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Abstract

Bayesian Mixture Modeling and Order Selection for Markovian Time Series

by

Matthew J. Heiner

Nonlinearity and high-order auto-dependence are common traits of univariate

time series tracking successive states from multidimensional systems. Standard sta-

tistical models based on linear stochastic processes are often inadequate to capture

these complex dynamics. This work contributes Bayesian statistical methodology

and modeling strategies to estimate Markovian transition distributions, particularly

when these distributions exhibit non-Gaussianity and/or nonlinear dependence on

multiple lags. Given the challenge of modeling high-order nonlinear dynamics, we

place emphasis on detecting and exploiting low-order dependence.

We propose models for both discrete and continuous state spaces with a common

theme of mixture modeling. We first utilize mixtures for soft model selection.

To this end, we develop two prior distributions for probability vectors which, in

contrast to the popular Dirichlet distribution, retain sparsity properties in the

presence of data. Both priors are tractable, allowing for efficient posterior sampling

and marginalization. We derive the priors, demonstrate their properties, and

employ them for lag selection in the mixture transition distribution model.

We then extend the model for estimation and selection in higher-order, discrete-

state Markov chains with two primary objectives: parsimonious approximation of

high-order dynamics by mixing transition models of lower order, and model selection

through over-specification and shrinkage with the new priors to an identifiable and

interpretable parameterization. We also extend a continuous-state version of the

mixture transition distribution model by admitting nonlinear dependence in the

xv



component distributions using Gaussian process priors. We discuss properties of

the models and demonstrate their utility with simulation studies and applications

to medical, geological, and ecological time series.

Finally, we propose and illustrate a Bayesian nonparametric autoregressive

mixture model applied to flexibly estimate general transition densities exhibiting

nonlinear lag dependence. Our approach is related to Bayesian curve fitting via

joint density estimation using Dirichlet process mixtures, with the Markovian

likelihood defined as the conditional distribution obtained from the mixture. We

extended the model to include automatic relevance detection among a pre-specified

set of lags. We illustrate the model by repeating earlier analyses.

xvi
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Chapter 1

Introduction

All data implicitly carry time stamps. Whether neglected or accounted for,

time information can profoundly affect inferences drawn from observations. Time

dependence in data is a consequence of our living in a dynamic world, and

methods to account for this dependence feature prominently in ecology, engineering,

economics, social science, medicine, and environmental science, to name a few. The

rapid development of time-series analysis (and statistics, generally) over the past

century runs concurrent with technological advances enabling its implementation.

By time series, we refer to data collected and indexed at discrete time steps.

Frequent objectives of time series analysis include forecasting, signal processing,

pattern or trend recognition, inference for dynamics, and accounting for serial

correlation in order to accurately infer functional, and perhaps causal, relationships.

Shumway and Stoffer (2017) provide a thorough introduction to the core methods

for analysis of time series data, which are typically modeled as stochastic processes,

either on the time or frequency domain.

This thesis is concerned with Bayesian methods for flexible inference of transi-

tion distributions. That is, we work in the time domain and model the conditional

probability distribution of the next observation, given the current and past values
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of a univariate time series of categorical or continuous measurements. In many

applications, forecasts of central tendency are inadequate. Financial projections are

incomplete without estimates of risk, motivating models that incorporate volatil-

ity. Dynamic decision analyses for population management require probabilistic

transition distributions from current and hypothetical states in order to optimize

for maximum sustainable yield. These and other investigations benefit from, or

require full specification of the transition distribution (Rodríguez and Ter Horst,

2008).

Many useful and widely applied methodologies target the transition mechanism,

most notably the linear autoregressive (AR) model and its many variants (Box and

Jenkins, 1976). AR models are stationary and linear Gaussian processes, and thus

possess several appealing properties with respect to estimation, interpretation, and

diagnostics. Nevertheless, real-world processes often exhibit nonlinearity and non-

Gaussianity. Failure to account for these two features can severely limit the utility

of standard methods, which if misapplied can produce misleading results. Modeling

the important characteristics of nonlinearity and non-Gaussianity plays a central

role in this work. We proceed by motivating our methodological development in

Section 1.1. Section 1.2 identifies our research objectives and provides an outline

of the thesis.

1.1 Modeling time dependence

Most models on the time domain incorporate serial dependence in one of

two ways. First, one can model variables as a function of time directly, which

is effective for filtering/smoothing noisy time series, and for capturing periodic

behavior, trends, and changepoints. This approach usually ignores the directionality

of time and the causal nature of sequential events. The second approach models
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the present state as a function of past states, inducing memory in the system.

This approach, which captures periodic behavior, trends, and changepoints more

subtly, is consistent with the concept of dynamical systems, for which differential

(or difference) equations dictate the trajectory of a system. This thesis focuses on

methods for the second approach of modeling state dynamics.

The dynamical-system view of time series gives rise to state spaces, which one

may model with observed time series directly, or infer by assuming measurement

error in the observations (see Prado and West, 2010 for a review). State-space

models most often refer to the latter case, in which a modeler explicitly distinguishes

between measurement and dynamical error, or random perturbations at the system

level. These two error types are often very challenging to separate without detailed

knowledge of the measuring process or by making strong assumptions (Kantz

and Schreiber, 2004, pp. 174-175). Furthermore, flexible modeling for complex

dynamics that are indirectly observed poses a formidable computational challenge

(Prado and West, 2010, ch. 6). In practice, measurement error is often negligible,

or less consequential than dynamical error. Because we seek to capture complex

dynamics and are modeling transition densities directly, we restrict our attention

to modeling the observations themselves as measurements from the state space,

and assume that observed noisy shocks at each observation time propagate forward

with the system.

With the exception of long-memory processes, it is often assumed that influence

diminishes as lag time increases. This is especially true of nonlinear systems in

the presence of dynamical noise, which could mask the signal after a small number

of transitions. This statistically justifies the Markovian assumption of conditional

independence between the present state and distant history, given recent lags.

Markovian dynamics are also directly justified in systems for which the future
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trajectory only depends on the current state. The Markovian assumption is crucial

to the dynamical system approach to modeling time series, and we adopt it into

our methodology.

1.1.1 Mixture modeling for time series

In this thesis, we propose methods for both discrete and continuous-state

Markovian time series analysis. While the methods are diverse, a recurring theme

throughout is our use of discrete mixture modeling, through which a probability

distribution function comprises a positively weighted sum of a finite or countable set

of distribution functions. Common uses of mixture models include accounting for

heterogeneity among observations in the absence of covariates or other identifying

information, and approximation of complex (e.g., heavy-tailed or multimodal)

distributions from simpler distributions. Frühwirth-Schnatter (2006) provide a

comprehensive introduction. Our proposed methods employ mixture modeling

for both uses, and further utilize mixtures for two less common purposes: 1) soft

(probabilistic) selection among competing models, and 2) local selection of simple

models as a vehicle to flexibly capture complex structure in a global model.

As a weighted sum of distribution functions, discrete mixtures can always be

cast as hierarchical models involving random latent indicators whose probabilities

are the weights. Breaking the mixture in this way can be instructive and provide an

avenue for exploring dependence structures. For example, hidden Markov Models

(HMMs) can be cast as dependent mixtures for which the latent states follow a

discrete Markov chain.

Panel (a) in Figure 1.1 depicts the primary dependence structure utilized

throughout Chapters 2, 3, and 4 with a graphical model. Shaded nodes repre-

sent observations and white nodes represent the latent variables. Conditional
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Figure 1.1: Directed graphs illustrating a second-order example of the dependence
structure utilized throughout Chapters 2, 3, and 4 (a), and in Chapter 5 (b). Gray
nodes represent observations; white nodes represent latent variables; solid squares
represent distinct probability distributions; and dotted boxes represent gates that
select, conditional on the values of associated latent variables, which distributions
govern the observations. This notation follows Dietz (2010).

dependence is indicated with directed arrows. This example depicts second-order

dynamics, where the latent variables control (through the dotted square gates)

which lags drive the transition distributions (solid squares). This is the structure

implied by using the mixture transition distribution (MTD) of Raftery (1985).

Panel (b) depicts the dependence structure utilized in Chapter 5, again with a

second-order example. Here, the distributions of observables and latent variables

are influenced by lags of the observables. Note that in both panels, the latent

variables do not exhibit Markov dependence. This choice stems from our objective

to model transition distributions, and their functionals, directly. Additional de-

pendence in the second level complicates this objective, especially for higher-order
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hidden processes, since the transition distributions of observables are obtained by

marginalizing over the latent states. Although this choice eliminates a potential

source for time heterogeniety in the model, we note that inclusion of higher-order

dynamics can potentially offset the drawbacks of this simplifying assumption.

1.1.2 Order and lag selection

Aside from simple constructions, such as the linear autoregressive class of

models, most mainstream statistical methods for modeling Markovian dynamics

assume dependence on the first lag only. While convenient and often justified,

this assumption clearly over-simplifies or misspecifies the dynamics in some cases,

and carries similar consequences to under-specifying models in other regression

settings. As an example, the life cycle of Pink salmon in Alaska, U.S.A., which

includes fresh and salt water phases before they return to the stream to spawn and

die, reliably follows a two-year pattern (Heard, 1991). Thus, naive modeling of the

population dynamics based on the first lag only would capture inter-population,

rather than generational dynamic dependence.

Another motivation for modeling multiple lags of a time series stems from a

technique called phase-space reconstruction via time-delay embedding. This relies

on a theorem by Takens (1981) that justifies reconstructing the dynamics, up to

topological equivalence, of a smooth-trajectory, multidimensional deterministic

system using only lags of a univariate time series. The practical utility of this

result is evident in fields like ecology, where full observation of all relevant variables

may be impossible.

Although Takens’ theorem for time-delay embedding applies to deterministic

dynamics, Markovian stochastic models can approximate this method for real time

series, which inevitably contain measurement and dynamical-type noise (Kantz and

6



Schreiber, 2004, ch. 10, 12). Nearest-neighbor or local linear regression methods

are often used for nonparametric empirical forecasting in this setting, which can

be useful in distinguishing deterministic chaos from stochastic processes (Sugihara

et al., 1990).

Of course, including too many lags in a model leads to inefficiency, the “curse

of dimensionality,” and inferential difficulties associated with including multiple

correlated predictors. Thus, it is also important to condition on no more lags

than necessary to faithfully estimate a transition distribution. In light of these

considerations, we place emphasis throughout this thesis on the problem of inferring

the order of Markovian dependence, and more precisely, which lags influence the

transition distribution. Within the classes of models we explore, this is intimately

related to the model/variable selection problem so fundamental to regression.

1.2 Research objectives

The primary objective of this work is to contribute Bayesian statistical method-

ology and modeling strategies to estimate transition distributions, particularly

when these distributions exhibit non-Gaussianity and/or nonlinear dependence on

multiple lags. Given the challenge of modeling high-order nonlinear dynamics, we

place emphasis on detecting and exploiting low-order dependence from an initial

set of candidate lags.

This thesis is divided into two parts, corresponding to methodologies for

discrete-state Markov chains in Chapters 2 and 3, and continuous-state series in

Chapters 4 and 5. In addition to providing a natural venue for categorical time

series, discrete-state Markov chains are appealing for their utility in distilling

information from complex systems with a coarse representation, and that their

canonical form accommodates both nonlinearity and general distributions. In
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deterministic systems, generating partitions of the state space can be combined

with countable lag sequences to fully represent the dynamics (Hirata et al., 2004).

While we work in a stochastic setting and do not pursue estimating such partitions,

this idea further motivates our study and modeling for high-order, discrete-state

Markov chains.

In pursuit of a parsimonious model for high-order Markov chains, we utilize

the MTD structure depicted in Panel (a) of Figure 1.1. To detect lower-order

dependence, we impose sparsity with a pair of novel prior distributions for prob-

ability vectors, which are introduced and studied in Chapter 2. They are first

applied to infer a single active lag in the MTD framework before we scale to

inferences for multiple active lags using an extension of the MTD in Chapter 3.

The primary methodological contributions of Chapter 2 are the priors themselves,

initial exploration of their properties leading to recommendations for their use, and

their novel application in the MTD model. The primary contributions of Chapter

3 are the higher-order extension of the MTD, application of the new priors to

promote identifiability in a commonly used extension of the MTD, and simulation

studies for comparison with other methods.

Although Chapter 4 applies to continuous-state time series, it utilizes the same

modeling framework as the previous two chapters. We propose a semiparametric

mixture model with flexible component mean functions using Gaussian process

priors, and again use the priors for sparse probability vectors to identify lag

dependence as in Chapter 2. Here, the mixture model has two (possibly dual)

roles, providing flexibility in the transition density, and lag selection. The primary

contributions of Chapter 4 are extensions, both of methods developed in previous

chapters to continuous state spaces as well as existing MTD methods for continuous

state spaces, and investigation of the model’s intended use.

8



Chapter 5 is unique in methodology, complexity, and generality. The proposed

model, our initial approach to the problems addressed in this thesis, employs a

fully nonparametric specification based on the Dirichlet process. It is rooted in

Bayesian curve fitting (Müller et al., 1996), but the likelihood is built from a

conditional rather than a joint distribution. The resulting model is very flexible

and well-suited for our objectives. The primary contributions of Chapter 5 are the

operational extension of similar existing models to multiple lags, extension and

modeling framework for exploration of lag dependence, and investigation into the

model’s fitness for different analysis scenarios. Results throughout this thesis owe

much to the challenges encountered while pursuing this framework.

A word on notation: care has been taken to unify basic representations in the

notation across chapters, especially for indexing. However, specific symbols should

only be interpreted within the context of their chapter. For example, while {st}

universally represents a collection of discrete states indexed by time, it refers to the

observed time series in earlier chapters and to a process of latent states indicating

mixture component membership in Chapter 5.

Throughout the thesis, analyses were conducted and plots generated with the

R statistical computing language (R Core Team, 2016). In most cases, posterior

sampling via Markov chain Monte Carlo was conducted using the Julia scientific

computing language (Bezanson et al., 2017). Multidimensional plots were generated

with Plotly (Plotly Technologies Inc., 2015).
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Chapter 2

Structured Priors for Sparse

Probability Vectors

2.1 Introduction

The most common approach to Bayesian modeling of probability vectors uses

the Dirichlet prior (see Agresti and Hitchcock, 2005 and references therein). This

prior possesses numerous desirable features: it is conjugate in the multinomial

setting, and can often be made so in more general modeling settings by introducing

latent variables; the hyperparameters are interpretable; and the family is stable

under aggregation and marginalization. Due to the convenience and universality of

this prior, few alternatives have gained traction in the literature. One alternative,

the logistic normal distribution (Atchison and Shen, 1980), relaxes the property

that Dirichlet variates are always negatively correlated. More recently, Elfadaly

and Garthwaite (2017) proposed a Gaussian copula-based prior which “binds”

beta marginals, also allowing more general correlation structures. Agresti and

Hitchcock (2005) provide background and review of the Dirichlet prior’s use,
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including hierarchical and mixture extensions proposed by Good (1976) and Albert

and Gupta (1982) for use in contingency tables. One useful generalization of the

Dirichlet distribution by Connor and Mosimann (1969), used extensively for its

connection with the stick-breaking, constructive definition of the Dirichlet process

(Sethuraman, 1994), has also found application in life testing (Lochner, 1975) and

mixture modeling (Bouguila and Ziou, 2004).

While the Dirichlet prior shrinks proportions away from 0 and 1, one may

instead seek prior models which favor sparsity. By sparsity we mean many or most

of the entries of the probability vector are near 0. Sparse probability vectors for

which all entries are non-zero, but most are near 0, can be modeled with a single

Dirichlet distribution by lowering the shape parameter for sparse components to

values below unity. If this is the case for all shape parameters, prior probability

mass resides primarily in the corners of the simplex supporting the probability

vector, leading to either small or large probabilities in each component. While this

strategy encourages sparsity in a prior model, it fails to carry this property to the

posterior since the shape parameters of the Dirichlet distribution are inseparably

connected with the precision. That is, a sparse Dirichlet prior is also a low-precision

Dirichlet prior, for which even small sample sizes immediately overwhelm sparsity

properties.

Consider a hierarchical model which at one level employs a probability vector to

mix over a discrete set. In some cases, particularly if the set consists of competing

elements, the modeler may wish to encourage sparsity. For example, a time series

may be approximately Markovian, but the active lag is unknown to the modeler.

One alternative to fitting and comparing several models is to include lag as a

component of the model to be inferred. Rather than mixing over several competing

sub-models (lags) with the Dirichlet prior, a structured prior favoring sparsity (one
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of the lags) would essentially select one lag. If the time series arises from a nearly

deterministic dynamical system, enforcing sparsity can assist in learning both the

optimal lag and transition dynamics, as we will illustrate in Section 2.3.2.

This chapter explores structured priors which are capable of retaining sparsity

properties in the presence of data. This may be of interest in a multinomial

setting in which a small, unknown subset of the categories have non-negligible

probabilities. Similarly, we may wish to discount categories with small observed

counts as anomalies. Additionally, shrinkage can be helpful when using a probability

vector as a mixing distribution in which components include competing models,

favoring a model-selection role over a model-averaging role. We address both

of these potential uses. In Section 2.2, we develop two sparsity-inducing prior

probability models and study their properties. We then demonstrate their use in a

hierarchical Markov chain model with unknown active lag and sparse transition

dynamics in Section 2.3, first with a simulation study (Section 2.3.2) and then

with a time series of Chinook salmon abundance in Northern California, U.S.A.

(Section 2.3.4). Finally, we conclude with discussion in Section 2.4.

2.2 Prior models for sparse probability vectors

A rich literature exists for both discrete and continuous shrinkage estima-

tors/priors in linear models, the most popular being the Lasso method (Tibshirani,

1996; Park and Casella, 2008). Such models shrink unrestricted coefficients in

an attempt to select among many competing predictors. The Bayesian variable

selection literature also includes stochastic search or “spike-and-slab” priors, typ-

ically characterized by two-component mixture priors for coefficients allowing

for “on” and “off” settings (George and McCulloch, 1993, 1997). Furthermore,

regularization is a general characteristic of Bayesian models, whose priors bias or
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penalize regions of the parameter/model space.

Although we draw on foundational concepts such as penalties and stochastic

search, the problem of shrinkage for probability vectors requires additional care

to satisfy the sum-to-one constraint. One starting point may be to consider a

transformation of unrestricted latent variables and introduce traditional shrinkage

priors to enforce sparsity. For example, we could normalize a set of positive random

variables drawn from a distribution with tails that are heavier than the gamma

(used in the constructive definition of the Dirichlet distribution). In addition to

scaling issues, this approach lacks convenient computational properties such as

conjugacy. We instead propose extensions of the Dirichlet and generalized Dirichlet

distributions that maintain computational convenience.

In Sections 2.2.1 and 2.2.2, we propose two novel structured prior models which

encourage sparsity in probability vectors. We examine some basic properties of

these models in Section 2.2.3.

2.2.1 Sparse Dirichlet mixture prior

The sparse Dirichlet mixture (SDM) prior model is motivated by the idea of

penalized maximum likelihood. We work directly with the conjugate Dirichlet

prior by adding a multiplicative term to the prior density that favors some desired

property. If θ = (θ1, . . . , θJ) is the probability vector of interest, we can write the

density as

p(θ) ∝ Dir(θ | α)× h(θ) , (2.1)

where α = (α1, . . . , αJ) is a vector of positive real shape parameters. One choice for

h(θ) which penalizes low variance (thus rewarding high variance) is h(θ) = ∑J
j=1 θ

2
j .

More generally, we might replace each θ2
j with θβjj , βj > 1. We propose using a
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common β = β1, . . . , βJ , resulting in a one-parameter extension of the original

Dirichlet prior. Setting β = 1, we recover the original Dirichlet prior. As the

value of β increases, the model forces prior mass to the corners of the simplex S

supporting θ.

Integrating to find the normalizing constant c yields the probability density

function for the SDM model:

pSDM(θ | α, β) = Γ(∑J
i=1 αi)

c
∏J
r=1 Γ(αr)

J∑
j=1

J∏
h=1

θ
(αh+β1(h=j)−1)
h

=
J∑
j=1

wj∑J
h=1wh

Dir(θ | α+ βej) , (2.2)

where wj ≡
∏J
h=1 Γ(αh+β1(h=j)) and ej is a vector of 0s with a 1 in the jth position,

and Γ(·) is the gamma function. Expression (2.2) reveals that the SDM prior is a

discrete mixture of Dirichlet densities in which the shape parameter of component

j is increased by β. If all shape parameters are equal (α1 = . . . = αJ = α), then

the mixture weights are equal, resulting in a discrete uniform mixture of Dirichlet

densities and yielding a symmetric prior model.

Because it is a fixed-weight, discrete mixture of conjugate priors, the SDM prior

retains tractability under multinomial count data n = (n1, . . . , nJ). Exploiting

the conjugacy of the Dirichlet prior in expression (2.1) immediately reveals a SDM

posterior with parameters α∗ ≡ α + n and β. Just as the α shape parameters

are interpretable as prior pseudo-counts, β can be interpreted as the sample-size

equivalent of each component’s boost. Hence, an advantage of the SDM prior

is that a practitioner can select a boost (or bias) factor apriori while remaining

agnostic about which component should receive it. This interpretation of β,

together with the mixture representation of the density (2.2), provides intuition for

how the penalty function forces probability mass to the corners of the simplex. The
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SDM density is a superposition of J Dirichlet densities, wherein the jth density

modifies the original Dirichlet prior by forcing mass toward the θj = 1 corner by a

sample-size equivalent of β.

As the data sample size N ≡ ∑J
j=1 nj increases, the influence of a fixed β

decreases and each Dirichlet component becomes similar to the same Dirichlet

distribution that would result from a standard Dirichlet prior. We can also consider

the posterior mean point estimator of θj obtained readily from (2.2),

E(θj | n) =
αj + nj + u∗j β

A+N + β
, (2.3)

where A ≡ ∑J
j=1 αj, u∗j ≡ w∗j/

∑J
h=1w

∗
h, and w∗j ≡

∏J
h=1 Γ(αh + nh + β1(h=j)). If

α and β are fixed, (2.3) approximates the maximum likelihood estimator nj/N ,

which converges in probability to θ in the multinomial likelihood model.

The posterior expectation in (2.3) is plotted for a simple Bernoulli-beta scenario

in Figure 2.1. The expectation for θ1 when n = (0, 1) monotonically decreases as

a function of β, while the shrinking effect of β diminishes marginally. When β

or N is moderately large, the posterior weights w∗j shift substantially in favor of

the component with largest α∗j = αj + nj , effectively resulting in a single Dirichlet
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Figure 2.1: Posterior mean point estimate of θ1 under the Dirichlet prior (dashed
red) and SDM prior (black) for varying values of β. Here, the multinomial data
are n = (0, 1) and α1 = α2 = 0.001.
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distribution with a boost of size β given to the component with highest α∗j .

The sample-size interpretation of β suggests that one may factor N into its

selection in order to maintain influence. Indeed, the effects of fixed, finite-parameter

priors in fixed, finite-parameter models asymptotically vanish in general. Allowing

β to increase with sample size invalidates the large-sample results noted earlier.

However, (2.2) guarantees that the posterior distribution will always be a convex

combination of Dirichlet distributions. Because u∗j is bounded between 0 and 1, a

practitioner can use (2.3) to select β to control bounds on the posterior mean’s

bias from that of the baseline Dirichlet prior.

In practice, we have selected the value of β as some function of the data sample

size N , typically a fixed scaling β = CN with C > 1/N . To see the effect of this

choice on the posterior mean of θj, substitute for β in (2.3). For N � A, the

posterior mean is approximated by (nj/N +u∗j C)/(1 +C). While this choice has a

substantial effect in the multinomial setting (see Figure 2.1), results are relatively

insensitive to the choice of β when the SDM prior is used as a mixing distribution

in hierarchical models such as those in Section 2.3.

One may also consider placing a prior on β. This, however, breaks the simple

conjugacy of the model, necessitating more complex estimation methods such as

MCMC to estimate a parameter that is only weakly identified by the data. We

therefore advocate fixing β with the preceding discussion in mind.

We note that the modified Dirichlet density in (2.1) was explored by Hjort

(1996) in the context of histogram estimation. They utilized a different form of

h(θ) to promote positive correlation among adjacent probabilities in θ and achieve

a smoothing effect. They reference other penalized-likelihood approaches aimed at

smoothing probability vectors and reported the prior-conjugacy result for general

h(θ). In contrast with this previous work, our h(θ) function promotes sparsity.
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2.2.2 Stick-breaking mixture prior

The stick-breaking mixture (SBM) prior model builds the probability vector θ

through an extension of the stick-breaking construction that defines the generalized

Dirichlet distribution (Connor and Mosimann, 1969). In particular,

θ1 = Z1, θj = Zj

j−1∏
h=1

(1− Zh) for j = 2, . . . , J − 1, and θJ =
J−1∏
h=1

(1− Zh) , (2.4)

with Zj
ind.∼ Beta(aj, bj), for j = 1, . . . , J − 1. The Dirichlet distribution on θ

is a special case of the generalized Dirichlet distribution. Specifically, if α =

(α1, . . . , αJ) is the Dirichlet shape parameter vector, setting aj = αj and bj =∑J
h=j+1 αh for j = 1, . . . , J − 1, yields a Dir(α) distribution for θ (Connor and

Mosimann, 1969). Typically in practice, the Zj are iid, resulting in a stochastically

ordered (first J−1 elements of the) θ vector. To allow gaps between large elements

of θ in a parsimonious way, we propose a mixture of three beta distributions,

Zj
ind.∼ π1 Beta(1, η) + π2 Beta(γj, δj) + π3 Beta(η, 1) , (2.5)

for j = 1, . . . , J − 1, where we specify π1 and π3 as probabilities (with π1 + π3 < 1)

and π2 = 1− π1 − π3. This form (2.5) allows us to encourage sparsity by setting

η large, in which case the first component corresponds to small probabilities in

θ. Figure 2.2 illustrates the role of each beta distribution from (2.5), wherein

the second and third components allow flexibility in modeling non-negligible

probabilities. If π1 is large, much of the original unit stick may be left unused, for

which we include a third component facilitating use of the remaining stick before

reaching θJ . As an example, consider modeling a probability vector (with J > 6)

in which θ3, θ4, and θ6 are relatively large and all others are small. Then Zj for

j = 3, 4 could come from the second Beta(γj, δj) component, Z6 could come from
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Figure 2.2: Individual beta densities comprising the three-component mixture
used to draw stick-breaking latent variates Zj from (2.5) in the SBM prior. The
values used here (for illustration–not necessarily recommended) are η = 50 and
γ = δ = 1.5.

the third Beta(η, 1) component, and all others from the Beta(1, η) component.

One option for the second mixture component is to fix γj = γ and δj = δ for

all j = 1, . . . , J − 1, resulting in a five-parameter prior. Alternatively, one could

select γ = (γ1, . . . , γJ−1) and δ = (δ1, . . . , δJ−1) to mimic the Dirichlet special case,

resulting in a flexible three-parameter extension of the Dirichlet prior. In that

case, π2 = 1 would yield a Dirichlet prior.

The independence of the Zj latent variables is critical to maintaining compu-

tational simplicity. To facilitate posterior simulation, we introduce independent

configuration variables ξj for j = 1, . . . , J − 1 which take on values 1 with probabil-

ity π1, 2 with probability π2, and 3 otherwise. Conditional on ξj, the distribution

of Zj is Beta(1, η) if ξj = 1, Beta(γj, δj) if ξj = 2, and Beta(η, 1) otherwise. The

joint prior distribution of Z = (Z1, . . . , ZJ−1) and ξ = (ξ1, . . . , ξJ−1) is then

p(Z, ξ) =
J−1∏
j=1

(
[π1 Beta(Zj | 1, η)]1(ξj=1) × [π2 Beta(Zj | γj, δj)]1(ξj=2) ×

[π3 Beta(Zj | η, 1)]1(ξj=3)
)
.

If we write the likelihood for multinomial data in terms of Z using (2.4) and

18



integrate the resulting posterior over Z, we obtain independent marginal posterior

distributions for the configuration variables,

Pr(ξj = r | n) ∝



π1 η
Γ(1+nj) Γ(η+

∑J

i=j+1 ni)

Γ(1+η+
∑J

h=j nh)
for r = 1 ,

π2
Γ(γj+δj) Γ(γj+nj) Γ(δj+

∑J

i=j+1 ni)

Γ(γj) Γ(δj) Γ(γj+δj+
∑J

h=j nh)
for r = 2 ,

π3 η
Γ(η+nj) Γ(1+

∑J

i=j+1 ni)

Γ(η+1+
∑J

h=j nh)
for r = 3 .

(2.6)

Full conditional distributions for the {Zj} are then p(Zj | ξj = 1,n) = Beta(Zj |

1 + nj, η + ∑J
h=j+1 nh), p(Zj | ξj = 2,n) = Beta(Zj | γj + nj, δj + ∑J

h=j+1 nh),

and p(Zj | ξj = 3,n) = Beta(Zj | η + nj, 1 + ∑J
h=j+1 nh) independently for each

j = 1, . . . , J − 1. If each of π1, π3, η, {γj}, and {δj} are fixed, Monte Carlo

simulation from the posterior distribution of θ proceeds by first drawing from

the marginal posterior of ξ, followed by the full conditional for Z, and finally

constructing the sample for θ according to (2.4).

We advocate fixing the parameters in the SBM prior to produce intended

behavior. The value of η controls the size of the negligible probabilities in θ.

If γj = γ and δj = δ are fixed at single values (the five-parameter prior), we

recommend relatively non-informative (small) values to accommodate the variety

of Zj needed to produce a range of non-negligible probabilities from the remaining

stick (i.e., ∏j−1
h=1(1 − Zh)). If a baseline Dirichlet prior is used with γj = αj and

δj = ∑J
h=j+1 αh for Dirichlet shape parameter α (the three-parameter extension),

we recommend scaling the δj to reflect prior expectation of sparsity in θ. One way

to do this is use the expected proportion of non-negligible entries in θ given by

d =


π1+(1−π1)(1−[1−π3]J )/π3

J
if π3 > 0 ,

(1−π1)(J−1)+1
J

if π3 = 0 ,
(2.7)
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so that δj = d
∑J
h=j+1 αh. This expression (2.7) is derived in Appendix A.1 and

takes into account (on average) that once a ξj = 3 is drawn, then all θh with

h > j are negligible. The scaling factor accounts for average behavior rather

than adjusting δj conditional on ξ, which would substantially complicate posterior

sampling.

We recommend setting π1 near or slightly below the intended/anticipated

prevalence of sparsity, with π3 taking a small fraction of what remains. To be

more precise, one may use the expected level of sparsity in (2.7) as a guide. The

values of π1 and π3 should also be chosen with care due to the asymmetry and

truncation of the SBM prior, which we discuss in Section 2.2.3. One may consider

placing a prior on π = (π1, π2, π3) and the parameters of the second-component

beta distribution. Using a Dirichlet prior on π results in a Dirichlet full conditional

involving counts of the configuration variables {ξj}, and is amenable to Gibbs

sampling. The other two parameters, γ and δ, have nonstandard updates, which

may be sampled discretely over a grid. Experience suggests that assigning priors to

these weakly identified parameters (in a simplified version of the model with π3=0)

has a minimal effect on resulting inferences and performance. Further note that

interpretation of posterior distributions for the parameters is not straightforward.

For example, the fraction of negligible probabilities in θ is a function of both π1

and π3.

The posterior behavior of the SBM model under multinomial sampling is more

complicated than for the SDM because mixtures occur at the level of the beta-

distributed latent variables. However, examining the full conditional updates of

the Zj variables suggests that the posterior distributions arising from the SBM

and Dirichlet priors become similar with large sample sizes. The posterior mean

point estimate under the SBM also becomes similar to the maximum likelihood
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estimator nj/N for large N . Consider the posterior mean for θj conditional on ξ,

E(θj | n, ξ) = E[Zj
j−1∏
h=1

(1− Zh) | n, ξ]

= aj + nj

aj + bj +∑J
h=j nh

j−1∏
h=1

bh +∑J
`=h+1 n`

ah + bh +∑J
i=h ni

= aj + nj
a1 + b1 +N

j−1∏
h=1

bh +∑J
`=h+1 n`

ah+1 + bh+1 +∑J
i=h+1 ni

, (2.8)

where (aj, bj) ∈ {(1, η), (γj, δj), (η, 1)}, depending on ξj, for each j = 1, . . . , J − 1.

If all prior parameters are fixed, then for min({nj}) � max(η, {γj}, {δj}), all

terms in the product after the first approach 1. A term can fail to converge to

1 only if n` = 0 for all ` > h, in which case it approaches bh/(ah+1 + bh+1) <∞.

However, this only occurs if nj = 0 also, so that the first term approaches 0 and

consequently E(θj | n, ξ) approaches 0 as well. Irrespective of the values in ξ,

we have E(θj | n, ξ) ≈ nj/N for large N . Thus for large samples, E[θj | n] =

Eξ[E(θj | n, ξ) | n] ≈ Eξ[nj/N | n] = nj/N .

2.2.3 Properties of the SDM and SBM priors

The SDM and SBM prior models arise from quite different approaches. They

likewise exhibit distinct properties which yield advantages and disadvantages in

different modeling scenarios. One primary advantage shared by both models is

that fixing the hyperparameters, as is typically done with the standard Dirichlet

prior, admits direct sampling from the posterior distribution of θ.

The sparse Dirichlet mixture prior model could appropriately be called a

“winner takes all” prior, as the component of (2.1) involving β forces probability

mass toward the corners of the simplex supporting θ. If the Dirichlet density in

(2.1) is symmetric, then the SDM prior is also symmetric. If a symmetric prior
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with α < 1 is used and there is a tie among highest multinomial counts, the

posterior distribution will be multimodal. Increasing β forces prior mass deeper

into the corners of the simplex, resulting in strongly biased estimates of all non-zero

probabilities in θ, as posterior mass for the probability associated with the highest

multinomial count will move toward 1 while the mass for all others move toward

0. This behavior may be desired when a modeler believes that only one of the

multinomial components is active, or in a model or variable selection scenario

where we wish to softly favor a single “selected” component. Even if there are

two active components, the SDM can modestly improve estimation relative to

the corresponding Dirichlet prior in small samples if β < N . Because the SDM

is a fixed-weights mixture of Dirichlet densities, it retains negative correlations

between all modeled probabilities.

The stick-breaking mixture prior model is based on a sequential construction

mechanism (2.4) which typically precludes prior symmetry. Furthermore, inferences

for θ are not invariant to permutation of the indices j, as with the Dirichlet prior

(Wong, 1998). These properties, coupled with the mixture model for the stick-

breaking Zj variables can result in non-negligible aberrations in prior (and posterior)

estimates of probabilities at the end of the θ vector. One can assess these issues

using the prior expectation of θ. Consider the special case with the single γ, δ

pair and π3 = 0. Letting µZ = E(Zj) = π1[1/(1 + η)] + (1 − π1)[(γ/(γ + δ)],

independence of the Zj yields E(θj) = µZ(1 − µZ)j−1, for j = 1, . . . , J − 1, and

E(θJ) = (1 − µZ)J−1. A large value of π1 leads to much of the stick remaining

unbroken before reaching θJ = 1 − ∑J−1
j=1 θj, resulting in a large value for θJ .

Likewise, small values of π1 or large values of π3 can lead to early consumption of

the stick and small probabilities toward the end of the θ vector.

