assume the subset of top k documents in each of Rα,Rβ, and Rγ is unique

after arbitrarily swapping rank positions of documents with the same score. If 2GTI is

configured with α = β or β = γ, the average Rγ-based rank score of the top k documents

produced by 2GTI is no less than that of two-stage algorithm R2α,γ.

Proof: We let R2[k] denote the top k document subset in the outcome of R2α,γ . To

prove this proposition, we compare the averageRγ-based rank score of documents in R2[k]

and that in QRk at the end of 2GTI. Notice that for any document d satisfying d ∈ R2[k],

it is in the top k results of ranked list Rα and this top k subset is deterministic based on

the assumption of this proposition. Then d cannot be eliminated by global pruning in

2GTI.

Given any document d satisfying d ∈ R2[k] and d ̸∈ QRk at the end of 2GTI, it is

either eliminated by local pruning with threshold ΘLo or by top k thresholding of Queue

QRk with threshold θRk. In the later case, RankScore(d) ≤ θRk ≤ ΘRk. When d is

eliminated by local pruning, global pruning has to use a different formula because d is

not eliminated by global pruning, and then 2GTI has to be configured with β = γ instead

of α = β. In that case local pruning is identical to elimination with top k threshold of

QRk. Then RankScore(d) ≤ θRk ≤ ΘRk.

Since the size of both R2[k] and QRk is k, |R2[k]−R2[k]∩QRk|= |QRk−R2[k]∩QRk|.
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We can derive:

∑
d∈R2[k]

RankScore(d)

=
∑

d∈R2[k]∩QRk

RankScore(d) +
∑

d∈R2[k],d ̸∈QRk

RankScore(d)

≤
∑

d∈R2[k]∩QRk

RankScore(d) +
∑

d∈R2[k],d ̸∈QRk

ΘRk

=
∑

d∈R2[k]∩QRk

RankScore(d) +
∑

d ̸∈R2[k],d∈QRk

ΘRk

≤
∑

d∈R2[k]∩QRk

RankScore(d) +
∑

d ̸∈R2[k],d∈QRk

RankScore(d)

=
∑

d∈QRk

RankScore(d).

Thus
1

k

∑
d∈R2[k]

RankScore(d) ≤ 1

k

∑
d∈QRk

RankScore(d).

Definition 1. For a dataset in which documents are only labeled relevant or irrelevant

for any test query, we call ranked list Rx outmatches Ry if whenever Ry orders a pair of

relevant and irrelevant documents correctly for a query, Rx also orders them correctly.

Theorem 3 Assume documents in a dataset are only labeled as relevant or irrelevant

for a test query. Given a query, when Rγ outmatches Rβ, which outmatches Rα, 2GTI

retrieves equal or more relevant documents in top-k positions than two-stage algorithm

R2α,γ.

Proof: When 2GTI completes its retrieval for a query, we count the number of

relevant documents in top k positions of list Rα, queue QLo, and queue QRk as cα, cβ,

and cγ, respectively. To show cα ≤ cβ, we initialize them as 0 first and run the following
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loop to compute cα and cβ iteratively. The loop index variable i varies from k, k−1, until

1, and at each iteration we look at document x at Position i of Rα, and document y at

Position i of QLo. Let Lx and Ly be their binary label by which value 1 means relevant

and 0 means irrelevant.

• If Lx = Ly, we add Lx to both cα and cβ. Continue this loop.

• Now Lx ̸= Ly. If Lx = 0, Ly = 1, we add 1 to cβ, and continue the loop. If Lx = 1,

Ly = 0, there are two cases:

– If x is within top i positions of current QLo, we add 1 to both cα and cβ. Swap

the positions of documents x and y in QLo. Continue the loop.

– If x is not within top i positions of QLo, since x is in the top k of Rα, it

cannot be globally pruned and it will be evaluated by 2GTI for a possibility

of entering QLo. If x is ranked before y in list Rα, and since Rβ outmatches

Rα, x has to be ranked before y in both Rβ and QLo. That is a contradiction.

If x is ranked after y in Rα, we swap the positions of x and y in Rα. Continue

the loop.

The above process repeats and moves to a higher position until i = 1. When i = 1,

with top-1 document x in Rα and top-1 y in QLo, the only possible cases are Lx = Ly or

Lx = 0 and Ly = 1. Therefore, at the end of the above process, cβ ≥ cα.

Similarly, we can verify that cγ ≥ cβ since Rγ outmatches Rβ. Therefore cγ ≥ cβ ≥ cα.

The number of relevant documents up to position k retrieved for 2GTI is cγ while the

number of relevant documents up to position k retrieved for R2α,γ is cα. Thus this

proposition is true.

The above analysis indicates that the top documents agreed by three rankings Rα,

Rβ, and Rγ are always kept on the top by 2GTI, and a properly configured 2GTI al-
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gorithm could outperform a two-stage retrieval and re-ranking algorithm in relevance,

especially when ranking Rγ outmatches Rβ and Rβ outmatches Rα for a query. Since

two-stage search with neural re-ranking conducted after BM25 retrieval is well adopted

in the literature, this analysis provides useful insight into the “worst-case” relevance com-

petitiveness of 2GTI with two-level pruning. GTI can be considered as a special case of

2GTI with α = β = 1 when the same index is used, and the above three propositions are

true for GTI. 2GTI provides more flexibility in pruning with quality control than GTI

and Section 3.5 further evaluates their relevance difference.

3.4.3 Alignment of tokens and weights

The BM25 model is usually built on word-level tokenization on the original or ex-

panded document sets and the popular expansion method uses DocT5Query with the

same tokenization method. When a learned representation uses a different tokenization

method such as BERT’s WordPiece based on subwords from BERT vocabulary, we need

to align it with BM25 for a consistent term reference. For example, when using BM25

to guide the traversal of SPLADE index, the WordPiece tokenizer is used for a docu-

ment expanded with DocT5Query before BM25 weighting is applied to each token. Once

tokens are aligned, from the index point of view, the same token has two different post-

ing lists based on BM25 weights and based on SPLADE. To merge them when postings

do not align one-to-one, the missing weight is set to zero as proposed in [31]. We call

this zero-filling alignment. As alternatives, we propose two more methods to fill missing

weights with better weight smoothness.

• One-filling alignment. We assign 1 as term frequency for a missing token in

the BM25 model while this token appears in the learned token list of a document.

The justification is that a zero weight is to be too abrupt when such a term is
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considered to be useful for a document based on a learned neural model. Having

term frequency one means that this token is present in the document, even with

the lowest value.

• Scaled alignment. This alternative replaces the missing weights in the BM25

model based on a scaled learned score by using the ratio of mean values of non-zero

weights in both models. For document ID d that contains term t, let its BM25

weight be wB(t, d) and its learned weight be wL(t, d). Let w∗
B(t, d) be an adjusted

BM25 weight. Set PB contains all posting records with nonzero BM25 weights.

Set PL contains posting records with non-zero learned weights. Then w∗
B(t, d) is

defined as:

w∗
B(t, d) =


wB(t, d), wB(t, d) ̸= 0,∑

(t′,d′)∈PB
wB(t

′, d′)/|PB|∑
(t′,d′)∈PL

wL(t′, d′)/|PL|
wL(t, d), wB(t, d) = 0.

3.5 Evaluations

Table 3.1: Model characteristics with MS MARCO Dev set
Index Avg. Q Length #Postings Size Merged
MS MARCO passages
BM25-T5 4.5 (4.5) 644M 1.2G -
DeepImpact 4.2 (4.2) 644M 2.6G 2.6G
BM25-T5-B 6.6 (6.6) 699M 1.2G -
UniCOIL 6.6 (686.3) 592M 1.5G 1.7G
SPLADE++ 23.3 (867.6) 2.62B 5.6G 8.3G
MS MARCO documents
BM25-T5-B 6.8 (7.0) 3.39B 5.4G -
UniCOIL 6.6 (685.0) 3.04B 7.0G 8.3G

Datasets and settings. Our evaluation uses the MS MARCO document and passage

collections [36, 71], and 13 publicly available BEIR datasets [37]. The results for the
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BEIR datasets are described in Appendix 3.6. For MS MARCO, the contents in the

document collections are segmented during indexing and re-grouped after retrieval using

“max-passage” strategy following [72]. There are 8.8M passages with an average length

of 55 words, and 3.2M documents with an average length of 1131 words before segmen-

tation. The Dev query set for passage and document ranking has 6980 and 5193 queries

respectively with about one judgment label per query. Each of the passage/document

ranking task of TREC Deep Learning (DL) 2019 and 2020 tracks provides 43 and 54

queries respectively with many judgment labels per query.

In producing an inverted index, all words use lower case letters. Following GT, we

packed the learned score and the term frequency in the same integer. For DeepImpact,

we adopt GT’s index1 directly. The BM25-T5’s index is dumped from the DeepImpact

index. Both BM25-T5 and DeepImpact are using natural words tokenization.

SPLADE and uniCOIL use the BERT’s Word Piece tokenizer. In order to align with

them, the BM25-T5-B index reported in the following tables uses the same tokenizer

as well. The impact scores of uniCOIL is obtained from Pyserini [72] 2. For SPLADE,

in order to achieve the best performance, we retrained the model following the setup

in SPLADE++ [30]. We start from the pretrained model coCondenser [73] and distill

using the sentenceBERT hard negatives 3 from a cross-encoder teacher [74] with Margin-

MSE loss. For FLOP regularization, we use 0.01 and 0.008 for query and documents

respectively. We construct the inverted indexes, convert them to the PISA format, and

compress them using SIMD-BP128 [49] following [50, 31].

Table 3.1 shows the dataset and index characteristics of the different weighting models

on the MS MARCO Dev dataset. Following [58], we assume that a query can be pre-

processed with a ”pseudo-document” trick that assigns custom weights to query terms in
1https://github.com/DI4IR/dual-score
2https://github.com/castorini/pyserini/blob/master/docs/experiments-unicoil.md
3https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
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uniCOIL and SPLADE. Therefore, there may be token repetition in each query to reflect

token weighting. Column 1 is the mean query length in tokens without or with counting

duplicates. Column 3 is the inverted index size while the last column is the size after

merging BM25 and learned weights in the index.

The C++ implementation of 2GTI with the modified MaxScore and VBMW algo-

rithms are embedded in PISA [48], and the code will be released in https://github.

com/Qiaoyf96/2GTI. Our evaluation using this implementation runs as a single thread

on a Linux server with Intel i5-8259U 2.3GHz and 32GB memory. Weights are chosen

by sampling queries from the MS MARCO training dataset.

Metrics. For MS MARCO Dev set, we report the relevance in terms of mean recip-

rocal rank (MRR@10 on passages and MRR@100 on documents), following the official

leader-board standard. We also report the recall@k ratio which is the percentage of

relevant-labeled results appeared in the final top-k results. For TREC DL test sets, we

report normalized discounted cumulative gain (nDCG@10) [46]. The above reporting

follows the common practice of the previous work (e.g. [56, 29, 67, 16]).

Before timing queries, all compressed posting lists and metadata for tested queries

are pre-loaded into memory, following the same assumption in [75, 24]. Retrieval mean

response times (MRT) are reported in milliseconds. The 99th percentile time (P99) is

reported within parentheses in the tables below, corresponding to the time occurring in

the 99th percentile denoted as tail latency in [76].

Statistical significance. For the reported numbers on MS MARCO passage and

document Dev sets in the rest of this section, we have performed a pairwise t-test on

relevance difference between 2GTI and a GTI baseline, and between 2GTI and the original

learned sparse retrieval without BM25 guidance. No statistically significant degradation

has been observed at the 95% confidence level. We have also performed a pairwise t-

test comparing the reported relevance numbers of 2GTI and GTI and mark ‘†’ in the
42
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evaluation tables if there is a statistically significant improvement by 2GTI over GTI at

the 95% confidence level. We do not perform a t-test on DL’19 and DL’20 query sets as

the number of queries in these sets is small.