These biases in the SBM reduce as J increases, in which case encouraging
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sparsity makes sense. The three-parameter extension of the Dirichlet together with

sparsity-corrected {δj}, as well as the third component of the mixture in (2.5), can

also alleviate the prior bias. Figure 2.3 demonstrates the effect of different SBM

settings on components of θ through simulation. The three-parameter extension

helps restore symmetry in j. While increasing π3 accentuates stochastic ordering

in θ, it also reduces the magnitude of θJ . We emphasize that these biases are

greatly reduced with the introduction of just one data observation. Despite these

artifacts of the model, our experience is that the SBM prior model produces more

faithful estimates than the SDM model when θ contains two or more non-negligible

probabilities, and can outperform the standard Dirichlet prior in a variety of

small-sample scenarios. We recommend using the three-parameter extension of

Dirichlet
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Figure 2.3: Box plots summarizing 10,000 simulated values of θj , for j = 1, . . . , J ,
with J = 6, which demonstrate the effects of γ, δ specification and π3. The Dirichlet
prior (far left) is included for reference. Simulations on the top row are from the
SBM prior with γ = δ = 1.5 fixed, and simulations from the bottom row are
from the SBM prior with Dirichlet shape parameters informing {γj}, {δj} and a
sparsity correction to {δj} using (2.7). The left plots have π3 = 0 and right plots
have π3 = 0.1. In all simulations, the Dirichlet shape parameters are αj = 1/J ,
η = 1,000, and π1 = 0.5.
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the Dirichlet with η large (we typically use η = 1,000), π1 close to the anticipated

level of sparsity, and 0 < π3 < π1.

Under certain conditions, the generalized Dirichlet distribution admits positive

correlations among elements of the modeled probability vector (Wong, 1998).

Specifically, θi and θh are positively correlated for 1 < i < h ≤ J if and only if the

condition (ai + bi)/(ai + bi + 1) > ∏i−1
j=1 bj/(bj + 1) holds, where {aj} and {bj} are

the parameters of the beta distributions for the Zj variables. Although the mixture

structure of the SBM prior model adds further complication, this condition can

have high posterior probability under some data scenarios if, for example, η is

relatively small and γ/(γ + δ) is close to 1. Usually, the SBM distribution yields

negative correlations.

To illustrate some of the properties of these models, we consider two multinomial

data scenarios with J = 3, which allows us to visualize the posterior density for θ

as ternary plots in Figure 2.4. Two data vectors, n1 = (0, 3, 3) and n2 = (0, 3, 5),

update a standard symmetric Dirichlet prior in addition to the two proposed

models. For both the SDM and SBM models, hyperparameter settings were

relatively mild, in that they did not strongly enforce sparsity. In the first scenario,

two categories share the maximum count, leading the Dirichlet and SDM models to

retain symmetry (and bimodality in the SDM case) in the joint posterior of θ2 and

θ3. Although asymmetric, the posterior density under the SBM model maintains

some neutrality between θ2 and θ3 while decisively shrinking θ1. In the second

scenario, both proposed models favor θ3 despite only a slightly higher count in n3.
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Figure 2.4: Posterior kernel density estimates for a probability vector θ under
two multinomial data scenarios (n1 = (0, 3, 3) top, n2 = (0, 3, 5) bottom) and
three prior models: Dirichlet (left), SDM (center), and SBM (right). Fixed
hyperparameter values are reported in the plots. The SBM prior is the three-
parameter extension of the Dirichlet prior with sparsity correction on δj. Shading
scales vary by plot, but are similar to those shown for the SBM model. The plots
were generated using the ggtern package (Hamilton, 2017).

2.3 Application: Markov chains with lag uncer-

tainty

We have illustrated the effects of the SDM and SBM prior models in the simplest

setting of multinomial count data. A more interesting and potentially powerful

scenario is to leverage sparsity in hierarchical models, using apriori knowledge to

softly impose structure one level removed from observable quantities.

We illustrate this concept by fitting a Markov chain with unknown lag depen-

dence. Markov chain modeling provides an appealing framework for discrete time

series as well as for uncovering nonlinear dynamics. In the latter case, we may even
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consider discretization of continuous time-series data. Sparsity becomes important

if we consider the underlying dynamical system to be nearly deterministic. Model

selection challenges arise as we consider the optimal lag in a system. We begin

by introducing a hierarchical model in Section 2.3.1 which utilizes both priors to

address each of these objectives. We apply this model to a simulated dynamical

system in Section 2.3.2 and proceed with an illustrative example using ecological

data in Section 2.3.4.

2.3.1 Bayesian lag estimation under the mixture transi-

tion distribution model

Consider a time series of nominal or ordinal values st ∈ {1, . . . , K} for t =

1, . . . , T . Suppose our dual objectives in fitting a time-homogeneous Markov chain

model to this series are estimation of the transition dynamics and selection of

a single active lag. With Markov chains, order (or lag) is typically selected by

maximizing a (possibly penalized) likelihood (as in Katz, 1981; Raftery, 1985;

Prado and West, 2010), performing trans-dimensional MCMC (Green, 1995; Insua

et al., 2012), using Bayes factors (Fan and Tsai, 1999; Bacallado, 2011; Zucchini

and MacDonald, 2009), predictive criteria, or classical hypothesis tests (Bartlett,

1951; Besag and Mondal, 2013). Each of these approaches requires either fitting

multiple models or complex estimation methods. Our approach is to build lag

inference into a single model using our proposed priors applied to a popular mixture

model for high-order Markov chains.

The mixture transition distribution (MTD) model, introduced by Raftery

(1985) and reviewed in Berchtold and Raftery (2002), is a parsimonious model

for high-order Markov chains. It approximates transition probabilities from a

transition probability tensor Ω as linear combinations of probabilities from a single
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column-stochastic matrix Q and adds just one parameter for each additional lag

(λ`), similar to autoregressive models. The transition probabilities in a model of

order L are given as

Pr(st = k0 | st−1 = k1, . . . , st−L = kL) = (Ω)k0,k1,...,kL =
L∑
`=1

λ` qk0,k` , (2.9)

where qi,h ≡ (Q)i,h, 0 ≤ λ` ≤ 1 and ∑L
`=1 λ` = 1. This form (2.9) suggests that lags

which play a prominent role in the transition probability for st will have relatively

large λ` and lags which are not important to the transition will have λ` values

near 0. Hence, inferences for λ = (λ1, . . . , λL) potentially yield information about

important lags for the Markov process. It is apparent from (2.9) that λ` = 0 is

sufficient for conditional independence of st and st−`. If the columns of Q are

unique, then λ` = 0 is also a necessary condition for conditional independence.

Inferences on λ have been employed to understand lag importance informally

(Raftery and Tavaré, 1994), although the standard method for assessing order has

been to compare BIC values (Berchtold and Raftery, 2002). Tank et al. (2017)

recently targeted λ with a sparsity-inducing penalty to estimate Granger causality

networks among multiple time series. One advantage of using (2.9) is increased

flexibility over models for which lag dependence is fixed across all observations.

Here, we study the utility of the SDM and SBM priors in the context of Bayesian

inference under the MTD model. Conditioning on the first L observations, the

likelihood for the observed sequence is given by

p
(
{st}Tt=L+1 | {st}Lt=1,λ,Q

)
=

T∏
t=L+1

p
(
st | {st−`}L`=1,λ,Q

)
=

T∏
t=L+1

L∑
`=1

λ` qst,st−` .

Assuming independent Dirichlet priors on λ and on the columns of Q, a data

augmentation scheme with lag indicators yields tractable posterior conditional
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distributions amenable to Gibbs sampling (Insua et al., 2012, pp. 59-60). Denote

these indicators with {zt}, for which if zt = `, then p(st | st−1, . . . , st−L,Q, zt =

`) = qst,st−` . While computationally convenient, this sampling scheme suffers from

mixing challenges. Two alternatives are to 1) integrate Q out of the joint posterior

and sample the marginal conditional posterior distributions for λ and {zt}; or 2)

use the likelihood without augmentation and employ Metropolis-Hastings. Both

methods result in improved mixing, and we opt for the former.

In scenarios where the modeler believes one lag should dominate, but is unsure

which it is, we advocate to replace the Dirichlet prior for λ with one favoring sparsity,

particularly the SDM prior. Placing the SBM prior on λ is also appropriate and

more in the spirit of the original MTD, as it allows two or more lags to significantly

contribute to the transition distribution. If the transition probability matrix is

known to be sparse, as is the case with our simulated dataset in the following

section (see Figure 2.6, right panel), we propose replacing the Dirichlet priors on

the columns of Q with independent SBM priors. These priors may assist to more

precisely identify sparse structure than Dirichlet priors which tend to average over

many components. Our proposed hierarchical model is given by:

Pr(st = k0 | st−1 = k1, . . . , st−L = kL,Q, zt = `) = (Q)k0,k` ,

for kh = 1, . . . , K; h = 0, . . . , L; ` = 1, . . . , L; and t = L+ 1, . . . , T,

Pr(zt = ` | λ) = λ` indep. for t = L+ 1, . . . , T ,

λ ∼ SDM(αλ, βλ) ,

(Q)·,k ind.∼ SBM(πk, ηk,γk, δk) , for k = 1, . . . , K. (2.10)

If we fix the hyperparameters αλ, βλ, {πk}, {ηk}, {γk}, and {δk}, posterior Gibbs

sampling can proceed with tractable conditional distributions. We improve mixing
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by integrating Q from the joint posterior, sampling the marginal conditional

distributions for λ and {zt}. These are supported by the tractable marginal

distributions derived in Appendix A.2. Additionally, to encourage occasional jumps

between modes of the posterior, we include a hybrid independence Metropolis step

which jointly proposes λ and {zt} from their prior every 25 iterations of MCMC.

To obtain results in Sections 2.3.3 and 2.3.4 that follow, each model was ini-

tialized with random draws from the Dirichlet prior for λ and discrete uniform for

{zt}. Random initialization in these models necessitated long burn-in periods, on

the order of tens to hundreds of thousands of iterations. In our analyses, 500,000

burn-in iterations were followed by another one million iterations, producing con-

vergent chains suitable for inference. Reported posterior quantities were calculated

using a thinned sample retaining every 50th iteration. Full details of the MCMC

algorithm are given in Appendix A.3.

2.3.2 Simulated dynamical system

We illustrate this Bayesian MTD model on applications for low-dimensional,

nearly-deterministic dynamics in which only one lag dominates, and all but a few

entries of the transition probability matrix are near 0. These two characteristics

provide a natural setting for demonstrating the utility of our sparsity-favoring

priors. We begin with a nonlinear, continuous-state system generated using a

transition map adapted from a classical model for stock and recruitment of fish

(Ricker, 1954), with additive Gaussian noise:

yt = yt−2 exp(ϕ− yt−2) + εt , εt
iid∼ N(0, σ2) . (2.11)

We use ϕ = 2.6 and σ = 0.09. Simulated values were retained after a burn-in

period of 1,000 transitions. Lag plots are shown in Figure 2.5. In order to capture

29



1 2 3 4 5

1
2

3
4

5

Lag 1

yt−1

y
t

●

●

●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●

●
●

●●

●

●

● ●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

● ●

●

1 2 3 4 5

1
2

3
4

5

Lag 2

yt−2

y t

1 2 3 4 5

1
2

3
4

5

Lag 3

yt−3

y
t

1 2 3 4 5

1
2

3
4

5

Lag 4

yt−4

y
t

1 2 3 4 5

1
2

3
4

5

Lag 5

yt−5

y
t

1 2 3 4 5

1
2

3
4

5

Lag 6

yt−6

y
t

Figure 2.5: Lag scatter plots for 993 steps of the simulated dynamical model.
The red curve in the lag 2 plot indicates the true mean transition function.

the nonlinear transitions in a simple and robust way, the continuous observations

{yt} were binned into K = 5 and K = 10 ordered states {st}. In deterministic

systems, so-called Markov and generating partitions of the state space encode

dynamics with finite symbol sets. While strategies exist for estimating such

partitions using noisy time series with unknown maps (Hirata et al., 2004), we

take a general approach, electing to bin by quantiles (calculated from a window

of 1,000 steps). For instance, y550 = 0.508. In the K = 5 discretization, all

observations in the interval (−∞, 0.818] correspond to State 1 so that s550 = 1. In

the K = 10 discretization, y550 = 0.508 ∈ (0.496, 0.596], the interval for State 2, so

that s550 = 2. The boundaries for state definitions are shown in Figure 2.6, along

with an approximate transition probability matrix computed for the second lag
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Figure 2.6: Time series, second-lag scatter plots, and approximate transition
probability matrices for the K = 5 (upper) and K = 10 (lower) discretizations of
{yt}. Gray lines indicate cutoff values for state assignment in {st}.
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only. This matrix was computed using the final 997,990 steps of the simulation

after reserving 1,000 steps for model training and 10 steps for conditioning lags.

Although unnecessarily large, a time series of one million steps assures numerical

accuracy, allows for essentially uncorrelated validation observations, and was used

to verify that key characteristics of the time series remain constant on long time

scales. Due to discretization error, the time series {st} is only approximately a

Markov chain, whose distribution nevertheless depends primarily on the second

lag.

2.3.3 Results

To understand the performance of the proposed model under different scenarios

and configurations, models were fit to the simulated time series for varying series

length T ∈ {50, 100, 500}, resolution of discretization (number of states) K ∈

{5, 10}, and prior combinations p(λ) ∈ {Dir, SDM, SBM}, p(Q·,k) ∈ {Dir, SBM}.

The greatest number of lags considered was set to L = 7 for all models. Dirichlet

priors for λ and columns of Q were relatively non-informative and symmetric

with common shape parameter 1/L and 1/K, respectively. The SDM prior for λ

used the same shape parameter as the Dirichlet components, and added β = T/4

to strongly enforce sparsity. The SBM prior for λ extended the same Dirichlet

prior with π1 = 0.75, π3 = 0.10, and η = 1,000, with sparsity adjustment for

δ. Independent SBM priors also encouraged sparsity in Q with π1 = 0.9 and

π3 = 0.05 for the K = 5 case, π1 = 0.75 and π3 = 0.1 for the K = 10 case, and

η = 1,000, extending (with sparsity adjustment for δ) the Dirichlet priors for each

of the k columns in Q.

To compare competing models, we randomly sampled 2,000 observations (de-

noted t′) from the more than 997,000 non-training steps after time T . Then
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conditioning on L lags and model parameters at MCMC iteration i, we produced a

model estimate of the discrete forecast distribution p(st′ | st′−1, . . . , st′−L,λ
(i),Q(i))

according to (2.9) and denoted p̂(i)
t′ . This forecast distribution was used to create

a point estimate using the forecast expectation p̄(i)
t′ ≡

∑K
k=1 k · p̂

(i)
t′,k, where p̂

(i)
t′,k is

the kth element of p̂(i)
t′ . Next, a squared-error loss was calculated as

(
st′ − p̄(i)

t′

)2
.

This loss was averaged across the 2,000 validation times {t′} and 2,000 randomly

selected posterior samples {λ(i),Q(i)}. We favor this squared-error metric because

it utilizes information from the entire p̂(i)
t′ vector, which is important in our ap-

plications where adjacent states are considered “closer” than non-adjacent states.

Results for all combinations of simulation settings are reported in Table 2.1. The

results were also verified with separate MCMC chains and different validation sets.

The most striking result from Table 2.1 is that in all simulation groups, the

SDM/SBM prior combination is at or near the lowest mean forecast loss. The

primary contributor to this gain in model accuracy is the SBM prior on columns

of Q. This is to be expected since the marginal transition map associated with the

correct lag exhibits the least noise (see Figure 2.5). Adding the SDM or SBM prior

on λ also improves accuracy in most cases, and enforcing sparsity in Q appears to

assist further in the lag selection, as accuracy gains in enforcing sparsity in λ are

often more pronounced when using the SBM prior in the K = 10 case.

Accuracy gains from these priors appear to be consistent across varying number

of states, although they are far more pronounced in models with mores states, for

which Q should be more sparse. The gains diminish as sample size increases, as

expected. In every model fit, the λ vector heavily favors lag 2. Because of this,

posterior estimates of Q resemble the validation estimate of Q in the right panel

of Figure 2.6. Generally, the SDM and SBM priors on λ result in stronger support

for lag 2 than their Dirichlet counterpart. In the T = 50, 100 cases, the SBM prior
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Sq.-error loss

T Prior λ Prior Q K = 5 K = 10

50 Dir Dir 49.01 166.20
SBM 45.27 122.67

SDM Dir 48.64 155.48
SBM 44.64 99.49

SBM Dir 48.00 146.55
SBM 44.68 100.04

100 Dir Dir 39.11 80.87
SBM 38.16 66.54

SDM Dir 38.90 78.95
SBM 37.90 61.90

SBM Dir 38.60 76.72
SBM 37.82 63.88

500 Dir Dir 35.84 49.50
SBM 35.83 48.55

SDM Dir 35.85 49.42
SBM 35.83 48.46

SBM Dir 35.87 49.38
SBM 35.84 48.44

Table 2.1: Results of the MTD model fit to the simulated dynamical system
under various data and prior scenarios. The squared-error loss metric is reported
as the mean across validation observations and MCMC iterations and multiplied
by 100. Within groups, the lowest mean loss is highlighted with bold font.

on Q causes lags 6 and 3, and occasionally lag 5, to gather a small amount of

posterior mass. While selection of lag 6 is consistent with the fact that marginal

transition dynamics for lags 2 and 6 resemble one another in Figure 2.5, occasional

selection of the odd lags is less intuitive and may be attributed to random noise

with smaller sample sizes. Inferences for λ are nearly indistinguishable across

models when the sample size is large (T = 500).
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2.3.4 Chinook salmon data

The Chinook salmon data set contains 71 annual measurements of salmon

abundance at the Coleman National Fish Hatchery in Anderson, California, U.S.A.

from 1940 to 2010, compiled from Azat (2016) and personal correspondence. Time

series and lag plots of the natural logarithm of abundance are given in Figure

2.7. Population dynamics for Chinook salmon follow a two to four-year life cycle
Coleman National Fish Hatchery
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Figure 2.7: Time-series plot (above) and lag scatter plots (below) for the natural
logarithm of Chinook salmon abundance from 1940 to 2010.
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(Satterthwaite et al., 2017), and are commonly modeled using parametric functions

similar to that of (2.11) (Quinn and Deriso, 1999, p. 89). Because North American

oceanic salmon populations could be influenced by decadal-scale ocean dynamics,

we consider up to L = 10 lags (Hare and Mantua, 2001). Conditioning on the

first 10 observations and reserving the final 11 observations as a hold-out set for

validation leaves 50 observations for training the models: years 1950 to 1999. After

discretizing the data into sets of K = 4, 5, and 7 quantile-based bins using all 71

years, we fit the proposed models with the same sparsity-favoring prior settings

used for the K = 10 run of the simulation study. Because discretization is based on

quantiles, results are invariant to monotonic transformations such as the natural

logarithm used for the plots in Figure 2.7.

Out-of-sample, one-step-ahead, mean forecast squared-error loss for years 2000

to 2010 is reported for the various model settings in Table 2.2. Again, we see

best results from the combinations involving the new priors for finer resolution

(K = 5, 7). In the K = 4 case, sparsity-favoring priors on λ hinder model

performance. In the K = 5 case, the new priors hinder performance with the

Dirichlet prior on Q, but help when coupled with the SBM prior on Q. As with

Sq.-error loss

Prior λ Prior Q K = 4 K = 5 K = 7

Dir Dir 47.67 88.95 226.72
SBM 46.75 94.55 222.08

SDM Dir 59.82 100.19 189.19
SBM 57.22 83.90 155.81

SBM Dir 53.66 90.66 188.07
SBM 49.73 81.17 162.98

Table 2.2: Results of the MTD model fit to the Chinook salmon data under
different resolutions and prior scenarios. The squared-error loss metric is reported
as the mean across validation observations and MCMC iterations and multiplied
by 100. Within groups, the lowest mean loss is highlighted with bold font.
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the simulation study, the largest improvement comes from replacing the Dirichlet

priors on Q with the SBM.

Direct evaluation of the one-step-ahead forecast distributions in Figure 2.8

yields further insight and demonstrates the effects of the various prior configurations

when K = 7. These distributions are given for the validation years 2000 to 2010

(again with each conditioning on the past L = 10 years as fixed and known) by

shading the region corresponding to each state. This visualization elucidates the

conclusions from Table 2.2. For example, the models employing sparse lag inference

are more responsive to the switch in 2007, thus more appropriately forecasting
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1995 2000 2005 2010

7
8

9
1
0

1
1

1
2

λ: Dirichlet, Q: SBM

1995 2000 2005 2010

7
8

9
1
0

1
1

1
2

λ: SDM, Q: Dirichlet

1995 2000 2005 2010

7
8

9
1
0

1
1

1
2

λ: SDM, Q: SBM

1995 2000 2005 2010

7
8

9
1
0

1
1

1
2

Figure 2.8: Time series of log-transformed Chinook salmon abundance with
one-step-ahead forecast distributions on the holdout set of years 2000 to 2010,
reported for four prior configurations. The plots for models with the SBM prior
on λ are nearly indistinguishable from those using the SDM prior and are omitted.
Shaded squares indicate posterior mean point forecast probabilities. The shading
scale is similar to those of the transition matrices in Figure 2.6, with darker shades
corresponding to higher probabilities. Cutoff values for the discretized states
appear as horizontal lines.
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2008-2010. As expected, the transition distributions resulting from the models

with sparse priors produce higher estimated transition probabilities leading to

more decisive forecasts.

We now turn to model inferences for λ and Q. In the K = 4 case, the baseline

Dirichlet/Dirichlet model fairly evenly distributes posterior mass among lags 1

through 3. Enforcing sparsity in Q only (the model supported by squared-error

loss) favors lag 2 slightly more, as well as giving some support for lag 9. When

sparsity is introduced into lag inference, lag 3 emerges as a preference across both

priors for transition probabilities.

In the K = 5 case, the baseline Dirichlet/Dirichlet model mostly favors lag 1

and occasionally lag 2. Enforcing sparsity in Q spreads some of the posterior mass

to lags 7 and 8. Adding sparsity in lags (the models supported by squared-error

loss) returns most posterior mass to lag 1.

In the K = 7 case (summarized in Figure 2.9), the baseline Dirichlet/Dirichlet

model fairly evenly distributes posterior mass between lags 1 and 2. Enforcing

sparsity on lags only tends to favor lag 2 more. Enforcing sparsity in Q transfers

some of that mass to lags 3, 5, and 8. Under the SDM prior for lags and SBM

prior for transition probabilities (the model supported by squared-error loss), most

posterior mass favors lag 2, with some minor support for lags 1, 5, and 8.

Across levels of resolution (K), we see that lag inferences tend to be affected by

the prior on transition probabilities in addition to the prior on the lags themselves.

Indeed, the SDM prior often accentuates preferences already evident, although

it may assist in selecting a “winner.” Consistent with the simulation study, the

new priors excel in the models with finer levels of discretization. Overall, we see

improved forecasting ability and potentially clearer lag effects afforded by the

structured sparsity priors.
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Figure 2.9: Marginal posterior density plots of selected λ` (left) and posterior
mean point estimate of Q (right) for the Coleman Chinook salmon data with
K = 7 for all prior settings: A-Dirichlet(λ)/Dirichlet(Q), B-Dirichlet/SBM, C-
SDM/Dirichlet, D-SDM/SBM, E-SBM/Dirichlet, F-SBM/SBM. The shading scale
and orientation are similar to those of the transition matrices in Figure 2.6.
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2.4 Discussion

We have explored methods to model sparse probability vectors beyond the

ubiquitous Dirichlet distribution, introducing two new prior models, the sparse

Dirichlet mixture (SDM) and the stick-breaking mixture (SBM). We have demon-

strated some properties of these models and illustrated their use in Markov chain

models for time-series data. In the simulation study, the new models assisted

in identifying the active lag and estimating sparse transition dynamics. In the

salmon data analysis, we demonstrated how imposing structure on the model can

potentially reveal additional insights into the lag dependence of a time series.

The proposed prior distributions may find utility with categorical data analyses

in which there exist many categories and relatively few observations, and a modeler

suspects that few categories have non-negligible probability. These methods are

particularly useful for softly enforcing sparse structures in hierarchical models,

levels removed from observed data. This can also be considered a model-based

selection method. Indeed, the augmented MTD model in Section 2.3.1 motivated

development of the new prior models as we sought to strengthen lag inferences.

As was evident in the salmon data analysis, the method of discretization has

important implications for both lag and transition inferences. We have chosen to

discretize by quantiles because they are invariant to monotonic transformation of

the data, such as taking the logarithm. Furthermore, each state is observed with

approximately equal frequency, providing comparable inferences across columns of

the transition matrix as well as an approximately uniform stationary distribution,

which helps justify conditioning the likelihood on the first L states. In light of our

sparsity considerations, another potentially reasonable method of discretization

would be to classify the points in states by clustering. This could be accomplished

in data preprocessing or as part of the model, potentially with a hidden Markov
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structure.

To broaden the scope of MTD models utilizing this prior structure, we consider

various extensions. The model could be made more flexible if we consider mixing

over a transition tensor of order higher than two and using sparsity priors to

select tuples of lags, parsimoniously modeling higher-order Markov chains and

simultaneously infering active lags. We pursue this in Chapter 3. As noted

earlier, the proposed prior distributions can be utilized to encourage sparsity in

any hierarchical model for which observations are allocated latent membership in

a discrete set. Model settings beyond the ones considered here include mixture

modeling and mixture deconvolution.
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Chapter 3

Estimation and Selection for

High-Order Markov Chains with

Bayesian Mixture Transition

Distribution Models

3.1 Introduction

Consider modeling a time series of nominal or ordinal values st ∈ {1, . . . , K}

collected at equally spaced, discrete times t = 1, . . . , T . A popular approach for

capturing serial correlation is to assume Markovian dynamics: that the conditional

probability distribution of st depends only on the recent past. Time homogeneity,

or time invariance of the transition probabilities, is also typically assumed. These

simplifying assumptions, nearly essential for inference in small or moderate sample

size scenarios, are often appropriate even if the time series is not truly Markovian.

Another common assumption is to condition only on the single most recent lag.
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However, restricting a model to first-order dynamics, or even selecting the incorrect

lag, can miss important features in the data. In this chapter, we propose Bayesian

models to address two distinct objectives: estimation for the relevant time-delay

coordinates, the Markovian order and important lags; and parsimonious modeling

of high-order chains.

Assuming time homogeneity, a full, unrestricted first-order model requires

estimation of K discrete distributions, each with K − 1 free parameters. A

Markov chain of order L requires estimation of KL such distributions, limiting

consideration to low orders for most time series. Typically, order (or lag) is selected

by maximizing a (possibly penalized) likelihood (Katz, 1981; Raftery, 1985; Prado

and West, 2010), performing trans-dimensional MCMC (Green, 1995; Insua et al.,

2012), using Bayes factors (Fan and Tsai, 1999; Bacallado, 2011; Zucchini and

MacDonald, 2009), predictive criteria, or goodness-of-fit tests (Bartlett, 1951;

Besag and Mondal, 2013). Each of these approaches requires either fitting multiple

models or complex estimation methods. Our approach is to build lag inference

into a single model.

Several approaches have been proposed to address exponential growth in the

parameter space for higher-order transitions. Raftery (1985) introduced the mixture

transition distribution (MTD), a general-purpose, parsimonious model for Markov

chains. The MTD model was extended in Raftery and Tavaré (1994) and developed

over the subsequent decade. Berchtold and Raftery (2002) provide a review. In the

original MTD model, lags contribute to the transition probabilities by mixing over

a single transition matrix. Only one new parameter is added for each additional

lag. Despite its simplicity, the MTD framework can provide flexibility to capture

nonstandard features, such as “outliers, bursts, and flat stretches,” as demonstrated

by Le et al. (1996) for a continuous-state version of the MTD.
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Contemporary with the MTD model, generalized linear models for multinomial

outcomes were applied to categorical time series (Liang and Zeger, 1986; Zeger

and Liang, 1986; Fahrmeir and Kaufmann, 1987). These models can accommodate

varying degrees of complexity by controlling the order of interactions among the

linear predictors (lags), up to and including a full model withKL(K−1) parameters.

These models can also account for exogenous sources of non-stationarity through

covariates. However, estimation and interpretability become problematic in these

models when many lags are considered.

Tree-based methods provide an alternative parsimonious approach. Variable-

length Markov chains (VLMC, Ron et al., 1994; Bühlmann et al., 1999) reduce the

parameter space by clustering the KL transition distributions via recursive pruning.

Sparse Markov chains (SMC, Jääskinen et al., 2014) partition the L-dimensional

lag space without hierarchical constraints, resulting in greater flexibility. They also

feature a prior structure which encourages low orders. Although efficient, these

models lack posterior uncertainty quantification, and inferences for order and lag

importance are not readily available.

More recently, Sarkar and Dunson (2016) proposed a Bayesian nonparametric

model for high-order Markov chains. They model the KL transition distributions

through tensor factorization and further encourage parsimony by clustering the

components of a core mixing distribution with a Dirichlet process prior (Ferguson,

1973). By allowing variable dimensions along different modes of the core mixing

distribution, the model further admits inferences for lag importance. This model

enjoys a fully Bayesian, albeit complicated, implementation and has been shown

to perform well against the methods described above in forecasting in scenarios

with up to four states and ten lags.

Our modeling strategy is to build on the simplicity and interpretability of the
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MTD model. One popular extension of the MTD, referred to by Berchtold and

Raftery (2002) as the MTDg model, utilizes a separate transition matrix for each

lag. While this more flexible model grows linearly with each additional lag, it

is not identifiable (Lèbre and Bourguignon, 2008). Recently, Tank et al. (2017)

used a reparameterization to establish a unique and identifiable characterization

of the MTDg model in the context of multiple time series. Using a penalized

likelihood and proximal gradient optimization, they softly enforce the identifiability

conditions and simultaneously select relevant series to infer Granger causality. We

propose a Bayesian estimation approach to the MTDg model which utilizes the

priors introduced in Chapter 2 to promote shrinkage toward the identifiability

conditions of Tank et al. (2017), and to simultaneously select relevant lags. These

priors were previously demonstrated to effectively select a single active lag using the

original MTD model. We then propose an extension which allows for higher-order

interaction between lags, as well as inference for the Markovian order (i.e., the

number of active lags) up to a pre-specified maximum.

The remainder of this chapter is organized as follows. In Section 3.2, we review

the MTD model and develop our proposed extensions. We outline our approach for

Bayesian inference using structured priors to aid with the models’ intended uses

in Section 3.3. In Section 3.4, we test the models using two simulation scenarios

that reflect our two objectives, demonstrating improved predictive performance

over the original MTD. Section 3.5 illustrates the models through two analyses,

first on a data set which appears in the preceding literature, and second on annual

time series of pink salmon abundance in Alaska, U.S.A. Finally, we conclude with

a summary in Section 3.6. Technical details are provided in Appendix B.
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3.2 Models

In a full L-order, time-homogeneous Markov chain, the collection of all possible

transition probabilities Pr(st = k0 | st−1 = k1, . . . , st−L = kL), for k` ∈ {1, . . . , K},

` ∈ {1, . . . , L}, t ∈ {L + 1, . . . , T}, can be arranged in a (L + 1)-order tensor

(Ω)k0,k1,...,kL . If we condition on the first L observations of the time series, the

joint sampling distribution for the remaining sequence is given by Pr({st}Tt=L+1 |

{st}Lt=1,Ω) = ∏T
t=L+1(Ω)st,st−1,...,st−L , defining the conditional likelihood that we

employ hereafter. We begin by specifying the original MTD model in Section 3.2.1

and motivate its extensions. In Section 3.2.2, we discuss the MTDg extension and

associated identifiability results. We then introduce a Bayesian formulation for the

MTDg which uses priors for sparse probability vectors in Section 3.2.3. Finally,

we propose an extension to include higher-order transitions in Section 3.2.4.

3.2.1 Original mixture transition distribution

The mixture transition distribution model constructs the transition probability

tensor Ω as linear combinations of probabilities from a single column-stochastic

matrix Q and adds just one parameter for each additional lag (the mixing weights,

{λ`}), similar to autoregressive models. The transition probabilities in a model of

order L are given as

Pr(st = k0 | st−1 = k1, . . . , st−L = kL) = (Ω)k0,k1,...,kL =
L∑
`=1

λ` qk0,k` , (3.1)

where qi,h ≡ (Q)i,h, 0 ≤ λ` ≤ 1 and ∑L
`=1 λ` = 1. Although the MTD model

incorporates information beyond the first lag, it is restrictive in that it cannot

capture nonlinear (non-additive) dynamics in more than one dimension of the lag

space.
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The construction in (3.1) is reminiscent of tensor factorization methods, such

as the Tucker decomposition (Tucker, 1966). Yang and Dunson (2016) and Sarkar

and Dunson (2016) apply a similar decomposition to probability tensors, which in

the context of Markov chains, have the form

(Ω)k0,k1,...,kL =
H1∑
h1=1
· · ·

HL∑
hL=1

ωk0,h1,...,hL

L∏
`=1

ρ
(`)
h`,k`

, (3.2)

where all ω and ρ variates are between 0 and 1 and sum to unity over the first

index. The distinction between (3.1) and (3.2) is best understood in terms of the

dependence structure with latent indicator variables (illustrated for the MTD in

Figure 1.1). The {ω} comprise a core tensor of transition probabilities that are

selected exclusively with a set of L latent indicators, which in turn depend on

lagged observations through the {ρ} probabilities. The MTD analogue of the core

tensor, Q, provides transition probabilities over a single mode that is selected

with both the lagged observations and a single latent indicator, with probabilities

λ = (λ1, . . . , λL). Using multiple nodes of varying dimension (i.e., H1, . . . , HL)

and weights that depend on all lags, the model in (3.2) offers interactions between

lags and greater coverage at the cost of additional complexity.

As noted earlier, we use the MTD structure for its relative simplicity, parsimony,

and interpretability. Recall from Section 2.3.1 that the mixing weights in the

MTD model can help identify lag dependence. Specifically, λ` = 0 is sufficient

for conditional independence of st and st−`. If the columns of Q are unique, then

λ` = 0 is also a necessary condition for conditional independence. As in Chapter

2, we use inferences on λ for insight into lag importance.
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3.2.2 MTDg, identifiability, and lag selection

The MTDg model modifies (3.1) by using a distinct column-stochastic matrix

Q(`) for each lag ` = 1, . . . , L. While this increases flexibility and allows for different

transition types associated with each lag, the model lacks identifiability. Tank et al.

(2017) demonstrate this by introducing an intercept probability vector, Q(0) =(
q

(0)
1 , . . . , q

(0)
K

)
, extending λ to include λ0, and reparameterizing the transition

probabilities through the products ϕ(0)
k0 ≡ λ0 q

(0)
k0 and ϕ(`)

k0,k`
≡ λ` q

(`)
k0,k`

, resulting in

the MTDg formulation

Pr(st = k0 | st−1 = k1, . . . , st−L = kL) = ϕ
(0)
k0 +

L∑
`=1

ϕ
(`)
k0,k`

. (3.3)

One can then freely transfer probability mass by subtracting some vector a` =(
a

(`)
1 , . . . , a

(`)
K

)
from each column of ϕ(`) ≡ λ`Q

(`) and adding it to ϕ(0) while

preserving all values in Ω. Selecting a(`)
k to be the minimum value in the kth row of

ϕ(`) for each k = 1, . . . , K, and following the transferral procedure just described

for ` = 1, . . . , L, results in a maximally reduced parameterization in the sense

that the highest probability mass possible has been transferred to the intercept

while maintaining non-negativity of all elements in ϕ(`). Let {ϕ̃(`)}L`=0 denote the

resulting parameters after the reduction procedure so that ϕ̃(0) ≡ ϕ(0)+∑L
`=1 a` and

ϕ̃
(`)
i,j ≡ ϕ

(`)
i,j−a

(`)
i , for i = 1, . . . , K, j = 1, . . . , K, and ` = 1, . . . , L. Tank et al. (2017)

show that this maximal reduction yields a unique representation for every MTDg.

Furthermore, one can view the reduced model in the original parameterization

using λ̃ = (λ̃0, . . . , λ̃L) with λ̃0 ≡
∑K
k=1 ϕ̃

(0)
k , and λ̃` ≡

∑K
k=1 ϕ̃

(`)
k,j = λ` −

∑K
k=1 a

(`)
k ,

for ` = 1, . . . , L, and invariant to choice of j; probability vector Q̃(0) ≡ (λ̃0)−1 ϕ̃(0);

and column-stochastic matrices Q̃(`) ≡ (λ̃`)−1 ϕ̃(`). Then λ̃` is interpretable as a

marginal contribution of the `th lag to the transition distribution. Thus, with
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careful construction, we may use λ̃ to make inferences about lag importance even

though the MTDg is overparameterized. Furthermore, the intercept allows us to

infer the possible lack of serial dependence in a direct way.

To operationalize this reduction in an estimation procedure, Tank et al. (2017)

show that solutions to a penalized likelihood based on (3.3), in which the penalty

increases with respect to the absolute value of the entries in the {ϕ(`)}L`=1 (excluding

the intercept), meet the maximal-reduction criterion. Their proposed soft penalty

functions equivalently regularize λ` for ` = 1, . . . , L. Because λ` = 0 is sufficient and

necessary (as long as the columns of Q(`) are distinct) for conditional independence

of the current state from lag `, the penalized estimate simultaneously detects lag

relevance (or Granger causality in the case where ` indexes multiple time series).

3.2.3 Bayesian MTDg with priors for sparse probability

vectors

We now present a Bayesian modeling approach to the MTDg, which admits full

characterization of uncertainty. Rather than addressing the constraint that each

column of ϕ(`) sum to λ`, we work with the original λ and {Q(`)} parameters and

employ carefully chosen prior distributions that shrink toward the identifiable and

interpretable λ̃ and {Q̃(`)}. In this and the following section, we employ the sparse

Dirichlet mixture (SDM) and stick-breaking mixture (SBM) priors, as described

in Section 2.2, which go beyond the standard Dirichlet prior by enforcing sparsity

in the presence of data, as well as conditional stochastic ordering. Both priors are

continuous, bypassing problems that arise from the sum-to-one constraint when

using priors with point masses.

As a one-parameter extension of the Dirichlet distribution, the SDM prior is a

fixed-weight mixture of Dirichlet distributions, with each component featuring a
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boost of equivalent sample size β > 1 in one of the categories. It can be described

as a “winner-takes-all” prior in that it shifts mass toward the element with largest

shape parameter. The SBM prior uses (2.4) to construct a length-J probability

vector with sequentially drawn latent variables indexed by j = 1, . . . , J − 1,

each from a mixture of three beta distributions: π1 Beta(1, η) + π2 Beta(γj, δj) +

π3 Beta(η, 1), where π1 +π3 < 1, π2 = 1−π1−π3, and η is large. To accommodate

our proposed extensions of the MTD model, we adapt the SBM prior to allow the

mixture weights, π1, π2, and π3, to vary with j.

One important advantage of the SDM and SBM priors is their conjugacy and

resulting computational tractability. If the hyperparameters of the priors are fixed,

as is usually the case with Dirichlet priors, incorporating them into a hierarchical

model involving multinomial counts (latent or observed) requires minimal effort

since posterior Gibbs sampling proceeds with conditional distributions that can

be directly sampled, allowing us to swap priors without structural changes to the

updates in Appendix B.2.

If a modeler believes that exactly one lag influences the transition distribution,

the SDM prior can be used in the single-Q MTD model, as demonstrated in

Section 2.3. However, this is not recommended for the MTDg model. If β is not

sufficiently high, the SDM prior may distribute posterior mass to a non-unique and

non-interpretable configuration of λ. We instead use a SBM prior for λ that favors

the unique reduction and more appropriately allows for dependence on multiple

lags. Here, the stick-breaking construction of the SBM provides intuition, as λ0

is drawn first, and the rest of λ is broken sequentially from what remains in the

unbroken stick. To avoid penalizing the intercept, we set π2 = 1 for λ0 only and

use either γ0 = δ0 = 1 (the uniform distribution) or beta shape parameters that

favor large values of λ0. The remaining beta mixtures use π1 > 0 and π3 > 0 to
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regularize {λ`}L`=1. Setting π1 > 0 allows for small values of the corresponding

λ`, effectively skipping the `th lag. Setting π3 > 0 promotes consumption of

the remaining mass before reaching λL. If γ` = γ and δ` = δ across ` and π2

is relatively high, the sequential SBM construction can further regularize λ via

stochastic ordering, consistent with the common assumption that recent lags should

carry more influence.

The model is completed with prior distributions for {Q(`)}. The traditional

choice for transition matrices is to use independent Dirichlet distributions for

each column, which we adopt here. In Section 2.3, we found it advantageous

to use independent SBM priors for each column of Q (in the standard MTD

model) in cases of nearly deterministic dynamics. However, the MTDg model

spreads estimation across multiple Q(`) matrices, relying more heavily on the

non-symmetric SBM prior. This can potentially introduce undesired artifacts to

the estimated transition probabilities.

The full hierarchical model specification for the MTDg and details for posterior

inference are discussed in Section 3.3 and Appendix B.2.

3.2.4 Mixtures of higher-order MTD components

The MTD and MTDg models offer parsimonious and interpretable representa-

tions for Markov chains with dependence extending beyond the most recent lag.

However, these models are strictly additive in the sense that any dynamics of

order higher than one (i.e., more than one active lag) are approximated with linear

combinations of first-order transitions. In their survey of generalizations for the

MTD, Berchtold and Raftery (2002) suggest, but do not pursue, the possibility

of mixing over higher-order transition tensors. We build a Bayesian framework

for such an extension to include higher-order “interactions,” and we refer to the
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resulting model as the mixture of mixture transition distributions (MMTD) model.

To define the MMTD model, let R < L be a positive integer representing the

highest-order transition tensor over which we will mix. Thus we have Q(0), a

length-K probability vector; Q(1), a K ×K transition matrix; Q(2), a K ×K ×K

transition tensor; and so forth up to Q(R), a KR+1 transition tensor, such that∑K
k=1(Q(R))k,k1,...,kR = 1 for all (k1, k2, . . . , kR) ∈ {1, . . . , K}R. Next, introduce a

mixing probability vector across orders, Λ = (Λ0,Λ1, . . . ,ΛR). The MMTD model

for transition probabilities is then given by

Pr(st = k0 | st−1 = k1, . . . , st−L = kL) = (Ω)k0,k1,...,kL

= Λ0 (Q(0))k0 + Λ1

L∑
`=1

λ
(1)
` (Q(1))k0,k` +

+ Λ2
∑∑

1≤`1<`2≤L
λ

(2)
(`1,`2) (Q(2))k0,k`1 ,k`2

+ . . . (3.4)

. . . + ΛR

∑
. . .
∑

1≤`1<...<`R≤L
λ

(R)
(`1,...,`R) (Q(R))k0,k`1 ,...,k`R

,

where λ(r) is a probability vector of length
(
L
r

)
for r = 1, . . . , R. This mixture of

mixtures is equivalent to using a single (albeit long) λ probability vector to mix

over all possible arrangements of lags and base transition tensors Q(r). However,

this parameterization is more informative about important orders (via inference

for Λ) in addition to lags (via inference for λ(r)). If Λ1 = 1, we recover the

original MTD model. The fully-parameterized transitions associated with Q(r)

allow unrestricted dynamics in r dimensions of the lag space. As a discrete mixture

of probability distributions, this model produces a valid probability tensor.

The model in (3.4) is clearly over-parameterized, and consequently Λ, {λ(r)}Rr=1,

and {Q(r)}Rr=0 are not fully identified. Defining a reduction procedure similar to

that of Tank et al. (2017) for the MMTD is more nuanced. One complication

52



arises because the result is dependent on the order of reduction. For example, one

may first transfer probability mass to the intercept from all higher-order transition

tensors, followed by transfer to the first-order transitions by defining elements of

the a vector as the minima over indexes in Q(r), for r ≥ 2, which correspond to

a unique value of the lagged state for the lag associated with the current Q(1)

(allowing for L such matrices). However, transferring first to the Q(1) associated

with lag 1 and then to the Q(1) associated with lag 2 does not yield the same result

if we reverse the order. Alternatively, one could define a reduction process in terms

of projecting Ω first onto an intercept, then projecting what remains onto the space

spanned by the first-order level of the MMTD, and so forth. Thus, the intercept

has the first opportunity to describe the base probabilities, then the first-order level

of the model has the next opportunity to capture first-order dynamics, and each

additional level fills in what lower-order levels cannot adequately model. Absent a

formal procedure, we note that in estimation, this process would be implemented

with regularization, for which the sequential SBM prior is well-suited. We therefore

propose using a SBM prior for Λ, similar to the one used in Section 3.2.3 for the

MTDg model.

Even under regularization of model order, it is possible for a high-order Q(r)

to mimic a lower-order tensor through repetition of transition probabilities across

values of a certain lag. Rather than build complicated constraints into the model, we

note that this issue can be detectable through inferences for {Q(r)}Rr=1. Specifically,

a modeler may plot posterior estimates of the distributions in {Q(r)}Rr=1 and

check for repeating patterns, especially patterns that coincide with a slice of the

tensor (e.g., all columns equal in Q(1) in a R = 1 model would indicate that the

intercept alone is adequate). We strongly recommend following this practice before

interpreting model inferences for Λ and {λ(r)}Rr=1.
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We envision two primary uses for the MMTD model. The first is to uncover

low-order structure from data whose practical lag dependence horizon is truly

smaller than our over-specified L and the order is less than or equal to our selected

R, in which case the true model is contained within the mixture framework. For

example, we might postulate that a time series has second-order dependence, but

we are unsure which two lags are important. Assuming a maximal lag horizon of

10, we could fit the MMTD model with L = 10 and R ≥ 2. Because there is only

one Q(r) at each level, we could use the SDM prior on each λ(r) with a large value

of β to select the appropriate lag configuration and discourage mixing lower-order

transitions. If the dynamics are truly second-order, we would anticipate that Λ2

would carry substantial posterior weight, and that inferences for λ(2) would identify

the influential lags. In this model-selection scenario, the SDM (on λ) and SBM

(on Λ) priors play an important role in selection and interpretation.

If the true order of dependence in the time series is greater than R, our second

intended use for the MMTD model is analogous to that of the MTD and MTDg,

wherein we parsimoniously approximate higher-order dependence by mixing lower-

order transition distributions. Adding the higher-order Q(r) tensors could be

thought of as including interaction-like terms in the mixture. In this scenario, one

may still use the SDM prior for each λ(r), but with a lower value of β to encourage

more mixing (note that β = 1 yields a Dirichlet prior). The SBM prior on Λ

further allows mixing across orders, so that different levels of the model may mix

across non-overlapping sets of lags.

As with the MTDg, we recommend using independent Dirichlet priors for each

of the Kr probability distributions in Q(r) for r = 0, 1, . . . , R. If L and R are

small, T is large, and the transition probability tensor is known to be sparse, it

may potentially be advantageous to replace these Dirichlet priors with independent
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SBM priors. However, we strongly urge caution, as information from the data is

spread thin and the SBM prior is not symmetric. Section 2.2.2 discusses a strategy

for promoting more Dirichlet-like behavior in the SBM prior.

Our proposed model formulation requires estimation of R free Λ parameters,(
L
1

)
+
(
L
2

)
+ . . .+

(
L
R

)
−R free λ parameters, and (K−1)+K(K−1)+K2(K−1)+

. . .+KR(K − 1) = KR+1 − 1 free parameters in {Q(r)}Rr=0. The fastest-growing

term in the λ parameter count increases no faster than a polynomial in L of degree

bR/2c divided by R!, while the transition distributions grow exponentially. Table

3.1 reports the total number of parameters to estimate for different combinations

of K, L, and R. Typically, K is fixed and known, and a modeler must select L and

R considering parsimony, estimability for a given sample size, and computational

cost. If R is much smaller than L, the MMTD substantially reduces the parameter

space from the original full-order Markov chain. The parameter space is effectively

K L R Λ λ Q Total Unrestricted
2 5 2 2 13 7 22 32
2 5 4 4 26 31 61 32
2 10 2 2 53 7 62 1,024
2 10 4 4 381 31 416 1,024
5 5 2 2 13 124 139 12,500
5 5 4 4 26 3,124 3,154 12,500
5 10 2 2 53 124 179 3.91×107

5 10 4 4 381 3,124 3,509 3.91×107

7 5 2 2 13 342 357 100,842
7 5 4 4 26 16,806 16,836 100,842
7 10 2 2 53 342 397 1.69×109

7 10 4 4 381 16,806 17,191 1.69×109

Table 3.1: Free parameter count for MMTD model under different combinations
of state-space size K, largest possible lag L, and largest mixing order R. The
total number of parameters is the sum of the free Λ, λ, and Q parameters. The
unrestricted total is the number of parameters required to estimate an unrestricted
transition probability tensor of order L.
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further reduced by the sparsity-inducing priors on Λ and {λ(r)}.

The hierarchical model specification for the MMTD and posterior inference

details are discussed in Section 3.3 and Appendix B.3.

3.3 Bayesian inference and computation

We now address implementation of the MTDg and MMTD models. To obtain

full posterior inference, we utilize a Gibbs sampler which alternates between

collapsed and full conditional distributions made tractable by augmentation with

latent configuration variables (Insua et al., 2012). As noted earlier, all inferences

condition on the first L observations in the time series {st}Tt=1.

3.3.1 MTDg model

The sampling distribution for the MTDg model is

p({st}Tt=L+1 | λ, {Q(`)}L`=0, {st}Lt=1) =
T∏

t=L+1

[
λ0 q

(0)
st +

L∑
`=1

λ` q
(`)
st,st−`

]
. (3.5)

We first break the mixture in (3.5) by introducing latent indicators zt such that

Pr(zt = ` | λ) = λ` for ` = 0, 1, . . . , L independently across t. Adding the priors

yields the full hierarchical model. For t = L+ 1, . . . , T ; k = 1, . . . , K; i = 1, . . . , K;

and ` = 0, . . . , L, we have

Q(0) ∼ Dir(α(0)), (Q(`))·,i ind.∼ Dir(α(`)
i ) for ` > 0, λ ∼ SBM(π1,π3, η,γ, δ),

Pr(zt = ` | λ) = λ` , (3.6)

Pr(st = k | zt = `, {st′}t−1
t′=t−L,Q

(`)) = q
(0)
k 1(`=0) + q

(`)
k,st−`

1(`>0) ,
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where each α is a length-K vector of positive shape parameters; π1 and π3 are

length-L vectors containing probabilities such that (π1)` + (π3)` < 1; and γ and δ

are length-L vectors containing positive shape parameters. We always set (π1)0 = 0

to avoid penalizing λ0, and also recommend setting (π3)0 = 0.

This structure admits closed-form full conditional distributions for all of {zt},

{Q(`)}, and λ. Specifically, the update for λ is a conjugate SBM-multinomial

update using aggregated counts of {zt}. Each zt can be updated with a discrete

distribution involving λ and elements of {Q(`)} as they appear in the likelihood.

Given {zt}, we can aggregate the transition counts into sufficient statistics N (0) =

(n(0)
1 , . . . , n

(0)
K ) and {N (`)}L`=1, a set of K×K matrices. For example, if st = 1, zt =

2, and st−2 = 3, we would increment (N (2))1,3. The full conditional distribution for

the intercept Q(0) is then an updated Dirichlet distribution with N (0) providing

the multinomial counts. Likewise, the update for (Q(`))·,i involves a conjugate

Dirichlet-multinomial update with its corresponding count vector (N (`))·,i, for each

` = 1, . . . , L and i = 1, . . . , K.

As is common with mixture models, the full joint posterior distribution is

multimodal and the Gibbs sampler described above is prone to poor mixing. To

improve mixing, we modify the Gibbs sampler just described in two ways. First,

we integrate all {Q(`)}L`=0 parameters out of the full joint posterior. This affects

only the full conditional distributions for the configuration variables {zt}, which

are drawn from a (different) discrete distribution. The second modification is an

occasional (every 10 iterations) hybrid Metropolis step that jointly proposes λ

and {zt} from the prior in order to encourage exploration. Ordinarily, the prior is

inefficient as a proposal distribution. Although the sparse configurations proposed

by the SBM prior help mitigate this issue, we still advocate running multiple long

MCMC chains to ensure adequate mixing. Full details for the modified Gibbs
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sampler are provided in Appendix B.2.

3.3.2 MMTD model

Our implementation for the MMTD model is analogous to the MTDg model,

with a few notable extensions. As before, the sampling distribution for the time

series is given as a product of transition probabilities in (3.4) across t = L+1, . . . , T .

We again break the mixture in (3.4) by introducing latent configuration variables

Zt such that Pr(Zt = r | Λ) = Λr, for r = 0, 1, . . . , R, independently for each

observation time. Then conditional on Zt (and for Zt > 0), further introduce zt

such that Pr(zt = (`1, . . . , `r) | Zt = r,λ(r)) = λ
(r)
(`1,...,`r), for 1 ≤ `1 < . . . < `r ≤ L,

independently for each observation time. The hierarchical formulation for this

model is given in generative order as follows. For t = L+ 1, . . . , T ; k = 1, . . . , K;

k` = 1, . . . , K; ` = 1, . . . , L, 1 ≤ `1 < . . . < `r ≤ L; and r = 0, 1, . . . , R, we have

Q(0) ∼ Dir(αQ(0)), (Q(r))·,k1,...,kr
ind.∼ Dir(αQ(r)), for (k1, . . . , kr) ∈ {1, . . . , K}r ,

Λ ∼ SBM(π1,π3, η,γ, δ) , λ(r) ind.∼ SDM(αλ(r) , βλ(r)), for r = 1, . . . , R ,

Pr(Zt = r | Λ) = Λr , Pr(zt = (`1, . . . , `r) | Zt = r,λ(r)) = λ
(r)
(`1,...,`r) ,

Pr(st = k | st−1 = k1, . . . , st−L = kL, Zt = r,zt = (`1, . . . , `r),Q(r))

= (Q(r))k,k`1 ,...k`r , (3.7)

where αQ is a length-K vector of positive shape parameters (which could potentially

be separately specified for each distribution in each Q); π1 and π3 are length-R

vectors containing probabilities such that (π1)r + (π3)r < 1; γ and δ are length-R

vectors containing positive shape parameters; αλ(r) is a length-
(
L
r

)
vector of positive

shape parameters; and βλ(r) > 1 is the SDM sparsity parameter. We always set

(π1)0 = 0 to avoid penalizing Λ0, and recommend setting (π3)0 = 0 as well. Note
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that all quantities in (3.7) without explicit dependence are considered independent

a priori.

As with the MTDg, posterior simulation can be accomplished entirely through

closed-form Gibbs sampling. To simplify computation, we uniquely map all Zt

and zt pairs onto a single variable ζt ∈
{

0, 1, . . . ,
[(
L
1

)
+
(
L
2

)
+ . . .+

(
L
R

)]}
whose

prior probability under the model is equal to the product of the corresponding Λ

and λ. Full conditional distributions for Λ, each λ(r), and each probability vector

in {Q(r)} are exactly analogous to multinomial-SBM, multinomial-SDM, and

multinomial-Dirichlet conjugate updates, respectively, where Zt, zt, and observed

data transitions supply the respective multinomial counts. Full conditional updates

for Zt and zt (equivalently ζt) require calculation and sampling from a discrete

distribution. Full details are given in Appendix B.3.

We again improve mixing in the sampler by integrating {Q(r)}Rr=0 from the

joint posterior, sampling the collapsed conditional distributions for Λ, each λ(r),

and {ζt}. These are supported by the tractable marginal distributions reported

in Appendices A.2 and B.1. Additionally, to encourage occasional jumps between

modes of the posterior, we include a hybrid independence-Metropolis step which

jointly proposes Λ, each λ(r), and {ζt} from their joint prior every 10 iterations of

the MCMC algorithm.

The augmented Gibbs sampler becomes computationally demanding as R and

L increase because updates for the latent configuration variables {ζt} involve

calculation of ∑R
r=0

(
L
r

)
probabilities for each time point t = L+1, . . . , T . Random-

walk Metropolis samplers for Λ, {λ}, and {Q} utilizing the mixture likelihood

based on (3.4) may provide an alternate strategy if K is reasonably small. The

logit-normal distribution (Atchison and Shen, 1980), or multivariate Gaussian

random walks on the logit scale, facilitate properly constrained proposals for
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probability vectors.

3.4 Simulation study

To demonstrate the effectiveness of the MMTD model for both objectives and

to compare transition probability estimation performance with existing methods,

we report two simulation studies. Both simulation scenarios feature time series

generated from true Markov chains of differing order and lag configuration. In

Simulation 1, the true generating model is a third-order chain with three states

(K = 3) in which transition probabilities depend on lags 1, 3, and 4. In Simulation

2, the true generating model is a fifth-order binary chain (K = 2) for which each

of the first five lags contributes to transition probabilities. In both models, each

distribution in the transition tensor Ω was drawn from a uniform distribution on

the simplex (i.e., symmetric Dirichlet distributions with all shape parameters equal

to 1). Each chain was randomly initialized and run for 1,000 steps of burn-in. The

first 1,000 samples thereafter were reserved for training data and the next 1,000

for validation.

To evaluate estimation of transition probabilities, each model was fit using

the prescribed number of training samples, and point estimates of the transition

distributions were compared to the true transition distributions for each of the 1,000

validation points. Specifically, for validation time point t′, each model produced a

vector p̂t′ to estimate each p(k)
t′ = Pr(st′ = k | st′−1, . . . , st′−L) = (Ω)k,st′−1,...,st′−L ,

for k = 1, . . . , K. In Bayesian models, the point estimate is the Monte Carlo-

computed posterior mean of p̂t′ . In non-Bayesian models, p̂t′ is computed from

the optimized model fit. For each validation time point, we computed the L1 loss

given by Lt′ = ∑K
k=1|p̂

(k)
t′ − p

(k)
t′ |. The reported loss metric for model comparison

is 100×∑t′ Lt′/(KT ′), that is, 100 times the mean L1 loss across the T ′ = 1,000
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validation points.

We fit the MTD, MTDg, and MMTD models to each training set with various

settings. Implementation for the MTD model is similar to the MTDg and is

described in Section 2.3.1. Let MTD(L) and MTDg(L) denote the respective

model fits with user-specified maximum lag horizon L, and let MMTD(L,R)

denote a model fit with user-specified maximum lag horizon L and maximum order

R. All transition distributions in all {Q} and {Q} in all three models utilize

symmetric, unit-information Dirichlet priors (i.e., whose shape parameters all equal

1/K so that they sum to unity).

We use two prior settings for the MTD model. The first employs a Dirichlet

prior for λ with all shape parameters equal to 1/L. The second setting uses a

SBM prior for λ with π1 = 0.5, π3 = 0.1, η = 1,000, and γ, δ selected to mimic

the Dirichlet prior with shape parameters equal to 1/L and sparsity correction on

δ (Section 2.2.2). This prior encourages a moderate level of sparsity as well as

decreasing prior probability for higher lags.

The MTDg model uses a SBM prior for λ with π1 = 0 for λ0 and π1 = 0.5

thereafter; π3 = 0 for λ0 and π3 = 0.2 thereafter; η = 1,000; γ0 = δ0 = 1, yielding

a uniform prior for λ0, and remaining elements of γ and δ selected to mimic a

Dirichlet prior with shape parameters equal to 1/L and sparsity correction on δ.

This prior avoids penalizing λ0, encourages a moderate level of sparsity in the

remaining lags, and steeper decrease in prior probability for higher lags than used

for the MTD.

We use two prior settings in the MMTD models. Both follow (3.7) with

αλ(r) =
(
1/
(
L
r

)
, . . . , 1/

(
L
r

))
, but the first setting uses βλ(r) = 1 for all r = 1, . . . , R,

resulting in the symmetric, unit-information Dirichlet prior. The second setting

uses βλ(r) =
√
T to encourage selection of a single-lag configuration within level
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r. In both prior settings, we employ the SBM prior for Λ with π1 = 0 for Λ0

and π1 = 0.25 thereafter; π3 = 0 for λ0 and π3 = 0.25 thereafter; η = 1,000; and

γ = δ = 1 for all second-component beta distributions, yielding a uniform prior

for Λ0. This prior avoids penalizing Λ0, allows for sparsity in the remaining lags,

and maintains soft ordering that favors lower levels of the model. Because R is

typically kept to small values, it is important that π1 not be large and that π3 not

be too small. Otherwise, the prior can inappropriately allocate substantial mass

toward large values of ΛR. We recommend checking for this condition as part of

prior sensitivity analysis.

To obtain results in Sections 3.4.1, 3.4.2, and 3.5, each model was initialized

with random draws from Dirichlet distributions for Λ and each λ(r). Random

initialization in these models calls for long burn-in periods, on the order of tens to

hundreds of thousands of iterations. In our analyses, 200,000 burn-in iterations

were followed by another 400,000 iterations. Reported posterior quantities were

calculated using a thinned sample retaining every 200th iteration. These conserva-

tive settings produced (unless otherwise noted) stable chains suitable for inference.

In some cases, parallel chains sampled from MMTD models settled in neighboring

modes which had minor impact on inferences and performance.

In addition to our proposed models, we fit the multinomial generalized linear

models with logistic link functions to each training set using the VGAM package

in R (Yee et al., 2010). To distinguish different settings, we denote model fit as

LogitMC(L,R′) with maximum lag horizon L and highest interaction order among

the linear predictors R′. We also fit the variable length Markov chain models,

denoted VLMC, using the VLMC package in R (Maechler, 2015) and employing

default model settings.
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3.4.1 Simulation 1 results

All models were fit to the time series from Simulation 1 for two sample sizes,

T = 200 and T = 500. Here, we assume that the modeler is considering up to a

horizon of six lags, which we use where possible to promote equitable comparisons.

Results of the mean L1 loss across the 1,000 validation points are given in Table

3.2. In addition to transition probability estimation, we are interested in inferences

for Markovian order and important lags afforded by the MTD, MTDg, and MMTD

models. With exception of the MTD and MTDg, we see improved estimation with

the larger sample size across all models.

Sample size 200

In the T = 200 case, the multinomial logistic models produce the best and worst

results. Fitting all second-order interactions for up to six lags is cumbersome in this

model, resulting in poor estimates. Fitting the full-order model to the correct lags

only produces accurate estimates. However, this would require preliminary results

from an iterative process which may or may not select the correct model and does

not account for model uncertainty. We emphasize here that our proposed models

do not require a model selection process if the modeler specifies the maximum lag

horizon L and maximum order R, as order and lag inferences are built-in.

The variable length Markov chain model offers no improvement, possibly

because the dynamics governing Simulation 1 skip lag 2. VLMC branches utilizing

more distant lags must pass through and include lag 2. This results in a missed

opportunity for greater parsimony (Jääskinen et al., 2014).

The MTD and MTDg models offer little help in this scenario because Simulation

1 is third-order with non-additive interactions. Posterior densities for λ (not shown)

reveal that λ3 is favored under the Dirichlet prior (in the MTD) and dominates
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T = 200
Model Loss

LogitMC(6, 1) 18.70
LogitMC(6, 2) 37.42
LogitMC(3, 1), Lags 1, 3, 4 only 17.14
LogitMC(3, 2), Lags 1, 3, 4 only 13.70
LogitMC(3, 3), Lags 1, 3, 4 only 12.64

VLMC 19.12

MTD(6), Dir(λ) 17.29
MTD(6), SBM(λ) 17.27

MTDg(6) 17.30

MMTD(6, 2), Dir(λ) 14.92
MMTD(6, 2) 14.78
MMTD(6, 3), Dir(λ) 14.65
MMTD(6, 3) 13.72
MMTD(6, 4), Dir(λ) 14.93
MMTD(6, 4) 14.24
MMTD(6, 5), Dir(λ) 15.13
MMTD(6, 5) 14.40

T = 500
Model Loss

LogitMC(6, 1) 16.77
LogitMC(6, 2) 18.84
LogitMC(3, 1), Lags 1, 3, 4 only 16.39
LogitMC(3, 2), Lags 1, 3, 4 only 10.40
LogitMC(3, 3), Lags 1, 3, 4 only 7.64

VLMC 15.26

MTD(6), Dir(λ) 17.27
MTD(6), SBM(λ) 17.21

MTDg(6) 17.05

MMTD(6, 2), Dir(λ) 13.77
MMTD(6, 2) 13.83
MMTD(6, 3), Dir(λ) 7.55
MMTD(6, 3) 7.44
MMTD(6, 4), Dir(λ) 7.58
MMTD(6, 4) 7.48
MMTD(6, 5), Dir(λ) 7.56
MMTD(6, 5) 7.47

Table 3.2: Simulation 1 (K = 3 states for a third-order chain with active lags 1,
3, and 4). Results for transition probability estimation under various models and
model settings using two sample sizes, T = 200 and T = 500. The reported loss is
100 times the mean L1 loss, computed across 1,000 validation time points. Within
each sample size group, the lowest mean loss is highlighted with bold font.

with the SBM prior (in both the MTD and MTDg). The latter effectively produces

a first order Markov chain dependent on the third lag.

Several MMTD models were fit with increasing maximum order R ranging from

2 to 5. The second-order model provides a substantial improvement over mixing

first-order transitions and fits nearly as well as the correctly specified third-order

model. As expected, estimation performance stops improving when R exceeds the

true order of three. Using SDM priors on λ parameters improves estimation, but

more so when the correct model is contained in the specified model.
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In the R = 2 model, posterior inference supports second-order dynamics with

the lag 3,4 combination receiving most posterior weight. Adding the SDM priors

on {λ(r)} results in stronger support for the same conclusion. In the R = 3 model,

posterior inferences support second or third-order dynamics with lags 3 and 4

receiving most posterior weight. Adding the SDM priors led to weakly favoring

order 3 (selecting lags 1, 3 and 4) in one model run. The R = 4 model most often

supports second-order dynamics (lags 3 and 4) under both prior scenarios. Results

from the R = 5 model are similar to the R = 4 model.

It appears that the signal associated with lag 1 is relatively weak when T = 200.

The SBM prior on Λ shrinks inferences toward second-order, but not decidedly

away from third-order dynamics. Overall, the MMTD consistently produces the

most faithful estimates of transition probabilities from a single model without

requiring iterative model selection.

Sample size 500

In the T = 500 case, even the multinomial logistic models fit directly to the

correct lags only fail to outperform the MMTD with R ≥ 3. With a larger sample

size, the VLMC model is more competitive, but the MTD and MTDg remain

insufficiently flexible to capture the structure. The MTD model mixes over lags

2, 4, and 5 with a Dirichlet prior on λ, and primarily over lags 4 and 5 with the

SDM prior. The MTDg concentrates some mass on lags 3 and 4.

In this large-sample scenario, MMTD performance improves substantially when

the specified mixture model contains the true model structure (i.e., R ≥ 3),

although the second-order MMTD again improves over the first-order additive

MTD and MTDg. In the MMTD models with R ≥ 3, posterior mass concentrates

on the correct order and lag configuration. Furthermore, we see little drop in
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performance when the maximal order is over-specified. The SDM priors on {λ(r)}

appear not to significantly improve estimation, and inferences are qualitatively

similar. The inferences from the R = 2 model are similar to those of the R = 2

models fit to T = 200 observations. Among the models considered in this simulation

scenario, the MMTD consistently produces the most faithful estimates of transition

probabilities.

3.4.2 Simulation 2 results

All models were fit to the time series from Simulation 2 for three sample sizes:

T = 100, T = 200 and T = 500. Here, we assume that the modeler is considering

up to a horizon of seven lags, which we use where possible to promote equitable

comparisons. Results of the mean L1 loss across the 1,000 validation points are

given in Table 3.3. Again, we examine order and lag inferences from the MTD,

MTDg, and MMTD models in addition to estimation performance.

Sample size 100

In the T = 100 case, high order interactions are not estimable in the multinomial

logistic model. The VLMC model performs best in this scenario, presumably

because Simulation 2 features no gap in relevant lags.

Because the simulation uses lags 1 through 5, the MTD(7), MTDg(7), and

MMTD(7, 4) models are under-specified and must rely on a lower-order sub-model

and/or mixing across lags to approximate the fifth-order dynamics. The MTD

models mix primarily over lags 2 and 4, while the MTDg model concentrates

on lag 2. The MMTD(7, 4) models mix primarily over low orders, with slight

preference for lag 2. The over-specified MMTD(7, 7) models do not outperform the

R = 4 models, and produce qualitatively equivalent inferences for Λ and {λ(r)}.
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T = 100
Model Loss

LogitMC(7, 1) 24.30
LogitMC(7, 2) 26.15
LogitMC(7, 3) n/a
LogitMC(5, 1) 24.49
LogitMC(5, 2) 20.86
LogitMC(5, 3) n/a
LogitMC(5, 4) n/a

VLMC 20.52

MTD(7) 24.71
with Dir(λ)

MTD(7) 24.50
with SBM(λ)

MTDg(7) 24.01

MMTD(7, 4) 23.68
with Dir(λ)

MMTD(7, 4) 23.21
MMTD(7, 7) 23.68

with Dir(λ)
MMTD(7, 7) 23.33

T = 200
Model Loss

LogitMC(7, 1) 20.03
LogitMC(7, 2) 16.26
LogitMC(7, 3) 18.70
LogitMC(5, 1) 20.25
LogitMC(5, 2) 16.24
LogitMC(5, 3) 11.26
LogitMC(5, 4) n/a

VLMC 15.45

MTD(7) 22.47
with Dir(λ)

MTD(7) 23.31
with SBM(λ)

MTDg(7) 23.93

MMTD(7, 4) 15.26
with Dir(λ)

MMTD(7, 4) 15.38
MMTD(7, 7) 14.13

with Dir(λ)
MMTD(7, 7) 13.93

T = 500
Model Loss

LogitMC(7, 1) 18.53
LogitMC(7, 2) 14.66
LogitMC(7, 3) 13.67
LogitMC(5, 1) 18.90
LogitMC(5, 2) 15.35
LogitMC(5, 3) 8.29
LogitMC(5, 4) 7.79

VLMC 12.13

MTD(7) 19.82
with Dir(λ)

MTD(7) 19.59
with SBM(λ)

MTDg(7) 19.68

MMTD(7, 4) 12.15
with Dir(λ)

MMTD(7, 4) 14.70
MMTD(7, 7) 7.59

with Dir(λ)
MMTD(7, 7) 7.38

Table 3.3: Simulation 2 (K = 2 states for a fifth-order chain with five active
lags). Results for transition probability estimation under various models and model
settings using three sample sizes: T = 100, T = 200 and T = 500. The reported
loss is 100 times the mean L1 loss, computed across 1,000 validation time points.
Within each sample size group, the lowest mean loss is highlighted with bold font.

It is apparent that the small sample size is insufficient to capture the fifth-order

structure.

Sample size 200

With T = 200, the time series is long enough to include third-order interactions

in the multinomial logistic model, which performs well. The VLMC model is again

competitive with the MMTD and generally outperforms the logistic models.
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As before, the MTD and MTDg models are unable to leverage increased sample

size to the extent that the other models can. The MTD models mix primarily over

lags 1 and 5, while the MTDg model mixes primarily on lag 1 (due to the ordered

prior on λ).

The higher-order interactions allowed by the MMTD become advantageous with

T = 200, making this model competitive. The MMTD(7, 4) models concentrate

posterior mass on order 4 and lags 1, 2, 3, and 5. Posterior mass in the MMTD(7,

7) model is split between order 4 and 5, again demonstrating the shrinking effect

of the SBM prior on Λ. Different runs of the MCMC chain favor lag configurations

(1, 2, 3, 5) and (1, 2, 3, 4, 5). SDM priors on {λ(r)} had a minor concentrating effect

on the posterior densities.