Table 3.2: A Comparison of 2GTI, GTI and the original method with no BM25
guidance for MaxScore (k = 10)

MS MARCO Dev DL’19 DL’20
Method MRR (Recall) MRT (P99) nDCG (Recall) MRT nDCG (Recall) MRT

SPLADE++, Passages.
BM25-T5-B 0.2611 (0.5179) 1.7 (8.7) 0.5931 (0.1556) 0.8 0.5981 (0.2034) 1.0
SPLADE++-Org 0.3937 (0.6801) 121 (483) 0.7304 (0.1776) 135 0.7290 (0.2437) 138
-GT 0.2720 (0.5246) 121 (438) 0.6379 (0.1677) 130 0.6106 (0.2192) 139
-GTI 0.2687 (0.5209) 118 (440) 0.6352 (0.1669) 131 0.6083 (0.2190) 139
-2GTI-Accurate 0.3939† (0.6812) 31.1 (171) 0.7401 (0.1846) 31.9 0.7278 (0.2480) 36.8
-2GTI-Fast 0.3934† (0.6792) 22.7 (116) 0.7380 (0.1837) 23.5 0.7278 (0.2480) 26.2
UniCOIL, Passages.
BM25-T5-B 0.2611 (0.5179) 1.7 (8.7) 0.5931 (0.1556) 0.8 0.5981 (0.2034) 1.0
UniCOIL-Org 0.3516 (0.6168) 10.5 (102) 0.7027 (0.1761) 10.4 0.6746 (0.2346) 14.2
-GT 0.3347 (0.5639) 2.1 (11.2) 0.6990 (0.1770) 1.7 0.6769 (0.2444) 2.4
-GTI 0.3384 (0.5678) 2.1 (11.2) 0.6959 (0.1733) 1.6 0.6739 (0.2422) 2.4
-2GTI-Accurate 0.3550† (0.6205) 3.3 (19.2) 0.7135 (0.1769) 2.4 0.6891 (0.2451) 3.4
-2GTI-Fast 0.3548† (0.6193) 2.6 (14.3) 0.7135 (0.1769) 1.9 0.6891 (0.2451) 2.8
UniCOIL, Documents.
BM25-T5-B 0.2716 (0.4749) 2.7 (13.9) 0.4246 (0.0741) 3.6 0.4463 (0.1693) 3.1
UniCOIL-Org 0.3313 (0.5638) 26.0 (252) 0.5477 (0.0880) 28.1 0.4996 (0.1920) 27.3
-GT 0.3280 (0.5455) 6.8 (36.2) 0.5199 (0.0779) 6.2 0.4903 (0.1871) 7.1
-GTI 0.3334 (0.5531) 6.9 (36.6) 0.5223 (0.0781) 6.1 0.4905 (0.1857) 7.2
-2GTI-Accurate 0.3423† (0.5710) 10.2 (56.4) 0.5486 (0.0852) 8.9 0.4998 (0.1886) 10.5
-2GTI-Fast 0.3418† (0.5663) 7.4 (40.4) 0.5453 (0.0847) 6.5 0.4997 (0.1845) 8.2
DeepImpact, Passages.
BM25-T5 0.2723 (0.5319) 0.7 (4.7) 0.6283 (0.1611) 0.3 0.6321 (0.2218) 0.5
DeepImpact-Org 0.3276 (0.5844) 9.4 (73.3) 0.6964 (0.1698) 4.9 0.6524 (0.2035) 7.8
-GT 0.3276 (0.5805) 0.7 (4.7) 0.6997 (0.1698) 0.3 0.6682 (0.2194) 0.5
-GTI 0.3375 (0.5866) 0.7 (4.7) 0.6953(0.1690) 0.3 0.6846 (0.2372) 0.5
-2GTI-Accurate 0.3405† (0.5987) 1.1 (8.1) 0.7065 (0.1703) 0.7 0.6850 (0.2361) 1.2
-2GTI-Fast 0.3395† (0.5934) 0.7 (5.1) 0.7045 (0.1693) 0.4 0.6882 (0.2371) 0.6

Overall results with MS MACRO. Table 3.2 and 3.3 lists a comparison of 2GTI

with the baseline using three sparse representations for retrieval on MS MARCO and

TREC DL datasets. 2GTI uses scaled filling alignment as default while GTI uses zero

filling as specified in [31]. The γ value is chosen the same for GTI and 2GTI for each

representation, which is the best for most of cases. The “accurate” configuration denotes

the one that reaches the highest relevance score. The “fast” configuration denotes the
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Table 3.3: A Comparison of 2GTI, GTI and the original method with no BM25
guidance for MaxScore (k = 1000)

MS MARCO Dev DL’19 DL’20
Method MRR (Recall) MRT (P99) nDCG (Recall) MRT nDCG (Recall) MRT

SPLADE++, Passages.
BM25-T5-B 0.2611 (0.9361) 9.2 (28.4) 0.5931 (0.7608) 6.4 0.5981 (0.7641) 7.4
SPLADE++-Org 0.3937 (0.9832) 278 (819) 0.7304 (0.8286) 317 0.7290 (0.8287) 307
-GT 0.2973 (0.9648) 336 (1048) 0.6636 (0.8030) 330 0.6605 (0.8072) 344
-GTI 0.2961 (0.9648) 332 (1059) 0.6595 (0.8025) 318 0.6587 (0.8066) 333
-2GTI-Accurate 0.3946† (0.9799) 109 (478) 0.7394 (0.8209) 123 0.7297 (0.8339) 132
-2GTI-Fast 0.3937† (0.9662) 43.1 (144) 0.7394 (0.8218) 42.1 0.7306 (0.8205) 45.0
UniCOIL, Passages.
BM25-T5-B 0.2611 (0.9361) 9.2 (28.4) 0.5931 (0.7608) 6.4 0.5981 (0.7641) 7.4
UniCOIL-Org 0.3516 (0.9582) 35.3 (197) 0.7027 (0.7822) 38.6 0.6746 (0.7758) 42.8
-GT 0.3514 (0.9458) 10.6 (33.9) 0.7028 (0.7857) 10.3 0.6746 (0.7741) 10.8
-GTI 0.3552 (0.9468) 10.6 (33.2) 0.7130 (0.7917) 10.3 0.6899 (0.7857) 10.8
-2GTI-Accurate 0.3554 (0.9566) 16.9 (68.4) 0.7130 (0.7904) 15.5 0.6899 (0.7823) 16.5
-2GTI-Fast 0.3552 (0.9468) 10.6 (33.2) 0.7129 (0.7917) 10.3 0.6899 (0.7857) 10.8
UniCOIL, Documents.
BM25-T5-B 0.2950 (0.9197) 12.4 (50.0) 0.5594 (0.5690) 15.0 0.5742 (0.7148) 15.7
UniCOIL-Org 0.3530 (0.9426) 71.0 (447) 0.6415 (0.5864) 79.2 0.6059 (0.7502) 86.0
-GT 0.3530 (0.9361) 20.9 (73.8) 0.6445 (0.5842) 21.6 0.6059 (0.7444) 22.7
-GTI 0.3639 (0.9368) 20.6 (72.9) 0.6581 (0.5920) 21.7 0.6156 (0.7445) 22.6
-2GTI-Accurate 0.3644 (0.9422) 33.2 (149) 0.6581 (0.5932) 32.8 0.6156 (0.7477) 37.4
-2GTI-Fast 0.3639 (0.9368) 20.6 (73.0) 0.6581 (0.5920) 21.7 0.6156 (0.7445) 22.5
DeepImpact, Passages.
BM25-T5 0.2723 (0.9348) 4.9 (21.3) 0.6283 (0.7704) 4.6 0.6321 (0.7598) 5.6
DeepImpact-Org 0.3276 (0.9474) 23.8 (97.0) 0.6964 (0.7623) 25.5 0.6524 (0.7534) 38.9
-GT 0.3276 (0.9454) 5.1 (21.1) 0.6964 (0.7745) 4.9 0.6527 (0.7574) 5.8
-GTI 0.3413 (0.9455) 5.2 (21.7) 0.7072 (0.7871) 4.7 0.6854 (0.7745) 5.7
-2GTI-Accurate 0.3414 (0.9469) 7.4 (33.0) 0.7072 (0.7875) 7.8 0.6854 (0.7778) 9.1
-2GTI-Fast 0.3413 (0.9455) 5.2 (21.7) 0.7072 (0.7871) 4.7 0.6854 (0.7745) 5.7
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one that reaches a relevance score within 1% of the accurate configuration while being

much more faster.

2GTI vs. GTI in SPLADE++. Table 3.2 and 3.3 shows 2GTI with default

scaled filling significantly outperforms GTI with default zero filling for SPLADE++,

where BM25 index is not well aligned. “SPLADE++-Org” denotes the original MaxScore

retrieval performance using SPLADE++ model trained by ourselves and its MRR@10

number is higher than what has been reported in [30]. When k = 1, 000, GT is slightly

better than GTI, and with the fast configuration, MRR@10 of 2GTI is 32.4% higher than

that of GT while 2GTI is 7.8x faster than GT for the Dev set. The significant increase

in nDCG@10 and decrease in the MRT are also observed in DL’19 and DL’20. When

k = 10, there is also a large relevance increase and time reduction from GTI or GT to

2GTI for all three test sets. For example, the relevance is 46.4% or 44.6% higher and the

mean latency is 5.2x or 5.3x faster for the Dev set.

Compared to the original MaxScore method, 2GTI has about the same relevance

score for both k = 10 and k = 1, 000 while having much smaller latency. For example,

6.5x reduction (278ms vs. 43.1ms) for the Dev passage set when k = 1, 000 and 5.3x

reduction when k = 10 (121ms vs 22.7ms) with the 2GTI-fast configuration.

2GTI vs. GTI in DeepImpact and uniCOIL. As shown in Table 3.2 and 3.3, GTI

(or GT) performs very well for k = 1, 000 in both DeepImpact and uniCOIL in speeding

up retrieval while maintaining a relevance similar as the original retrieval. The two-level

differentiation for dynamic index pruning does not improve relevance or shorten retrieval

time. This can be explained as BM25-T5 index is well aligned with the DeepImpact

index and with the uniCOIL index. Also because of this reason, filling to address index

alignment is not needed with no improvement in these two cases.

When k decreases from 1,000 to 10, as shown in Figure 3.1 discussed in Section 3.3,

the recall ratio starts to drop, and relevance effectiveness degrades. When k = 10 as
45



Optimizing Guided Traversal for Fast Learned Sparse Retrieval Chapter 3

shown in Table 3.2 and 3.3, DeepImpact-2GTI-fast can increase MRR@10 from 0.3375

by GTI to 0.3395 for the Dev set and deliver slightly higher MRR@10 or nDCG@10

scores than GTI in DL’19 and DL’19 sets. For uniCOIL, 2GTI-fast increases MRR@10

from 0.3384 by GTI to 0.3548 for the Dev set and increases nDCG@10 from 0.6959 to

0.7135 for DL’19. There is also a modest relevance increase for DL’20 passages with

k = 10 and a similar trend is observed for the document retrieval task. The price paid

for 2GTI is its retrieval latency increase while its latency is still much smaller than the

original retrieval time.

Design options with weight alignment and threshold over-estimation. Ta-

ble 3.4 examines the impact of weight alignment and a design alternative based on thresh-

old over-estimation for MS MARCO passage Dev set using SPLADE++ when k = 10.

In the top portion of this table, threshold over-estimation by a factor of F (1.1, 1.3,

and 1.5) is used in the original retrieval algorithm without BM25 guidance, and these

factor choices are similar as ones in [62, 63, 64]. That essentially sets α = 0, β = 0,

and γ = 0 while multiplying θGl and θLo by the above factor in 2GTI. The result shows

that even threshold over-estimation can reduce the retrieval time, relevance reduction is

significant, meaning that the aggressive threshold used causes incorrect dropping of some

desired documents.

The second portion of Table 3.4 examines the impact of different weight filling meth-

ods described in Section 3.4.3 for alignment when they are applied to GTI and 2GTI,

respectively. In both cases, scaled filling marked as “/s” is most effective while one-

filling marked as “/1” outperforms zero-filling marked as “/0” also. The MRT of 2GTI/s

becomes 10.5x smaller than 2GTI/0 while there is no negative impact to its MRR@10.

The MRT of GTI/s is about 13.0x smaller than GTI/0 while there is a large MRR@10

number increase.