We note that the over-specified MMTD(7, 7) with a less strictly ordered prior

on Λ (such as the SDM) can outperform the correctly specified logistic model in

this scenario. However, inferences from such models can be suspect, as they do

not shrink toward the “reduced” and identifiable parameterization. While we favor

reliably interpretable inferences, one may consider modifying or replacing the SBM

prior on Λ to improve predictive performance.

Sample size 500

The fifth-order binary chain in Simulation 2 has 32 total (univariate) transition

distributions which are easily estimated with 500 samples. Therefore, the multino-

mial logistic models with high-order interactions approach the performance of the

over-specified MMTD models. The VLMC is also competitive. Again, the MTD(7)

and MTDg(7) models lag noticeably behind in estimation performance, although

both attempt to mix over multiple lags.

The MMTD(7, 4) with a Dirichlet prior on {λ(r)} again concentrates on order

68



4 and lags 1, 2, 3, and 5. The same model with the SDM prior selects lags 3, 4,

5, and 6, and performs noticeably worse (loss of 14.70). A second MCMC run

places most weight on orders 3 and 4, and lags 1, 3, 4, and 5, resulting in average

L1 loss of 12.65. This highlights multimodality of the posterior and the need for

replicate MCMC runs. The MMTD(7, 7) decisively identifies the correct order and

lag structure resulting in the best estimation performance. We conclude that the

MMTD consistently produces the most faithful estimates of transition probabilities

from a single model without requiring iterative model selection.

3.5 Data illustrations

We now apply the MTDg and MMTD models to two data analyses. The first

data example was studied with the original MTD and in the subsequent literature.

The second is a novel analysis of pink salmon population dynamics in Alaska,

U.S.A. during the twentieth century. We illustrate the use of inferences on order

and lag importance available from the models.

3.5.1 Seizure data

Berchtold and Raftery (2002) demonstrate the MTD model using a binarized

time series adapted from MacDonald and Zucchini (1997), which reports the

occurrence of at least one epileptic seizure for a patient on each of 204 consecutive

days. Berchtold and Raftery (2002) fit several Markov chain and MTD models,

using the Bayesian information criterion (BIC) to ultimately select a MTD with

eight lags. They report that λ8 has the greatest magnitude. Note that the MTD

model used in Berchtold and Raftery (2002) allows negative values in λ, which

requires a complex set of constraints for estimation. The seizure time series was
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revisited using the methods of Sarkar and Dunson (2016), who report a model of

maximal order 8 (with three active lags in the posterior mode), with lag 8 having

the highest posterior inclusion probability. Although coefficient magnitudes and

lag-inclusion probabilities are not necessarily commensurate, the two models agree

on the maximal order and most important lag. They appear to differ, however,

on the relative importance of other lags. In Berchtold and Raftery (2002), λ4 is a

distant second in magnitude, whereas Sarkar and Dunson (2016) report that lag 1

has much higher posterior inclusion probability than lag 4.

In light of these two analyses, we fit the MTDg and MMTD to the seizure data

with L = 10 and R = 4, each with prior settings identical to those used in the

simulation studies. Trace plots (not shown) indicate that the marginal posterior

distributions over Λ and each λ(r) are multimodal, suggesting that more than one

combination of lags could model the dynamics with similar accuracy. We note

also that the assumption of time-homogeneity is questionable, as no seizures were

reported in the last 29 days.

The MTDg model concentrates most posterior weight on lag 8, followed distantly

by lags 4 and 9. The transition matrix for lag 8 suggests that the status eight days

prior is most often replicated in the present (seizure or no seizure). This transition

pattern is repeated for lags 4 and 9, producing a compounding effect for repeated

seizures in the model, which effect we should emphasize is additive only. That this

model clearly selects lag 8 demonstrates the utility of the SBM prior for the MTDg.

The prior simultaneously shrinks parameters toward the identifiable model and

maintains a conditional stochastic ordering on the lags while maintaining flexibility

to select distant lags when this is supported by the data.

The MMTD(10, 4) model with Dirichlet priors on lag configurations mixes

primarily over orders 1 and 2. The standard model (with SDM priors on lag

70



configuration weights) shifts more posterior weight to higher orders, with Λ2 and

Λ3 edging one another in separate MCMC runs. Without clear selection of order

and lags, we discourage over-interpretation of the transition probabilities in {Q(r)}.

However, it is clear that the estimated probabilities favor persisting in previous

states. For example, the posterior means for (Q(2))1,1,1 and (Q(2))2,2,2 are 0.78 and

0.73 respectively (posterior medians are 0.92 and 0.85). That is, no occurrence of

seizure in recent days yields a high probability for no seizure on the current day,

and repeated occurrence of seizures on multiple past days yields a high probability

of seizure on the current day.

We can more comprehensively assess lag importance by computing a lag

inclusion index as the sum of all products Λr × λ(r)
(zj) across j = 1, . . . ,

(
L
r

)
and

r = 1, . . . , R for which lag ` appears in the lag configuration zj. We compute

this for each lag at each MCMC sample. Inference for Λ0 is included as lag 0

for reference. Due to the shrinking SBM prior for Λ, a high inclusion index for

lag 0 should not be interpreted as a lack of Markovian dependence (unless it is

near 1 with high confidence). However, a low inclusion index for lag 0 relative to

other lags can indicate strong Markovian dependence. We summarize the inclusion

index for the models fit to the seizure data in Figure 3.1, with bars reporting

the posterior mean and whiskers reaching to the ends of 95% posterior credible

intervals. Note the large uncertainty for this inclusion index for all lags except lag

8 in the model with SDM priors on {λ(r)}. We further note that the posterior

inclusion pattern across lags (associated with the SDM priors for lag configuration

weights) resembles a plot with similar interpretation in Figure 6 (e) of Sarkar

and Dunson (2016). The most notable exception is that lag 1 does not feature

prominently in our inferences. All analyses, including our three, agree that lag 8 is

the most important in determining the transition probability.
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Figure 3.1: Posterior mean (with 95% credible interval) inclusion index for each
lag in the seizure analysis, under the MMTD(10,4) model with the Dirichlet priors
(left) and SDM priors (right) on lag configuration weights {λ(r)}.

3.5.2 Pink salmon data

We next investigate a time series of annual pink salmon abundance (escapement)

in Alaska, U.S.A. from 1934 to 1963 (Alaska Fisheries Science Center, 2018).

Population dynamics for pink salmon provide a testing opportunity for our model

because pink salmon have a strict two-year life cycle (Heard, 1991). Thus, we expect

even lags to have the most influence in predicting the current year’s population.

A time-series plot of the natural logarithm of abundance is given in Figure 3.2

together with bivariate lag scatter plots. In this scenario, we might expect non-

stationarity with long-term trends. It appears from the time series that the

even-year population began to struggle in the late 1940s. Repeated interventions

throughout the 1950s culminated in a population transfer in 1964 that bisects the

complete time series and restricts us to the first segment (Bradshaw and Heintz,

2003). Nevertheless, the lag scatter plots suggest that we should be able to detect

lag dependence structure, even with as few as 30 observations. After discretizing

the data into sets of K = 4 quantile-based bins using all 30 years, we fit the

proposed models with the same prior settings used for the simulation studies.

Because discretization is based on quantiles, results are invariant to monotonic

72



Year

lo
g 

ab
un

da
nc

e
1935 1940 1945 1950 1955 1960

2
4

6
8

10

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

2
4

6
8

10
12

log(yt−1)

lo
g(

y t
)

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

2
4

6
8

10
12

log(yt−2)

lo
g(

y t
)

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

2
4

6
8

10
12

log(yt−3)
lo

g(
y t

)

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

2
4

6
8

10
12

log(yt−4)

lo
g(

y t
)

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.2: Time-series plot and lag scatter plots for the natural logarithm of
pink salmon abundance from 1934 to 1963. In the lag plots, yt denotes abundance
at time t and horizontal/vertical lines separate K = 4 quantile-based bins used to
assign {yt} into discrete states {st}.

transformations such as the natural logarithm.

The MTDg(5) model fit to the pink salmon time series clearly identifies lag 2

as the most influential (posterior means for λ`, ` = 0, 1, . . . , 5 are 0.17, 0.05, 0.67,

0.01, 0.07, and 0.03, respectively). The estimated Q(2) also closely agrees with

the lag-2 scatter plot in Figure 3.2. In contrast, the MMTD(5,2) model shifts

considerable posterior weight toward order 2 despite the shrinkage prior on order.

Uncertainty, stemming from noisy dynamics and a small sample size, again results

in a multimodal posterior, as seen in the density plots for Λ in Figure 3.3. This

uncertainty is also apparent in posterior inferences for the lag inclusion index.

Credible intervals on the lag inclusion index are wide enough to warrant their

omission from Figure 3.4. In these plots, we see essential agreement between the

two prior settings for {λ(r)}, with lag 2 being most prominent. Lags 4 and 5 also

appear to contribute in some of the favored configurations.
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It is important to examine the MMTD estimate of Q(2) to verify that the

model is not attempting to fit first-order dynamics with a second-order chain. If

this were the case, estimates of transition probabilities in Q(2) would repeat across

the second lag index (in this case most likely representing lag 4 and/or 5). The

posterior mean estimate of Q(2), shown in Figure 3.5, appears not to have this

problem, as consecutive 4× 4 sub-matrices appear not to repeat. This is consistent

under both priors. Hence, lag 2 may not be the only important lag.
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Figure 3.3: Marginal posterior density plots for Λ in the pink salmon analysis
using a SBM prior on order and SDM priors for lag configuration weights.
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Figure 3.4: Posterior mean inclusion index for each lag in the pink salmon
analysis under the MMTD(5,2) model with Dirichlet priors (left) and SDM priors
(right) on lag configuration weights.
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Figure 3.5: Posterior mean point estimate of the matricized Q(2) from the
MMTD(5,2) pink salmon analysis with SDM priors on {λ(r)}. Rows (along the
y-axis) represent states to which the transition occurs, and columns (along the
x-axis) represent the states occupied by the first two selected lags, with the state
corresponding to the most recent lag changing index first.

3.6 Summary

We have explored two extensions of the original mixture transition distribution

model for high-order Markov chains. The first is a Bayesian approach to a

recent extension capable of identifying one or more important lags. The second

captures higher-order interactions and can potentially yield useful inferences for

order and lag importance. To accomplish the latter, the mixture of mixture

transition distributions uses an over-specified model and sparsity-inducing priors

to shrink back to an interpretable and informative structure. This is accomplished

in a single model without necessitating iterative selection. Furthermore, our

MCMC algorithm allows us to evaluate uncertainty about the model structure and

transition probabilities. We demonstrated that this model can outperform some of

the standard methods in transition probability estimation, and shown its practical

utility in data analysis.

The over-specified MMTD model can offer insights into order and active lags

provided the modeler approaches analysis attentively. In cases of large sample size

or near-determinism, the true structure will immediately manifest in inferences for

the mixture weight parameters. More often, lag importance should be aggregated
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and extracted in post-processing as we demonstrated in Section 3.5.1 with the

lag inclusion index. If multiple lag patterns are prominent in the mixture model

or different order components have non-overlapping lag patterns selected in each,

the actual order of the time series may be higher than the highest selected model

order. We also recommend checking the mixture transition tensors for redundancy,

a sign of lower-order dependence. Absent a clearly identified lag structure through

inferences on the mixture weights, we claim that this too can be informative.

Both the MTDg and MMTD models can approximate high-order dynamics

by exploiting constructive additivity among lower-order transition probabilities.

However, when this does not apply, a full jump to the next order in the MMTD is

required. For example, in the salmon data analysis with five lags, the first-order

mixture has five components associated with a 5×5 transition matrix, whereas the

second-order mixture has ten components associated with a 5× 5× 5 transition

tensor. A parsimonious compromise might rely more on a factorization structure,

similar to the one noted in Section 3.2.1. We do not pursue this here, but rather

choose to emphasize the interpretable structure of the proposed MMTD model

(3.4) which showcases a model-averaging flavor with added flexibility.
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Chapter 4

Density Autoregression with the

Gaussian Process Mixture

Transition Distribution

4.1 Introduction

We now shift focus from discrete to continuous state spaces, a more natural

setting for the population dynamics applications previously considered. While

many standard models on the time domain are Markovian (linear autoregressive

models being the primary example), they are typically viewed separately from

traditional Markov chain models, in part because the methodology addresses

distinct challenges. For example, Markov chains are traditionally unstructured,

leading to an explicit conflict with the “curse of dimensionality” when incorporating

additional lags. In contrast, conditional modeling in continuous spaces often relies

on simplifying assumptions such as linearity and additivity when expanding the

lag-embedding space. In this sense, mixture transition distribution models fit
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into the mainstream with continuous spaces more than they do in their originally

proposed discrete domain. We explore and pursue a flexible MTD model for

continuous state spaces in this chapter.

That the MTD framework extends beyond discrete state spaces was first noted

by Martin and Raftery (1987). The general MTD formulation for the conditional

distribution F on time series {yt}Tt=1 ∈ RT is given by

Ft(yt | yt−1, . . . , y1) =
L∑
`=1

λ`G`(yt | yt−`) , (4.1)

where each mixture component contains a univariate transition law G` associated

with a specific lag. As before, each λ` ≥ 0, and ∑L
`=1 λ` = 1. The most popular,

and perhaps simplest model belonging to this family is the Gaussian MTD (GMTD)

proposed by Le et al. (1996), wherein G` corresponds to a Gaussian distribution

with linear mean β` yt−` and variance σ2
` . They further include a mixture component

containing a full linear autoregressive (AR) model of order L. With this simple

form, the GMTD offers flexibility and better captures characteristics unavailable

to standard AR models. Further modifications include a zero-mean component

with large variance to accommodate outliers, and a random-walk specification to

accommodate flat stretches. Le et al. (1996) derive conditions for weak stationarity

and autocorrelation properties of the GMTD model before demonstrating its use

with time series from financial and chemical process applications.

Despite this flexibility to model what are often termed as “nonlinear” time

series, the GMTD model has a linear and additive transition mean. If we denote

the coefficients for the full AR component as β01, . . . , β0L, then the conditional

transition mean for the GMTD is E(yt | yt−1, . . . , y1) = ∑L
`=1(λ0 β0` + λ` β`) yt−`.

While this linear structure is important for deriving stationarity conditions, we

forego this restriction in favor of estimating nonlinear dependence. Thus we will
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consider each G`(yt | yt−`) to have a separate location µ` + f`(yt−`) consisting

of a level and continuous nonlinear function f`(yt−`) mapping the relevant lag

to R. If the location of G` also represents the conditional mean, then we have

E(yt | yt−1, . . . , y1) = µ + ∑L
`=1 λ` f`(yt−`) where µ = ∑L

`=1 λ` µ`. This resembles

the conditional mean obtained from the popular generalized additive model family

(Hastie and Tibshirani, 1990), which has been applied to autoregressive models

(Chen and Tsay, 1993; Wong and Kohn, 1996). Huang and Yang (2004) further

consider order selection using BIC in this context. As Le et al. (1996) note,

however, the MTD formulation is distinct from generalized additive models in that

the errors arise from a mixture. That is, rather than averaging surfaces into a

single composite with homogeneous error, the MTD model uses the functions f` to

define the error mixture, which can vary widely across the input space. Thus the

primary objective is not approximating a multi-dimensional surface, but rather

flexibly modeling the transition distribution as a function of lags when several

mixture components are active, and identifying low-order nonlinear dependence

while inferring relevant lags when few components are active.

We propose to model the unknown functions {f`} with Gaussian process (GP)

priors, which have been applied extensively for time series (see Gregorčič and

Lightbody, 2009; Kocijan et al., 2003; Gutjahr et al., 2012 for examples in the

nonlinear autoregressive context) and nonlinear regression generally (Rasmussen

and Williams, 2006), including mixture modeling (Shi et al., 2003) and generalized

additive formulations (Duvenaud et al., 2011). Retaining the sparsity-inducing

prior for the mixing weights from Chapter 2, we propose a model with basic form

Ft(yt | yt−1, . . . , y1) = λ0 N
(
yt | µ0, σ

2
0

)
+

L∑
`=1

λ` N
(
yt | µ` + f`(yt−`), σ2

`

)
f`

ind.∼ GP, λ ∼ SBM , (4.2)
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where N(· | µ, σ2) corresponds to a univariate Gaussian distribution with mean µ

and variance σ2, and λ = (λ0, λ1, . . . , λL). To emphasize the MTD structure and

utilize the model in a similar way to the approach taken in Chapter 2, we drop

the full AR component and retain the zero-indexed component (intercept) with

no lag dependence. Because each mixture component employs a parameterized

distribution over an unbounded space, the intercept and shrinkage for λ do not share

the same interpretations as in the MTDg and MMTD models, nor is the reduction

procedure employed by Tank et al. (2017) as important for identifiability. We retain

the intercept in order to accommodate what Le et al. (1996) term replacement-

type outliers, to add flexibility to the mixture, and to allow the possibility of

a (Gaussian) stationary distribution in the case of no serial dependence. The

stick-breaking mixture prior for λ allows for sparsity, jumps to omit inactive lags,

and stochastic ordering of active lags to reflect the belief that recent lags generally

carry greater influence.

We outline a hierarchical model to implement the proposed model (4.2) and

discuss prior selection and implementation in Section 4.2. In Section 4.3, we

demonstrate the model with simulated and real time series. We then discuss two

possible model extensions in Section 4.4, and conclude with discussion in Section

4.5.

4.2 Model

The full hierarchical specification for the Gaussian-process mixture transition

distribution (GPMTD) model follows standard conventions for both Gaussian

process regression and the MTD models presented earlier. As before, we break

the mixture with latent component membership indicators for each time point,

zt ∈ {0, 1, . . . , L}. To distinguish yt from its lags and to emphasize that covariates
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could be incorporated into the framework, we denote the time-delay vector as

xt = (xt,1, . . . , xt,L) ≡ (yt−1, . . . , yt−L). For the Gaussian process priors, we

exclusively employ Matérn covariance functions with Euclidean distance and a

fixed smoothness parameter ν ∈ {2.5,+∞}, the former value ensuring a twice-

differentiable regression function f and the latter corresponding to the squared

exponential covariance function (Rasmussen and Williams, 2006).

Treating the first L observations of the time series as fixed, and implicitly

conditioning the top level on lags in xt, the full hierarchical representation for the

model in (4.2) is given by

yt | zt, µ0, σ
2
0, {(µ, σ2, f)`}L`=1

ind.∼


N (µ0, σ

2
0) if zt = 0,

N (µ` + f`(xt,`) , σ2
` ) if zt = ` ∈ {1, . . . , L} ,

for t = L+ 1, . . . , T,

Pr(zt = ` | λ) = λ` , for ` = 0, 1, . . . , L, independently for t = L+ 1, . . . , T,

λ ∼ SBM(ηλ, π1λ, π3λ,γλ, δλ),

µ`
ind.∼ N

(
m

(`)
0 , v

(`)
0

)
, σ2

`
ind.∼ IG

(
ν(`)
σ /2, ν(`)

σ s
(`)
0 /2

)
, for ` = 0, 1, . . . , L,

f` | κ`, σ2
` , ν, ψ`

ind.∼ GP
(
0, κ` σ2

` ρ(x, x′; ν, ψ`)
)
, for ` = 1, . . . , L,

κ` | νκ, κ0
ind.∼ IG (νκ/2, νκ κ0/2) , for ` = 1, . . . , L,

ψ` | νψ, ψ0
ind.∼ IG (νψ/2, νψ ψ0/2) , for ` = 1, . . . , L,

p(νκ) ∝ 1(νκ∈Vκ), κ0 ∼ Ga(aκ, bκ),

p(νψ) ∝ 1(νψ∈Vψ), ψ0 ∼ Ga(aψ, bψ), (4.3)

where the SBM is the stick-breaking mixture prior of Chapter 2; IG(a, b) denotes

the inverse-gamma distribution with shape a and scale b; the Gaussian process is

characterized by the zero mean function denoted with 0 and covariance function
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κ` σ
2
` ρ(·, ·; ν, ψ`) utilizing correlation function ρ in the Matérn class with smoothness

parameter ν and length-scale parameter ψ; Vκ and Vψ are finite, discrete sets

of positive real numbers; and Ga(a, b) denotes a gamma distribution with mean

a/b. Each inverse-gamma distribution is parameterized in terms of a scaled

inverse Chi-squared distribution with degrees of freedom and prior harmonic mean,

which aid both with interpretation and computation (potentially reduced posterior

correlation among the parameters). We also parameterize the GP variance as the

product κσ2 to aid with interpretation of κ as a signal-to-noise ratio, as well as

computation, obtaining a tractable collapsed conditional distribution for each σ2

parameter. Because xt contains lags of the time series, it may be reasonable to

assume some degree of homogeneity among {f`} across lags, for which we allow

hierarchical borrowing-of-strength in the parameters governing the covariance

functions. Indeed, even with ν fixed, κ and ψ are not fully identified (Zhang, 2004).

Hence, we employ informative and hierarchically connected priors.

4.2.1 Prior and implementation

The GPMTDmodel is somewhat robust to prior choice, provided the parameters

governing variances are on an appropriate scale. Experience simulating time series

from the model suggests that values of κ on the order of 102 or 103 are necessary

(when ψ is on the order of 1) for smooth nonlinear dynamics to be visually manifest.

We typically set all m(`)
0 = 0 and v(0)

0 large (orders of magnitude greater than the

range of the data) to accommodate outliers, and lag-specific v(`)
0 either large or

commensurate with the range of the data. Absent strong beliefs about observation

noise, we set all νσ = 5.0 to ensure two finite moments in the inverse-gamma priors,

with s(0)
0 large (approximately one order of magnitude greater than the range of

the data) and s(`)
0 = 1.0.
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We have used Vκ = Vψ = {5.0, 7.5, 10.0, 25.0, 50.0} to define default discrete

uniform priors on the degrees of freedom (concentration) parameters. We also use

as default values aκ = 10.0 and bκ = 0.1, yielding a prior mean of 100.0 for κ0 (the

prior harmonic mean for each κ); and aψ = 10.0 and bψ = 1.0, yielding a prior

mean of 10.0 for ψ0 (the prior harmonic mean for each ψ). If one has strong prior

beliefs regarding the strength of the dynamic signal relative to observation noise,

we recommend first carefully considering an informative prior for each σ2
` for ` > 0,

and then setting an informative prior for the κ parameters by possibly increasing

the values in Vκ and concentrating the gamma prior for κ0.

The parameters in the SBM prior for the mixing weights should be thoughtfully

considered in the context of each analysis, especially in cases with sample sizes

T < 50. For example, priors overly concentrated on λ0 in conjunction with a small

σ2
0 can result in an unintended bimodal transition distribution. We recommend

following the procedures outlined in Sections 2.2.2 and 2.2.3 for selecting a SBM

prior with a level of sparsity reflecting prior beliefs about the number of active lags

in the time series. We employ default values of ηλ = 1,000, π1λ = 0.5, π3λ = 0.25,

γλ = 1, and δλ = 1 where 1 is a vector of ones. This results in a marginal prior

density with peaks near the extremes and near-uniformity between 0 and 1 for each

λ`. Note that unlike the MTDg and MMTD models in Chapter 3, the intercept

weight λ0 is subject to the small and large SBM beta mixture components.

The hierarchical model in (4.3) admits a convenient Gibbs sampling scheme for

posterior inference. We make a few general remarks and highlight details unique

to this model, and defer all remaining details to Appendix C. As is standard with

Gaussian process regression, we work with the finite-dimensional distributions of

the independent prior processes for {f`}, which are multivariate Gaussian with

mean 0 everywhere and covariance between all input pairs (x, x′), x, x′ ∈ R,
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parameterized as in (4.3). Let f` denote a length T − L vector for which the ith

element is the realization fi,` ≡ f`(xi,`). To encourage mixing of the MCMC chain,

we marginalize the full posterior over all {(µ, σ,f)`} before updating {(κ, ψ)`},

the only parameters for which collapsed/full conditional distributions are not

tractable. For each ` = 1, . . . , L, we jointly update the pair (κ, ψ)` with a random-

walk Metropolis step using bivariate Gaussian proposals on the logarithmic scale.

Given these updates, conditionally conjugate updates are available for individual

parameters in {(µ, σ,f)`}. We note that each f` must be evaluated at every xt,`

(denoted as ft,`) to facilitate full conditional draws for {zt}, given as

Pr(zt = ` | · · · ) = λ0 N(yt | µ0, σ
2
0)1(`=0) + λ` N(yt | µ` + ft,`, σ

2
` )1(`>0)

λ0 N(yt | µ0, σ2
0) +∑L

j=1 λj N(yt | µj + ft,`, σ2
j )

, (4.4)

for ` = 0, 1, . . . , L, and t = L+ 1, . . . , T , where in this context, N(· | µ, σ2) denotes

a Gaussian density function with mean µ and variance σ2.

4.2.2 Inference and forecasting

Given posterior samples of model parameters fit through time T , it is straight-

forward to obtain a forecast distribution and other important quantities, including

posterior uncertainty, for yT+1. For each sample, one may calculate the first line of

(4.2) over a grid of yT+1 values to estimate the one-step-ahead forecast distribution.

Likewise, one may replace each distribution in (4.2) with conditional means to

obtain the forecast mean. This procedure extends to transition mean and density

estimates for any fixed values of inputs (yt−1, . . . , yt−L) by evaluating (4.2) over a

multidimensional grid of values for each posterior sample of model parameters.

Calculation of transition density and mean estimates requires values for each

lag ({yt−`}L`=1), regardless of inferences for λ. However, one may be interested

in these quantities conditional on a certain configuration of active lags. Suppose
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that inference for λ in a model fit using L = 3 indicates that only the first two

lags carry significant weight. They may specify a grid of values for the first two

lags over which to evaluate (4.2), substitute dummy or default values, such as

the mean, for yt−3, and examine the transition density or mean as a function of

yt−1 and yt−2 only. We caution that one should test the resulting inferences for

sensitivity to the default values used for inactive lags before making conclusions.

For example, one could replace mean values for inactive lags with random values

drawn uniformly across the range of {yt}.

Finally, one may make K-step-ahead forecasts by inductively simulating

(z, y)T+k pairs, for k = 1, . . . , K, following the first two levels of (4.3), for each

posterior sample. The primary challenge here lies in the need to extend the {f`}

Gaussian process realizations to include the f`(yT+k−`) that do not already exist,

for which a naive computation approach involves repeatedly inverting a growing

covariance matrix. When repeated for each posterior simulation, this results

in a computational burden commensurate with MCMC. Given a current model

state (i.e., full sample of all model parameters) the procedure to draw f`(yT+k−`)

begins by calculating ck = κ` σ
2
` , and (ck)i = κ` σ

2
` ρ(yT+k−`, xi; ν, ψ`) for all xi

associated with the entries fi,`. Then using the existing f`, draw a realization

f`(yT+k−`) ∼ N
(
c′k(C(`))−1f`, ck − c′k(C(`))−1ck

)
, where C(`) is the existing co-

variance matrix for f`. Lastly, concatenate C(`) with ck on the diagonal and ck

along an outer column and row, and concatenate f` with the new draw from f`.

One can avoid re-calculating the new (C(`))−1 from scratch by storing the previous

inverse and using the inversion formula for partitioned matrices (Rasmussen and

Williams, 2006, p. 201).
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4.3 Data illustrations

We demonstrate properties of the GPMTD model with two simulated and

two real time series. The first simulation in Section 4.3.1 highlights lag selection

and nonliear dynamics. The second simulation in Section 4.3.2 explores the

model’s fitness for approximating higher order dynamics in a time-delay embedding

context. We then apply the GPMTD to a noisy time series known for non-Gaussian

transitions in Section 4.3.3, and finally to a time series for which we anticipate a

certain lag dependence structure in Section 4.3.4.

Each of the following analyses included at least three MCMC runs with chains

initialized at default values (i.e., independent standard normal mixture components,

uniform λ, and all observations allocated to the intercept). A Metropolis adaptation

phase was followed by 5,000 burn-in iterations. A final run of 10,000 iterations

was thinned to 2,000 inference samples (1,000 were used for some two-dimensional

plots), which are reported for one chain. Unless otherwise reported, inferences for

functionals of (4.2) with respect to fewer than L lags were obtained by inserting

default mean values for inactive lags, which could be identified, for example, as

{xt,` : E(λ` | {yt}) < cλ} for some small positive value cλ (such as 0.01).

4.3.1 Simulated data: single lag

We first revisit the simulated time series introduced in Section 2.3.2, generated

from

yt = yt−2 exp(2.6− yt−2) + εt , εt
iid∼ N(0, (0.09)2) , (4.5)

which features first-order nonlinear dynamics as a function of the second lag only.

Previously, the time series was binned into discrete states from which the active
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lag was inferred using the MTD model. We now fit the GPMTD model to the

original real-valued time series with L = 5 and T = 105 (so that 100 observations

contribute to the likelihood).

All three MCMC chains converge to the same region of the parameter space,

although one earlier run showed a posterior mode with observations allocated to

the fourth lag. This mode is not surprising given the cyclical behavior of even lags

evident in Figure 2.5. Model inferences are decisive in favor of a single lag, with

the 0.025 posterior sample quantile of λ2 being greater than 0.99. The estimated

transition mean as a function of yt−2 (holding other lags fixed), with 95% pointwise

credible intervals, is shown in Figure 4.1 together with the data and true transition

mean function. The dynamics are successfully recovered within the range of

observed transitions, except on the far left, where the estimated curve tends back

toward the component level µ2 (which has posterior mean around 0.9, and standard

deviation 2.4) in a smooth manner. This is likely influenced by the stationary

covariance function and bias from the default prior on the component-specific
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Figure 4.1: GPMTD fit to the single-lag dynamical simulation with noise. The
solid black curve depicts the model estimate of the overall transition mean as a
function of the second lag only, together with a 95% credible interval shaded in
gray. The true transition mean function is given by the dashed red curve. All
observed two-step transitions are included as points.
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observation variance σ2
2. One could argue that the stationary covariance function

does not allow sufficient uncertainty in the central region (yt−2 ∈ (2, 3)) with no

observed transitions.

4.3.2 Simulated data: time-delay embedding

Our second simulation example explores the GPMTD model’s fitness for approx-

imating higher-order dynamics. We do so with an example of statistical state-space

reconstruction via time-delay embedding, which attempts to reconstruct a multidi-

mensional attractor using lags from a single time series. The modeling objective

for this example is to infer a suitable embedding dimension and estimate the

corresponding transition map.

We proceed by first simulating a long time series (with sufficient burn-in) from

the following two-dimensional deterministic system used to represent predator-prey

dynamics with interaction (Basson and Fogarty, 1997),

yt = yt−1 exp(r − ayt−1 − bzt−1) , (4.6)

zt = zt−1 exp(r − azt−1 + byt−1) ,

using r = 2.75, a = 0.5, and b = 0.07. In this case, substitution yields an

analytical expression for a time-delay embedding of this system in two lags using

either the {yt} or {zt} series alone. The resulting transition surface for the {yt}

series is more regular when we consider the dyanamics on the log(y) scale, a

natural transformation given that the model applies to non-negative-valued species

abundance. Figure 4.2 shows the original transition surface from the first line of

(4.6) with the generated time series points overlaid. A trace for 100 successive

values of log(yt) is shown in Figure 4.3. Figure 4.4 shows the time-delay embedding
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transition surface for log(y), one of the inferential targets in this example. Note the

outer “wall” corresponding to super-exponential growth just outside the observed

data range. The continuous surface changes directions quickly at this border, with

points falling on both sides of a steep and narrow trench.

It is immediately apparent that the GPMTD model is inadequate to fully

capture this non-additive, intricate function of two lags. If the model admitted

general functions of two inputs, or at least interactions, one could enforce near

determinism with the priors on component-specific variances {σ2
`}. This practice

is discouraged with the GPMTD (unless the modeler is confident that only one lag

Figure 4.2: Transition surface from the deterministic nonlinear system (4.6).
Simulated values are included as points on the surface. Multidimensional plots
were generated with Plotly (Plotly Technologies Inc., 2015).
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Figure 4.3: Trace of 100 steps of the log-transformed yt series from the simulated
deterministic nonlinear system.
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Figure 4.4: Transition surface for the time-delay embedding of log(y) from the
nonlinear deterministic system (4.6). Simulated values are included as points on
the surface.

is active) for two reasons. The first is that the model will attempt to interpolate

apparent noise resulting from projection into one dimension, which occurs in this

example. Second, the mixture of densities defining the model will produce multiple

highly separated modes for most combinations of lag values. For these reasons, we

forego pursuing a high-fidelity estimate of the transition surface with the GPMTD,

allowing for observation noise to “smooth” over some finer features of the surface.

As before, we fit the GPMTD model with default priors and initial values to a

{log(yt)} series of length T = 105 and T = 505 using a lag horizon of L = 5. All

three chains converge to similar log-likelihood values and lag configuration for the

shorter time series. Two of the three chains likewise converge for the longer series,

while one chain remains stuck at a mode with significantly lower log-likelihood.

The model fit to the shorter time series decisively selects lag 1 only (with a

0.025 posterior sample quantile above 0.99), which appears reasonable given the

sample size and the fit depicted in Figure 4.5. The model fails to capture only a few

points in the border trench along log(yt−1) ∈ (−0.5, 0.5), log(yt−2) ≈ 2.3. Because

these observations are not allocated to another mixture component and treated as

outliers, the component-specific standard deviation (effectively the global error
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Figure 4.5: GPMTD model fit (T = 105 and L = 5) to the time-delay embedding
of log(y) simulated from the nonlinear deterministic system. Plots include the
posterior mean estimate for the transition surface and observed transitions as
points.

standard deviation since λ1 ≈ 1) is estimated high at 0.4.

The model fit to the longer time series provides a surprisingly robust approx-

imation, considering the level of model mis-specification. Two lags are selected,

with λ1 and λ2 receiving a 0.78, 0.22 split in posterior mean (both 95% intervals

have approximate length 0.12). The posterior mean estimate of the transition

surface is given in Figure 4.6, together with marginal estimates of f1 and f2 and

their assigned observations (classified if the observations are assigned to the corre-

sponding lag with at least 0.5 posterior probability). The most obvious omission

in the estimated surface is the outer wall or border. This is expected, as the lower

trench is not clearly identified in one dimension. Assuming noisy observations, f1

and f2 fit the corresponding one-dimensional projections well, while the overall

estimated transition surface appears attenuated, a result of the global mixture.

Similarly, transition density estimates (not shown) for lag values along the two

shoulders and central dip of the surface are bimodal with small variances. The

second-lag component successfully captures the “outliers” near log(yt−1) ≈ −0.75,
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log(yt−2) ≈ 2.3, producing an appropriate mixture transition density in this region.

Overall, we caution that despite its ability to produce GAM-like estimates for

transition surfaces, the lag-dependent error structure of the GPMTD model is not

suited to this application for high-order dynamics. The model is better poised to

estimate possibly nonlinear, lag-dependent transition densities in the presence of

noise. Such a scenario is presented with the two examples that follow.
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Figure 4.6: GPMTD model fit (T = 505 and L = 5) to the time-delay embedding
of log(y) simulated from the nonlinear deterministic system. Posterior mean
estimate for the transition surface (top) and lag-specific f1 and f2 functions (with
pointwise 95% intervals, bottom). Data values are included as points. In the
lower plots, points are included with a lag if allocated to that lag (with posterior
probability greater than 0.5).
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4.3.3 Old Faithful data

Our first illustration of the GPMTD with real data uses the well-known

environmental time series from the Old Faithful geyser in Yellowstone National

Park, U.S.A. Scientists and park authorities have recorded eruption durations and

inter-eruption waiting times in order to better understand the geyser mechanism

and make accurate predictions. Forecasting eruption time has proven challenging,

prompting speculation that Old Faithful is a nonlinear chaotic system. Indeed,

Nicholl et al. (1994) reach this conclusion. Historically, eruption durations have

provided the most accurate predictions of the subsequent eruption times. However,

Raye (2005) uses lags of waiting times only to make comparable predictions.

Azzalini and Bowman (1990) follow a statistical approach, concluding that a

second-order Markovian model appropriately captures the dominant signal.

We revisit Old Faithful using the traditional data set reported in Azzalini and

Bowman (1990), consisting of 299 consecutive pairs of eruption durations and

waiting times between August 1 and 15, 1985. Figure 4.7 shows a trace of eruption

waiting times in minutes, together with a pair of scatter plots of waiting times

against the first two lags. Despite high noise levels, dependence on at least one

lag is clearly discernable. The relationship between consecutive waiting times

appears mostly consistent across values of the second lag, but a trend may exist.

The vanilla GPMTD model is unlikely to detect higher-order dynamics, which we

revisit in Chapter 5. We do, however, expect the model to capture the nonlinear

and non-Gaussian features apparent in Figure 4.7.

We fit the GPMTD model with L = 5 and L = 10. All chains converge to the

same region in the parameter space, with exception of one run with L = 5 that

switched to an allocation with some observations assigned to the second lag. We

report results from one of the L = 10 runs. Model inferences are decisive in favor
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Figure 4.7: Trace of 150 consecutive Old Faithful eruption waiting times in
minutes (top). This window of the middle half of the time series typifies the data,
with exception of the run of long waiting times between index 120 and 140. The
scatter plots (bottom) show waiting times in minutes against the first two lags for
the full time series.

of a single lag, with λ0 and λ1 accounting for more than 99% of the allocation

in the posterior mean of λ. Point estimates and 95% credible intervals for each

λ` are reported in Table 4.1. The intercept carries significant weight in order to

provide bimodality in the transition distribution, while the first lag component

captures nonlinear dependence. This trade-off is depicted in Figure 4.8 with a lag-1

scatter plot, where model-based lag allocation is indicated by color. Blue points

are assigned to the intercept component with posterior probability greater than
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` Mean 95% Interval

0 0.428 (0.332, 0.512)
1 0.571 (0.486, 0.666)
2 <0.001 (<0.001, 0.002)
3 <0.001 (<0.001, 0.001)

4-10 <0.001 (<0.001, <0.001)

Table 4.1: Posterior summary for λ`, ` = 0, . . . , 10 in the GPMTD analysis of
Old Faithful waiting times. Lag ` = 0 refers to the intercept.

0.5, and red points are likewise assigned to the first lag. The solid red and blue

curves give posterior mean inferences for the respective component means. The

solid black curve depicts our pointwise estimate of the transition mean functional,

together with a 95% credible interval shaded in gray. The transition mean is less

useful for lagged values above 70 minutes, where it begins to straddle the bimodal

transition density.

Figure 4.9 summarizes posterior inferences for transition densities for three

values of the first lag yt−1 ∈ {50, 66, 80}. Because the more concentrated density

associated with lag 1 is located above the mean of the wide intercept density at

yt−1 = 50, the model incorrectly yields a left-skewed density for yt−1 = 50. One

could argue from Figure 4.8 that the transition density at this lag should exhibit

right skew. The means of mixture components ` = 0 and 1 intersect near yt−1 = 66,

appropriately resulting in a scale mixture of normal distributions for the transition.

At yt−1 = 80, the mixture captures the obvious bimodality.

High levels of noise, together with nonlinear lag dependence, make the Old

Faithful time series an interesting candidate for illustrating both strengths of

the GPMTD model. When the model employs mixing for both flexible density

autoregession and nonlinear transition surfaces simultaneously, we entreat practi-

tioners to carefully scrutinize and validate inferences. For example, because the

mixing weights are global, they may not be optimized for the transition density
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Figure 4.8: Single-step transition scatter plot with component-specific inferences
from the GPMTD fit to Old Faithful waiting times. Blue points indicate member-
ship in the intercept mixture component (with posterior probability greater than
0.5), and red points indicate the same for the first lag mixture component. The
solid red and blue curves report the posterior mean for the respective component
means. The solid black curve depicts the model estimate of the overall transition
mean, together with a 95% credible interval shaded in gray.
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Figure 4.9: GPMTD transition density estimates for Old Faithful waiting times
at three fixed values of the first lag: yt−1 = 50, yt−1 = 66, and yt−1 = 80 minutes.
The solid line indicates the pointwise posterior mean and gray shading indicates
95% intervals.
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specifically at yt−1 = 80 in the Old Faithful model. While the parsimonious

representation (4.2) has such limitations, it is quite flexible relative to the mixtures

of linear autoregressive models in the literature, efficiently capturing nonlinear and

non-Gaussian lag-dependent dynamics.

4.3.4 Pink salmon data

We now apply the model to the pink salmon data introduced in Section 3.5.2,

which consist of annual escapement of pink salmon in a stream in Alaska from

1934 to 1963. We expect the two-year life cycle of pink salmon to drive serial

dependence, which was corroborated by MMTD model fit to a discetized version

of the time series shown in Figure 3.2.

We fit the GPMTD with up to L = 5 lags to the logarithm of annual escapement

using the same default prior, initialization, and MCMC sampling employed for

other analyses. All chains converge to the same estimated posterior distributions.

Not surprisingly, λ2 has a posterior mean of 0.975 with a 95% equal-tailed interval

of (0.683, 0.999). Lags 1 and 4 have the next highest upper (0.975) quantiles

at 0.095 and 0.046, respectively. The estimated transition mean function with

pointwise 95% intervals is given for the second lag (fixing other lags) in Figure

4.10. The diagonal dotted line has a unit slope dividing regions of population

increase and decrease. Although the interval seldom leaves this line, population

decline is readily apparent, particularly with the even-year population (in Figure

3.2), which experienced repeated interventions throughout the 1950s and early

1960s (Bradshaw and Heintz, 2003). We have not attempted to model additional

covariates or interventions, but this series demonstrates the important feature of

lag selection in the GPMTD model.
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Figure 4.10: GPMTD fit to the logarithm of annual pink salmon escapement,
with a scatter plot of all two-step transitions. The solid black curve gives the
overall transition mean, together with a 95% credible interval shaded in gray. The
reference line has unit slope and passes through the origin.

4.4 Extensions to the GPMTD

In this section, we motivate and propose two extensions of the GPMTD model.

The first relaxes Gaussianity of each mixture component and the second relaxes

additivity to allow higher-order interactions necessary for an important application

of the GPMTD. We provide details for implementation and discussion.

4.4.1 Mixture components with long tails and skew

The intercept component in (4.2) is instrumental for the Old Faithful example

in that it provides a vehicle both for bimodality (when yt−1 > 70 minutes) and a

pair of outliers (at yt−1 ≈ 70 minutes). As noted in Section 4.1, Le et al. (1996)

also use an independent component for outliers. If, however, certain characteristics

of the transition distribution systematically associate with a certain lag, it is

more appropriate to accommodate them in the corresponding mixture component.

Adding flexibility to the mixture component distributions further helps disentangle

two model objectives: transition density estimation through mixtures and lag
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selection. If the mixture is used primarily for lag selection, our method relates to

Hansen (1994), who explores using parametric extensions of Gaussian transition

densities. In this section, we apply two standard extensions aimed at increasing

flexibility without sacrificing parsimony or computational convenience.

We first consider allowing long-tailed component distributions. Using the

student t distribution’s well-known representation as a scale mixture of Gaussian

distributions, we introduce independent latent variables {ϕ`,t}, associated with

each component and observation, and distributed gamma with shape η`/2 and

rate η`/2. The variance of each component in the first line of (4.3) becomes

σ2
`/ϕ`,t. We complete the specification with independent gamma priors for η` − 2,

for ` = 0, . . . , L, ensuring two finite moments in the mixture components. This

extension preserves Gaussianity of full conditional updates in the Gibbs sampler

with the following minor changes. The identity matrices that appear in W and in

Σ in Step 4 of the component-specific Gibbs scan in Appendix C.1 are replaced

with diag(ϕ−1
`,ti1

, . . . , ϕ−1
`,tin`

). A fifth and sixth step are added to the Gibbs scan to

update each ϕt,` (conditionally conjugate gamma) and η` (non-conjugate, updated

with Metropolis or with a discrete prior). Steps 1, 3, and 4 of the full Gibbs

sampler in Appendix C.2 likewise reflect observation-specific variance scaling by

{ϕ`,t}, but retain their basic forms.

We next admit skewness in addition to long tails. We employ the scale mixture

of skew-normal distributions of Cancho et al. (2011), who develop a framework for

Bayesian inference in nonlinear regression with skewed and/or long-tailed errors.

The skew-normal distribution derives from the construction of Azzalini (1985).

Random variable Y is said to follow the skew-normal distribution if it has density

φ(y | µ, σ2, ξ) = 2φ
(
y − µ
σ

)
Φ
(
ξ
y − µ
σ

)
, (4.7)
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where φ(·) is the standard Gaussian density function, Φ(·) is the standard Gaussian

cumulative distribution function, and the parameter ξ ∈ R influences skewness.

A stochastic representation for Y (Henze, 1986) facilitates modeling with the

skew-normal distribution, for which significant development in the last few decades

includes both nonlinear regression and mixture models (Lin et al., 2007).

Cancho et al. (2011) induce a scale mixture by including a latent positive-valued

random variable ϕ, which for our purposes will have the same gamma distribution

introduced above, and replacing all instances of σ in (4.7) with σ/√ϕ. Integrating

(4.7) with respect to the density of ϕ produces the scale mixture of skew normal

distributions, which in our case is a skew-t with η degrees of freedom. They report

the stochastic representation as Y = µ + ∆V +
√
τ/ϕV1, where ∆ = σ δ with

δ = ξ/
√

1 + ξ2, τ = σ2(1 − δ2), V = |V0|/
√
ϕ, and V0 and V1 are independent

standard Gaussian random variables. Setting ξ = 0 results in a scale mixture of

normal distributions, while fixing ϕ = 1 produces skew only. This parameterization

yields conditional conjugacy and thus convenient posterior sampling if we specify

independent Gaussian and inverse-gamma priors for ∆ and τ , respectively.

Conditional on allocation membership zt = `, which we omit from the notation

for simplicity, the modified contribution of yt to the GPMTD is given in generative

order as

ϕt | η ∼ Ga (η/2, η/2) ,

p(Vt | ϕt, η) ∝ N
(
Vt | bv, ϕ−1

t

)
1(Vt>bv) , (4.8)

yt | Vt, ϕt, µ, f, σ2, η ∼ N (µ+ f(xt,`) + ∆V, τ/ϕ) ,

where bv = −
√
η/π Γ ([η − 1]/2) /Γ (η/2). The shift by bv ensures that the compo-

nent has mean µ+f(xt,`) (Cancho et al., 2011). Note that the (ϕt, Vt, µ, f,∆, τ, η)`

tuple is specific to mixture component `. This setup admits a sampling scheme
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similar to that given in Appendix C.1, in which matrixW again includes {ϕt} and

1µ is replaced with a linear regression form in which {Vt} populates the second

column of a design matrix with coefficient vector (µ,∆). The full conditional

distributions for ϕt and Vt are gamma and truncated normal, respectively (Cancho

et al., 2011). Because σ2 is coupled with other parameters, the Gaussian process

variance κσ2 is replaced with a single, unrelated variance parameter.

4.4.2 Higher-order interactions with the GPMMTD

Allowing smooth nonlinear functions to the mixture means adds significant

flexibility beyond the models in Le et al. (1996). However, using single-lag

dependence in each mixture component of (4.2) limits the scope of the GPMTD

primarily to nonhomogeneous mixture error distributions and/or selection of a

single relevant lag. Although the transition mean resulting from (4.2) is additive

and can approximate functions with mild interactions of inputs, the mixture of

densities (rather than means) can result in the transition mean function falling in

a region of low density, as seen in the time-delay embedding example of Section

4.3.2. To accurately model high-order transition surfaces with low noise in the

GPMTD framework, it becomes necessary to admit f functions of multiple lags.

The most common approach to modeling functions with several inputs in the

Gaussian process regression framework involves separable covariance functions,

composed through the product of single-variable correlation functions (Rasmussen

and Williams, 2006). This covariance structure naturally arises when one considers

the process resulting from the product of independent functions, each modeled

with an independent GP. The length-scale parameter can also serve as a proxy for

variable selection in automatic relevance determination (ARD, Neal, 1996). We

present an alternative to ARD in the context of lag selection with an extension
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of the GPMTD model that follows the mixture of mixture transition distribution

construction of Chapter 3. For positive integer R < L, the general model is given

by

Ft(yt | yt−1, . . . , y1) = Λ0 N
(
yt | µ0, σ

2
0

)
+

Λ1

L∑
`=1

λ
(1)
` N

(
yt | µ` + f

(1)
` (yt−`), σ2

1,`

)
+ (4.9)

Λ2
∑∑

1≤`1<`2≤L
λ

(2)
(`1,`2) N

(
yt | µ(2)

`1,`2 + f
(2)
`1,`2(yt−`1 , yt−`2), σ2

2,`1,`2

)
+ . . .+

ΛR

∑
. . .
∑

1≤`1<...<`R≤L
λ

(R)
(`1,...,`R) N

(
yt | µ(R)

`1,...,`R
+ f

(R)
`1,...,`R

(yt−`1 , . . . , yt−`R), σ2
R,`1,...,`R

)
,

with λ
(r)
(`1,...,`r) ∈ λ

(r), a probability vector of length
(
L
r

)
, for r = 1, . . . , R. We

propose to simplify (4.9) by specifying only one set of parameters (µ, f, σ2) for all

mixture components at a given level r > 1, in conjunction with a sparse Dirichlet

mixture (SDM) prior for each {λ(r) : r = 2, . . . , R} to favor selection of only one

component. Retaining the SBM prior on Λ = (Λ0,Λ1, . . . ,ΛR) and λ(1) retains

characteristics of the GPMTD and encourages shrinkage of the over-specified

model. We will refer to the simplified specification as the canonical Gaussian

process mixture of mixture transition distributions (GPMMTD) model.

As with the original MMTD, the model in (4.9) can be “flattened” to a

corresponding GPMTD representation with higher-order functions {f}. Increasing

the number of arguments to each f represents the primary innovation and challenge

of the GPMMTD model. If we select R to be modest and significantly below

the lag horizon L, we can specify more general covariance functions than the

standard isotropic or separable ARD kernels. One option relaxes isotropy (but

retains stationarity) by replacing the Euclidean distance input of the squared

exponential or Matérn correlation function with a Mahalanobis distance d =
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√
(x− x′)>Ψ(x− x′) for positive-definite matrix Ψ (as in Ecker and Gelfand,

1999). That the parameters in Ψ are not identifiable and grow quadratically with

the dimension of x can be addressed with informative priors and maintaining a

moderate value of R.

The hierarchical formulation of the GPMMTD again utilizes augmentation

with latent variables Zt ∈ {0, 1, . . . , R} and zt ∈ ∪r{(`1, . . . , `r) : 1 ≤ `1 <

. . . < `r ≤ L}, and is given as follows. For t = L + 1, . . . , T ; ` = 1, . . . , L,

1 ≤ `1 < . . . < `r ≤ L; and r = 0, 1, . . . , R, we have

yt | Zt, zt, {(µ, σ2, f)} ind.∼



N (µ0, σ
2
0) if Zt = 0,

N
(
µ(1)
zt + f (1)

zt (xt,zt), σ2
1,zt

)
if Zt = 1,

N
(
µ(Zt) + f (Zt)(xt(zt)), σ2

Zt

)
if Zt > 1,

for t = L+ 1, . . . , T,

Pr(Zt = r | Λ) = Λr, Pr(zt = (`1, . . . , `r) | Zt = r,λ(r)) = λ
(r)
(`1,...,`r),

for r = 0, 1, . . . , L, independently for t = L+ 1, . . . , T,

Λ ∼ SBM(π1,π3, η,γ, δ) , (4.10)

λ(1) ∼ SBM(ηλ, π1λ, π3λ,γλ, δλ), λ(r) ind.∼ SDM(αλ(r) , βλ(r)) for r = 2, . . . , R,

where xt(zt) refers to the elements of xt selected by zt, and the top level implicitly

conditions on lags in xt. The remaining hierarchical structure follows with (4.3),

except that ψ(r) for r > 1 is replaced by a vector of parameters used to construct

Ψ(r) through, for example, some factorization that preserves positive definiteness.

Most time-series analyses are conducted at the data-sampling time step with-

out further consideration of sampling frequency, which can substantially affect

inferences and forecasts. For example, sampling at high frequency and analyzing

relatively few lags can cause nonlinear dynamics to appear linear. Thus, in addition
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to dependence order, an optimal time delay is sometimes sought in time-delay-

embedding applications (Kantz et al., 2004, p. 38). Joint inference for both is easily

accommodated if we consider a trivial and simplifying adjustment to the MMTD

framework. As before, the outer sum in (4.9) mixes over possible orders. However,

instead of enumerating all lag combinations of order r up to horizon L, the inner

sum could index spacing among the r lags so that component ` corresponds to the

lag set (`, 2`, . . . , r`). For example, when r = 2, the first component corresponds

to lags (1, 2), the second component corresponds to lags (2, 4), the third to (3, 6),

and so forth. This arrangement is less general in that it assumes all lags (at the

selected sampling frequency) up to the active order are relevant. Its estimation also

requires a longer time series. However, it can substantially reduce the number of

components under consideration and provide a parsimonious vehicle for modeling

long-range dependence.

4.5 Discussion

The models proposed in this chapter, in addition to providing a Bayesian

implementation for the continuous-state GMTD, contributes three possible exten-

sions to the original framework: 1) nonlinear transition dynamics, 2) model-based

order and lag selection, and 3) higher-order interactions (through the GPMMTD).

Although the original GMTD accommodates non-Gaussian transition distributions,

we further allow the mixture kernels to exhibit nonlinear lag dependence and

non-Gaussian features. Thus the Gaussian process mixture transition distribution

model can be considered a parsimonious, semiparametric model for nonlinear

transition density estimation. Additionally, it can be used to identify nonlinear

dynamics with low noise in one (GPMTD) or several (GPMMTD) lags.

The GPMTD model is inherently Markovian, directly modeling a probability
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distribution governing transitions. It consequently most naturally resides in the

class of time-series models for dynamical (rather than measurement) error. It

can nevertheless be extended, in a state-space framework or otherwise, to include

other features common in time series, such as covariate dependence, trends, and

periodic fluctuations. The most straightforward way to incorporate covariates

is through additional mixture components dedicated to the exogenous variables.

As this breaks the natural ordering of mixture components, one would need to

reconsider the prior for λ. Incorporating trends, periodicity, and covariates outside

the MTD structure presents more of a challenge, as these would most naturally fit

into a linear superposition with a latent GPMTD process. Estimation of GPMTD

parameters would be no more complicated in such a model. However, updates

for parameters governing external structures would necessitate re-evaluation of

the GPMTD component-mean functions {f`} at each iteration of MCMC (or

optimization), potentially creating a heavy computational burden.

The mixture autoregressive (MAR) model of Wong and Li (2000), consisting of

a finite mixture of Gaussian AR models of potentially varying order, is considered

to be the sequel to the GMTD in the literature. The MAR model indeed contains

the GMTD as a special case if we set most AR coefficients equal to zero. It however

does not generalize the linear transition mean, and perhaps more importantly,

diverges from the parsimonious and interpretable representation as a mixture of

low-order transition distributions. We have proposed and demonstrated a model

that preserves these important and distinguishing characteristics of the MTD and

GMTD models. Nevertheless, the MAR and related mixtures of autoregressive

models provide an important foundation for a rich class of Markovian models

explored in Chapter 5.
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Chapter 5

Bayesian Nonparametric Density

Autoregression

5.1 Introduction

All models in previous chapters employ mixing distributions that are based

on independent processes. While convenient for computation and inference for

the transition distribution, this approach limits model flexibility. In the case of

continuous state spaces, we have demonstrated that Gaussian process priors in the

MTD component conditional means can allow for simple lag-dependent density

estimation and nonlinear dynamics. In this chapter, we simplify the mixture kernels

and instead use dependence in the mixture weights to accommodate nonlinear

dynamics. Importantly, serial dependence in the weights (or latent process) is

driven by observed variables, as summarized in Figure 1.1. We further break from

the MTD framework by allowing kernel dependence on all lags (up to the specified

horizon), and move to a Bayesian nonparametric framework, admitting countable

mixtures. In this section, we briefly review nonlinear time series methods utilizing
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mixtures, Bayesian nonparametric (BNP) methods, including regression, BNP

applications to time-series problems, and approaches to order and lag selection.

5.1.1 Nonlinear time series via mixtures

While the term nonlinearity has been used to describe various qualitative char-

acteristics of time series, we specifically refer to nonlinear dynamics, or nonlinearity

in the function mapping past observations to the present. References for nonlinear

autoregressive models, including generalized additive models and Gaussian process

priors, are found in Section 4.1. Dependent mixtures through hidden Markov

models, also capable of capturing nonlinear dynamics, are briefly discussed in

Section 1.1.1.

The class of threshold autoregressive models (Tong, 1990) provide a parsi-

monious approximation of nonlinear dynamics, and have remained popular for

decades. Although these can be formulated as finite mixtures of linear autoregres-

sive models, the most popular form switches among a finite set of regressions as a

deterministic function of a single lag, yielding a piecewise-linear transition function.

Mixtures-of-experts (MoE) models (Jordan and Jacobs, 1994; Peng et al., 1996;

Carvalho and Tanner, 2005, 2006) are closely related. They have the form

p(yt | yt−1, . . . , yt−L) =
J∑
j=1

qj(yt−1, . . . , yt−L;ϕj) kj(yt | yt−1, . . . , yt−L, φj) ,

where parameterized weight functions qj(·;ϕj) of past values provide probabilistic

thresholding, usually through a link function, to activate “expert” kernel models

kj(· | φj). In the case of Gaussian experts, these kernels have linear autoregressive

means, and nonlinearity is provided by the weight functions. More similar to the

model we propose, Glasbey (2001) and Kalliovirta et al. (2015) use normalized
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kernel functions for local weighting in place of link functions on linear combinations

of lags.

5.1.2 Dirichlet process mixtures

All mixture models to this point have been finite, with the number of com-

ponents fixed at the number of lags under consideration. Because we now rely

on the mixture structure to provide flexibility, we use a Bayesian nonparametric

framework, for which the theoretical number of mixture components is infinite and

the number of active components is random.

We rely on the Dirichlet process (Ferguson, 1973), which provides a prior for

the random mixing distribution, G, for some generic parameter θ ∈ Θ. We say

G follows a Dirichlet process and write G ∼ DP(α,G0), where α is a positive

scalar concentration parameter and G0 is a base probability measure with support

on Θ. We focus particularly on the stick-breaking representation of this process

(Sethuraman, 1994), wherein the random probability measure can be written as

G(θ) =
∞∑
h=1

ωh δθ∗
h
(θ) . (5.1)

Here, δθ∗
h
(·) is a dirac-delta measure, or atom, at θ∗h, θ∗h

iid∼ G0, and {ωh} arise

from the stick-breaking process involving latent beta random variables specified

in Section 5.2.1. Convolution of (5.1) with a continuous likelihood kernel density

k(y | θ) results in a Dirichlet process mixture (DPM) model (Antoniak, 1974)

suitable for density estimation.

A common approach extending the DP to accommodate covariates x ∈ X

is the dependent Dirichlet process (DDP, MacEachern, 2000). The extension

utilizes the stick-breaking representation by defining stochastic processes {θ∗h(x) :
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h = 1, . . . ,∞, x ∈ X} and/or {ωh(x) : h = 1, . . . ,∞, x ∈ X} that maintain

G0 as the marginal distribution for θ∗h and marginal beta distributions for latent

stick-breaking variables. Often, either the weights or atoms are modeled with a

stochastic process while the other set remains common across x ∈ X .

The stick-breaking representation has led to other extensions, such as the

probit stick-breaking model of Rodríguez and Dunson (2011). Here, the latent

beta variables are replaced with probit link functions, waiving the marginal DP in

favor of a convenient and familiar model for covariate dependence.

5.1.3 Bayesian nonparametric regression

Dirichlet process mixture and dependent Dirichlet process models comprise

much of the BNP regression methods proposed in the literature. Müller et al.

(2015, Ch. 4) provide an overview. We briefly review BNP regression here to place

our proposed model in context, and because our chosen dependence structure

yields operational equivalence with regression models on general covariates.

An early approach to fully nonparametric regression arises from conditional

inferences available through joint density estimation. Müller et al. (1996) propose

an approach termed curve fitting using mixtures. Assuming random covariates

x, they estimate the joint density of (y, x) with a DP mixture of multivariate

Gaussian kernels. Conditional densities and mean functionals (regression), which

through this construction are very flexible, are then easily obtained in posterior

analysis. This approach has motivated several extensions as well as simplifications

(see Wade et al., 2014b for a review). Wade et al. (2014a) note that covariates

in this model disproportionately drive clustering behavior, and they propose a

hierarchical extension to the DP to address this issue. Other approaches explicitly

characterize clustering dependence on covariates (Park and Dunson, 2010).
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Regression methods based on the DDP typically begin with common atoms

as in De Iorio et al. (2004), which have an equivalent representation as Gaussian

DPM models with linear-regression-type kernel means. Extensions targeting the

weights include Chung and Dunson (2009), who employ the probit stick-breaking

formulation and incorporate component-specific stochastic-search variable selection.

Dunson and Park (2008) retain beta stick-breaking latent variables, but weight

them directly with covariate-dependent density kernels. Reich et al. (2012) utilize a

prior reminiscent of automatic relevance detection on the kernels to select regressors.

Fuentes-García et al. (2009) propose a geometric weights formulation that depends

on covariates through a link-transformed Gaussian process. Recently, Barrientos

et al. (2017) proposed a DDP-based framework for nonparametric regression for

bounded response, considering both covariate-dependent atoms and weights, and

general link functions for stick breaking.

5.1.4 Bayesian nonparametric methods for time series

Bayesian nonparametric modeling applications to problems in time series have

seen rapid growth over the past two decades. We restrict attention to a few

methods involving DPM or closely related models.

Although the model we propose does not incorporate Markov dependence

among the latent variables defining the mixture, BNP applications to state-space

and hidden-Markov models (HMM) bear mentioning here. Taddy and Kottas

(2009) propose a HMM with a fixed number of hidden states and independent DP

priors mixing on each emission distribution. In a slightly different formulation,

Yau et al. (2011) mix emission distributions with both a latent hidden process

and a DP prior. Rodríguez and Ter Horst (2008) work in a state-space context,

mixing the distribution of observables with a common-weights DDP in which the
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atoms evolve according to a linear, Gaussian random walk, resulting in a countable

mixture of dynamic linear models (DLM, West and Harrison, 1997). Caron et al.

(2007) use DPM priors for the observation and state noise distributions in DLMs.

Alternately, Fox et al. (2011) propose Markov-switching DLMs in which the space

of hidden states is countable, building on the infinite HMM of Beal et al. (2002).

DP mixtures of linear autoregressive models, which are closer to our formulation,

can be viewed as a nonparametric extension of the mixture autoregressive model of

Wong and Li (2000). Lau and So (2008) proposed a model of this type, specifying a

DP prior for the mixing distribution of the autoregressive coefficients, variance, and

autoregressive order in each kernel. Di Lucca et al. (2013) frame a similar model as

a DDP, ultimately demonstrating first-order mixtures of autoregressive models with

common weights for continuous and binary time series. Tang and Ghosal (2007a)

propose and establish posterior consistency for a class of nonlinear autoregressive

models, intended for ergodic time series, which mix over the parameters of a

specific link function in the means of Gaussian kernels. Tang and Ghosal (2007b)

explores posterior consistency for BNP estimation of transition densities more

generally.

DP mixtures of linear autoregressive models with lag-dependent weights can

likewise be viewed as a nonparametric extension of mixture-of-experts models.

Müller et al. (1997) proposed a model of this type using a finite mixture construction,

but placing a DP prior on the mixing distribution for the coefficients and variance

of the autoregressive kernel, as well as for location parameters of normalized

Gaussian weight kernels on lags.

Stationarity, or time invariance of the marginal probability distribution p(yt),

is not a common feature of the flexible models described thus far. Mena and

Walker (2005) and Martınez-Ovando and Walker (2011) do build stationarity into
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their model definition, in the former case through the Gibbs construction of Pitt

et al. (2002), resulting in AR-type models with flexible BNP specifications for

transition and marginal distributions. Antoniano-Villalobos and Walker (2016)

build on Martınez-Ovando and Walker (2011), constructing a transition density

from a mixture model on the stationary joint density of the current observation

and a single lag. In contrast with Müller et al. (1996), their likelihood is based

on the conditional transition density, which is a nonparametric mixture of kernels

with linear autoregressive means and lag-dependent weights. Kalli and Griffin

(2018) extend this framework to a stationary multivariate autoregressive model of

multiple lags, although it is demonstrated with a single lag.

DeYoreo and Kottas (2017) use construction similar to Antoniano-Villalobos

and Walker (2016), but do not assume stationarity. They empirically demonstrate

superior flexibility over the stationary model. Our proposed model is a multiple-lag

analogue, and the construction procedure is outlined in Section 5.2.1.

5.1.5 Order and lag selection

We have included references to work in the BNP literature that address the

problem of lag selection (and variable selection, in the case of regression). In the

time series literature, autoregressive order is often assessed with standard infor-

mation criteria, which can include regularization (Khalili et al., 2017). Bayesian

approaches typically involve stochastic-search-type algorithms, and several are

presented in Prado and West (2010, Ch. 2). In the stationary, linear case, one can

use the specialized priors of Huerta and West (1999) on roots of the autoregressive

characteristic polynomial together with a reversible-jump algorithm to infer order.

Wood et al. (2011) likewise use reversible jump as part of a two-stage MCMC

sampler to infer component-specific order and perform Bayesian model averaging
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in their time-weighted mixture of autoregressive models. Techniques for Bayesian

variables selection, including BNP, are further reviewed in Section 5.4.

This chapter proceeds as follows. In Section 5.2, we propose a Bayesian

nonparametric time-series model for density autoregression and present details for

implementation and inference. In Section 5.3, we illustrate the model fit to synthetic

and real data. In Section 5.4, we extend the model to incorporate inferences about

relevant lags and demonstrate its use on data. Section 5.5 compares density

estimation performance for models proposed in this chapter and Chapter 4 with

simulated nonlinear time series featuring skewness, heteroscedasticity, and different

lag structures. We conclude with discussion in Section 5.6.

5.2 Model

Our modeling objective is to develop a general-purpose and fully nonpara-

metric time-homogeneous Markovian model for continuous-state time series that

is sufficiently flexible to: 1) estimate possibly non-Gaussian transition densities,

dependent on lagged values, 2) capture nonlinear dynamics, and 3) select relevant

lags among a pre-specified set, up to a maximal order L. The first two objectives

are accomplished through a nonparametric mixture of Gaussian densities, wherein

both the mixture weights and kernel means depend on the values of up to L

lags. If yt and yt−1 ≡ (yt−1, . . . , yt−L) denote the observation at time t and first L

lags, respectively, the general model formulation for the transition density can be

written as

f(yt | yt−1) =
∞∑
h=1

qh(yt−1)︸ ︷︷ ︸
local weights

N(yt | µh(yt−1), σ2
h)︸ ︷︷ ︸

mixture kernels

, (5.2)
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where N(y | µ, σ2) denotes a Gaussian density with mean µ and variance σ2

evaluated at y, and with weight function qh(yt−1) ≥ 0 for all h ∈ N such that∑∞
h=1 qh(yt−1) = 1 for all yt−1 ∈ RL. We further use kernel mean functions

µh(yt−1) that are linear in the lags, resulting in a local mixture of linear transition

densities. The third objective of order and lag selection is accomplished through a

stochastic-search prior structure.

The model is fully nonparametric in the sense that its form derives from a

prior for joint density estimation that enjoys full support in the Kullback Leibler

sense (Wu et al., 2008). Time homogeneity in the model is a consequence of time

invariance in the parameters governing the mixture weights and kernels. We note

that this seemingly restrictive assumption is at least partially offset by the model’s

flexibility with respect to, and dependence on, lagged observations. Apparently

time-dependent structural changes can sometimes be attributed to differences in

dynamics among disjoint regions of the phase space, which can be captured by

the proposed model. In such cases, a latent first-order Markov process governing

the mixture weights may be less effective than our approach of using the lagged

values directly. Nevertheless, dynamic drift or regime-switching in model structure

can and does occur. We therefore encourage responsible investigation before

drawing conclusions from this or any statistical model for which observations are

time-indexed.

We proceed with a complete model derivation and specification in Section

5.2.1, which also describes a parameterization that is useful for interpretation and

implementation, and address truncation of the countable mixture. Section 5.2.2

discusses the roles of model parameters and gives recommended prior settings.

Section 5.2.3 briefly outlines the Markov chain Monte Carlo algorithm used for

posterior inferences and addresses implementation. Finally, Section 5.2.4 discusses
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model inferences, including transition density estimation.

5.2.1 Model specification

One avenue to arrive at the conditional density form in (5.2) begins with

a prior for joint density estimation. To highlight operational equivalence with

nonparametric regression, we use y ∈ R to represent a generic continuous response

and x ∈ RL to denote a vector of continuous covariates. In the context of the final

model, however, we have xt ≡ yt−1.

We begin as in Müller et al. (1996) by considering y and x to arise jointly from

a Gaussian DPM,

fY X(y,x | G) =
∫

N ((y,x) | µ,Σ) dG(µ,Σ) ,

G | α,G0 ∼ DP(α,G0) ,

or equivalently, under the stick-breaking representation (Sethuraman, 1994),

fY X(y,x | G) =
∞∑
h=1

ωh N ((y,x) | µh,Σh) , (5.3)

where {ωh} are constructed as

ω1 = v1, ωh = vh
h−1∏
j=1

(1− vj), for h > 2, and vh iid∼ Beta(1, α) , (5.4)

and (µ,Σ)h iid∼ G0. Conditioning on x, we obtain

fY |X(y | x, G) = fY X(y,x | G)∫
fY X(y,x | G) dy =

∑∞
h=1 ωh N(h)(x) N(h)(y | x)∑∞

j=1 ωj N(j)(x) (5.5)

=
∞∑
h=1

qh(x)︸ ︷︷ ︸
local weights

N(yt | µh(x), σ2
h)︸ ︷︷ ︸

mixture kernels

,
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with qh(x) = ωh N(h)(x)/∑∞j=1 ωj N(j)(x), where N(h)(·) refers to a Gaussian density

with parameters corresponding to mixture component h, and N(h)(y | x) is the

univariate conditional Gaussian density derived from N(h)(y,x). The joint densities

in each mixture component of the numerator of (5.5) have been factored into their

respective marginal L-dimensional Gaussian density for x (with mean µx and

covariance Σx) and univariate conditional Gaussian density for y (with mean

µ(x) ≡ µy + Σyx(Σx)−1(x − µx) and covariance σ2 ≡ (σy)2 − Σyx(Σx)−1Σxy).

The second line of (5.5) reveals the local linear structure of the model with lag-

dependent weights and mixture kernels with means depending linearly on x. Local

weighting allows the model to capture nonlinearity while the mixture structure

accommodates non-Gaussianity.

This procedure yields a model structure for a conditional density satisfying the

requirements of the proposed model (5.2). Specifically, we have∑∞h=1 ωh = 1 almost

surely (Ishwaran and James, 2001). Then, so long as there exists some positive

constant cN < +∞ such that 0 < N(h)(x) < cN for all h ∈ N and all x ∈ RL

(which is satisfied if there exists another constant cΣ > 0 such that det(Σx
h) > cΣ

for all h ∈ N), the denominator in qh(x) will be positive and finite for all x ∈ RL,

producing a valid weight function.