A validation on 2GTI’s properties. To corroborate the competitiveness analysis
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Table 3.4: Impact of design options on MS MARCO passages
SPLADE++. k = 10 MRR@10 Recall@10 MRT P99

Threshold over-estimation
Original 0.3937 0.6801 121 483
- F = 1.1 0.3690 0.5707 107 457
- F = 1.3 0.3210 0.4393 95.0 420
- F = 1.5 0.2825 0.3670 88.2 393
Weight alignment for GTI (α = 1, β = 1, γ = 0.05)
GTI/0 0.2687 0.5209 118 440
GTI/1 0.3036 0.5544 26.7 114
GTI/s 0.3468 0.5774 9.1 36.1
Weight alignment for 2GTI-Accurate (α = 1, β = 0, γ = 0.05)
2GTI/0 0.3933 0.6799 328 1262
2GTI/1 0.3933 0.6818 89.3 393
2GTI/s 0.3939 0.6812 31.1 171

in Section 4.3.2, Table 3.5 gives MRR@10 scores and retrieval times in milliseconds of

the algorithms with different configurations on the Dev set of MS MARCO passages

with k = 10 and SPLADE++ weights. The result shows that the listed configurations

of 2GTI have a higher MRR@10 number than 2-stage search R2α,γ , and 2GTI with

α = β = 1 that behaves as GTI. MRR@10 of ranking with a simple linear combination

of BM25 and learned weights is only slightly higher than 2GTI, but it is much slower.

Table 3.5: A validation on 2GTI’s properties. k = 10
MRR@10 Recall@10 MRT P99

R2α,γ (BM25 retri. SPLADE++ rerank) 0.3461 0.5179 - -
GTI/s (α = β = 1, γ = 0.05) 0.3468 0.5774 9.1 36.1
2GTI/s (α = 1, β = γ = 0.05) 0.3939 0.6812 29.8 165
2GTI/s-Accurate (α=1, β=0, γ=0.05) 0.3939 0.6812 31.1 171
2GTI/s-Fast (α = 1, β = 0.3, γ = 0.05) 0.3934 0.6792 22.7 116
Linear comb. (α = β = γ = 0.05) 0.3946 0.6805 120 477

Sensitivity on weight distribution. We have distorted the SPLADE++ weight

distribution in several ways to examine the sensitivity of 2GTI and found that 2GTI is

still effective. For example, we apply a square root function to the neural weight of every
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Table 3.6: Use of 2GTI with a new SPLADE model [47]. k = 10

BT-SPLADE-L MRR@10 Recall@10 MRT P99

Original MaxScore 0.3799 0.6626 17.4 59.4
2GTI/s (α=1, β=0.3, γ=0.05) 0.3772 0.6584 8.0 27.5
GTI/s (α = β = 1, γ = 0.05) 0.3284 0.5520 6.6 24.9

token in MS MARCO passages, the relevance score of both original retrieval and 2GTI

drops to 0.356 MRR@10 due to weight distortion, while 2GTI is 5.0x faster than the

original MaxScore when k = 10.

Efficient SPLADE model. Table 3.6 shows the application of 2GTI in a recently

published efficient SPLADE model [47] which has made several improvements in re-

trieval speed. We have used the released checkpoint of this efficient model called BT-

SPLADE-L, which has a weaker MRR@10 score, but significantly faster than our trained

SPLADE baseline reported in Table 3.2 and 3.3. When used with this new SPLADE

model, 2GTI/s-Fast version results in a 2.2x retrieval time speedup over MaxScore. Its

MRR@10 is higher than GTI/s and has less than 1% degradation compared to the original

MaxScore.

3.6 Additional Evaluation Results

Impact of α and β adjustment on 2GTI. Figure 3.3 examines the impact of

adjusting parameters α and β on global and local pruning for the MS MARCO Dev

passage test set when k = 10 in controlling the influence of BM25 weights for SPLADE++

(left) and uniCOIL (right). The x axis corresponds to the latency increase while y axis

corresponds to the MRR@10 or nDCG@10 increase. The results for MS MARCO DL’19,

and DL’20 are similar.

The red curve connected with dots fixes β = 1 and varies α from 1 at the left end

to 0 at the right end. As α decreases from 1 to 0, the latency increases because BM25
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Figure 3.3: Controlling influence of BM25 on pruning

influences diminish at the global pruning level and fewer documents are skipped. The

relevance for this curve is relatively flat in general and lower than that of the blue curve,

representing the global level BM25 guidance reduces time significantly, while having less

impact on the relevance.

The blue curve connected with squares fixes α = 1 at the global level and varies β

from 1 at the left bottom end to 0 at the right top end. Decreasing β value is positive in

general for relevance towards some point as BM25 influence decreases gradually at the

local level and after such a point, the relevance gain becomes much smaller or negative.

For example, after β in the blue curve in SPLADE++ becomes 0.3 for the Dev set, its

additional decrease does not lift MRR@10 visibly anymore while the latency continues to

increase, which indicates the relevance benefit has reached the peak at that point. Our

experience with the tested datasets is that the parameter setting for 2GTI can reach a

relevance peak typically when α is close to 1 and β varies between 0.3 and 1.

Note that even the above result advocates that α is close to 1, α and β still have

different values to be more effective for the tested data, reflecting the usefulness of two-

level pruning control.
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Threshold under-estimation. In Figure 3.3, the brown curve connected with

triangles fixes α = β = 1 and under-estimates the skipping threshold by a factor of F

at the local and global levels. That behaves like GTI coupled with scaled weight filling

as a special case of 2GTI. F varies from 1 at the left bottom end to 0.7 at the right top

end of this brown curve. As F decreases, the skipping threshold becomes very loose and

there is less chance that desired documents are skipped. Then retrieval relevance can

improve while retrieval time can increase substantially. Comparing with the blue curve

that adjusts β, retrieval takes a much longer time in the brown curve to reach the peak

relevance, as shown in this figure, and the brown curve is generally placed on the right

side of the blue curve. For example on the Dev set with uniCOIL, the brown curve with

threshold under-estimation reaches the best relevance at mean latency 3.7ms while the

blue curve with β adjustment reaches the same peak at mean latency 2.3ms, which is

1.6x faster.

Zero-shot performance on the BEIR datasets. We evaluate the zero-shot rank-

ing effectiveness and response time of 2GTI using the 13 search and semantic relatedness

datasets from the BEIR collection. Our training of SPLADE++ model is only based

on MS MARCO data without using any BEIR data. Table 4.4 lists the nDCG@10

scores of original MaxScore on SPLADE++, 2GTI/s-Fast (α=1, β=0.3, γ=0.05) and

GTI (α=β=1, γ=0.05). The retrieval depth is k = 10 and k = 1000. This table also re-

ports mean response time of retrieval in milliseconds. The SPLADE++ model trained by

ourself has an average nDCG@10 score 0.500 close to 0.507 reported in the SPLADE++

paper [30]. The original MaxScore’s nDCG@10 score does not change when k = 10 and

k = 1000.

When k = 10, 2GTI has almost identical nDCG@10 scores as the original MaxScore

while 2GTI is on average 2.0x faster than MaxScore for these BEIR datasets. When

GTI runs on the same index data, its average nDCG@10 score is 0.43 MRR@10 and it
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.
Table 3.7: Zero-shot relevance in NDCG@10 and retrieval latency in milliseconds on
BEIR datasets with SPLADE++

Original MaxScore 2GTI/s-Fast GTI/s
Dataset nDCG MRT nDCG MRT nDCG MRT
k=10
DBPedia 0.447 99.0 0.449 34.5 0.306 10.6
FiQA 0.355 5.1 0.354 3.4 0.256 0.8
NQ 0.551 72.9 0.551 28.6 0.524 7.3
HotpotQA 0.681 453 0.681 191 0.549 46.8
NFCorpus 0.351 0.3 0.347 0.2 0.327 0.1
T-COVID 0.705 15.9 0.707 9.9 0.569 2.6
Touche-2020 0.291 8.7 0.291 3.2 0.237 1.3
ArguAna 0.446 8.8 0.448 4.0 0.454 4.0
C-FEVER 0.234 635 0.231 355 0.196 241
FEVER 0.781 1028 0.771 655 0.590 160
Quora 0.817 21.5 0.817 6.7 0.763 1.7
SCIDOCS 0.155 3.7 0.155 2.1 0.140 1.2
SciFact 0.682 3.2 0.680 2.9 0.680 1.7
Average 0.500 - 0.499 2.0x 0.430 6.1x
k=1000

Average 0.500 - 0.501 2.5x 0.496 2.7x
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is faster than 2GTI with an average 6.1x speedup over the original MaxScore for these

datasets. Two-level pruning in 2GTI can preserve relevance better than GTI and this is

consistent with what we have observed for searching MS MARCO passages.

When k = 1000, the guided traversal algorithms have a better chance to retain

relevance. 2GTI has a slightly higher average relevance of 0.501 MRR@10 than that

with k = 10 and it is about 2.5x faster on average than the original MaxScore. For

GTI running on the same index with the same alignment, the average MRR@10 is 0.496

whil average speedup 2.7x over MaxScore. Its relevance score is close to that of 2GTI as

BM25-driven pruning under a large k value can still keep a good recall ratio.

3.7 Two-level guidance for BMW

Two-level guidance can be adopted to control index traversal of a BMW based algo-

rithm such as VBMW as well because we can also view that such an algorithm conducts

a sequence of index traversal steps, and can differentiate its index pruning of each traver-

sal step at the global inter-document and local intra-document levels. We use the same

symbol notations as in the previous subsection, assuming the posting lists are sorted

by an increasing order of their document IDs. We still keep a position pointer in each

posting list of search terms to track the current document ID dti being handled for each

term ti, incrementally accumulate three scores Global(d), Local(d), and RankScore(d)

for each document d visited, and maintain three separate score-sorted queues QGl, QLo,

and QRk.

• Pruning at the global inter-document level with pivot identification.

BMW [3] keeps a sorted search term list in each traversal step so that dti ≤ dti+1

with 1 ≤ i ≤ N − 1. The pivot position that partitions these current document

pointers is the smallest integer called pivot such that
∑pivot

i=1 ασB[i]+ (1−α)σL[i] >
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Find a pivot term and its its pivot doc ID

Figure 3.4: Global pruning in BMW

θGl. This inequality means that any document ID d where dt0 ≤ d < dtpivot does

not qualify for being in the final top k list based on score Global(d). Then with

the above pivot detection, for 1 ≤ i < pivot, the current visitation pointer of the

i-th posting list moves to the closest block that contains a document ID equal to

or bigger than dtpivot .

Figure 3.4 illustrates an example of global pruning in BMW with 4 terms and each

posting list maintains a pointer to the current document being visited at a traversal

step. Documents in each posting list are covered by a curved rectangle, representing

these lists are stored and compressed in a block-wise manner. In the figure, the

pivot identification at one traversal step locates document d3, and document IDs

smaller than d3 are skipped for any further consideration in this traversal step.

• Local pruning. Let d be the corresponding pivot document in pivot term tpivot.

In Figure 3.4, pivot term tpivot = t3 and d = d3. A traversal procedure is executed

to check if detailed scoring of document d can be avoided fully or partially and this

procedure can be similar as the one in the revised MaxScore algorithm described

earlier. As each posting list is packaged in a block manner in BMW, let ∆B[x]

and ∆L[x] be the BM25 and learned block maximum weights of the block in the

53



Optimizing Guided Traversal for Fast Learned Sparse Retrieval Chapter 3

Table 3.8: Guided VBMW and MaxScore with uniCOIL on MS MARCO passages
Dataset Method k = 10 k = 20 k = 100

Dev
MaxScore-2GTI 0.355†, 2.6 (14.3) 0.355†, 3.4 (18.4) 0.355, 5.5 (26.0)
VBMW-2GTI 0.353†, 4.3 (30.6) 0.354†, 5.2 (35.6) 0.355, 8.6 (51.6)
VBMW-GTI 0.339, 2.4 (14.2) 0.347, 3.0 (17.2) 0.353, 5.4 (27.1)

DL’19
MaxScore-2GTI 0.714, 1.9 (12.9) 0.713, 2.3 (14.2) 0.713, 4.3 (18.6)
VBMW-2GTI 0.708, 2.0 (20.0) 0.708, 3.7 (23.2) 0.710, 6.6 (33.1)
VBMW-GTI 0.694, 1.7 (9.0) 0.700, 2.2 (11.7) 0.710, 4.3 (17.9)

DL’20
MaxScore-2GTI 0.689, 2.8 (12.1) 0.689, 3.3 (13.0) 0.689, 5.3 (22.2)
VBMW-2GTI 0.683, 3.9 (18.4) 0.686, 4.9 (22.6) 0.686, 8.4 (46.8)
VBMW-GTI 0.676, 2.3 (10.5) 0.680, 2.9 (13.7) 0.685, 5.3 (24.8)

x-th posting list that contains d, respectively, and they are 0 if no such a block

exists in this list. The upper bound of Local(d) can be tightened using the block-

wise maximum weight instead of the list-wise maximum weight contributed by each

term as:
∑N

i=1 β∆B[i] + (1 − β)∆L[i]. When decompressing the needed block of a

posting list, the block-max contribution from the corresponding term in the above

expression can be replaced by the actual BM25 and learned weights for document

d. Then the upper bound of Local(d) is further tightened, which can be directly

compared with θLo after every downward adjustment.