Although x (representing yt−1) can legitimately be considered random in the

time-series context, the Markovian likelihood p({yt}) = ∏
t p(yt | yt−1) requires that

the conditional transition density (5.5) form the basis of the model. Furthermore,

unless we assume stationarity of the process {yt} and impose corresponding

restrictions on µ and Σ, the joint mixture density in (5.3) cannot apply to

consecutive length-(L+ 1) coordinate vectors such as (yt+1,yt) and (yt,yt−1). To

achieve greater flexibility in transition density estimation, we elect to not assume

stationarity of the time series (DeYoreo and Kottas, 2017). This decision carries

116



two important consequences. First, the proposed model does not estimate a joint

density for consecutive observations, so that the density implied by reversing (5.5)

is not interpretable. Second, the densities {N(h)(x)} serve only to support the

function of the mixture weights {qh(·)} and are not related to a joint probability

distribution for lags.

The model likelihood for time series data, conditional on the first L observations,

is ∏T
t=L+1 fY |X(yt | yt−1, G). This likelihood, based on (5.5), is the form adopted in

Antoniano-Villalobos and Walker (2016) and Kalli and Griffin (2018), who assume

stationarity, and DeYoreo and Kottas (2017), who do not assume stationarity.

All three implement their respective models only for a single lag. This weight

structure has also been explored for finite mixtures with the stationarity assumption

(Glasbey, 2001; Kalliovirta et al., 2015). The general regression formulation in

(5.2) with local weights qh(x) resembles mixture-of-experts constructions. The

re-weighting of {ωh} with probability density kernels on x distinguishes our model

from nonparametric extensions of MoE, such as dependent Dirichlet process models

and the kernel stick-breaking model class introduced by Dunson and Park (2008),

both of which introduce covariate dependence through the {vh} variables in (5.4).

Covariance factorization

To facilitate interpretation in our factorization of the kernels into response

and lag densities, allow flexible and parsimonious covariance modeling, and to

provide a vehicle for variable selection in the mixture weights, we parameterize the

kernel covariance matrix according to the factorization Σ = B−1∆(B−1)′ where
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∆ = diag(σ2, δx1 , . . . , δ
x
L,) and B is the upper unit-triangular matrix

B =



1 βy1 βy2 · · · βyL−1 βyL

0 1 βx1,2 · · · βx1,L−1 βx1,L

0 0 1 · · · βx2,L−1 βx2,L
... ... . . . ...

1 βxL−1,L

0 . . . 0 1



. (5.6)

This factorization is equivalent to the square-root-free Cholesky decomposition

employed by Daniels and Pourahmadi (2002) and Webb and Forster (2008), and in

our setting by DeYoreo and Kottas (2017). This and similar decompositions have

also been used for model selection (Smith and Kohn, 2002; Cai and Dunson, 2006).

Our extension for lag selection in the mixture weights is discussed in Section 5.4.

The primary advantage of this parameterization stems from the sequential

decomposition of the joint Gaussian density for y and x into L + 1 univariate

Gaussian densities. Specifically,

N
(
(y,x) | µ,B−1∆(B−1)′

)
= N(xL | µxL, δxL)×

N(xL−1 | µxL−1 − βxL−1,L(xL−1 − µxL−1), δxL−1)×

× · · ·×N
(
x1 | µx1 −

L∑
`=2

βx1,`(x` − µx` ), δx1
)
× (5.7)

N
(
y | µy −

L∑
`=1

βy` (x` − µx` ), σ2
)
.

The typical application of this parameterization constructs the vector sequentially

from front to back, resulting in a lower unit-triangular B that conforms to the

standard definition of Cholesky factorization. Instead, we construct from back
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(most distant lag) to front (y) so that the response density depends on the entire x

vector while maintaining order convention for time-delay embedding vectors. This

fully parameterized representation of the covariance matrix is flexible, as each β

parameter is unrestricted and δ parameters need only be positive. Furthermore the

popular inverse-Wishart prior can be constructed as a special case (Daniels and

Pourahmadi, 2002). This representation also allows substantial control over the

marginal weight kernel of x while preserving positive definiteness. Note also that the

marginal covariance matrix of x can be constructed as Σx = (Bx)−1∆x((Bx)−1)′

where Bx removes the top row of B, and ∆x = diag(δx1 , . . . , δxL).

The final term in (5.7) involving µy and the {βy` } is overparameterized if used

for regression with one mixture component. However, the {µx` } parameters have

an integral role in the weight functions of the mixture model (5.5), providing (with

exception of mixture label switching) at least weak identifiability. It is nevertheless

preferable to monitor inferences for component-specific intercepts µy +∑L
`=1 β

y
` µ

x
` ,

which in our experience are far more stable than either µy or {µx` } alone.

DP truncation

A primary challenge in implementing the model in (5.5) is the infinite summation

in the denominator of the weights. While Antoniano-Villalobos and Walker (2016)

address this problem by introducing multiple sets of auxiliary variables and consider

slice sampling in the style of Kalli et al. (2011), all previous implementations of

this model class ultimately rely on truncation of the infinite mixture. We also

truncate, following the blocked Gibbs strategy of Ishwaran and James (2001).

There are both theoretical and practical considerations when selecting the

truncation level, H. Given a value of the DP concentration parameter α, we can

calculate the prior expected truncation error in the weights, E(ωH) = E(∏H−1
h=1 (1−
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vh)) = [α/(1+α)]H−1. We can also monitor this final weight ωH throughout MCMC

sampling to ensure it remains small. Because the mixture provides flexibility in the

model, it may be necessary to increase the truncation level to estimate transition

densities/functions that exhibit complex local behavior. We therefore also advocate

monitoring the number of occupied clusters throughout MCMC to ensure that it

does not approach H.

Hierarchical formulation

As is common with similar models, we break the mixture by introducing latent

variables {st} associated with each time point, such that if st = h, the observation

at time t is assigned to cluster h. We denote all cluster-specific parameters as

{ηh}Hh=1 where η ≡ {µy,µx,βy,βx1 , . . . ,βxL−2, β
x
L−1, σ

2, δx}, with vectors βy and

βxr (for r = 1, . . . , L− 2), and βxL−1 ≡ βxL−1,L taken from the corresponding rows of

B, and δx = (δx1 , . . . , δxL). We again simplify notation by using N(h)(·) to indicate

that all parameters used to specify that the mean and covariance are indexed by

h. The hierarchical formulation of our model is given by

yt | xt, st = h, {η} ind.∼ N(h)

(
yt | µy −

L∑
`=1

βy` (xt,` − µx` ), σ2
)
,

for t = L+ 1, . . . , T, and h = 1, . . . , H,

Pr(st = h | xt, {η},ω) = ωh N(h)(xt | µx,Σx)∑H
j=1 ωj N(j)(xt | µx,Σx)

, (5.8)

ω1 = v1, ωh = vh
h−1∏
j=1

(1− vj), for j = 2, . . . , H − 1, and ωH =
H−1∏
j=1

(1− vj) ,

vj | α
iid∼ Beta(1, α), for j = 1, . . . , H − 1,

ηh | G0
iid∼ G0(ηh), for h = 1, . . . , H,

α ∼ Ga(aα, bα) ,
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with G0(η) = N((µy,βy) | σ2) × IG(σ2) × N(µx) × ∏L−1
r=1 N(βxr ) × ∏L

`=1 IG(δx` ),

and ω = (ω1, . . . , ωH). Here N((µy,βy) | σ2) indicates that the prior covariance

matrix for β∗ ≡ (µy,βy) is scaled by σ2, which allows us to analytically integrate

all y-indexed parameters from the full conditional for ηh and improve mixing in

MCMC (discussed in Section 5.2.3).

We complete the model with conditionally conjugate priors on the parameters

in G0. Specifically, the L + 1-variate Gaussian distribution for β∗ has mean

β∗0 ∼ N(b∗0,S∗0) and covariance σ2(Λ∗0)−1 with (Λ∗0)−1 ∼ IWish(ν∗, ν∗Ψ∗0) (an

inverse-Wishart distribution with ν∗ degrees of freedom and mean ν∗Ψ∗0/[ν∗ −

(L + 1) − 1], parameterized so that Ψ∗0 is the prior harmonic mean of (Λ∗0)−1).

The inverse-gamma distribution for σ2 has fixed shape νσ2/2 and scale νσ2 s0/2,

yielding for σ2 a prior harmonic mean of s0 ∼ Ga(as0 , bs0) (which itself has mean

as0/bs0). The Gaussian distribution for µx has mean µx0 ∼ N(mx
0 ,S

µx
0 ) and

covariance (Λµx)−1 ∼ IWish(νµx , νµxΨµx
0 ). The Gaussian distribution for each βxr

has mean βx0,r
ind.∼ N(bβx0,r,S

βx
0,r) and covariance (Λβx

0,r)−1 ind.∼ IWish(νβxr , νβxr Ψβx
0,r), for

r = 1, . . . , L−1. The inverse-gamma distribution for each δx` has fixed shape νδx` /2

and scale νδx` sx0,`/2 with sx0,`
ind.∼ Ga(axs0,`, b

x
s0,`), for ` = 1, . . . , L.

5.2.2 Prior settings

The priors for the hierarchical model in Section 5.2.1 are specified in generality

so that the model can be fit with the time series {yt} at any scale and for a

variety of functional characteristics. However, if capturing nonlinear dynamics and

transition density estimation are of primary interest, one may consider centering

and scaling the (possibly de-trended) time series to unit marginal variance, and

basing hyperparameter settings on default values. In this section, we recommend

default values derived from the marginal center and range of the time-series data.
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Before we recommend default hyperparameter values, it is useful to discuss

the function and interpretation of model parameters. The first consideration is

that the model (5.5) is a locally-weighted mixture of Gaussian linear regression

models. The weight structure depends not only on {ωh}, which is inherited from

the nonparametric prior and (for low values of α) encourages economy in clustering,

but also on the Gaussian kernels for x. One could imagine a normalized weight

function or surface spanning RL for each mixture component h that follows the

contours of a L-variate Gaussian density down-weighted by ωh. The cluster-specific,

x-indexed parameters µx, and Σx = (Bx)−1∆x((Bx)−1)′ determine the locations

and shapes of the weight kernels. The y-indexed parameters µy, βy provide the

cluster-conditional mean as a first-order linear combination of x, and σ2 provides

observation error variance around the cluster’s mean.

One primary functional of interest derived from the transition density in (5.5)

is the conditional expectation E(y | x) =
∫
y f(y | x, G) dy = ∑

h qh(x)µh(x), to

which we refer as the transition mean functional. A modeler can encode beliefs

about this functional relationship between y and x through the priors for α and

parameters in the base measures for Σx and σ2. By influencing the number of

active clusters, α assists in controlling how many times the transition mean can

change directions. To encourage smooth behavior, one may use a prior favoring

relatively large variances in Σx, most directly through the priors for {δx` }. To

encourage active local behavior, including nearly discontinuous transitions, one

would use small variances in Σx to allow the clusters to concentrate on small

regions, analogous to using many knots in spline models.

We can visualize the effects of prior settings through prior simulation in low-

dimensional models. As an example, Figure 5.1 depicts several realizations of

the transition mean for a model with a single lag. The realizations are drawn
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under combinations of prior settings for α (through the shape parameter with the

scale fixed at 1.0) and δx (through the prior mean of sx0). Restricting the number

of clusters with low values of α results in transition mean functions with few

changepoints and long stretches of near linearity, whereas allowing more clusters

increases variability in the curve. Low values for δx likewise encourage rigid

transition mean curves with abrupt changepoints. Increasing the variance in the

weight kernels has a smoothing effect, as expected. Note that for some regions of

the lag space, the transition density is multimodal, and so the transition mean

does not follow any of the lines corresponding to mixture components in that
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Figure 5.1: Ten prior realizations of the transition mean for the proposed
nonparametric model with a single lag, under combinations of prior settings for α
and δx.
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region. As with the transition mean, we can use prior simulation to elucidate the

effects of prior settings for transition densities to aid practitioners in specifying

desired characteristics and performing sensitivity analysis.

We recommend the following default settings for a baseline prior, which in

most cases should be adjusted for the analysis at hand. We typically set aα in

the interval [5, 15], depending on our prior beliefs about the degree of nonlinearity

in the transition function. Setting bα = 1 yields a prior mean of aα. Antoniak

(1974) gives the expression α log ((α + T − L)/α) as a rough prior estimate for the

number of clusters. While this applies in the prior joint model, the number of

clusters in our conditional model (5.5) is also a function of the Gaussian weight

kernels on x. We set b∗0 = (ȳ, 0, . . . , 0), with ȳ representing the center of the

time series, empirical or user-defined, and S∗0 = diag([range(y)/6.0]2, 1.0, . . . , 1.0),

with range(y) representing the range of the time series, empirical or user-defined.

This specification provides reasonable flexibility for the entry in b∗0 corresponding

to µy and encourages centering the remaining entries of β∗0 near 0. We set

ν∗ = 50 (L + 1 + 2) and Ψ∗0 = s−1
00 diag([range(y)/2.0]2, 16.0, . . . , 16.0) to avoid

extreme values in (Λ∗0)−1 occasionally encountered during MCMC, thus promoting

stability and identifiability. We scale (divide) Ψ∗0 by s00, the prior estimate

of σ2, to partially compensate and control for the fact that the covariance for

β∗ in G0 is multiplied by σ2. The base measure for σ2 is largely application-

specific, but we use νσ2 ∈ [5.0, 10] with as0 = ns0 νσ2/2 and bs0 = ns0 νσ2/(2 s00),

where ns0 ∈ [5.0, 10.0] is a sample-size equivalent and s00 = [range(y)/6.0]2/R

is the prior mean of s0. The squared quantity is divided by a prior signal-to-

noise ratio R > 0 that should be set on a case-by-case basis (we typically use

R ∈ [5.0, 25.0]). We usemx
0 = ȳ 1 and Sµx0 = [range(y)/6.0]2 IL, where Ik denotes

a k × k identity matrix. We allow for variety in µx by setting νµx = 10 (L + 2)
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and Ψµx
0 = [range(y)/1.0]2 IL. Similarly, we set each bβx0,r = 0, each Sβx0,r = IL,

each νβxr = 10 (L + 2) and Ψβx
0,r = 2.0 IL−1−r+1, for r = 1, . . . , L− 1. Finally, we

set νδx` = 5.0, with axs0,` = nxs0,` ν
δx
` /2 and bxs0,` = nxs0,` ν

δx
` /(2 sx00,`), for ` = 1, . . . , L,

where nxs0,` = 5.0 and sx00,` = [range(y)/8.0]2.

While the preceding prior settings provide a good starting point in general,

they are not always appropriate. We recommend considering alternate settings,

especially for α, and parameters in the base measures for Σx and σ2, depending on

prior beliefs about the functional relationship being modeled in each analysis. We

further recommend checking for sensitivity of inferences for important quantities

to these and other prior settings.

5.2.3 Computation

We outline the Markov chain Monte Carlo algorithm used to obtain posterior

samples from the proposed model and discuss details for our approach to imple-

mentation challenges. The algorithm consists of a Gibbs sampler containing a

variety of update methods for parameter blocks. If we condition on the first L

observations, the hierarchical model (5.8) yields the full joint posterior distribution

over all model parameters up to proportionality,

p(· · · | {yt}Tt=1) ∝
T∏

t=L+1

[
ωst N(st)(xt | µx,Σx)∑H
j=1 ωj N(j)(xt | µx,Σx)

N(st)

(
yt | µy −

L∑
`=1

βy` (xt,` − µx` ), σ2
)]
×

H∏
h=1

Beta(vh | 1, α)1(h<H) p(ηh | G0)
 Ga(α | aα, bα) ×

N(β∗0) IWish
(
(Λ∗0)−1

)
Ga(s0) N(µx0) IWish((Λµx)−1) ×

L−1∏
r=1

[
N(ββx0,r) IWish((Λβx

0,r)−1)
] L∏
`=1

Ga(sx0,`) , (5.9)
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where

p(ηh | G0) = N
(
(µy(h),β

y
(h)) | β

∗
0, σ

2
(h)(Λ∗0)−1

)
IG
(
σ2

(h) |
νσ2

2 ,
νσ2s0

2

)
×

N
(
µx(h) | µx0 , (Λµx)−1

) L−1∏
r=1

N
(
βxr,(h) | β

βx
0,r, (Λβx

0,r)−1
)
×

L∏
`=1

IG
(
δx`,(h) |

νδ
x

`

2 ,
νδ

x

` s
x
0,`

2

)
(5.10)

The Gibbs sampler proceeds by successively sampling the parameters in the sets

and manner described below.

Latent states

The latent states identifying cluster membership for each observation yt are up-

dated individually, for t = L+1, . . . , T , with their discrete full conditional distribu-

tions Pr(st = h | · · · ) ∝ ωh N(h)(xt | µx,Σx) N(h)
(
yt | µy −

∑L
`=1 β

y
` (xt,` − µx` ), σ2

)
,

for h = 1, . . . , H.

Stick-breaking weights

The weights {ωh}Hh=1 that appear in the likelihood are defined through the latent

{vh}H−1
h=1 which, conditional on the latent states {st} and absent the denominator

in the first product term of (5.9), admit H − 1 independent beta full conditional

distributions (Ishwaran and James, 2001). In our model, the full conditional

distributions are given as

p({vh} | · · · ) ∝
T∏

t=L+1

[
ωst∑H

j=1 ωj N(j)(xt | µx,Σx)

]
H−1∏
h=1

Beta(vh | 1, α)

∝
∏H−1
h=1 Beta(vh | 1 + n∗h, α +∑H

k=h+1 n
∗
k)∏T

t=L+1
∑H
j=1 vj

∏j−1
i=1 (1− vi) N(j)(xt | µx,Σx)

, (5.11)
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where the n∗h = ∑T
t=L+1 1(st=h), for h = 1, . . . , H, count membership in each of the

H clusters. We define vH = 1 for convenience in notation. This full conditional

distribution is unchanged from the distribution reported in DeYoreo and Kottas

(2017), with exception that the Gaussian kernels appearing in the denominator

are now multivariate Gaussian for the vector xt. This small adjustment yields

numerical instability and poor mixing in the one-at-a-time slice sampler employed

by DeYoreo and Kottas (2017). To obtain direct samples from this distribution,

we instead employ the multivariate hyperrectangle slice sampler of Neal (2003)

(summarized in Figure 8 of that article) to update all vh, h = 1, . . . , H − 1,

simultaneously. Details are given in Appendix D.

Cluster-specific parameters

The posterior full conditional density for each ηh is given by

p(ηh | · · · ) ∝∏
t:st=h

[
N(h)(xt | µx,Σx) N(h)

(
yt | µy −

L∑
`=1

βy` (xt,` − µx` ), σ2
)]
×

T∏
t=L+1

 H∑
j=1

ωj N(j)(xt | µx,Σx)
−1

N
(
(µy(h),β

y
(h)) | β

∗
0, σ

2
(h)(Λ∗0)−1

)
×

IG
(
σ2

(h) |
νσ2

2 ,
νσ2s0

2

)
N
(
µx(h) | µx0 , (Λµx)−1

)
× (5.12)

L−1∏
r=1

N
(
βxr,(h) | β

βx
0,r, (Λβx

0,r)−1
) L∏

`=1
IG
(
δx`,(h) |

νδ
x

`

2 ,
νδ

x

` s
x
0,`

2

)
,

for h = 1, . . . , H. To improve mixing of the y-indexed, cluster-specific param-

eters, we partition η into its y and x components ηy ≡ {µy,βy, σ2} and ηx ≡

{µx,βx1 , . . . , βxL−1, δ
x}, and sample p(ηh | · · · ) = p(ηxh | · · · ,−η

y
h) p(η

y
h | ηxh, · · · )

where p(ηxh | · · · ,−η
y
h) =

∫
p(ηh | · · · ) dηyh. This sequential sampling scheme

adds little to algorithmic complexity, as the full conditional density p(ηxh | · · · )
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already contains the mixture-weight denominator ∏t

∑
j ωj N(j)(xt), precluding

simple conjugate updates.

Integrating ηyh from the full conditional for ηh yields

p(ηxh | · · · ,−η
y
h) ∝

∏
t:st=h

N(h)(xt | µx,Σx)
T∏

t=L+1

 H∑
j=1

ωj N(j)(xt | µx,Σx)
−1

×

N
(
µx(h) | µx0 , (Λµx)−1

) L−1∏
r=1

N
(
βxr,(h) | β

βx
0,r, (Λβx

0,r)−1
)
×

L∏
`=1

IG
(
δx`,(h) |

νδ
x

`

2 ,
νδ

x

` s
x
0,`

2

)
det(Λ∗1,h)−1/2× (5.13)

[
νσ2s0 + y′(h) y(h) + (β∗0)′Λ∗0 β∗0 − (β∗1,h)′Λ∗1,h β∗1,h

]−(νσ2+n∗h)/2
,

where Λ∗1,h = D
′
hDh + Λ∗0; β∗1,h = (Λ∗1,h)−1(Λ∗0 β∗0 +D′

h y(h)); y(h) is a n∗h-length

vector containing all yt such that st = h; and Dh is a n∗h × (L+ 1) design matrix

whose rows correspond to y(h) and are composed of (1, µx1,(h)−xt,1, . . . , µxL,(h)−xt,L)

for each t such that st = h. Note that proportionality in (5.13) is preserved

with respect to the {µx`,(h)}, which appear in the regression means for yt. Aside

from the mixture denominator factor, the full conditional for ηxh could be factored

into a series of conjugate updates that could serve as proposal distributions for

a Metropolis step. This yields low acceptance rates in practice, and we instead

utilize a random-walk Metropolis sampler with jointly Gaussian proposals for

all parameters in ηxh (with {δx} parameters proposed on the logarithmic scale),

which are evaluated using (5.13). Proposals that produce computationally singular

covariance matrices are automatically rejected.

The full conditional distribution for ηyh factors as p(σ2
h | · · · ,−β∗h) p(β∗h | σ2

h, · · · )
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and is drawn sequentially as

σ2
h | · · · ,−β∗h ∼ IG

(
νσ2 + n∗h

2 ,
νσ2 s0 + y′(h) y(h) + (β∗0)′Λ∗0 β∗0 − (β∗1,h)′Λ∗1,h β∗1,h

2

)
,

β∗h | σ2
h, · · · ∼ N

(
β∗1,h, σ

2
h (Λ∗1,h)−1

)
.

Parameters in the base measure

Let n∗ = ∑H
h=1 1(n∗

h
>0) count the total number of occupied clusters. The

posterior conditional density for β∗0 is proportional to∏
{h:n∗

h
>0} [N(β∗h | β∗0, σ2

h (Λ∗0)−1)] N(β∗0 | b∗0,S∗0), yielding a Gaussian update with

covariance matrix S∗1 =
(∑
{h:n∗

h
>0} σ

−2
h Λ∗0 + (S∗0)−1

)−1
and mean

S∗1
(
(S∗0)−1 b∗0 + Λ∗0

∑
{h:n∗

h
>0} σ

−2
h β∗h

)
.

The posterior conditional density for (Λ∗0)−1 is proportional to∏
{h:n∗

h
>0} [N(β∗h | β∗0, σ2

h (Λ∗0)−1)] IWish((Λ∗0)−1 | ν∗, ν∗Ψ∗0), yielding an inverse-

Wishart update with degrees of freedom ν∗ + n∗ and scale matrix

ν∗Ψ∗0 +∑
{h:n∗

h
>0} σ

−2
h (β∗h − β∗0) (β∗h − β∗0)′.

The posterior conditional density for s0 is proportional to∏
{h:n∗

h
>0} [IG(νσ2/2, νσ2 s0/2)] Ga(s0 | as0 , bs0), yielding a gamma update with

shape as0 + νσ2 n∗/2 and rate bs0 + νσ2
∑
{h:n∗

h
>0} σ

−2
h /2. Updates for {sx0,`} are

analogous, with δx`,(h) replacing σ2
h, except that all H values are required for each

update.

All remaining parameters in the base measure have standard conditionally

conjugate updates. Because all {ηxh} parameters are used in the local qh(x) weights,

the updates for associated G0 parameters require all H values, rather than the n∗

values associated with occupied clusters.

129



DP concentration parameter

The posterior full conditional density for the DP concentrtion parameter α

is proportional to ∏H−1
h=1 [Beta(vh | 1, α)] Ga(α | aα, bα), yielding a gamma update

with shape aα +H − 1 and rate bα − log(ωH).

Implementation

We typically initialize MCMC chains at default prior settings such as the prior

mean or applicable summary value from the next level of the hierarchy, or with

draws from the prior model (usually with G0 fixed). The primary exception is

the initial allocation to clusters {st}, for which we use output from a clustering

algorithm applied to (yt, x1,t, . . . , xL,t), for all t = L+ 1, . . . , T . For example, we

use hierarchical clustering with complete linkage and assign the observations into

H clusters.

MCMC begins with an adaptation phase used to tune the covariance of the

random-walk proposal distributions for {ηxh}Hh=1. This proceeds in four steps. In

the first step, the initial covariance matrix is globally scaled to adjust acceptance

rates collected over a short run. This is repeated iteratively until all acceptance

rates fall within a pre-specified range (we set the range low, e.g., [0.02, 0.25], to

promote exploration across the multimodal posterior) or a maximum number

of attempts is reached. In the second step, the proposal variances are scaled

locally by parameter groups corresponding to µx, {βxr }, and δx, while preserving

correlations. In the third step, empirical cross-covariance matrices are estimated

from a longer run. In the final step, these empirical covariance matrices are scaled

globally until acceptance rates fall within the pre-specified range, or a maximum

number of attempts is reached. At this point, adaptation ceases and the scaled

empirical covariance matrices are used for subsequent random-walk proposals.
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After a specified burn-in period, samples are collected for inference.

In our experience, the weakly identified ηx and ω parameters present the

primary mixing challenge. This appears to indicate redundancy in the weight

functions, for which many configurations produce similar results. This further

indicates a potential area to improve parameter economy in the weight functions.

Indeed, weight kernels with local independence between elements of x, as proposed

by Shahbaba and Neal (2009), can approximate any shape if we allow for additional

mixture components. Finally, such a parsimonious replacement becomes necessary

if we include many lags, as the number of covariance parameters for each cluster

grows quadratically with L. We focus here on low-order dependence L ≤ 5, and

aid mixing by iterating between adaptation and pre-burn-in runs before beginning

an official burn-in run. We do note that despite the mixing challenges, MCMC

chains for parameters and functionals of interest are typically stable.

5.2.4 Transition density estimation

Posterior samples from the model yield rich inferences regarding the transition

distribution for a time series. The three of most interest to us are the transition

density, the transition mean functional, and inferences for relevant lags. We

incorporate the latter in Section 5.4. The transition mean functional and estimates

of the transition density function are straightforward to compute, as the stick-

breaking representation and blocked Gibbs sampler yield a complete approximation

of the random mixing distribution G at each iteration of MCMC. For any value of

y and x, or over a multidimensional grid of values, one can use posterior samples

of parameters to calculate pointwise samples of the finite-truncated version of fY |X
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in (5.5), given as

f̃Y |X(y | x) =
H∑
h=1

q̃h(x) N(h)(y | µ(x), σ2) , (5.14)

with q̃h(x) = ωh N(h)(x)/∑H
j=1 ωj N(j)(x) and µ(x) = µy − ∑L

`=1 β
y
` (x` − µx` ).

The samples can then be used to create pointwise estimates and intervals for

f̃Y |X . Other functionals such as the transition mean or quantiles are similarly

obtained. One can calculate the transition mean for each posterior sample with

ẼY |X(y | x) = ∑H
h=1 q̃h(x)µ(h)(x) over a grid of values for x, yielding pointwise

estimates and intervals. We obtain samples of the u ∈ (0, 1) quantile of the

transition density by solving for the unique root of

Q̃u(y | x) = u−
H∑
h=1

q̃h(x) Φ
(
[y − µ(h)(x)]/σ(h)

)
, (5.15)

where Φ(·) is the standard normal cumulative distribution function.

Monte Carlo estimates of K-step-ahead forecasts can be obtained by inductively

simulating (s, y)T+k pairs, for k = 1, . . . , K, following the first two levels of

the hierarchical model (5.8) for each posterior sample. Such samples propagate

both forecast and inferential uncertainty, and can be useful for assessing model

performance with validation data.

5.3 Data illustrations

We illustrate the proposed model with three examples. The first two synthetic

data examples highlight some key features and potential uses of the model. The real

data example illustrates the model’s utility for lag-dependent density estimation.

Two default prior settings were utilized in each case, with one promoting a higher
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signal variance through prior signal-to-noise ratio R = 10.0 (instead of the default

value of 5.0), and higher degrees of freedom νσ2 and ns0 (in the interval [7.0, 10.0]

instead of the default 5.0). For each example, multiple MCMC chains were randomly

initialized using the strategy described in Section 5.2.3, with four adaptation phases

followed by 400,000 burn-in samples. The next 600,000 iterations were then thinned

to 1,000 for inference. Unless otherwise noted, samples were found appropriate

for inferences and reported for one of the chains. Occasionally, chains abort due

to numerical instabilities stemming from log(ωH) causing failure of the gamma

update for α, and failure of Cholesky factorization.

5.3.1 Simulated data: single lag

We begin with the simulated time series introduced in Section 2.3.2, and

previously analyzed in Section 4.3.1. The series was generated from

yt = yt−2 exp(2.6− yt−2) + εt , εt
iid∼ N(0, (0.09)2) , (5.16)

featuring first-order nonlinear dynamics as a function of the second lag only. We

fit the proposed model to the original real-valued time series with L = 2, T = 102

(so that 100 observations contribute to the likelihood), and H = 40. The two

different prior signal-to-noise ratio specifications produce similar results. Multiple

chains produce similar traces of the log-likelihood and number of occupied clusters

(not shown), which ranges between three and five. All traces of σ2 for the most

occupied cluster (not shown) converge to approximately 1.5 times the true value

of 0.0081, due in part to the prior estimates s00 ∈ {0.060, 0.121}.

The dynamics are successfully recovered in data-rich regions of the phase space

despite using an over-specified model with two lags. The upper panel of Figure 5.2

shows a posterior mean estimate of the surface, in which most variation occurs
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along the second lag. We can informally assess the influence of the first lag with the

second-order model by checking for sensitivity in inferences for the transition mean

along values of the first lag. For example, the lower-left panel of Figure 5.2 plots

the pointwise posterior mean and 95% credible intervals for the transition mean

over a grid of values for the second lag, in which all values for the first lag have

been fixed at their mean. The lower-right panel replicates this plot with grid values

for the first lag drawn uniformly over the range of the data. This perturbation
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Figure 5.2: Nonparametric model fit to the single-lag dynamical simulation with
noise (T = 102, L = 2). The upper panel shows the pointwise posterior mean
of the transition mean surface. The lower panel shows posterior mean and 95%
intervals for the transition functions over a grid of values for lag 2 with first lag
values fixed at a mean value (left), and drawn uniformly (right). Data points are
included, as well as the true transition map (dashed red).
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has minimal effect, especially where data are observed, suggesting that lag 1 is

negligible in the model fit. We note particularly wide credible intervals in the

data-sparse region, which range from approximately -10 to 17 in the fixed-grid

case and -20 to 22 in the random-grid case. This appears to stem from the weight

functions concentrating locally around the data, leaving other regions to revert to

the prior.

5.3.2 Simulated data: time-delay embedding

Our second simulation example explores second-order dynamics with the exam-

ple of statistical state-space reconstruction via time-delay embedding introduced

in Section 4.3.2. We fit the model to lags of only one variable in a bivariate series

generated from a two-dimensional deterministic system. Although the embedding

dimension is ultimately of inferential interest, here we assume knowledge of a

two-dimensional embedding and demonstrate the proposed model’s ability to fit

the surface.

As a mixture, the proposed model (5.5) is overtly stochastic and intended for

transition density estimation. However, one can encourage more deterministic

behavior through the prior, informing component-specific variances {σ2
h}. Note

that the hierarchical structure proposed in (5.8) uses σ2 in the prior for (µy,βy).

Thus, forcing σ2 to be small requires compensating with larger values along the

diagonal of the prior harmonic mean of the covariance matrix for coefficients, Ψ∗0,

in order to maintain flexibility. This is default behavior recommended in Section

5.2.2, and is partially specified through the prior signal-to-noise ratio R. We also

recommend increasing the prior expectation of α to accommodate local structure in

the transition map. Encouraging small weight variances δx may also be necessary

to capture local behavior and (attempt to) avoid multimodal transition densities.
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We elect to encourage rather than enforce this behavior with the mild prior settings

described at the beginning of this section.

We fit the proposed model to the {log(yt)} series of length T = 102 using L = 2

lags and truncation H = 40. Likelihood traces among six runs jump between three

primary values, in close correspondence with the number of clusters, which range

from five to ten. All chains settle on small σ2 values for the most occupied cluster.

Results appear insensitive to the two prior specifications. Furthermore, transition

mean surface estimates for two different prior specifications are nearly visually

indistinguishable. The estimated surface for the fit with higher prior signal-to-noise

ratio is shown in Figure 5.3. The dynamics are captured well and the fit is superior

to the first-order additive approximation of the GPMTD in Section 4.3.2.

The fit to the same simulation of length T = 502 (not shown) appears successful

at capturing the transition surface (in Figure 4.4), including both sides of the steep

and narrow “trench” near the lowest region. The low variances in the weight kernels

Figure 5.3: Nonparametric model fit (T = 105, L = 2, and R = 10.0) to the
time-delay embedding of log(y) simulated from the nonlinear deterministic system.
Plots show the posterior mean estimate for the transition surface as a function of
the first two lags. Data values are included as points.
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required to capture the complex local behavior can lead to erratic interpolations

and ineffective surface estimation in data-sparse regions.

5.3.3 Old Faithful data

We return to the Old Faithful waiting time series introduced at length in Section

4.3.3. There we noted that most dependence appears in the first lag, although

a trend along the second lag may exist. We expect the nonparametric model to

capture both the nonlinear and non-Gaussian features apparent in Figure 4.7. We

consider two lags, consistent with the conclusions of Azzalini and Bowman (1990).

We fit the proposed model to the final T = 291 observations with L = 2 and

H = 40. Likelihood traces are similar among runs under both prior signal-to-

noise ratios, switching between values corresponding to the number of occupied

mixture components, which ranges from two to five. Estimated transition mean

surfaces, one of which is shown in Figure 5.4, are primarily driven by the first

lag, with minor tilt along the second. As before, the transition mean functional is

less informative for values of the first lag above 70 minutes, when the transition

distribution becomes bimodal. In this region, estimates of transiton quantiles may

be more appropriate than the transition mean. Inferences for quantiles over a

grid of fixed lag values are easily obtained from posterior samples by following the

procedure described in Section 5.2.4. Figure 5.5 shows pointwise posterior mean

estimates of the 0.2 and 0.8 quantile surfaces as functions of the two lags. Credible

intervals for all three surfaces (excluded for simplicity in the plots) are reasonable,

falling within the range of the data.

Figure 5.6 shows estimated transition densities (posterior mean and 95% credible

intervals) for three values of the two lags. These estimates demonstrate the density

autoregressive feature of the model, which in this case successfully captures density
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Figure 5.4: Nonparametric model fit to Old Faithful waiting times in minutes
(T = 291, L = 2, and R = 5.0), with a pointwise posterior mean estimate of the
transition mean surface. Observed transitions are included as points.