Evaluations on effectiveness of 2GTI on VBMW. We choose uniCOIL to study

the usefulness of VBMW-2GTI in searching the MS MARCO Dev set. SPLADE++ is

not chosen because the test queries are long on average and MaxScore is faster than

VBMW for such queries. Table 3.8 reports the performance for VBMW-2GTI, VBMW-

GTI, and MaxScore-2GTI for passage retrieval with uniCOIL when varying k. Each

entry has a report format of x, y(z) where x is MRR@10 for Dev or NDCG@10 for DL’19

and DL’20. y is the MRT in ms, and z is the P99 latency in ms. 2GTI uses the fast

setting with α = 1, β = 0.3. For both 2GTI and GTI, γ = 0.1. The result shows 2GTI

provides a positive boost in relevance for VBMW compared to GTI when k is 10 and

20. For k = 100, the relevance difference is negligible. MaxScore-2GTI is still faster than
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Table 3.9: Performance under different query classes with k = 10, uniCOIL, and MS
MARCO passage Dev set

QLength ≤ 3 4-5 6-7 ≥ 8

# Q w/ SW 113 1720 2175 2030
MaxScore-2GTI 0.286, 1.6 (12.2) 0.376, 1.7 (8.9) 0.347, 2.4 (11.5) 0.315, 4.3 (20.9)
VBMW-2GTI 0.289, 2.1 (15.2) 0.373, 2.2 (12.5) 0.346, 3.4 (16.1) 0.313, 8.5 (50.8)
VBMW-GTI 0.257, 1.1 (6.1) 0.346, 1.4 (6.8) 0.334, 2.6 (12.2) 0.307, 7.4 (43.9)
# Q w/o SW 327 445 130 40
MaxScore-2GTI 0.397, 1.3 (9.0) 0.430, 1.9 (9.4) 0.439, 3.7 (12.1) 0.558, 5.4 (15.9)
VBMW-2GTI 0.399, 0.9 (4.0) 0.430, 1.6 (6.3) 0.438, 3.6 (12.7) 0.565, 5.6 (23.3)
VBMW-GTI 0.385, 0.7 (3.4) 0.420, 1.3 (5.1) 0.433, 2.6 (9.9) 0.560, 4.1 (12.9)

VBMW-2GTI on average for all tested queries while their relevance difference is small.

we examine below if VBMW-2GTI can be useful for a subset of queries.

Table 3.9 reports the relevance and time of these three algorithms in the passage

Dev set for queries subdivided based on their lengths and if a query contains a stop

word or not. That is for uniCOIL with k = 10, α = 1, β = 0.3, and γ = 0.1. Each

entry has the same report format as in Table 3.8. The result shows that VBMW-2GTI

is much faster than MaxScore-2GTI for short queries (k ≤ 5) that do not contain stop

words and VBMW-2GTI has an edge in relevance over VBMW-GTI while being very

close to MaxScore-2GTI for this class of queries. The above result suggests that a fusion

method can do well by switching the algorithm choice based on query characteristics and

VBMW-2GTI can be used for a class of queries.

3.8 Concluding Remarks

The contribution of this paper is a two-level parameterized guidance scheme with

index alignment to optimize retrieval traversal with a learned sparse representation. Our

formal analysis shows that a properly configured 2GTI algorithm including GTI can

outperform a two-stage retrieval and re-ranking algorithm in relevance.
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Our evaluation shows that the proposed 2GTI scheme can make the BM25 pruning

guidance more accurate to retain the relevance. For MaxScore with SPLADE++ on MS

MARCO passages, 2GTI can lift relevance by up-to 32.4% and is 7.8x faster than GTI

when k = 1, 000, and by up-to 46.4% more accurate and 5.2x faster when k = 10. In all

evaluated cases, 2GTI is much faster than the original retrieval without BM25 guidance.

For example, up-to 6.5x faster than MaxScore on SPLADE++ when k = 10. We have

also observed similar performance patterns on BEIR datasets when comparing 2GTI with

GTI and the original MaxScore using SPLADE++ learned weights. Compared to other

options such as threshold underestimation to reduce the influence of BM25 weights, the

two-level control is more accurate in maintaining the strong relevance with a much lower

time cost. While our study is mainly centered with MaxScore-based retrieval, 2GTI can

be used for VBMW and our evaluation shows that VBMW-2GTI can be a preferred

choice for a class of short queries without stop words when k is small.
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Chapter 4

Threshold-driven Pruning with

Segmented Maximum Term Weights

for Approximate Cluster-based

Sparse Retrieval

4.1 Introduction

Fast and effective document retrieval is a critical component of large-scale search

systems. This can also be important for retrieval-augmented generation systems which

are gaining in popularity. Retrieval systems fall into two broad categories: dense (single

or multi-vector) [10, 77, 12, 11, 33] and sparse (lexical or learned) [26, 27, 28, 29, 15,

18]. Efficient dense retrieval relies on approximation techniques with notable relevance

drops [22, 23, 78, 79], whereas sparse retrieval takes advantage of fast inverted index

implementations on CPUs. Well-trained models from these two categories can achieve

similar relevance numbers on the standard MS MARCO passage ranking task. However,
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for zero-shot out-of-domain search on the BEIR datasets, learned sparse retrieval exhibits

stronger relevance than BERT-based dense models. Accordingly, this paper focuses on

optimizing online inference efficiency for sparse retrieval. Another reason for this focus

is that sparse retrieval does not require expensive GPUs, and thus can significantly lower

the infrastructure cost for a large-scale retrieval system that hosts data partitions on a

massive number of inexpensive CPU servers.

A traditional optimization for sparse retrieval is rank-safe threshold-driven pruning

algorithms, such as MaxScore [4], WAND [2], and BlockMax WAND (BMW) [3], which

accurately skip the evaluation of low-scoring documents that are unable to appear in the

final top-k results. Two key extensions of these pruning methods are cluster-based prun-

ing and rank-unsafe threshold over-estimation. Cluster-based (or block-based) pruning

extends rank-safe methods to skip the evaluation of groups of documents [80, 81, 82].

However, the cluster bounds estimated by current methods are often loose, which limits

pruning opportunities. Threshold over-estimation [62, 63, 64] relaxes the safeness, and

allows some potentially relevant documents to be skipped, trading relevance for faster

retrieval. However, there are no formal analysis or guarantee on the impact of rank-

unsafeness on relevance and its speed gain can often come with a substantial relevance

drop.

This paper revisits rank score threshold-driven pruning for cluster-based retrieval in

both safe and unsafe settings. We introduce a two-parameter threshold control scheme

called ASC, which addresses the above two limitations of current threshold-driven pruning

methods. ASC uses cluster-level maximum weight segmentation to improve the accuracy

of cluster bound estimation and offer a probabilistic guarantee on rank-safeness when used

with threshold over-estimation. Consequently, ASC is targeted at speeding up retrieval

in applications that desire high relevance.

Our evaluation shows that ASC makes sparse retrieval with SPLADE [30], uni-
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COIL [28], and LexMAE [18] much faster while effectively retaining their relevance.

ASC takes only 9.7ms with k = 10 and 21ms with k = 1000 for LexMAE on a single-

threaded consumer CPU to search MS MARCO passages with 0.4252 MRR. It takes only

5.59ms and 15.8ms respectively for SPLADE with over 0.3962 MRR. When prioritizing

for a small MRR relevance loss, ASC can be an order of magnitude faster than other

approximation baselines.

4.2 Background and Related Work

Problem definition. Sparse document retrieval identifies top-k ranked candidates

that match a query. Each document in a data collection is modeled as a sparse vector

with many zero entries. These candidates are ranked using a simple additive formula,

and the rank score of each document d is defined as: RankScore(d) =
∑

t∈Q wt,d, where

Q is the set of search terms in the given query, wt,d is a weight contribution of term t in

document d, possibly scaled by a corresponding query term weight. Term weights can be

based on a lexical model such as BM25 [1] or are learned from a neural model. Terms

are tokens in these neural models. For a sparse representation, a retrieval algorithm uses

an inverted index with a set of terms, and a document posting list for each term. A

posting record in this list contains a document ID and its weight for the corresponding

term.

Threshold-driven skipping. During sparse retrieval, a pruning strategy computes

the upper bound rank score of a candidate document d, referred to asBound(d), satisfying

RankScore(d) ≤ Bound(d). If Bound(d) ≤ θ, where θ is the rank score threshold to be

in the top-k list, this document can be safely skipped. WAND uses the maximum term

weight of documents in a posting list for their score upper bound, while BMW and its

variants (e.g. VBMW [24]) use block-based maximum weights. MaxScore uses a similar
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skipping strategy with term partitioning. A retrieval method is called rank-safe if it

guarantees that the top-k documents returned are the k highest scoring documents. All

of the above algorithms are rank-safe.

Threshold over-estimation is a “rank-unsafe” skipping strategy that deliberately over-

estimates the current top-k threshold by a factor [62, 63, 64]. There is no formal analysis

of the above rank-safeness approximation, whereas our work generalizes and improves

threshold over-estimation for better rank-safeness control in cluster-based retrieval with

a formal guarantee.

Live block filtering and cluster-based retrieval. Live block filtering [80, 81]

clusters document IDs within a range and estimates a range-based maximum score for

pruning. Anytime Ranking [82] extends cluster skipping inverted index [83, 84] which

arranges each posting list as“clusters”for selective retrieval, and searches top clusters

under a time budget. Without early termination, Anytime Ranking is rank-safe and

conceptually the same as live block filtering with an optimization that cluster visitation

is ordered dynamically. Contemporary work in [85] introduces several optimizations for

live block filtering called BMP with block reordering and threshold overestimation and

shows that a block-based (cluster-based, equivalently) retrieval still represents a state-

of-the-art approach for safe pruning and for approximate search.

Our work can be effectively combined with the above work using maximum cluster-

level score bounds and threshold over-estimation, and is focused on improving accuracy

of cluster score bounds and threshold-driven pruning to increase index-skipping oppor-

tunities and introduce a probabilistic rank-safeness assurance.

Efficiency optimization for learned sparse retrieval. There are orthogonal

techniques to speedup learned sparse retrieval. BM25-guided pruning skips documents

during learned index traversal [31, 51]. Static index pruning [86, 87] removes low-scoring

term weights during index generation. An efficient version of SPLADE [47] uses L1
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regularization for query vectors, dual document and query encoders, and language model

middle training. Term impact decomposition [88] partitions each posting list into two

groups with high and low impact weights. Our work is complementary to the above

techniques.

Approximation with score-at-a-time retrieval (SAAT). The above retrieval

approaches often conduct document-at-a-time (DAAT) traversal over document-ordered

indexes. The SAAT retrieval over impact-ordered indexes is an alternative method used

together with earlier termination such as JASS [53] and IOQP [89].

An experimental study [90] compares DAAT and SAAT for a number of sparse models

and indicates that while no single system dominates all scenarios, it confirms that DAAT

Anytime code is a strong contender, especially for SPLADE when maintaining the small

MRR@10 loss. Since IOQP has been shown to be highly competitive to an optimized

version of JASS, the baselines in Section 4.4 includes Anytime and IOQP.