Figure 5.5: Pointwise posterior mean estimates for the 0.2 (left) and 0.8 (right)
quantiles of the transition distribution of Old Faithful waiting times in minutes
using the nonparametric model fit (T = 291, L = 2, and R = 5.0). Observed
transitions are included as points.
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Figure 5.6: Posterior mean and 95% interval estimates for the transition density
of Old Faithful waiting times at three pairs (all but bottom-right panel) of fixed
values of the first two lags using the nonparametric model fit (T = 291, L = 2,
and R = 5.0). For comparison, the bottom-right panel replicates one plot from
Figure 4.9 corresponding to a GPMTD model fit.

dependence on lags. Interestingly, the transition density undergoes noticeable

change between yt−2 = 50 and yt−2 = 80 when yt−1 is fixed at 80 minutes, suggesting

evidence for dependence on the second lag, and hence, second (or higher)-order

dependence. Other runs show similar structure, including separation of a lower

left mode for yt−1 = yt−2 = 80. The density estimate for yt−1 = 80 in the GPMTD

model in Figure 4.9 is included in Figure 5.6 for comparison. Density dependence

on the second lag is missed by the GPMTD model, in which mixture weights are

constant across all values of lags.
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One simple way to verify dependence on the second lag is to dichotomize by

whether durations are at least 68.0 minutes, a natural cutoff in the scatter plots,

and count transitions. Fixing the first lag at the high value (≥ 68.0) and the

second lag at the low value, the transition counts are 68 to low and 31 to high. If

the second lag is at the high value (still fixing the first lag at the high value), the

transition counts are 30 to low and 61 to high. Using independent Beta(0.5, 0.5)

priors on these two transition probabilities yields a posterior probability greater

than 0.999 that their absolute difference is at least 0.1, providing strong evidence

for dependence on the second lag. Furthermore, multiple runs of the MMTD

model on the binary time series with with L = 5 and R = 3 (highest mixing order)

primarily favor a second-order chain depending on lags 1 and 2.

5.4 Lag selection

We now discuss extending the model (5.5) to include inferences for relevant lags

(or for variable-selection generally). This step is important in many applications, as

dependence may extend beyond the most recent lags. In some cases, not all recent

lags are important. Methods for state-space reconstruction require a minimal

number of lags to capture the system dimensionality, but using too many can be

inefficient, or render estimation impractical. Reducing system dimensionality to

the minimum necessary for fitting the data further simplifies posterior analysis

and model interpretation. Our approach is to pre-specify a maximal lag horizon L,

and fit an encompassing model that accommodates up to all L lags, but shrinks to

select only those that significantly contribute to the transition density.

O’Hara et al. (2009) provide a review of Bayesian variable selection methods

in the regression setting, including that of Kuo and Mallick (1998), which we

adopt here. Other approaches include adaptive shrinkage through scale mixtures
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of normal priors for regression coefficients (Park and Casella, 2008; Armagan et al.,

2013), g-priors (Zellner, 1986; Liang et al., 2008), and samplers that explore model

spaces of differing dimensions (Green, 1995).

There is also a growing literature for variable selection in BNP regression

modeling. Barcella et al. (2017) and references therein provide a recent review that

discusses approaches for covariate-dependent Dirichlet process mixture, dependent

Dirichlet process, and product partition models. Most approaches involve binary

indicator variables associated with each covariate that either turn a contributing

probability density “on” (as in Reich et al., 2012) or break mixtures for key

parameters (i.e., regression coefficients) involving point masses at 0 (as in Chung

and Dunson, 2009). Another option with DPM models is to include model order

as a mixing parameter (as in Lau and So, 2008).

We propose a model extension for lag selection, along with two variants, in

Section 5.4.1. Section 5.4.2 discusses inference, including the Gibbs sampling update

for lag inclusion, other modifications to MCMC, and sampling for functionals. In

Section 5.4.3, we revisit the data illustrations from Section 5.3 and include two

additional data sets.

5.4.1 Model extension

In the model (5.5), both mixture kernels and weights depend on x, necessitating

coordination across multiple parameters for model-based variable selection. To

this end, we employ binary variables {γ`}, for ` = 1, . . . , L, to indicate dependence

of y on x` if γ`=1. The most straightforward approach to incorporating these

indicators follows Kuo and Mallick (1998), wherein we replace βy` with γ` βy` . The

modification to βy controls lag dependence in the mixture kernels. We consider

three approaches to modifying the weight kernels N(h)(xt | µx,Σx) to control
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dependence in the mixture weights.

The first approach is analogous to the changes in the mixture kernels, wherein

we replace βxr,` with γr γ` βxr,` for each cluster, and replace δx` with δx` + c (1− γ`)

with c � range({yt}). The effect of these changes is most clearly understood

in the context of the sequential construction of weight kernels given in (5.7). If

γ` = 0, then xt,` does not contribute to any conditional mean in the sequence.

Furthermore, the univariate Gaussian density for x` in (5.7) will have mean µx` and

inflated variance δx` + c. These modifications will effectively (but not absolutely)

nullify the contribution of x` to the overall joint kernel as long as c is very large

relative to the marginal variability in the time series, {xt} contains no extreme

outliers, and µx` (which is regulated by µx0 and Λµx
0 ) remains close to the range of

the data for all h = 1, . . . , H. If these conditions are met, the univariate density

in (5.7) associated with xt,` becomes approximately constant with respect to xt,`

and µx` across all h = 1, . . . , H, allowing it to approximately factor and cancel out

of both numerator and denominator of the weight function q̃h(x). This produces a

“soft” lag-selection procedure.

The second proposed modification to the weight kernels is analogous to the first,

but totally removes the effect of deselected lags. As before, we replace βxr,` with

γr γ` β
x
r,`. Instead of inflating the variance of the univariate Gaussian distribution

associated with xt,`, we remove the univariate density altogether, replacing it with

1. This is equivalent to appropriately subsetting {βxr } and δx prior to constructing

the covariance matrix Σx, reducing the dimensionality of N(h)(xt | µx,Σx) to

nγ = ∑L
`=1 γ`. If nγ = 0, then the weight function reduces exclusively to ω,

resulting in a DP mixture model for y only. This approach reduces computational

burdens and offers a clean, complete lag selection, conditional on γ. We refer to

this as the subsetting method for lag selection.
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The third proposed modification provides clean lag selection by selecting active

elements of µx and Σx after construction with the full, unmodified {βxr } and δx.

This is equivalent to marginalizing the weight kernels as
∫

N(h)(xt) dx̄t, where x̄t

contains the xt,` for which γ` = 0. Again if nγ = 0, the model reduces to a DP

mixture for y. While more computationally demanding, this approach helps avoid

large jumps in {βxr } and δx that result from re-purposing these parameters when

γ changes during MCMC. This is similar in spirit to saturation MCMC schemes

(Robert and Casella, 2004, pp. 444-445), as conditional on nγ < L, the weight

function is over-parameterized. However, we are less concerned with interpreting

the parameters in the weight function, and thus dispense with transformations

between sub-models. We refer to this as the marginalization method for lag

selection.

We have elected for a single set of global {γ`} indicators. However, if one

believes that lag (variable) dependence varies across the predictor space RL, it is

straightforward to instead use a separate set {γ(h)
` } for each cluster h, in which

case the indicators become part of ηh. This approach is adopted by Chung and

Dunson (2009), who develop formal hypothesis testing for variable inclusion. For

the remainder of this chapter, we assume γ is global.

Our proposed modifications for lag selection affect the hierarchical model in

(5.8) only through the regression means in the mixture kernel distribution for yt,

which becomes µy −∑L
`=1 γ` β

y
` (xt,` − µx` ), through the construction of N(h)(xt) in

the discrete distribution for st, and through addition of a prior for {γ`}. We again

favor simplicity and assign independent Bernoulli(πγ` ) priors to each γ`. We use as

default πγ` = 0.25 for ` = 1, . . . , L, promoting sparsity and dimension reduction.
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5.4.2 Posterior inference

The proposed setup is minimally disruptive to the MCMC algorithm outlined in

Section 5.2.3. Conditional on γ = (γ1, . . . , γL), the selection effect on the mixture

kernels can be passed through to the Dh matrices, in which all elements in column

` + 1 are replaced with 0s if γ` = 0. Because ηxh is updated with a Metropolis

step, one simply draws candidate values and evaluates (5.13) with each N(h)(xt)

for h = 1, . . . , H, and t = L + 1, . . . , T , appropriately modified (with respect to

γ). The full conditional distribution for ηyh is then sampled using the modified Dh.

All other updates proceed as before, using the appropriately modified N(h)(xt) and

kernel means.

The posterior full conditional probability that γ` = 1 is

Pr(γ` = 1 | · · · ) = πγ` a
γ
`

πγ` a
γ
` + (1− π)γ` b

γ
`

, (5.17)

where

aγ` = ∏T
t=L+1

[
N(st)(xt | γ` = 1) N(st)(yt | γ` = 1)

(∑H
j=1 ωj N(j)(xt | γ` = 1)

)−1
]

and

bγ` = ∏T
t=L+1

[
N(st)(xt | γ` = 0) N(st)(yt | γ` = 0)

(∑H
j=1 ωj N(j)(xt | γ` = 0)

)−1
]
.

The Gaussian densities in these expressions are from (5.9), modified to reflect

either γ` = 1 or 0, and appropriately reflecting all other {γk}k 6=`. The full update

for γ proceeds by sampling from (5.17) to update γ`, for ` = 1, . . . , L.

It is well known that variable selection methods of this type tend to result in

slowly mixing MCMC algorithms (O’Hara et al., 2009). Proposed changes in γ are

often incongruous with current-state values of model parameters, which are shared

across variable configurations. Furthermore, when γ` = 0, draws for the associated

parameters revert to their prior distributions, which may be diffuse relative to their
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posterior distributions when γ` = 1, producing draws that will discourage returning

to γ` = 1. Alternative methods such as Gibbs variable selection (Dellaportas et al.,

2002) adapt the prior to improve mixing, but require tuning. We do not pursue this

here, but note that despite mixing difficulties and attenuated posterior probabilities

for alternate lag configurations, our experience has been that MCMC chains can

provide useful inferences, as demonstrated in Section 5.3. We recommend running

multiple MCMC chains, initializing each with γ` = 1, for all ` = 1, . . . , L. We

begin with an adaptation phase in which γ is not updated, followed by a iterated

adaptation and burn-in phases with the full sampler. We then run a final burn-in,

followed by samples used for inference.

Before exploring inferences for transition mean and density functionals, it is

helpful to assess lag dependence. Posterior inferences for relevant lags from MCMC

samples are trivial, requiring only samples of γ, which can be aggregated across

iterations to obtain a posterior probability of inclusion for each lag. Alternatively,

one can monitor the full conditional probabilities of inclusion in (5.17), which if

averaged across posterior samples, produces a Rao-Blackwellized estimate for the

posterior probability that γ` = 1. Due to the mixing difficulties relating to γ, we

have seen little practical difference between the two estimates, as reliable Monte

Carlo estimates of these posterior probabilities can necessitate unrealistically long

MCMC runs. Shorter runs can nevertheless be informative.

Conditional on lag selection, posterior inference for functionals proceeds as in

Section 5.2.4, with appropriate modifications to include γ. For any value of y and

x, or over a multidimensional grid of values, samples for fY |X are calculated from

f̃Y |X(y | x,γ) =
H∑
h=1

q̃h(x | γ) N(h)(y | µ(x | γ), σ2) , (5.18)

with q̃h(x | γ) = ωh N(h)(x | γ)/∑H
j=1 ωj N(j)(x | γ) and µ(x | γ) = µy −
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∑L
`=1 γ` β

y
` (x` − µx` ). The samples can then be used to create pointwise estimates

and intervals for f̃Y |X . The expression for the transition mean becomes ẼY |X(y |

x,γ) = ∑H
h=1 q̃h(x | γ)µ(h)(x | γ). Likewise, analogous expressions include γ when

using (5.15) to estimate quantiles. Likewise, K-step-ahead forecasts are inductively

sampled with (s, y)T+k pairs for k = 1, . . . , K, following the first two levels of

the hierarchical model (5.8), adjusted for γ, for each posterior sample. While

dependence on other parameters in (5.8) is implicit in the preceding expressions,

we add explicit dependence on γ in order to emphasize the modifications necessary

to include lag dependence.

The full expression for the transition density, marginalizing over all 2L possible

lag configurations, is

f̃Y |X(y | x) =
∑

γ∈{0,1}L

H∑
h=1

q̃h(x | γ) N(h)(y | µ(x | γ), σ2) Pr(γ) , (5.19)

where Pr(γ) can refer to either the prior or marginal posterior of γ. The expression

for the joint prior mass function is ∏L
`=1(πγ` )γ` (1− πγ` )1−γ` . In practice, we bypass

the burdensome outer summation in (5.19) and instead calculate (5.18) across

MCMC samples, which yields the desired posterior inferences marginalized with

respect to the posterior of all parameters, including γ.

Calculation of transition density and mean estimates requires the full x ∈ R,

regardless of inferences for γ. However, one may be interested in inferences

conditional on a certain lag configuration, or marginal inferences that in some way

ignore or average over the effect of a subset of x. Suppose one has fit a model

with L = 3 and desires to examine the transition mean function of the first two

lags only when γ = (1, 1, 0). They may use only posterior samples for which

this lag configuration was active (taking into account the order of full-conditional

sampling), provided a sufficiently long MCMC chain. They may then calculate
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(5.18) using these samples for any x, substituting a dummy or default value in for

x3, and examining the transition density or mean as a function of x1 and x2 only.

If most or all posterior samples coincide with a particular configuration, one may

proceed in the same way, substituting default (or average) values in for the inactive

elements of x and examining inferences as a function of the subset of interest. We

caution that using a subset of samples ignores posterior uncertainty, and that one

should test the resulting inferences for sensitivity to the default values used for

inactive x` before making conclusions. For example, one could change the default

values in x, or replace them with random values drawn uniformly across the range

of {yt}, as demonstrated in Section 5.3.

5.4.3 Data illustrations incorporating lag selection

We now revisit the analyses from Section 5.3 with the full model including

lag selection, and include two additional examples. For each example, multiple

MCMC chains were randomly initialized using the strategy described in Section

5.2.3, with four iterated burn-in and adaptation stages followed by 400,000 burn-in

samples. The next 600,000 iterations were then thinned to 2,000 for inference

(1,000 samples were used in the first illustration and for multidimensional surface

plots). Each of the subsetting (second) and marginalization (third) methods for

lag inferences were employed and compared. MCMC runs for this section fix G0,

as updating the parameters in the base measure sometimes hindered exploration

in γ.

Simulated data: linear autoregression

We begin by demonstrating the model’s ability to identify simple structure,

for which the proposed model is over-specified. Although each of the nonlinear,
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non-Gaussian, and mixture capabilities are not necessary in this case, the model

performs well, correctly identifying the lag structure and recovering the parameters.

A stationary time series was generated from the model

yt = µ+ φ1(yt−1 − µ) + φ2(yt−2 − µ) + εt , εt
iid∼ N(0, σ2) ,

with µ = 2.5, φ1 = 1.2, φ2 = −0.7, and σ2 = 1.0. We then fit the proposed

nonparametric model to a series of length T = 105 with a lag horizon of L = 5 (so

that 100 observations contribute to the likelihood), DP truncation at H = 35, and

default prior settings. Both methods for lag selection behave similarly and recover

the true structure, with all chains decisively selecting the first two lags only.

Figure 5.7 provides trace plots for key quantities from one model fit (using

the marginalization method of lag selection) including the log-likelihood, number

of occupied clusters, selection indicators for the first four lags, the observation

(innovation) variance for the most populated cluster, the first three βy coefficients

for the most populated cluster, the center µy for the most populated cluster, and

the intercept (µy +∑L
`=1 γ` β

y
` µ

y
` ) for the most populated cluster, thinned to 1,000

samples. The trace for the log-likelihood indicates that the chain is no longer

traversing across substantially different cluster configurations. Most observations

belong to one cluster throughout MCMC. Lag indicator parameters γ1 and γ2 are

in the “on” position for all inference samples (and the full conditional probabilities

are likewise numerically 1), while trace plots for the γ`, ` = 3, 4 are in the “off”

position for all inference samples. The lag 5 indicator (not shown) briefly switches

to the “on” position, but remains “off” for the overwhelming majority of iterations.

Trace plots for the kernel parameters faithfully track the true values (note that the

sign is switched for the coefficients in the model formulation). The only exception

in this chain is µy, which in the model is replaced by µx` parameters in the lag
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Figure 5.7: MCMC trace plots for the nonparametric model fit to the simulated
second-order autoregression (marginalization method fo lag selection). In the
lag-inclusion plots (second and third row), p refers to the Monte Carlo estimate
of the posterior probability that γ` = 1, and p_fc refers to the Rao-Blackwellized
estimate.
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summands, and thus over-parameterized for this stationary time series. Note,

however, that the intercept (with true value 1.25) is stable and correctly estimated.

Trace plots for the coefficients of lags 4 and 5 are similar to that of lag 3, reflecting

their prior with mean 0 in the next level of the hierarchy.

Inferences for the transition mean surface and transition densities for specific

lag values (not shown), both as functions of yt−1 and yt−2, are consistent with

the true data-generating mechanism. Specifically, the estimated mean surface is

very close to the true plane. Posterior mean estimates of transition densities are

nearly the correct Gaussian distributions, although the marginalization method for

lag selection produces erratic credible intervals while the subset method produces

tight and accurate intervals. Furthermore, marginal posterior standard deviations

are only slightly higher (5% for one of the coefficients, 11% for the intercept) than

standard errors from a correctly specified linear model fit to the time series. Hence,

conditional on admittedly overconfident lag inferences, the proposed model performs

well in a simple scenario, with surprisingly low cost for additional flexibility.

Simulated data: single lag

Model runs (T = 105, L = 5, H = 40) fit to the nonlinear simulation with

one active lag have mixed results. No run identifies that only lag 2 is active, but

several decisively select both lags 2 and 4, with no visits to other configurations in

the inference samples. Selecting these two lags is reasonable given that the data

reside in two diagonal quadrants of the (yt−2, yt−4) lag-embedding space, as seen

in Figure 5.8. All three runs employing the subset lag selection method with lower

prior signal-to-noise (R, and weaker variance) find the lag (2,4) configuration, as

did one of each of the other prior specification/selection method combinations.

The problem with most other runs was failure to deselect other lags. As expected,
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Figure 5.8: Nonparametric model fit to the single-lag dynamical simulation with
noise (T = 102, L = 5, lags 2 and 4 selected). Both plots show the pointwise
posterior mean estimate of the transition surface.

runs with higher R estimate σ2 (between 0.010 and 0.015) to be lower and closer

to the truth (0.0081). The estimated transition mean surface in lags 2 and 4, for

one of the three runs in the successful group, is reported in Figure 5.8.

Simulated data: time-delay embedding

All model runs (T = 105, L = 5, H = 40) fit to the two-dimensional nonlinear

simulation maintain all lags active throughout MCMC. All chains within each prior

specification appear to stabilize at similar log-likelihood traces, and posterior mean

residuals plotted against posterior mean expected values (using the marginalization

method for lag selection, and fixing lags 3-5 at mean values) for one of the runs do

not indicate any pattern (not shown).

Results for lag selection are identical in the T = 505 case. Furthermore,

different chains settle on distinct log-likelihood traces, indicating a highly separated,

multimodal posterior distribution.
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Old Faithful data

Model runs (T = 294, L = 5, H = 40) fit to the Old Faithful time series also

have mixed results. Only one run using the marginalization method deselects any

lags, retaining lags 1, 4, and 5. The subset method with higher R selects the first

lag, the first two lags, and all lags in its respective runs. In the lower R case, all

lags, all but lag 4, and the first two lags are are selected. In all cases, there is no

change in γ within inference samples of a chain. Considering the noise level in this

series, we would tend to trust the model with lower prior signal-to-noise ratio, but

only one of three runs yields the results we expect. In that one case, transition

mean and density inferences are similar to those given in Section 5.3.3.

Pink salmon data

Model runs (T = 30, L = 5, H = 40) fit to the pink salmon data, analyzed in

Sections 3.5.2 and 4.3.4, demonstrate sensitivity to prior specification. Recall that

the data consist of log-transformed annual escapement of pink salmon in a stream

in Alaska, and we anticipate dependence in even lags. All runs with the weaker

prior signal-to-noise ratio (R = 5.0) setting end with no lags selected, although one

run has lag 2 active for many inference samples. This appears to be a consequence

of inappropriately setting aα = 10.0, too high for such a small sample size. In

contrast, the runs with higher R = 25.0 and aα = 15.0 generally keep most lags

active, probably due to over-fitting.

Another set of runs comparing (R = 5.0, aα = 5.0) to (R = 7.0, aα = 7.0)

produces more reasonable and consistent results. The marginalization method for

lag selection still struggles, deselecting all lags in several runs. All completed runs

of the subset method decisively select lag 2 only, and do exhibit some mixing in

lag configuration. Figure 5.9 reports posterior inferences for the transition mean
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as a function of lag 2 with other lags fixed at mean values, from a run using the

subset method and R = 7.0. Comparison with Figure 4.10 reveals differences

between this and the GPMTD model. The nonparametric model yields a more

linear transition through the bulk of points, which may be restrictive, although

the estimated transition density at log(yt−2) = 8.0 exhibits slight right skew (not

shown). Also, credible intervals more appropriately vary with data abundance.
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Figure 5.9: Nonparametric model fit (left) to the logarithm of annual pink salmon
escapement (T = 30, L = 5, lag 2 selected). Figure 4.10, from the analogous
GPMTD model fit, is replicated on the right for comparison. The plots include
pointwise posterior mean estimates and 95% credible intervals for the transition
mean as a function of lag 2, together with observed two-step transitions. The
dotted reference line has unit slope and passes through the origin.
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5.5 Transition density estimation performance

Transition density estimation is a primary objective of the models proposed in

this chapter and in Chapter 4. The Gaussian process mixture transition distribution

(GPMTD) model is simpler in specification and implementation, but more limited

in density flexibility and in lag dependence. To compare density estimation between

the models, we fit each to simulated time series exhibiting various features and

evaluate Monte Carlo estimates of the Kullback-Leibler (K-L) divergence between

the estimated and true transition densities.

The simulated time series are variants of the single-lag nonlinear system in (5.16).

The first modification replaces the additive Gaussian error with multiplicative

log-normal error. Specifically, transitions were generated from

yt = yt−2 exp(2.6− yt−2 + εt) , εt
iid∼ N(0, (0.09)2) , (5.20)

corresponding to a log-normal transition density with log-mean equal to log(yt−2) +

2.6−yt−2 and log-scale equal to 0.09. This produces right skew and heteroscedastc-

ity in the transition distribution, which continues to depend exclusively on the

second lag. The lag scatter plot in Figure 5.10 depicts 250 transitions. We refer

to this modification as the single-lag, log-normal simulation. The second modifi-

cation adds dependence on the first lag through the log-scale, which is equal to

0.09 yt−1. Thus the transition distribution is still log-normal, with each parameter

depending on a separate lag. The lag scatter plot in Figure 5.11 depicts 500

transitions, demonstrating dependence of the variance on both lags. We refer to

this modification as the two-lag, log-normal simulation. In all simulations, the first

1,000 (post burn-in) observations were reserved for model fitting, and a validation

set of size 1,000 was randomly sampled from the subsequent 9,000 observations.
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Figure 5.10: Lag scatter plot from the modified single-lag nonlinear simulation
with log-normal transition density.

Figure 5.11: Lag scatter plot from the modified two-lag nonlinear simulation
with log-normal transition density.

In similar data scenarios with right skew and positive-valued variables, we have

previously modeled observations on the logarithmic scale. We nevertheless proceed

by fitting these series directly in order to study and compare how the proposed

models handle heteroscedastcity, subtle departures from Gaussianity, and subtle

variation in lag dependence.

The following models were fit using default settings to simulated time series

from the original system (5.16) and both modifications: The GPMTD with L = 5,
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the proposed nonparametric model (which we denote as the BNP-WMAR model,

for Bayesian nonparametric, weighted mixture of autoregressive models) with L = 2

and no lag selection (and G0 fixed), and the BNP-WMAR model with L = 5 and

lag selection (subseting method, and G0 fixed). Two GPMTD model runs included

1,000 thinned samples each, following adaptation and 50,000 burn-in iterations.

BNP-WMAR model runs included three chains of 1,000 thinned posterior samples

each, following repeated rounds of adaptation and burn-in. Variability in reported

loss metrics can primarily be attributed to chains exploring distinct posterior

modes.

Each posterior sample was used to create density ordinates, denoted p̂(yt | yt−1)

and calculated from the density analogue of the first line of (4.2), from (5.14),

and from (5.18). With 2,000 replicate simulation draws {y(i)
j }

2,000
i=1 from the true

data-generating distribution (with density ptrue(yt | yt−1)) for each validation pair

{(yj,xj)}1,000
j=1 , we approximated the Kullback-Leibler divergence using

DKL(ptrue ‖ p̂) ≡
∫
ptrue(y | x) log

(
ptrue(y | x)
p̂(y | x)

)
dy

≈
2,000∑
i=1

log
(
ptrue(y(i) | x)

)
− log

(
p̂(y(i) | x)

)
, (5.21)

averaged over validation observations and posterior simulations. Let D̂KL denote

the result. This loss metric is reported in Table 5.1 for two chains of each model fit

to time-series of lengths T = 75 and T = 305 (T = 72 and 302 for the model with

L = 2; using the same 70 and 300 observations used to fit the models with L = 5).

The two reported runs are those producing the minimum and maximum observed

K-L divergence within each set (in some cases, the only two completed runs).

In the single-lag, normal case, the GPMTD fit to 300 observations sets the

standard with a correctly specified error distribution and nearly all weight on lag 2.
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D̂KL

Simulation Model 70 obs. 300 obs.

Single-lag, GPMTD(5) 0.908 1.160 0.286 0.287
normal BNP-WMAR(2∗) 1.827 1.992 0.272 0.393

BNP-WMAR(5) 0.762 0.791 0.586 0.723

Single-lag, GPMTD(5) 1.121 1.128 0.600 0.601
log-normal BNP-WMAR(2∗) 1.423 1.676 0.345 0.373

BNP-WMAR(5) 0.696 1.110 0.424 0.483

Two-lag, GPMTD(5) 1.401 1.405 1.101 1.103
log-normal BNP-WMAR(2∗) 1.536 1.817 0.936 1.001

BNP-WMAR(5) 1.385 1.826 1.232 1.351

Table 5.1: Comparison of single-step transition density estimation performance,
measured by K-L divergence, for the GPMTD and nonparametric models for three
simulations and two sample sizes. The numbers in parentheses are L, the number
of lags considered in each fit, and ∗ indicates no lag selection. Within each set,
the minimum (left) and maximum (right) losses across runs are reported.

One GPMTD run with 70 observations performs poorly due to selecting lag 4. The

nonparametric model without lag selection performs poorly in the small sample,

presumably a consequence of fitting the first lag. This burden is alleviated in the

large sample. Lag selection helps the nonparametric model in the small sample,

which surprisingly outperforms the GPMTD. However, no lags are deselected in

the large sample, resulting in deteriorated model efficiency.

The GPMTD model is misspecified in the other two scenarios, which is evident

for large samples. Results for the nonparametric model fits to the single-lag, log-

normal simulation are similar to before in that lag selection dramatically helps for

small samples and detracts in large samples from failure to deselect. In the two-lag,

log-normal scenario, the nonparametric model with L = 2 and no lag selection

is the most appropriate of the three specifications. The other models, however,

perform well on the small sample by selecting primarily lag 2 and apparently

leveraging their mixture structures to accommodate the small number of “outliers.”
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Overall, this simulation study elucidates some strengths and weaknesses of

the proposed models. Despite its limitations, the GPMTD model is surprisingly

resourceful, using mixture components for flexibility in addition to effective selection

of a primary active lag. Lag selection in the nonparametric model, as currently

implemented, can be effective for short time series, even outperforming the GPMTD

model. Long time series tend to sharpen and separate posterior modes, hindering

lag selection in the nonparametric model.

5.6 Discussion

We have developed a modeling framework for fully nonparametric, nonlinear

autoregressive models targeted at estimating transition densities. The model

extends existing single-lag counterparts and further offers global inference for lag

dependence. We have demonstrated the model’s utility with simulated, geological,

and ecological data examples with diverse objectives. The model allows users to

relax restrictive characteristics of standard models, or softly specify such through

prior settings, within a single model. Continuous covariates are also readily

accommodated by extending the xt vectors.

Results from the base model are promising, faithfully capturing known or

anticipated features of the data examples. However, inference for relevant lags

remains challenging. Indeed, this problem has proven challenging for linear models,

and extending to globally nonlinear responses amplifies its complexity. One

important consideration is the interplay between noise and signal. A model

attempting to fit noise may erroneously reach into higher dimensions. However,

in the absence of noise, finding a high-dimensional structure is an objective of

time-delay embedding. Another issue is that binary lag-inclusion parameters do

not quantify relative contributions of lags to the transition function, which can be
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measured through decompositions (e.g., as in Sobol, 2001), or to the transition

density itself. Ideally, weak dependence would manifest in the posterior probability

of inclusion. Another challenge arises from the fact that lags, are assumed to be

correlated. Consequently, different lag configurations of the same order can be

(nearly) equally effective in forecasting (e.g., Figure 2.5).

Although the marginalization method for lag selection is conceptually more

appealing and appears to promote better mixing in some cases, the subsetting

method has consistently produced superior results in terms of lag selection. With

both approaches, it has proven difficult to get lags to turn off, and even harder to

get them back on. Our experience has been that lag selection within this model

suffers from acute prior sensitivity, which is not surprising. The three modeling

objectives of estimating flexible transition densities, accommodating nonlinear

dynamics, and selecting active lags offer many degrees of freedom that in most cases

will not be decisively identified with data. Consequently, assumptions must be

made and encoded through the prior settings. We strongly recommend completing

a thorough preliminary and exploratory analysis of data, with visualization if

possible. Even so, we advise that practitioners run several models with a variety

of prior signal-to-noise ratio and flexibility (through α and possibly δx) settings,

each with multiple MCMC chains.

Notwithstanding these theoretical and practical challenges, lag selection is

critical for dimension reduction and is an integral part of this work. One avenue

for improving performance in this model would be to employ a more intricate prior,

or strategies suggested by O’Hara et al. (2009). Local lag selection is an option

that was explored by Chung and Dunson (2009). While this approach again raises

questions about the tradeoff between signal and noise, it can improve modeling

efficiency in cases of truly local dependence. Local selection could also potentially
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improve mixing in MCMC, a topic that is addressed in Chapter 6.

We have found that fixing (or nearly fixing) the parameters in G0 improves

numerical stability and lag selection. Our experience is that updating G0 makes it

difficult to deselect lags. Another source of numerical instability in MCMC can be

avoided by fixing α.

The proposed model is, in principle, sufficiently flexible to approximate intricate

transition densities with nonlinear dependence on multiple lags. Of course, current

computing bottlenecks limit what can practically be accomplished. For example,

complex dynamics call for many mixture components and high truncation level

H. Unfortunately, updates for each component-specific parameter vector are not

easily distributable, due to their appearance in the denominator of the likelihood

through the normalized weights. Simplifications to the model, particularly in the

weight functions, can partially alleviate the computational burden at the cost of

some model flexibility.
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Chapter 6

Conclusion

As stated in the introduction, the primary objectives of this work are to con-

tribute Bayesian statistical methodology and modeling strategies to estimate tran-

sition distributions, particularly when these distributions exhibit non-Gaussianity

and/or nonlinear dependence on multiple lags, with emphasis in detecting and

exploiting low-order dependence. To this end, we have proposed and explored

flexible time-series models under a common theme of mixture modeling methods.

The models, appropriate for time series of moderate length, can be useful for

recovering nonlinear dynamics in systems for which it is difficult to justify use

of any particular parametric model or to observe all relevant variables. Bayesian

inference for these statistical models provides a coherent framework for learning

the dynamics when faced with noisy data and structural uncertainty.

The models for discrete-state time series in Chapters 2 and 3 utilize finite

mixtures, together with novel priors, to provide a flexible means of softly selecting

relevant lags. The mixture transition distribution model supplies a parsimonious

and interpretable foundation for these models. The semiparametric extension

for continuous state spaces in Chapter 4 is useful for detecting dependence on a

single unknown lag, and unlike similar models in the literature, accommodates
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nonlinear dynamics. The fully nonparametric model in Chapter 5 forgoes the

simple mixture transition distribution structure to capture general lag dependence,

both in the transition mean and density. We further accommodate multiple lags

while encouraging low-dimensional dependence.

We have focused throughout this thesis on introducing methodology and

exploring its practical application to time series with various characteristics. While

computation plays a prominent role and care has been taken with respect to

algorithms and implementation, opportunities to improve computational efficiency

remain. For example, the double-mixture structure in Chapter 3 necessitates a

combinatorial search over lag configurations for each latent indicator variable.

However, these indicators rarely change in posterior sampling, as the goal is

to concentrate the majority of allocations to a single configuration. Seemingly

redundant calculations also exist for the nonparametric model in Chapter 5, wherein

kernel weights must be evaluated for each mixture component at each time point.

While these computationally intensive steps do not preclude the analyses in this

thesis, they do present bottlenecks limiting the potential for these models on

longer time series with more complex dynamics. It may be worthwhile to explore

modifications or approximations that reduce these computational burdens.

Another challenge consistently encountered in this work has been designing

MCMC algorithms that adequately explore the complex posterior distributions

inherent in mixture modeling. In Chapters 2 and 3, we employed occasional

“jumpstart” Metropolis steps, and in Chapter 5, adaptation targeting low acceptance

rates encouraged exploration. It was, nevertheless, common for parallel chains to

settle in distinct modes. Beyond the strategies noted in Section 5.6, algorithms

incorporating gradient-assisted or tempered MCMC may help in this regard.

The methods presented in this thesis contribute additional tools for Bayesian
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inference of transition distributions and their associated lag dependence structures.

The methods, designed for different settings, and with varying complexity and

generality, aim to consolidate order selection and estimation into a single model-

based framework that appropriately quantifies uncertainty. We hope that the

various models for probability vectors, discrete-state Markov chains, and continuous-

state time series prove useful and find application beyond the examples given.

Reflections

My interest in pursuing study of Bayesian nonparametrics quickly expanded

during my first year of coursework at UC, Santa Cruz, as appreciation for both the

challenge and utility of time-series methods grew with intrigue for their elegance.

The following year, the opportunity to blend these interests with the fascinating

(and likewise elegant) field of dynamical systems provided an exciting start to my

research. Not surprisingly, the subsequent path of my work follows a nonlinear

correspondence with its presentation. I began with the nonparametric model of

Chapter 5 and variable selection in clustering, motivated by time-delay embedding.

Challenges in creating a framework for lag selection led to another branch and

a shift in focus toward symbolic dynamics and Markov chains. The priors for

sparse probability vectors of Chapter 2 grew out of Bayesian implementation for

the mixture transition distribution (MTD) model, wherein the standard Dirichlet

priors left the models wanting. Accommodation for interactions of multiple lags

prompted exploration of the extension in Chapter 3. The Gaussian process MTD

model provides another (simpler) alternative to the fully nonparametric model

and rounds out my work with MTD formulations.

I, along with Professor Adrian Raftery (the originator of the MTD model),

maintain optimism for continuing potential of the MTD framework. Concurrent
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with the work presented herein, I pursued hidden Markov/switching mixture ap-

proaches, which ultimately proved less compatible with my objectives (as discussed

in Section 1.1.1). I still see potential in this area, and intend to explore computa-

tionally feasible approaches to Markov-switching and other models incorporating

the new priors with MTD (or similar) structures. I also remain enthusiastic about

the relatively small intersection of statistical time series methods with dynam-

ical systems. As my skill and understanding in this area mature, I aspire to

further leverage my training toward meaningful contributions to a field currently

dominated by algorithmic tools.