Big-ANN competition for sparse retrieval. NeurIPS 2023 Big-ANN competition

sparse track [91] uses 90% recall of safe search top 10 results as the relevance budget to

select the fastest entry for MS MARCO dev set with SPLADE, and this metric drives a

different optimization tradeoff compared to our paper. Our paper prioritizes MRR@10

competitiveness of approximate retrieval with a much tighter relevance loss budget before

considering gains in latency reduction. Section 4.9 provides a comparison of ASC with

two top winners of this competition. Reference [92] is listed for the Pinecone entry with

no open source code released, and it presents an approach to combine dense and sparse

retrieval representations with random projection, which is orthogonal to our approach.
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4.3 Cluster-based Retrieval with Approximation and

Segmentation

Order sparse clusters 
Query

Traverse clusters with 
(𝜇,𝜼)-approximation   

…
Segmented term 
max weights

Cluster
level pruning

Document 
level pruning

Figure 4.1: Flow of ASC with two-parameter pruning control and segmented clus-
ter-level maximum term weights

The overall online inference flow of the proposed scheme during retrieval is shown in

Figure 4.1. Initially, sparse clusters are sorted in a non-increasing order of their estimated

cluster upper bounds. Then, search traverses the sorted clusters one-by-one to conduct

approximate retrieval with two-level pruning with segmented term maximum weight.

We follow the notation in [82]. A document collection is divided into m clusters

{C1, · · · , Cm}. Each posting list of an inverted index is structured using these clusters.

Given query Q, the BoundSum formula below estimates the maximum rank score of

a document in a cluster. Anytime Ranking visits clusters in a non-increasing order of

BoundSum values.

BoundSum(Ci) =
∑
t∈Q

max
d∈Ci

wt,d. (4.1)

The visitation to cluster Ci can be pruned if BoundSum(Ci) ≤ θ, where θ is the cur-

rent top-k threshold. If this cluster is not pruned, then document-level index traversal and

skipping can be conducted within each cluster following a standard retrieval algorithm.
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Any document within such a cluster may be skipped for evaluation if Bound(d) ≤ θ

where Bound(d) is computed on the fly based on an underlying retrieval algorithm such

as MaxScore and VBMW.

Design considerations. The cluster-level BoundSum estimation in Formula (4.1)

can be loose, especially when a cluster contains diverse document vectors, and this reduces

the effectiveness of pruning. As an illustration, Figure 4.2 shows the bound tightness of

Anytime for MS MARCO Passage clusters, calculated as the ratio between the average

actual and estimated bound: 1
m

∑m
i=1

maxdj∈Ci
RankScore(dj)

BoundSum(Ci)
, where m is the number of

clusters. A bound tightness near 1 means the bound estimate is accurate, whereas a

value near 0 means a loose estimate. The average bound tightness increases with m

because smaller clusters are more similar. ASC improves the tightness of the cluster

bound estimation for all values of m.

Figure 4.2: ASC predicts more accurate cluster bounds, which allows it to prune more
aggressively. Cluster bound tightness is the average ratio of the actual and estimated
cluster bounds, calculated with Formula (4.1).

Limited threshold over-estimation can be helpful to deal with a loose bound esti-

mation. Specifically, over-estimation of the top-k threshold is applied by a factor of µ,

where 0 < µ ≤ 1, and the above pruning conditions are modified as BoundSum(Ci) ≤ θ
µ
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and Bound(d) ≤ θ
µ
. Threshold over-estimation with µ allows skipping more low-scoring

documents when the bound estimation is too loose. However, thresholding is applied to

all cases uniformly and can incorrectly prune many desired relevant documents when the

bound estimation is already tight.

To improve the tightness of cluster-level bound estimation using Formula (4.1), one

can decrease the size of each cluster. However, there is a significant overhead when

increasing the number of clusters. One reason is that for each cluster, one needs to

extract the maximum weights of query terms and estimate the cluster bound, which can

become expensive for a large number of query terms. Another reason is that MaxScore

identifies a list of essential query terms which are different from one cluster to another.

Traversing more clusters yields more overhead for essential term derivation, in addition

to the cluster bound computation.

4.3.1 ASC: (µ, η)-approximate retrieval with segmented cluster

information

The proposed ASC method stands for (µ, η)-Approximate retrieval with Segmented

Cluster-level maximum term weights. ASC segments cluster term maximum weights to

improve the tightness of cluster bound estimation and guide cluster-level pruning. It

employs two parameters, µ and η, satisfying 0 < µ ≤ η ≤ 1, to detect the cluster bound

estimation tightness and improve pruning safeness. Details of our algorithm are described

below.

Extension to the cluster-based skipping index. Each cluster Ci is subdivided

into n segments {Si,1, · · · , Si,n} through random uniform partitioning during offline pro-

cessing. The index for each cluster has an extra data structure which stores the maximum

weight contribution of each term from each segment within this cluster. During retrieval,
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the maximum and average segment bounds of each cluster Ci are computed as shown

below:

MaxSBound(Ci) =
n

max
j=1

Bi,j, (4.2)

AvgSBound(Ci) =
1

n

n∑
j=1

Bi,j, (4.3)

and Bi,j =
∑
t∈Q

max
d∈Si,j

wt,d.

Two-level pruning conditions. Let θ be the current top-k threshold of retrieval in

handling query Q.

• Cluster-level: Any cluster Ci is pruned when

MaxSBound(Ci) ≤
θ

µ
(4.4)

and

AvgSBound(Ci) ≤
θ

η
. (4.5)

• Document-level: If a cluster is not pruned, then when visiting such a cluster with

a MaxScore or another retrieval algorithm, a document d is pruned if Bound(d) ≤
θ
η
.

Figure 4.3(a) illustrates a cluster skipping index of four clusters for handling query

terms t1, t2, and t3. This index is extended to include two maximum term weight seg-

ments per cluster for ASC and these weights are marked in a different color for different

segments. Document term weights in posting records are not shown. Assume that the

current top-k threshold θ is 9, Figure 4.3(b) lists the cluster-level pruning decision by

Anytime Ranking without and with threshold overestimation and by ASC. The derived

bound information used for making pruning decisions is also illustrated.
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(b) Online dynamic cluster pruning
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(a) Cluster skipping index with 2 weight segments per cluster

θ = 9 Custer 1 Cluster 2 Cluster 3 Cluster 4
BoundSum 3.3 9.8 13.7 16.3
Anytime Pruned Kept Kept Kept
Anytime-µ=0.9 Pruned Pruned Kept Kept
MaxSBound 3.1 9.6 9.7 13.6
AvgSBound 3.0 9.2 7.6 12.4
ASC µ=0.9, η=1 Pruned Kept Pruned Kept

(b) Decisions of dynamic cluster-level pruning during retrieval

Figure 4.3: A cluster pruning example
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Extra online space cost for segmented maximum weights. The extra space

cost in ASC is to maintain non-zero maximum term weights for multiple segments at

each cluster in a sparse format. For example, Figure 4.3 shows four non-zero maximum

segment term weights at Cluster 1 are accessed for the given query. To save space, we

use the quantized value. Our evaluation uses 1 byte for each weight, which is sufficiently

accurate to guide pruning. For MS MARCO passages in our evaluation, the default

configuration has 4096 clusters and 8 segments per cluster. This results in about 550MB

extra space. With that, the total cluster-based inverted SPLADE index size increases

from about 5.6GB for MaxScore without clustering to 6.2GB for ASC. This 9% space

overhead is still acceptable in practice. The extra space overhead for Anytime Ranking

is smaller because only cluster-level maximum term weights are needed.

4.3.2 Formal Properties

With any integer 0 < k′ ≤ k, we call a retrieval algorithm (µ, η)-approximate if 1)

the average rank score of any top k′ results produced by this algorithm is competitive

to that of rank-safe retrieval within a factor of µ; and 2) the expected average rank

score of any top k′ results produced by this algorithm is competitive to that of rank-safe

retrieval within a factor of η. When choosing η = 1, we call a (µ, η)-approximate retrieval

algorithm to be probabilistically safe. ASC satisfies the above condition and Theorem 7

gives more details. The default setting of ASC uses η = 1 in Section 4.4. The theorems

on properties of ASC are listed below and Section 4.5 lists the proofs. We show that

Theorem 6 is also true for Anytime Ranking with threshold overestimation and without

early termination and we denote it as Anytime-µ.
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Theorem 4

BoundSum(Ci) ≥ MaxSBound(Ci) ≥ max
d∈Ci

RankScore(d). (4.6)

The above result shows that Formula (4.2) provides a tighter upperbound estimation

than Formula (4.1) as demonstrated by Figure 4.2.

In ASC, choosing a small µ value prunes clusters more aggressively, and having the

extra safeness condition using the average segment bound with η counteracts such pruning

decisions. Given the requirement µ ≤ η, we can choose η to be close to 1 or exactly 1

for being safer. When the average segment bound is close to their maximum bound in a

cluster, this cluster may not be pruned by ASC. This is characterized by the following

property.

Theorem 5 Cluster-level pruning in ASC does not occur to cluster Ci when one of the

two following conditions is true:

• MaxSBound(Ci) >
θ
µ

• MaxSBound(Ci)− AvgSBound(Ci) ≤
(

1
µ
− 1

η

)
θ.

The difference between the maximum and average segment bounds provides an ap-

proximate indication of the estimated bound tightness. The value of this heuristic is

demonstrated in Figure 4.4, which shows the correlation between bound tightness and

the ratio of AvgSBound(Ci) to MaxSBound(Ci) for all clusters. The data is from the

MS MARCO Passage dataset with 4096 clusters and 8 segments per cluster. Figure 4.4

shows that when this ratio approaches 1, the average bound tightness increases and its

variation decreases. By the above theorem, when the gap between MaxSBound(Ci) and

AvgSBound(Ci) is small (and thus their ratio is near 1), cluster-level pruning will not

occur. Therefore, ASC will not prune clusters that already have high-quality and tight
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bound estimates. Table 4.5 will further corroborate the results of Theorem 5: that ASC

should not prune clusters when this gap is small.

Figure 4.4: Correlation between the tightness of the estimated bound and the ratio of
AvgSBound and MaxSBound. As AvgSBound approaches MaxSBound, the quality
and tightness of the bound increases, and the probability of pruning decreases.

Define Avg(x,A) as the average rank score of the top-x results by algorithm A. Let

integer k ≤ k. The theorem below characterizes the approximate rank-safeness of pruning

in ASC and Anytime-µ.

Theorem 6 The average top-k′ rank score of ASC and Anytime-µ without imposing a

time budget is the same as any rank-safe retrieval algorithm R within a factor of µ.

Namely Avg(k′,ASC) ≥ µAvg(k′, R), and Avg(k′,Anytime-µ) ≥ µAvg(k′, R).

The theorem below characterizes the extra probabilistic approximate rank-safeness of

ASC.

Theorem 7 The average top-k′ rank score of ASC achieves the expected value of any

rank-safe retrieval algorithm R within a factor of η. Namely E[Avg(k′,ASC)] ≥ ηE[Avg(k′, R)]

where E[] denotes the expected value.
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The probabilistic rank-safeness approximation of ASC relies upon a condition where

each document having an equal chance to be in any segment within a cluster. That is

true because our segmentation method is random uniform partitioning.

4.4 Evaluation

Table 4.1: A comparison with baselines using SPLADE on MS MARCO passages. No
time budget

MS MARCO Dev DL’19 DL’20
Methods C% MRR (Loss) Recall MRT (P99) Speedup nDCG (Recall) nDCG (Recall)

Retrieval depth k = 10
Exact Search
IOQP - 0.3966 0.6824 207 (461) 29x 0.7398 (.1764) 0.7340 (.2462)
MaxScore - 0.3966 0.6824 26.4 (116) 3.7x 0.7398 (.1764) 0.7340 (.2462)
Anytime Ranking 69.8% 0.3966 0.6824 20.7 (89.3) 2.9x 0.7398 (.1764) 0.7340 (.2462)
ASC 49.1% 0.3966 0.6824 7.19 (26.7) - 0.7398 (.1764) 0.7340 (.2462)
Approximate
IOQP-10% - 0.3782† (4.6%) 0.6541† 24.0 (52.2) 4.3x 0.7381 (.1781) 0.7047 (.2350)
Anytime-µ=0.9 62.7% 0.3815† (3.8%) 0.6111† 15.3 (61.1) 2.7x 0.7392 (.1775) 0.7126 (.2382)
ASC-µ=0.9, η=1 7.99% 0.3964 (0.05%) 0.6813 5.59 (18.7) - 0.7403 (.1764) 0.7338 (.2464)

Retrieval depth k = 1000
Exact Search
IOQP - 0.3966 0.9802 214 (465) 6.4x 0.7398 (.8207) 0.7340 (.8221)
MaxScore - 0.3966 0.9802 65.8 (209) 2.0x 0.7398 (.8207) 0.7340 (.8221)
Anytime Ranking 93.0% 0.3966 0.9802 50.1 (158) 1.5x 0.7398 (.8207) 0.7340 (.8221)
ASC 54.3% 0.3966 0.9802 33.5 (103) - 0.7398 (.8207) 0.7340 (.8221)
Approximate
IOQP-10% - 0.3782† (4.6%) 0.9746 24.4 (53.1) 1.5x 0.7381 (.8124) 0.7047 (.8081)
Anytime-µ = 0.7 88.9% 0.3963 (0.07%) 0.9696† 37.1 (127) 2.3x 0.7398 (.7881) 0.7340 (.7937)
ASC-µ=0.7, η=1 21.7% 0.3966 (0.0%) 0.9799 25.4 (78.8) 1.6x 0.7398 (.8188) 0.7340 (.8218)
ASC-µ=0.5, η=1 8.10% 0.3962 (0.1%) 0.9739 15.8 (48.2) - 0.7398 (.7977) 0.7355 (.7989)

Datasets and metrics. We use the MS MARCO Passage ranking dataset [36] with 8.8

million English passages. We report mean reciprocal rank (MRR@10) for the Dev set

which contains 6980 queries, and nDCG@10 for the TREC deep learning (DL) 2019 and

2020 sets. We also report recall, which is the percentage of relevant-labeled results that

appear in the final top-k results. Retrieval depth k tested is 10 or 1000. We also evaluate

on BEIR [37], a collection of 13 publicly available English datasets totaling 24.6 million

documents. The size of each dataset ranges from 3,633 to 5.4M documents.
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Experimental setup. Documents are clustered using k-means on dense vectors. De-

tails, including a comparison between a few alternatives such as sparse vectors, are in

Section 4.6.

Sparse models tested include a version of SPLADE [15, 30], uniCOIL [28, 29], and

LexMAE [18]. We primarily use SPLADE to assess ASC because LexMAE, following

dense models such as SimLM [12] and RetroMAE [11], uses MS MARCO title annota-

tions. This is considered as non-standard [93]. SPLADE does not use title annotations.

ASC’s implementation uses C++, extended from Anytime Ranking code’s release

based on the PISA retrieval package [48]. The index is compressed with SIMD-BP128.

MaxScore is used to process queries because it is faster than VBMW for long queries [50,

51] generated by SPLADE and LexMAE. We applied an efficiency optimization to both

the ASC and Anytime Ranking code in extracting cluster-based term maximum weights

when dealing with a large number of clusters. IOQP uses the authors’ code release [89].

A comparison to other recent methods in the NeurIPS Big-ANN Competition are pre-

sented in Section 4.9. All timing results are collected by running as a single thread

on a Linux server with Intel i7-1260P and 64GB memory. Before timing queries, all

compressed posting lists and metadata for tested queries are pre-loaded into memory,

following the common practice. Our code will be released under the Apache License 2.0

after publication.

For all of our experiments on MS MARCO Dev queries, we perform pairwise t-tests on

the relevance between ASC and corresponding baselines. “†” is tagged when significant

drop is observed from MaxScore retrieval at 95% confidence level.

Baseline comparison on MS MARCO. Table 4.1 lists the overall comparison of ASC

with two baselines using SPLADE model on the MS MARCO Dev and TREC DL’19/20

test sets. Column “Loss” is the percent difference of MRR@10 compared to exact search.

Recall@10 and Recall@1000 are reported for retrieval depth k = 10 and 1000, respectively.
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Retrieval mean response time (MRT) and 99th percentile latency (P99) in parentheses

are reported in milliseconds. The column marked “C%” is the percentage of clusters that

are not pruned during retrieval. For the original rank-safe MaxScore without clustering,

we have incorporated document reordering [82] to optimize its index based on document

similarity, which shortens its latency by about 10-15%.

Anytime Ranking is configured to use 512 clusters with no early termination. ASC

is configured with 4096 clusters and 8 segments. Section 4.7 explains the above cluster

configuration for Anytime and ASC to deliver low latency under competitive relevance.

Rank-safe ASC uses µ = η = 1 and rank-unsafe ASC uses η = 1 with µ = 0.9 for k = 10

and µ = 0.5 for k = 1000. As shown in Table 4.1, these choices yield a tiny MRR@10

loss ratio. For Anytime-µ with over-estimation, we choose the same or higher µ value

as ASC to demonstrate ASC improves relevance while gaining the speedup under such a

setting.

Comparing the three rank-safe versions in Table 4.1, ASC is about 2.9x faster than

Anytime for k = 10, and 1.5x faster for k = 1000, because segmentation offers a tighter

cluster bound as shown in Theorem 4. ASC is 29x faster than IOQP with k = 10.

Safe IOQP is substantially slower than Anytime, which differs from the finding of [85],

possibly because of the difference in data clustering and SPLADE versions.

For approximate retrieval when k = 10, ASC has 3.9% higher MRR@10, 11% higher

recall, and is 2.7x faster than Anytime with µ = 0.9. When k = 1000, ASC is 2.3x

faster than Anytime under similar relevance. Even with µ being as low as 0.5, ASC offers

competitive relevance scores. This demonstrates the importance of Theorem 7. For this

reason, ASC is configured to be probabilistically safe with η = 1 while choosing µ value

modestly below 1 for efficiency. For k = 10, there is a very small MRR loss (≤ 0.1%)

compared to the original retrieval, but ASC performs competitively while it is up to

4.7x faster than the original MaxScore without using clusters. Approximate IOQP is
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configured to visit 10% of documents, which is a default choice in [89]. ASC outperforms

IOQP-10% with 4.8% higher MRR@10 and 3.7% higher recall while ASC is 4.3x faster.

Table 4.2: Performance at a fixed MRR@10 loss. k = 10
MRR Loss 10% 5% 2% 1% 0.5%
Anytime-µ 15ms (7.8x) 16 (5.9x) 17 (4.4x) 18 (3.9x) 19 (4.0x)

Re: 0.5412 0.5921 0.6287 0.6570 0.6682
IOQP 12ms (6.3x) 22 (8.1x) 55 (14x) 90 (20x) 153 (33x)

Re: 0.6271 0.6548 0.6741 0.6775 0.6782
ASC 1.9ms (−) 2.7 (−) 3.9 (−) 4.4 (−) 4.7 (−)

Re: 0.5878 0.6315 0.6639 0.6707 0.6759

Table 4.2 compares latency in milliseconds and Recall@10 of approximate retrieval

under a different and fixed MRR@10 loss compared to rank-safe retrieval with 0.3966

MRR@10 and 0.6824 Recall@10. Rows marked with “Re” list Recall@10 of approximate

search. To meet the relevance budget under each fixed MRR loss ratio, we vary µ for

ASC and Anytime, and the percent of documents visited for IOQP to minimize latency.

The results show that when the MRR loss is controlled within 1-2%, ASC is about 4x

faster than Anytime and is 13x to 33x faster than IOQP.

Table 4.3 applies ASC to uniCOIL and LexMAE and shows MRR@10, Recall@10 or

@1000 (denoted as “Re”), and latency (denoted as MRT). The conclusions are similar as

the ones obtained above for SPLADE.

Zero-shot out-of-domain retrieval. Table 4.4 shows average nDCG@10 and latency

in milliseconds for 13 BEIR datasets. SPLADE training is only based on MS MARCO

passages. For smaller datasets, the number of clusters is proportionally reduced so that

each cluster contains approximately 2000 documents, which is aligned with 4096 clusters

setup for MS MARCO. The number of segments is kept at 8. ASC has η = 1, and its

µ = 0.9 for k = 10 and µ = 0.5 for k = 1000. We use µ = 0.9 for Anytime Ranking

without early termination. LexMAE has slightly lower average nDCG@10 0.495, and is

omitted due to the page limit.
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Table 4.3: Other learned sparse retrieval models
uniCOIL LexMAE

Methods MRR (Re) MRT MRR (Re) MRT
Retrieval depth k = 10. No time budget

Exact Search
IOQP 0.352 (.617) 81 0.425 (.718) 163
MaxScore 0.352 (.617) 6.0 0.425 (.718) 47
Anytime 0.352 (.617) 5.0 0.425 (.718) 27
ASC 0.352 (.617) 1.8 0.425 (.718) 12
Approximate
IOQP-10% 0.320† (.568†) 11 0.405† (.693†) 18
Anytime-µ=0.9 0.345† (.585†) 4.2 0.413† (.654†) 22
ASC-µ=0.9, η=1 0.352 (.614) 1.4 0.425 (.718) 9.7

Retrieval depth k = 1000. No time budget
Exact Search
IOQP 0.352 (.958) 82 0.425 (.988) 165
MaxScore 0.352 (.958) 19 0.425 (.988) 94
Anytime 0.352 (.958) 14 0.425 (.988) 67
ASC 0.352 (.958) 8.8 0.425 (.988) 49
Approximate
IOQP-10% 0.320† (.937†) 12 0.405† (.985) 20
Anytime-µ=0.7 0.351 (.940†) 8.9 0.425 (.978) 46
ASC-µ=0.5, η=1 0.351 (.946) 4.0 0.425 (.980) 21

74



Threshold-driven Pruning with Segmented Maximum Term Weights for Approximate Cluster-based
Sparse Retrieval Chapter 4

Table 4.4: Zero-shot performance with SPLADE on BEIR
MaxScore Anytime-µ =0.9 ASC

Dataset nDCG MRT nDCG MRT nDCG MRT
Retrieval depth k = 10

DBPedia 0.443 81.2 0.431 58.1 0.442 40.7
FiQA 0.358 3.64 0.356 2.49 0.358 1.86
NQ 0.555 44.9 0.545 39.8 0.549 18.2
HotpotQA 0.682 323 0.674 270 0.680 158
NFCorpus 0.352 0.17 0.350 0.15 0.352 0.15
T-COVID 0.719 5.20 0.673 2.48 0.719 2.23
Touche-2020 0.307 4.73 0.281 2.27 0.307 1.83
ArguAna 0.432 9.07 0.411 9.17 0.432 8.27
C-FEVER 0.243 895 0.242 735 0.243 555
FEVER 0.786 694 0.782 587 0.786 372
Quora 0.806 5.16 0.795 2.05 0.806 1.53
SCIDOCS 0.151 2.53 0.150 2.17 0.151 1.96
SciFact 0.676 2.54 0.673 2.45 0.676 2.31
Average 0.501 1.91x 0.490 1.35x 0.501 -

Retrieval depth k = 1000
Average 0.501 3.25x 0.498 1.95x 0.499 -

ASC offers nDCG@10 similar as MaxScore while being 1.91x faster for k = 10 and

3.25x faster for k = 1000. Comparing with Anytime, ASC is 1.35x faster and has 2.2%

higher nDCG@10 on average for k = 10, and it is 1.95x faster while maintaining similar

relevance scores for k = 1000.

Segmentation choices. ASC uses random even partitioning to segment term weights

of each cluster and satisfy the probabilistic safeness condition that each document in a

cluster has an equal chance to appear in any segment. Another approach is to use k-

means sub-clustering based on document similarity. The top portion of Table 4.5 shows

random uniform partitioning is more effective than k-means when running SPLADE on

MS MARCO passages with 4098 clusters and 8 segments per cluster. Random uni-

form partitioning offers equal or better relevance in terms of MRR@10 and Recall@1000,

especially when µ is small. As µ affects cluster-level pruning in ASC, random segmen-
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Table 4.5: K-means segmentation vs. random uniform
k=1000 K-means Random
µ, η MRR (Re) T MRR (Re) T
0.3, 1 0.393 (.939†) 9.92 0.396 (.972) 15.3
0.4, 1 0.393 (.942†) 10.5 0.396 (.972) 15.4
0.5, 1 0.395 (.959†) 13.8 0.396 (.974) 15.8
0.6, 1 0.397 (.977) 18.1 0.397 (.979) 17.2
0.7, 1 0.397 (.980) 24.4 0.397 (.980) 21.7
1, 1 0.397 (.980) 34.8 0.397 (.980) 33.5

Bound Tightness MaxSbound−AvgSBound
Actual

Random 0.55 0.49
K-means 0.53 0.69

tation results in a better prevention of incorrect aggressive pruning, although this can

result in less cluster-level pruning and a longer latency. To explain the above result, the

lower portion of Table 4.5 shows the estimated bound tightness (ratio of actual bound

to MaxSBound), and average difference of MaxSBound and AvgSBound scaled by

the actual bound. Random uniform partitioning gives slightly better cluster bound es-

timation, while its average difference of MaxSBound and AvgSBound is much smaller

than k-means sub-clustering. Then, when µ is small, there are more un-skipped clusters,

following Theorem 5.

The above result also indicates cluster-level pruning in ASC becomes safer due to its

adaptiveness to the gap between the maximum and average segment bounds, which is

consistent with Theorem 5. The advantage of random uniform partitioning shown above

corroborates with Theorem 7 and demonstrates the usefulness of possessing probabilistic

approximate rank-safeness.
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4.5 Proofs of Formal Properties

Proof of Theorem 4. Without loss of generality, assume in Cluster Ci, the maxi-

mum cluster bound MaxSBound(Ci) is the same as the bound of Segment Si,j. Then

MaxSBound(Ci) = Bi,j =
∑
t∈Q

max
d∈Si,j

wt,d ≤
∑
t∈Q

max
d∈Ci

wt,d = BoundSum(Ci).

For any document d, assume it appears in j-th segment of Ci, then

RankScore(d) =
∑
t∈Q

wt,d ≤
∑
t∈Q

max
d∈Si,j

wt,d = Bi,j ≤ MaxSBound(Ci).

■

Proof of Theorem 5. When a cluster Ci is not pruned by ASC, that is because one

of Inequalities (4.4) and (4.5) is false. When Inequality (4.4) is true but Inequality (4.5)

is false, we have

MaxSBound(Ci) ≤
θ

µ
and −AvgSBound(Ci) ≤ −θ

η
.

Add these two inequalities together, that proves this theorem.

■

Proof of Theorem 6. Let L(x) be the top-k′ list of Algorithm x. To prove

Avg(k′,ASC) ≥ µAvg(k′, R), we first remove any document that appears in both L(ASC)

and L(R) in both side of the above inequality. Then, we only need to show:

∑
d∈L(ASC),d ̸∈L(R)

RankScore(d) ≥ µ ·
∑

d∈L(R),d ̸∈L(ASC)

RankScore(d).

For the right side of above inequality, if the rank score of every document d in L(R)

(but d ̸∈ L(ASC)) does not exceed the lowest score in L(ASC) divided by µ, then the

above inequality is true. There are two cases to prove this condition.
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• Case 1. If d is not pruned by ASC, then d is ranked below k′-th position in ASC.

• Case 2. Document d is pruned by ASC when the top-k threshold is θASC. The final

top-k threshold when ASC finishes is ΘASC. If this document d is pruned at the

cluster level, then RankScore(d) ≤ maxnj=1 Bi,j ≤ θASC

µ
≤ ΘASC

µ
. If it is pruned at

the document level, RankScore(d) ≤ θASC

η
≤ θASC

µ
≤ ΘASC

µ
.

In both cases, RankScore(d) does not exceed the lowest score in L(ASC) divided by µ.

Anytime-µ with no early termination behaves in the same way as ASC with µ = η.

Thus this theorem is also true for Anytime-µ.

■

Proof of Theorem 7: Define Top(k′,ASC) as the score of top k′-th ranked document

produced by ASC. ΘASC = Top(k,ASC).

The first part of this proof shows that for any document d such that d ∈ L(R) and

d ̸∈ L(ASC), the following inequality is true:

E[RankScore(d)] ≤ Top(k′,ASC)

η
.

There are two cases that d ̸∈ L(ASC):

• Case 1. If d is not pruned by ASC, then d is ranked below k′-th position in ASC.

RankScore(d) ≤ Top(k′,ASC).

• Case 2. If document d is pruned at the document level by ASC when the top k-th

rank score is θASC,

RankScore(d) ≤ θASC

η
≤ Top(k,ASC)

η
≤ Top(k′,ASC)

η
.

If document d is pruned at the cluster level, notice that ASC uses random uniform

partitioning, and thus this document has an equal chance being in any segment
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within its cluster.

E[RankScore(d)] ≤
∑n

j=1Bi,j

n
≤ θASC

η
≤ Top(k,ASC)

η
≤ Top(k′,ASC)

η
.

The second part of this proof shows the probabilistic rank-safeness approximation

inequality based on the expected average top-k′ rank score. Notice that list size |L(R)|=

|L(ASC)|= k′, and |L(R)− L(S) ∩ L(ASC)|= |L(ASC) − L(R) ∩ L(ASC)| where minus

notation ‘−’ denotes the set subtraction. Using the result of the first part, the following

inequality sequence is true:

E[
∑

d∈L(R)

RankScore(d)]

=E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(R),d ̸∈L(ASC)

RankScore(d)]

≤E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(R),d ̸∈L(ASC)

Top(k′,ASC)

η
]

≤E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(ASC),d ̸∈L(R)

RankScore(d)

η
]

≤E[
∑

d∈L(ASC)

RankScore(d)]
1

η
.

Thus E[Avg(k′,ASC)] ≥ ηE[Avg(k′, R)].

■

4.6 Clustering Choices

In this section, we provide a comparison between different clustering methods for ASC.

We assume that a learned sparse representation is produced from a trained transformer

encoder T . For example, SPLADE [15, 30] and LexMAE [18] provide a trained BERT

transformer to encode a document and a query. There are two approaches to represent
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documents for clustering:

• K-means clustering of sparse vectors. Encoder T is applied to each document

in a data collection to produce a sparse weighted vector. Similar as Anytime Rank-

ing [82], we follow the approach of [94, 95] to apply the Lloyd’s k-means cluster-

ing [96]. Naively applying the k-means algorithm to the clustering of learned sparse

vectors presents a challenge owing to their high dimensionality and a large number

of sparse vectors as the dataset size scales. For example, each sparse SPLADE doc-

ument vector is of dimension 30,522 although most elements are zero. Despite its

efficacy and widespread use, the k-means algorithm is known to deteriorate when

the dimensionality grows. Previous work on sparse k-means has addressed that

with feature selection and dimension reduction [97, 98]. These studies explored

dataset sizes much smaller than our context and with different applications. Thus

our retrieval application demands new considerations. Another difficulty is a lack

of efficient implementations for sparse k-means in dealing with large datasets. We

address the above challenge below by taking advantage of the dense vector repre-

sentation produced by the transformer encoder as counterparts corresponding to

their sparse vectors, with a much smaller dimensionality.

• K-means clustering of dense vector counterparts. Assuming this trained

transformer T is BERT, we apply T to each document and produce a token em-

bedding set {t1, t2, · · · , tL} and a CLS token vector. Here ti is the BERT output

embedding of i-th token in this document and L is the total number of tokens

of this document. Then, we have three ways to produce a dense vector of each

document for clustering.

– The CLS token vector.
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– The element-wise maximum pooling of all output token vectors. The i-th

entry of this dense vector is maxLj=1 ti,j where ti,j is the i-th entry of j-th

token embedding.

– The element-wise mean pooling of all output token vectors. The i-th entry

of this dense vector is 1
L

∑L
j=1 ti,j where ti,j is the i-th entry of j-th token

embedding.

In addition to the above options, we have compared the use of a dense representa-

tion based on SimLM [11], a state-of-the-art dense retrieval model.

Table 4.6: K-means clustering of MS MARCO passages for safe ASC (µ = η = 1)
with SPLADE sparse model

w/o segmt. w/ segmt.
Passage representation MRT %C MRT %C
Sparse-SPLADE 55.9 67% 35.6 53%
Dense-SPLADE-CLS 68.2 80% 41.6 64%
Dense-SPLADE-Avg 56.3 76% 37.3 58%
Dense-SPLADE-Max 54.1 68% 33.5 54%
Dense-SimLM-CLS 63.3 78% 40.1 60%

Table 4.6 compares the performance of these five vector representations for k-means

clustering for ASC. Results are shown with and without segmentation in a safe mode

(µ = η = 1) for SPLADE-based sparse retrieval on MS MARCO with 4096 clusters and

8 segments per cluster. The column marked “%C” shows the percentage of clusters that

are not pruned during ASC retrieval, and MRT is the mean response time in milliseconds.

All vectors are clustered using the FAISS library [22] which provides an efficient k-means

clustering implementation. Sparse vectors are clustered based on a sample of 100,000

documents because of their high dimensionality. Our results show that maximum pool-

ing of SPLADE-based dense token vectors and direct clustering of the sparse SPLADE

vectors have a similar latency and outperform the other three options. Considering the
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accuracy and implementation challenge in clustering high-dimension sparse vectors, our

evaluation chooses max-pooled dense vectors derived from the corresponding transformer

model.

4.7 Impact of varying #clusters for Anytime Rank-

ing and ASC

Figure 4.5 shows the latency of Anytime and ASC for k = 10 with safe pruning and a

similar trend is seen for k = 1000. Table 4.7 shows their performance with threshold over-

estimation (µ = 0.9). We present latency results for two versions of Anytime Ranking.

The original Anytime, with its latency denoted as “Orig.”, becomes significantly slower as

the number of clusters increase. Therefore, we added an optimization (denoted as “Opt.”)

in extracting cluster maximum weights as noted in Section 4.4. The fastest configuration

for Anytime Ranking is with 512 clusters. Lowering the number of clusters to a smaller

number such as 256 or 128 increases Anytime’s latency because the maximum cluster

bound estimation becomes less accurate.

Table 4.7: Performance of Anytime Ranking vs. ASC when varying #clusters for
threshold overestimation. k = 10.

Cluster Anytime Ranking µ = 0.9 ASC µ = 0.9, η = 1
Count MRR (Re) Orig. Opt. MRR (Re) MRT

128 0.381 (0.604) 16.8 16.0 0.397 (0.682) 14.0
256 0.380 (0.607) 16.5 15.6 0.397 (0.682) 13.5
512 0.382 (0.611) 16.3 15.3 0.397 (0.682) 10.5
1024 0.380 (0.611) 20.0 17.8 0.396 (0.681) 7.41
2048 0.384 (0.615) 29.1 20.4 0.396 (0.681) 6.05
4096 0.381 (0.611) 53.2 24.1 0.396 (0.681) 5.59

The above result shows that ASC performs better with 4096 clusters when varying

the number of clusters from 128 to 4096 when k = 10. We do not use a larger number
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Figure 4.5: The effect of the number of clusters on latency. For Anytime (Orig.) and
Anytime (Opt.), latency grows significantly with clusters. ASC is the fastest method
for all clusters and exhibits the slowest growth in latency of all methods.

of clusters because that increases the space overhead for ASC. The finding is similar for

different choices of µ and for k = 1000. Figure 4.6 examines the relation of Recall@1000

and latency for ASC when varying µ under different numbers of clusters and segments.

Each curve represents a distinct number of clusters and number of segments per cluster.

Each curve has 5 markers from left to right, denoting µ = 0.4, 0.5, 0.6, 0.7, and 1,

respectively. A greater number of clusters improves cluster bound estimation and allows

finer-grained pruning decisions, however it also introduces additional overhead for visiting

each cluster, as discussed in Section 4.3. This figure shows that the best configuration of

ASC is 4096 clusters and 8 segments per cluster for all values of µ.

4.8 Compatibility with other speedup techniques

Table 4.8 lists MRR@10 and Recall@1000 of combining ASC with early termination

technique of Anytime Ranking [82] under a time budget on MS MARCO Dev set for
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Figure 4.6: Recall vs. latency of ASC (η=1) for varying values of µ at retrieval depth
k = 1000. For each fixed number of clusters and segments, µ varies from 0.4, 0.5, 0.6,
0.7, to 1.

Table 4.8: Anytime vs. ASC (η=1) with time budgets
Model Setup MRR (Re) MRT (P99)

Retrieval depth k = 10. Time budget 10ms
SPLADE Anytime-µ = 1 0.370† (.632†) 8.34 (10.3)

ASC-µ = 1 0.395 (.679) 5.14 (10.1)
Anytime-µ = 0.9 0.360† (.575†) 7.70 (10.2)
ASC-µ = 0.9 0.395 (.678) 4.21 (10.0)

LexMAE ASC-µ = 0.9 0.423 (.713) 5.14 (10.2)
Retrieval depth k = 1000. Time budget 20ms

SPLADE Anytime-µ = 1 0.364† (.865†) 19.1 (20.4)
ASC-µ = 1 0.395 (.973) 18.2 (20.1)
Anytime-µ = 0.9 0.363† (.864†) 19.1 (20.3)
ASC-µ = 0.7 0.395 (.973) 15.2 (20.0)

LexMAE ASC-µ = 0.7 0.423 (.974†) 16.9 (20.1)

SPLADE mainly. Last row lists ASC performance with LexMAE for each k value. 512

clusters are configured for Anytime Ranking, and “4096 clusters*8 segments” are for

ASC. Comparing to Table 4.1, there is a small relevance degradation for ASC with time

budgets, but the 99th percentile time is improved substantially by this combination.

Under the same time budget, this ASC/Anytime combination has higher MRR@10 and
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Recall@1000 than Anytime Ranking alone in both retrieval depths.

We also apply ASC with static index pruning [86] for a version of SPLADE used

in Big-ANN competition as discussed in Section 4.9 below. The exact search with safe

Anytime Ranking delivers 0.383 MRR@10 with 20.2ms with k = 10. ASC takes 3.8ms

with 0.5% MRR loss, and it only takes 0.81ms when following the Big-ANN relevance

budget (90.5% recall to top-10 exact search results).

Term impact decomposition [88] is an orthogonal optimization on posting lists. Our

preliminary test shows that it does not work well with SPLADE as its posting clipping

and list splitting increase original SPLADE latency from 66ms to 95ms and 110ms,

respectively. Thus our evaluation didn’t include this optimization.

4.9 Comparison to NeurIPS ’23 Big-ANN Methods

The sparse track of NeurIPS 2023 competition for fast approximate nearest neighbor

search (Bi-ANN) [91] uses 90% recall of top 10 result of the exact search baseline as

the relevance budget to select the fastest entry for MS MARCO dev set. The SPLADE

version used in the Big-ANN competition has 0.383 MRR@10, which is different than our

version with 0.3966. Top entries in Big-ANN can use any range of techniques, including

unpublished optimizations or specialization. On the other hand, this paper is focused on

a single optimization topic solved with general techniques, namely improving threshold-

driven pruning based on cluster rank score bounds. Thus the purpose of this evaluation

study is to demonstrate how ASC can make cluster-based retrieval competitive for the

Big-ANN setting.

We compare ASC with the two best open-source submissions: PyANNS and SHNSW.

The Sparse track measures relative recall against top 10 exact search and throughput with

eight simultaneous threads. To follow a common practice, Table 4.9 reports reciprocal
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rank (MRR@10), Recall@10, and single-thread latency (MRT) in milliseconds on our

machine. Table 4.9 also reports the recall to top-10 exact search as “R2Exact”. The exact

search baseline is rank-safe Anytime Ranking with 512 clusters, the same configuration

as Section 4.4.

The Big-ANN competition prioritizes efficiency under a relatively loose approximation

loss budget, whereas ASC is designed to preserve pruning safeness while reducing the

latency. Thus we configure all models to minimize latency for meeting the following two

loss budget settings.

• Preserve 90% of top-10 exact search. The best performing parameters were selected

from the submitted configurations. For PyANNS qdrop = 0.1 and ef = 60 and

for SHNSW ef = 52. For ASC, we use 512 clusters with 16 segments each, µ =

0.85, η = 1 after applying static pruning.

• Preserve 99% of top-10 exact search. We select the best performing configuration

for PyANNS with qdrop = 0.0 and ef = 2000 and for SHNSW with ef = 2000.

For ASC, we use 4096 clusters with 8 segments each, µ = 0.9, η = 1.

Table 4.9 shows that ASC is 4.1x to 5.2x faster than PyANNS and SHNSW respec-

tively for the 99% setting while having better MRR@10. Noticeably PyANNS suffers 68%

MRR@10 loss. For the 90% setting, ASC is 7% faster and has 0.9% higher MRR@10

than SHNSW. Even though PyANNS is faster than ASC, its MRR@10 loss is over 71%,

which is huge.

The above result shows that the competition metric for Big-ANN drives a differ-

ent optimization tradeoff compared to our paper. This is because our paper prioritizes

MRR@10 competitiveness of approximate retrieval with a much tighter relevance loss

budget before considering latency reduction gains. Configurations of ASC with unsafe

pruning listed in Table 4.1 of Section 4.4 are within a 0.1% MRR@10 loss budget for
86



Threshold-driven Pruning with Segmented Maximum Term Weights for Approximate Cluster-based
Sparse Retrieval Chapter 4

Table 4.9: A comparison with BigANN methods using SPLADE on MS MARCO
Passage Ranking

Methods MRR(Recall) R2Exact MRT
Preserve 90% of top-10 exact search

Exact search 0.383 (0.670) 100% 20.2
SHNSW 0.339 (0.601) 90.0% 0.87
PyANNS 0.110 (0.603) 90.3% 0.48
ASC 0.342 (0.604) 90.5% 0.81

Preserve 99% of top-10 exact search
Exact search 0.383 (0.670) 100% 20.2
SHNSW 0.379 (0.665) 99.1% 19.9
PyANNS 0.122 (0.665) 99.1% 15.6
ASC 0.381 (0.667) 99.5% 3.80

Dev set. Thus while ASC makes a cluster-based retriever more competitive in the Big-

ANN tradeoff setting, ASC is designed to speed up retrieval applications that desire high

relevance effectiveness.

4.10 Concluding Remarks

ASC is an (µ, η)-approximate control scheme for dynamic threshold-driven pruning

that aggressively skips clusters while being probabilistically safe. ASC can speed up

retrieval applications that still desire high relevance effectiveness. For example, when

MRR loss is constrained to under 1-2%, the mean latency of ASC is about 4x faster than

Anytime Ranking and is 13x to 33x faster than IOQP for MS MARCO Passage Dev set

with k = 10.

Our evaluations with the MS MARCO and BEIR datasets show that µ = 0.5 for

k = 1000, and µ = 0.9 for k = 10 are good choices with η = 1 to retain high relevance

effectiveness. Our findings recommend η = 1 for probabilistic safeness and varying µ

from 1 to 0.5 for a tradeoff between efficiency and effectiveness.
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4.11 Limitations

Space overhead. There is a manageable space overhead for storing cluster-wise seg-

mented maximum weights. Increasing the number of clusters for a given dataset is useful

to reduce ASC latency up to a point, but then the overhead of additional clusters leads

to diminishing returns.

Dense retrieval baselines and GPUs. This paper does not compare ASC to dense

retrieval baselines because dense models represent a different category of retrieval tech-

niques. ASC achieves up to 0.4252 MRR@10 with LexMAE for MS MARCO Dev, which

is close to the highest number 0.4258 obtained in state-of-the-art BERT-based dense

retrievers [12, 11, 13]. The zero-shot performance of ASC with SPLADE on BEIR per-

forms better than these dense models. The above dense model studies use expensive

GPUs to reach their full relevance effectiveness. Approximate nearest neighbor search

techniques of dense retrieval have been developed following IVF cluster search [22] and

graph navigation with HNSW [23]. But there is a significant MRR@10 drop using these

approximation techniques.

Although GPUs are readily available, they are expensive and more energy-intensive

than CPUs. For example, AWS EC2 charges one to two orders of magnitude more for an

advanced GPU instance than a CPU instance with similar memory capacity. Like other

sparse retrieval studies, our evaluation is conducted on CPU servers.

Code implementation choice and block-based pruning. Our evaluation uses

MaxScore instead of VBMW because MaxScore was shown to be faster for relatively

longer queries [50, 51], which fits in the case of SPLADE and LexMAE under the tested

retrieval depths. A previous study [81] confirms live block filtering with MaxScore called

Range-MaxScore is a strong choice for such cases. It can be interesting to examine the

use of different base retriever methods in different settings within each cluster for ASC
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in the future.

Instead of the live block filtering code, ASC implementation was extended from Any-

time Ranking’s code because of its features that support dynamic cluster ordering and

early termination. ASC’s techniques can be applied to the framework of contemporary

BMP [85] to improve block max estimation and add a probabilistic guarantee for its

threshold-driven block pruning. Alternatively, the techniques introduced in BMP, such

as partial block (cluster) sorting and hybrid cluster structure with a forward index could

also improve our code implementation.
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Chapter 5

Conclusion and Future Work

With the help of neural language models, retrieval systems support searching with se-

mantic queries. However, due to the nature of more complex calculation and document

representation, the retrieval systems are not as efficient as before with only traditional

statistical ranking signal. In this thesis, optimization across different components of

the retrieval systems for semantic search, especially learned sparse retrieval, has been

explored.

• In Section 2, we studied to maximize the sparsity of the representation of the sparse

vectors, by taking consideration of the threshold-based pruning in the design of rank

loss, to enable a learnable threshold for static pruning. Experiments show that the

proposed algorithm, HT, can effectively increase sparsity and shorten the retrieval

latency without hurting retrieval performance too much.

• In Section 3, we modified the traditional dynamic pruning algorithms including

BlockMax-WAND and MaxScore, so that they can efficiently prune documents for

learned sparse representations with the guidance of traditional statistical signals.

By compressing the BM25 scores inside the posting records along with the learned
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scores, the proposed framework 2GT successfully decreased the latency with small

storage overhead.

• In Section 4, inspired by the clustering method commonly used by dense retrievers,

ASC groups documents into clusters, designed indicators for better cluster level

pruning, and provided theoretical analysis and safeness guarantee of the cluster

level unsafe pruning. Experimental results show that more than 90% clusters can

be dynamically pruned under probabilistic safeness guarantee.
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Figure 5.1: Relevance and latency trade-off among different retrieval models

As an example, Figure 5.1 demonstrates the effectiveness of these algorithms on the

graph of relevance vs. lantecy trade-off. The learned sparse retrievers have relatively

shorter latency compared to dense retrievers on the single threaded CPU setup, while

the relevance is of the same level as the state-of-the-art dense models. The accurate

configuration of ASC can achieve state of the art relevance, but being 20x faster than

the original max score which cost around 200ms. The fast configuration of ASC takes
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less than 1ms, but still has reasonably good relevance.

Overall speaking, the original learned sparse retrieval with around 200ms latency is

reduced to 10ms with minimal relevance loss, by the combination of all the aforemen-

tioned optimizations. This fast and effective sparse retrieval model can benefit semantic

search and modern RAG frameworks better.

Although much progress has been made for efficiency of learned sparse retrieval, there

is still plenty of headroom for improvement. Some of potential topics are presented as

follows. Firstly, recent research on learned sparse representations mainly focuses on

semantic search query sets, including MS MARCO and BEIR. Experimenting newly de-

veloped techniques on more diverse datasets, especially on large scale web data including

ClueWeb [99] and its recent update [100], could be interesting. Secondly, learned sparse

retrieval shows some out-of-domain advantage over dense retrieval. It could be interest-

ing to test these sparse algorithms in the setting of RAG and validate the impact on the

RAG system’s overall performance. Thirdly, sparse retrieval can be better integrated

with dense retrieval, where some progress has already been made in [101]. Lastly, with

the help of unsafe pruning, the room for latency reduction is greatly extended. More

studies can be done on the theoretical guarantee of unsafe pruning.
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