My development as a researcher might be accurately characterized as a shedding

of naiveté. It is humbling that in the course of research, growing awareness of one’s

own ignorance invariably outpaces accumulation of knowledge. Nevertheless, as I

have come to appreciate the difficulty of the problems pursued, I also appreciate

the growth that accompanies struggle. It is truly exhilarating to become conversant

with scientific literature, to contribute in meetings with advisors and colleagues,

and to discover common core principles in diverse disciplines, despite wide variety

in their presentation and application. Through much practice, I have enjoyed

refining fundamental skills such as prioritizing, organization, planning, and revision.

Each step of the process for a statistician, of gathering and understanding data,

learning methods, developing methods, implementing and testing, communicating,

and iterating as necessary, has unique appeal and contributes to a cycle that is

both enjoyable and rewarding.
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Appendix A

Implementation Details for MTD

Models with Sparse Probability

Vectors

A.1 SBM correction for δk

Here we derive the correction factor (2.7) proposed to account for sparsity

when using the SBM prior as an extension of a Dirichlet prior. We define a

probability θj to be negligible if the corresponding Zj is drawn from the first

Beta(1, η) component, or if Zh was drawn from the third Beta(η, 1) distribution for

some h < j. Let W be the total number of non-negligible probabilities in θ. We

can write W = W1 −W2 where W1 is the minimum j such that ξj = 3 (Zj comes

from the large component) or J , whichever is smaller, and W2 counts the number

of times ξj = 1 (Zj comes from the small component) among j = 1, . . . ,W1 − 1.

W1 follows a truncated geometric distribution with success probability π3 and has

expectation E(W1) = (1− (1− π3)J)/π3. Conditional on W1, W2 is binomial with
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W1 − 1 trials and success probability π1, and thus has conditional expectation

E(W2 | W1) = (W1 − 1)π1. Putting these together, we find

E(W ) = E(W1)− EW1 [E(W2 | W1)] = E(W1)− EW1 [(W1 − 1)π1]

= E(W1)− π1 E(W1) + π1 .

Substituting E(W1) and dividing by J yields (2.7). In the π3 = 0 case, we have

W1 = J with probability 1, so that E(W1) = J .

A.2 Marginal distributions

We report the marginal distributions of observations associated with the Dirich-

let, SDM, and SBM models for probability vectors. These distributions can be

useful for computing Bayes factors in addition to facilitating the MCMC algorithm

described in Appendix A.3.2.

Consider a sequence of independent random variables {st} ∈ {1, . . . , J}N with

common distribution θ = (θ1, . . . , θJ). Given θ, the probability of the sequence

is ∏t θst = θn1
1 · · · θnJJ where the sufficient statistics in n = (n1, . . . , nJ) count the

occurrences of each category. If the ordering t is not important, the probability is

multiplied by the multinomial coefficient N !/(n1! · · ·nJ !).

If θ follows a Dirichlet distribution with shape parameter vector α, then the

marginal (prior predictive) distribution of {st} is given by

p({st}) =
∫
p({st} | θ) p(θ) dθ =

Γ(∑j αj)∏
j Γ(αj)

∫
θα1+n1

1 · · · θαJ+nJ
J dθ

=
Γ(∑j αj)∏
j Γ(αj)

∏
j Γ(αj + nj)

Γ(∑j αj + nj)
= MVB(α+ n)

MVB(α) , (A.1)

where MVB(·) denotes the multivariate beta function.
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Now suppose θ follows the SDM distribution with parameters α and β, and

wj = ∏J
h=1 Γ(αh + β1(h=j)), then the marginal distribution of {st} is given by

p({st}) =
∫
θn1

1 · · · θ
nJ
J

J∑
j=1

wj∑J
h=1 wh

Dir(θ | α+ βej) dθ

=
J∑
j=1

wj∑J
h=1wh

MVB(α+ βej + n)
MVB(α+ βej)

, (A.2)

where ej denotes a vector of 0s with a 1 in the jth entry.

Before considering the SBM model, we first obtain the marginal distribution

under the generalized Dirichlet distribution (Connor and Mosimann, 1969). Work-

ing directly with the stick-breaking weights, we have p(Z) = ∏J−1
j=1 Beta(Zj | aj, bj)

and p({st} | Z) = Zn1
1 (1− Z1)

∑J

j=2 nj × · · · × ZnJ−1
J−1 (1− ZJ−1)nJ . Putting these

together and integrating over Z results in p({st}) = ∏J−1
j=1 gj(aj, bj,n) where

gj(aj, bj,n) = Γ(aj + bj)
Γ(a∗j + b∗j)

Γ(a∗j)
Γ(aj)

Γ(b∗j)
Γ(bj)

,

with a∗j = aj + nj, and b∗j = bj +∑J
h=j+1 nh . Using a similar approach, it can be

shown that under the SBM model with parameters π, η, γ, and δ, we have

p({st}) =
J−1∏
j=1

[π1 gj(1, η,n) + π2 gj(γj, δj,n) + π3 gj(η, 1,n)] . (A.3)
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A.3 MCMC algorithm details

Following the hierarchical MTD model outlined in (2.10), the joint posterior

distribution of all unknown parameters is given up to proportionality:

p({zt},λ,Q | {st}) ∝ p(λ)
∏
k

[p ((Q)·,k)]
∏
t

[p(zt | λ) p(st | zt,Q, {st−`}L`=1)] ,

(A.4)

where (Q)·,k denotes the kth column of Q.

A.3.1 Original algorithm

MCMC sampling for the original hierarchical MTD structure (Insua et al.,

2012) can be achieved entirely with Gibbs updates. This is also the case when

substituting in the SDM and SBM priors. A Gibbs sampler cycles through the

parameters, drawing updates from the conditional distributions given below.

• Pr(zt = ` | · · · ) ∝ Pr(zt = ` | λ) p(st | zt = `, st−`,Q) = λ` (Q)st,st−` ,

independently for each t = L+ 1, . . . , T .

• p(λ | · · · ) ∝ p(λ) ∏t p(zt | λ) = Dir(λ | αλ)
∏
t λzt , a standard Dirichlet-

multinomial update using the counts of zt in each of {1, . . . , L}. In the case of

a SDM prior for λ, this becomes the standard SDM update given in Section

2.2.1. In the case of a SBM prior for λ, this becomes the standard SBM

update given in Section 2.2.2, which draws updated latent stick-breaking

weights and constructs λ.

• p((Q)·,k | · · · ) ∝ p((Q)·,k)
∏
{t:st−zt=k} p(st | zt, (Q)·,k, st−zt)

= Dir((Q)·,k | αQ) ∏{t:st−zt=k}(Q)st,k, which is again a standard

Dirichlet-multinomial update using transition counts. In the case of a SBM
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prior for the kth column of Q, this becomes the standard SBM update given

in Section 2.2.2, which draws updated latent stick-breaking weights and

constructs the column of Q.

This Gibbs sampler can be modified to include an update for πk together with

the update for the kth column of Q since the only component of the posterior in

(A.4) dependent on πk is p ((Q)k,·). A Dirichlet prior for πk results in a Dirichlet

full conditional, using the counts of latent ξ variables drawn using (2.6). Updates

for any other hyperparameters would require an alternate sampling scheme.

A.3.2 Modified algorithm

Sampling {zt} conditional on Q, followed by Q conditional on {zt} results in a

chain that tends to get stuck. To improve mixing, we instead integrate Q out of

the joint posterior (A.4) and conduct Gibbs sampling between {zt} and λ. At each

iteration, it is then straightforward to draw Q from the conditional distribution

given in Appendix A.3.1.

Let N be a K ×K matrix of transition counts for which the (k1, k2) entry is

the cardinality of {t : st = k1 and st−zt = k2}. Integrating Q from (A.4) yields

p({zt},λ | {st}) ∝ p(λ) ∏t[p(zt | λ) p(st | zt, st−zt)], which differs from the original

only in that

T∏
t=L+1

[p(st | zt, st−zt)] =
K∏
k=1

ψ ((N )·,k, φk) , (A.5)

where the ψ(·, φ) takes the form of (A.1) if the columns of Q are independent

Dirichlet, (A.2) if the columns of Q are independent SDM, and (A.3) if the columns

of Q are independent SBM; and φ refers to generic hyperparameters appropriate

for the choice of prior.
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The modified algorithm then proceeds with the standard update for λ given in

Appendix A.3.1. Each zt is then updated individually using its full conditional

involving λ and (A.5) by modifying N to reflect each possible value of zt ∈

{1, . . . , L}. Unnecessary computation can be avoided by noting redundancies in

the denominators of (A.1) and (A.2), and computing (A.5) only over values of k

such that st−` = k for ` = 1, . . . , L.

Allowing inference for {πk} when utilizing SBM priors for Q is no more

complicated than in the original algorithm. Simply draw πk when sampling from

the conditional for the kth column of Q. Note, however, that integrating over Q

leaves the update for λ conditional on {πk}. Nevertheless, the result is still a valid

Gibbs sampler which in practice produces acceptable mixing.
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Appendix B

Implementation Details for

MMTD

B.1 Marginal distributions

We report the marginal distribution of observations associated with the SBM

priors for probability vectors given originally in Appendix A.1, but modified for its

use in Chapter 3. These distributions can be useful for computing Bayes factors in

addition to facilitating the MCMC algorithms described in Appendices B.2 and

B.3.

Consider a length-N sequence of independent random variables

{st} ∈ {1, . . . , J}N with common distribution θ = (θ1, . . . , θJ). Given θ, the

probability of the sequence is ∏t θst = θn1
1 · · · θnKK where the sufficient statistics in

n = (n1, . . . , nK) count the occurrences of each category. Suppose θ follows the

SBM distribution with parameters {π1,j}, {π3,j}, η, {γj}, and {δj}. Let

gj(aj, bj,n) ≡ Γ(aj + bj)
Γ(a∗j + b∗j)

Γ(a∗j)
Γ(aj)

Γ(b∗j)
Γ(bj)

,

171



with a∗j ≡ aj + nj, and b∗j ≡ bj + ∑K
h=j+1 nh . Then the marginal distribution of

{st} (integrating over θ) has probability mass function

p({st}) =
J−1∏
j=1

[π1,j gj(1, η,n) + π2,j gj(γj, δj,n) + π3,j gj(η, 1,n)] . (B.1)

B.2 MCMC algorithm details: MTDg

Following the hierarchical MTDg model outlined in (3.6), the joint posterior

distribution of all unknown parameters is given up to proportionality:

p
(
{zt}Tt=L+1,λ, {Q(`)}L`=0 | {st}Tt=1

)
∝ p(λ) p(Q(0))

L∏
`=1

K∏
k=1

[
p
(
(Q(`))·,k

)]
×

T∏
t=L+1

[
p(zt | λ) p

(
st | zt, {Q(`)}L`=0, {st−`}L`=1

)]
, (B.2)

where (Q(`))·,k denotes column k from Q(`).

B.2.1 Full Gibbs sampler

MCMC sampling for the full augmented model (3.6) can be achieved entirely

with Gibbs updates. A Gibbs sampler cycles through the parameters, drawing

updates from the conditional distributions given below.

• Pr(zt = ` | · · · ) ∝ Pr(zt = ` | λ) p
(
st | zt, {Q(j)}Lj=0, {st−j}Lj=1

)
= λ0 (Q(0))st 1(`=0) + λ` (Q(`))st,st−` 1(`∈{1,...,L}), independently for each t =

L+ 1, . . . , T .

• p(λ | · · · ) ∝ p(λ) ∏t p(zt | λ) = SBM(λ | π1,π3, η,γ, δ) ∏t λzt , a conjugate

SBM-multinomial update using the counts of zt in each of {0, 1, . . . , L}. A

draw from the full conditional distribution begins by drawing the latent
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stick-breaking weights X` for ` = 0, . . . , L− 1, each from a mixture of three

beta distributions. The mixture weights for X` are the three summands in

the corresponding product terms of (B.1) (with indexes shifted to begin at

` = 0), where n` is the cardinality of {t : zt = `}. The three beta distributions

have the corresponding a∗` and b∗` shape parameters taken from the SBM

prior parameters and counts. The draw for λ is then constructed from the

sampled {X`} using (2.4).

• p(Q(0) | · · · ) ∝ p(Q(0))∏t:zt=0 p
(
st | zt, {Q(`)}L`=0, {st−`}L`=1

)
= Dir(Q(0) | α(0))∏t:zt=0(Q(0))st , a standard conjugate Dirichlet-multinomial

update using the counts of st in each of {1, . . . , K} collected in N (0). The

full conditional is then Dir(α(0) +N (0)).

• p
(
(Q(`))·,k | · · ·

)
∝ p

(
(Q(`))·,k

)∏
{t:zt=` and st−`=k}×

p
(
st | zt, {Q(`)}L`=0, {st−`}L`=1

)
= Dir

(
(Q(`))·,k | α(`)

k

)∏
{t:zt=` and st−`=k}(Q(`))st,k, a standard conjugate

Dirichlet-multinomial update using the counts of st in each of {1, . . . , K}

collected in the kth column of N (`). The full conditional is then

Dir
(
α

(`)
k + (N (`))·,k

)
, independent for each ` = 1, . . . , L, and k = 1, . . . , K.

B.2.2 Collapsed Gibbs sampler

Iterated full-conditional sampling of both {zt} and {Q(r)} slows exploration of

the joint posterior. To improve mixing, we instead integrate all Q parameters out

of (B.2) and conduct Gibbs sampling between {zt} and λ. At each iteration, it is

then straightforward to draw each Q(r) from the conditional distributions given in

Appendix B.2.1.

Again we will summarize transition count information in {(st, zt)} by aggre-

gating into sufficient statistics N (0) and {N (`)}L`=1, a set of K × K matrices
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described in Section 3.3.1 and Appendix B.2.1. Integrating Q(0) from (B.2) yields

p({zt},λ | {st}) ∝ p(λ) ∏t

[
p(zt | λ) p

(
st | zt, {st−`}L`=1

)]
which differs from the

original only in that

T∏
t=L+1

[
p
(
st | zt, {st−`}L`=1

)]
= ψ(N (0), φ(0))

L∏
`=1

K∏
k=1

ψ
(
(N (`))·,k, φ(`)

k

)
, (B.3)

where the ψ(·, φ) takes the form of (A.1) if the columns of Q have independent

Dirichlet priors, and (B.1) if the columns of Q have independent SBM priors; and

φ refers to generic hyperparameters appropriate for the choice of prior.

The modified algorithm then proceeds with the standard update for λ given in

Appendix B.2.1. Each zt is then updated individually with

Pr(zt = ` | λ, {st}, {zt′}t′ 6=t) ∝ λ` ψ(N (0), φ(0))
L∏
j=1

ψ
(
(N (j))·,st−` , φ(j)

st−`

)
, (B.4)

where the {N (j)} are modified to reflect the possible values of zt ∈ {0, 1, . . . , L}.

B.3 MCMC algorithm details: MMTD

Following the hierarchical MMTD model outlined in (3.7), the joint posterior

distribution of all unknown parameters is given up to proportionality:

p
(
{ζt}Tt=L+1,Λ, {λ(r)}Rr=1, {Q(r)}Rr=0, | {st}Tt=1

)
∝

p(Λ) p(Q(0))
R∏
r=1

p(λ(r))
Kr∏
j=1

p
(
(Q(r))·,j

) × (B.5)

T∏
t=L+1

[
p
(
ζt | Λ, {λ(r)}Rr=1

)
p
(
st | ζt, {Q(r)}Rr=0, {st−`}L`=1

)]
,

where (Q(r))·,j denotes column j from a matricized version of Q(r).
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B.3.1 Full Gibbs sampler

MCMC sampling for the full hierarchical model (3.7) can be achieved entirely

with Gibbs updates. A Gibbs sampler cycles through the parameters, drawing

updates from the conditional distributions given below. In what follows, let Z(ζ)

and z(ζ) map ζ to its corresponding Z and z respectively. Also, let %r(s) be a

unique map from each possible length-r vector of lagged states s ∈ {1, . . . , K}r to

the corresponding column index of the flattened (matricized) Q(r). Further, let

st−1(z) be a function accepting a lag configuration z and returning the values of

the states at those selected lags from the vector (st−1, st−2, . . . , st−L). For example,

if zt = (2, 5), then st−1(zt) will return the vector (st−2, st−5).

• Pr(ζt = i | · · · ) ∝ p
(
ζt | Λ, {λ(r)}Rr=1

)
p
(
st | ζt, {Q(r)}Rr=0, {st−`}L`=1

)
∝ ΛZ(i) λ

(Z(i))
(z(i)) (Q(Z(i)))st,%Z(i)(st−1(z(i))) independently for each

t = L+ 1, . . . , T , with i ∈
{

0, 1, . . . ,
[(
L
1

)
+
(
L
2

)
+ . . .+

(
L
R

)]}
. Note that we

define λ(0) ≡ 1.

• p(Λ | · · · ) ∝ p(Λ) ∏t p(ζt | Λ, {λ(r)}) ∝ SBM(Λ | π1,π3, η,γ, δ) ∏t ΛZ(ζt),

a conjugate SBM-multinomial update using the counts of Z(ζt) in each of

{0, 1, . . . , R}.

• p(λ(r) | · · · ) ∝ p(λ(r)) ∏t p(ζt | Λ, {λ(r)}) ∝ SDM(λ(r) | α(r)
λ , β

(r)
λ ) ×∏

t:Z(ζt)=r λ
(r)
(z(ζt)) independently for r = 1, . . . , R. Here, λ(r) is indexed by the(

L
r

)
possible sets of lags. This is a conjugate SDM-multinomial update using

the counts of the
(
L
r

)
unique lag configurations zt within order r. The full

conditional is a SDM distribution with β(r)
λ and with the multinomial counts

added to α(r)
λ , analogous to Dirichlet full conditionals.

• p(Q(0) | · · · ) ∝ p(Q(0))∏t:Z(ζt)=0 p
(
st | ζt, {Q(r)}Lr=0, {st−`}L`=1

)
= Dir(Q(0) | αQ(0)) ∏t:Z(ζt)=0(Q(0))st , a standard conjugate
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Dirichlet-multinomial update using the counts of st in each of {1, . . . , K}

collected in N (0). The full conditional is then Dir(αQ(0) +N (0)).

• p
(
(Q(r))·,j | · · ·

)
∝ p

(
(Q(r))·,j

) ∏
{t:Z(ζt)=r and %r(st−1(z(ζt)))=j} ×

p
(
st | ζt, {Q(r)}Rr=0, {st−`}L`=1

)
∝ Dir

(
(Q(r))·,j | αQ(r)

) ∏
{t:Z(ζt)=r and %r(st−1(z(ζt)))=j}(Q

(r))st,j,

independently for r = 1, . . . , R, and j = 1, . . . , Kr. Again, this is a standard

conjugate Dirichlet-multinomial update using the transition counts collected

in (N (r))·,j, where N (r) is a matrix corresponding to the matricized version

of Q(r). The full conditional distribution is then Dir(αQ(r) + (N (r))·,j).

B.3.2 Collapsed Gibbs sampler

Iterated full-conditional sampling of both {ζt} and {Q(r)} slows exploration of

the joint posterior. To improve mixing, we instead integrate each Q(r) out of the

joint posterior (B.5) and conduct Gibbs sampling between {ζt}, Λ and each λ(r).

At each iteration, it is then straightforward to draw each Q(r) from the conditional

distributions given in Appendix B.3.1.

For each r = 1, . . . , R, again let N (r) be a matrix containing transition counts

for which the (k, j) entry is the cardinality of {t : Z(ζt) = r and %r(st−1(z(ζt))) =

j and st = k}. Also let the kth entry of vector N (0) be the cardinality of

{t : Z(ζt) = 0 and st = k}. Integrating all Q(r) from the full joint posterior

proportional to (B.5) yields

p
(
{ζt},Λ, {λ(r)} | {st}

)
∝ SBM(Λ)

∏
r

[
SDM(λ(r))

] ∏
t

[
ΛZ(ζt) λ

(Z(ζt))
(z(ζt))

]
×

p
(
N (0) | {ζt}, {st}

) R∏
r=1

Kr∏
j=1

p
(
(N (r))·,j | {ζt}, {st}

) , (B.6)

176



where p
(
(N (r))·,j | {ζt}, {st}

)
takes the form of (A.1) if the columns of matricized

Q(r) follow independent Dirichlet priors, and (B.1) if they follow independent SBM

priors. The same marginal distribution forms apply for N (0).

The modified algorithm then proceeds with the standard updates for Λ and

each λ(r) given in Appendix B.3.1. Each ζt is then updated individually using its

discrete collapsed conditional

p
(
ζt | · · · ,−{Q(r)}

)
∝ ΛZ(ζt) λ

(Z(ζt))
(z(ζt)) p

(
N (0) | {ζt}, {st}

)
×

R∏
r=1

Kr∏
j=1

p
(
(N (r))·,j | {ζt}, {st}

) , (B.7)

where we modify {N (r)} to reflect each possible value of

ζt ∈
{

0, 1, . . . ,
[(
L
1

)
+
(
L
2

)
+ . . .+

(
L
R

)]}
.
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Appendix C

Implementation Details for

GPMTD

C.1 Setup for mixture component updates

Conditional on the configuration variables {zt} and covariance hyperparameters

νκ, κ0, νψ, ψ0, we have L independent block-conditional updates for parameters in

the (non-intercept) mixture components. To simplify notation, assume without

loss of generality that we are working with component `, so that we can drop

the ` index on each parameter. Let n` count the cardinality of {t : zt = `} and

partition f into f i and f o, indexed by zt = ` and zt 6= `, respectively. The joint

full conditional density for this component is

p(µ, σ2,f , κ, ψ | {zt}, νκ, κ0, νψ, ψ0, {yt}) ∝
∏
t:zt=`

[
N(yt | µ+ ft,`, σ

2)
]
×

N(µ | m0, v0) IG(σ2 | νσ/2, νσs0/2) N
(
f | 0, κσ2R(ψ)

)
× (C.1)

IG(κ | νκ/2, νκκ0/2) IG(ψ | νψ/2, νψψ0/2) ,
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where the normal density for f has dimension T − L and correlation matrix R(ψ)

which can also be partitioned into active and inactive partsRii,Roo,Rio, andRoi =

(Rio)′. We begin by marginalizing f out of (C.1), resulting in a n`-variate Gaussian

density for the vector yi containing {yt : zt = `} given by N (yi | 1µ, σ2W ), where

W = (κR(ψ)ii + I) and I is the conforming identity matrix. Keep in mind that

W is dependent on ψ. Now let µ̂ = (1′W−11)−11′W−1yi = ∑n`
j=1(W−1yi)j/w

where w = 1′W−11, and s = (yi − 1µ̂)′W−1(yi − 1µ̂). The joint density for yi

can then be factored as

p(yi | · · · ,−f) ∝ det(W )−1/2 (σ2)−n`/2 exp
[
−w(µ̂− µ)2 + s

2σ2

]
. (C.2)

Now using the prior for µ, we can further marginalize to obtain

p(yi | · · · ,−f ,−µ) ∝
∫
p(yi | · · · ,−f) N(µ | m0, v0) dµ

∝ det(W )−1/2 (σ2)−n`/2 exp
[
− s

2σ2

] (
σ2

w

)1/2

c , (C.3)

where

c0 =
∫

N(µ̂ | µ, σ2/w) N(µ | m0, v0) dµ

∝ (σ2/w + v0)−1/2 exp
[
− (µ̂−m0)2

2(σ2/w + v0)

] ∫
N(µ | m1, v1) dµ

= (σ2/w + v0)−1/2 exp
[
− (µ̂−m0)2

2(σ2/w + v0)

]
= c , (C.4)

with v1 =
(
v−1

0 + w/σ2
)−1

and m1 = v1(m0/v0 + wµ̂/σ2).

A full Gibbs scan for (µ, σ2,f , κ, ψ)` then proceeds as follows:

1. Perform a random-walk Metropolis update of (κ, ψ) with their joint collapsed

conditional density proportional to p(yi | · · · ,−f ,−µ) p(κ | νκ, κ0) p(ψ |
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νψ, ψ0) where the first density is given in (C.3) and the remaining two

are the inverse-gamma densities in (C.1). Gaussian proposals are drawn

on the logarithmic scale, requiring a Jacobian adjustment by multiplying

the collapsed conditional density by κψ when computing the acceptance

probability.

2. Draw µ from its collapsed conditional distribution N(m1, v1).

3. Draw σ2 from its collapsed conditional with density proportional to

p(yi | · · · ,−f) p(σ2 | νσ, s0), where the first density is given in (C.2) and the

second is the inverse-gamma density in (C.1). The result is another inverse-

gamma density with shape (νσ + n`)/2 and scale (νσs0 + w(µ̂− µ)2 + s)/2.

4. Introduce f i with f o still marginalized and draw from p(f i | · · · ,−f o) ∝

N(yi − 1µ | f i, σ2I) N(f i | 0, κσ2Rii), a standard conditionally conjugate

multivariate Gaussian update with covariance matrix

Σ = σ2 (κ−1(Rii)−1 + I)−1 and mean vector Σ (yi − 1µ) /σ2. Following

Rasmussen and Williams (2006, p. 46), the positive definite matrix Σ is

computed in a numerically stable way with the matrix inversion lemma as

σ2K(I − K̃) where K = κRii and K̃ is the solution to (K + I)K̃ = K.

5. Finally, draw f o from its full conditional distribution. Let C = κσ2R. Then

we have p(f o | · · · ) = N [f o | Coi(Cii)−1f i,Coo −Coi(Cii)−1Cio].

C.2 Gibbs sampler for GPMTD

The full Gibbs sampler for the GPMTD model proceeds as follows:

1. Draw zt from the discrete full conditional distribution given in (4.4) indepen-

dently for t = L+ 1, . . . , T .
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2. Calculate the current mixture allocation counts n = (n0, n1, . . . , nL) where

n` = ∑
t 1(zt=`) and draw λ from the SBM-multinomial full conditional

distribution outlined in Section 2.2.2. A Dirichlet or sparse Dirichlet mixture

prior for λ could also be trivially accommodated in this model, with this full

conditional update corresponding to the conjugate model for multinomial

data.

3. Draw µ0 from the full conditional distribution N
(
m

(0)
1 , v

(0)
1

)
where v(0)

1 =(
(v(0)

0 )−1 + n0/σ
2
0

)−1
and m(0)

1 = v
(0)
1

(
m

(0)
0 /v

(0)
0 +∑

t:zt=0 yt/σ
2
0

)
.

4. Draw σ2
0 from the full conditional inverse-gamma distribution with shape(

ν(0)
σ + n0

)
/2 and scale

(
ν(0)
σ s

(0)
0 +∑

t:zt=0(yt − µ0)2
)
/2.

5. Perform the scan for (µ, σ2,f , κ, ψ)` described in Appendix C.1, indepen-

dently for ` = 1, . . . , L.

6. Draw νκ and νψ from their discrete full conditional distributions

p(νκ | . . .) ∝
∏
{`>0:n`>0} [IG(κ` | νκ/2, νκ κ0/2)] 1(νκ∈Vκ) and

p(νψ | . . .) ∝
∏
{`>0:n`>0} [IG(ψ` | νψ/2, νψ ψ0/2)] 1(νψ∈Vψ).

7. Draw κ0 and ψ0 from their full conditional gamma distributions. In the former

case, if we let n∗ = ∑L
`=1 1(n`>0) and κ̃ = ∑

{`>0:n`>0} κ
−1
` , we have p(κ0 |

· · · ) ∝ κ
aκ+νκn∗/2−1
0 exp [−(bκ + νκκ̃/2)κ0] ∝ Ga(κ0 | aκ+νκn∗/2, bκ+νκκ̃/2).

The full conditional distribution for ψ0 is analogous.
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Appendix D

Slice Sampler for Stick-Breaking

Weights in the Nonparametric

Model

We present the hyperrectangle slice sampler from Neal (2003), applied to the

full conditional distribution for the stick-breaking weights in Section 5.2.3. Let

v = (v1, . . . , vH−1) denote the vector of latent beta variables used to construct

{ωh}Hh=1, and let g(v) denote the full conditional density (5.11) evaluated at v.

The algorithm employs user-specified tuning parameters {τh}H−1
h=1 , all of which we

conservatively fix equal to 1.0 to ensure that the entire support of v (i.e., the

hypercube (0, 1)H−1) can be reached in any iteration of MCMC.

Let v0 denote the value of v from the previous iteration of MCMC, and v1

denote the output of this algorithm, which proceeds as follows (Figure 8 of Neal,

2003).

1. Define the slice.

Draw z ∼ Unif(0, g(v0)).

182



2. Initialize the hyperrectangle.

H = (L1, R1)× · · · × (LH−1, RH−1), where

Lh ← v0
h − τh Uh,

Rh ← Lh + τh,

with draws Uh ind.∼ Unif(0, 1), for h = 1, . . . , H − 1.

3. Propose candidates v∗ and iteratively shrink H when points are rejected.

Repeat the following until a candidate satisfying z < g(v∗) is found:

(i) Draw Ũh
ind.∼ Unif(0, 1), for h = 1, . . . , H − 1.

(ii) Set candidate v∗h ← Lh + Ũh (Rh − Lh), for h = 1, . . . , H − 1.

(iii) If z < g(v∗), set v1 ← v∗ and exit the algorithm.

(iv) If v∗h < v0
h, then set Lh ← v∗h, otherwise set Rh ← v∗h, for

h = 1, . . . , H − 1.
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Sankhyā: The Indian Journal of Statistics, Series B, 60, 65–81.

189



Lau, J. W. and So, M. K. (2008), “Bayesian mixture of autoregressive models,”
Computational Statistics & Data Analysis, 53, 38–60.

Le, N. D., Martin, R. D., and Raftery, A. E. (1996), “Modeling Flat Stretches,
Bursts Outliers in Time Series Using Mixture Transition Distribution Models,”
Journal of the American Statistical Association, 91, 1504–1515.

Lèbre, S. and Bourguignon, P.-Y. (2008), “An EM algorithm for estimation in the
mixture transition distribution model,” Journal of Statistical Computation and
Simulation, 78, 713–729.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008), “Mixtures
of g Priors for Bayesian Variable Selection,” Journal of the American Statistical
Association, 103, 410–423.

Liang, K.-Y. and Zeger, S. L. (1986), “Longitudinal data analysis using generalized
linear models,” Biometrika, 73, 13–22.

Lin, T. I., Lee, J. C., and Yen, S. Y. (2007), “Finite Mixture Modelling Using the
Skew Normal Distribution,” Statistica Sinica, 17, 909–927.

Lochner, R. H. (1975), “A Generalized Dirichlet Distribution in Bayesian Life
Testing,” Journal of the Royal Statistical Society: Series B (Methodological), 37,
103–113.

MacDonald, I. L. and Zucchini, W. (1997), Hidden Markov and Other Models for
Discrete-valued Time Series, CRC Press.

MacEachern, S. N. (2000), “Dependent Dirichlet Processes,” Unpublished
manuscript, Department of Statistics, The Ohio State University.

Maechler, M. (2015), VLMC: Variable Length Markov Chains (’VLMC’) Models,
URL https://CRAN.R-project.org/package=VLMC. R package version 1.4-1.

Martin, R. D. and Raftery, A. E. (1987), “Comment: Robustness, Computation,
and Non-Euclidean Models,” Journal of the American Statistical Association,
82, 1044–1050.

Martınez-Ovando, J. C. and Walker, S. G. (2011), “Time-series Modelling, Sta-
tionarity and Bayesian Nonparametric Methods,” Technical report, Banco de
México.

Mena, R. H. and Walker, S. G. (2005), “Stationary Autoregressive Models via
a Bayesian Nonparametric Approach,” Journal of Time Series Analysis, 26,
789–805.

190



Müller, P., Erkanli, A., and West, M. (1996), “Bayesian curve fitting using multi-
variate normal mixtures,” Biometrika, 83, 67–79.

Müller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015), Bayesian Nonpara-
metric Data Analysis, Springer.

Müller, P., West, M., and MacEachern, S. (1997), “Bayesian Models for Non-linear
Autoregressions,” Journal of Time Series Analysis, 18, 593–614.

Neal, R. M. (1996), Bayesian Learning for Neural Networks, Springer-Verlag New
York.

— (2003), “Slice sampling,” The Annals of Statistics, 31, 705–767.

Nicholl, M. J., Wheatcraft, S. W., Tyler, S. W., and Berkowitz, B. (1994), “Is Old
Faithful a strange attractor?” Journal of Geophysical Research: Solid Earth, 99,
4495–4503.

O’Hara, R. B., Sillanpää, M. J., et al. (2009), “A review of Bayesian variable
selection methods: what, how and which,” Bayesian analysis, 4, 85–117.

Park, J.-H. and Dunson, D. B. (2010), “Bayesian Generalized Product Partition
Model,” Statistica Sinica, 20, 1203–1226.

Park, T. and Casella, G. (2008), “The Bayesian Lasso,” Journal of the American
Statistical Association, 103, 681–686.

Peng, F., Jacobs, R. A., and Tanner, M. A. (1996), “Bayesian Inference in Mixtures-
of-Experts and Hierarchical Mixtures-of-Experts Models with an Application
to Speech Recognition,” Journal of the American Statistical Association, 91,
953–960.

Pitt, M. K., Chatfield, C., and Walker, S. G. (2002), “Constructing First Order
Stationary Autoregressive Models via Latent Processes,” Scandinavian Journal
of Statistics, 29, 657–663.

Plotly Technologies Inc. (2015), “Collaborative data science,” URL https://plot.
ly.

Prado, R. and West, M. (2010), Time Series: Modeling, Computation, and Infer-
ence, CRC Press.

Quinn, T. J. and Deriso, R. B. (1999), Quantitative Fish Dynamics, Oxford
University Press.

R Core Team (2016), R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, URL https://www.
R-project.org/.

191



Raftery, A. and Tavaré, S. (1994), “Estimation and Modelling Repeated Patterns
in High Order Markov Chains with the Mixture Transition Distribution Model,”
Journal of the Royal Statistical Society: Series C (Applied Statistics), 43, 179–
199.

Raftery, A. E. (1985), “A Model for High-Order Markov Chains,” Journal of the
Royal Statistical Society: Series B (Methodological), 47, 528–539.

Rasmussen, C. E. and Williams, C. K. (2006), Gaussian Processes for Machine
Learning, MIT Press Cambridge, MA.

Raye, J. (2005), “Using nonlinear dynamics to predict Old Faithful,” Mathematical
and Computer Modelling, 41, 679–687.

Reich, B. J., Kalendra, E., Storlie, C. B., Bondell, H. D., and Fuentes, M. (2012),
“Variable selection for high dimensional Bayesian density estimation: application
to human exposure simulation,” Journal of the Royal Statistical Society: Series
C (Applied Statistics), 61, 47–66.

Ricker, W. E. (1954), “Stock and Recruitment,” Journal of the Fisheries Research
Board of Canada, 11, 559–623.

Robert, C. P. and Casella, G. (2004), Monte Carlo Statistical Methods, Springer-
Verlag New York, 2nd edition.

Rodríguez, A. and Dunson, D. B. (2011), “Nonparametric Bayesian models through
probit stick-breaking processes,” Bayesian Analysis, 6, 145–177.

Rodríguez, A. and Ter Horst, E. (2008), “Bayesian dynamic density estimation,”
Bayesian Analysis, 3, 339–365.

Ron, D., Singer, Y., and Tishby, N. (1994), “Learning Probabilistic Automata with
Variable Memory Length,” in Proceedings of the Seventh Annual Conference on
Computational Learning Theory, Association for Computing Machinery.

Sarkar, A. and Dunson, D. B. (2016), “Bayesian Nonparametric Modeling of Higher
Order Markov Chains,” Journal of the American Statistical Association, 111,
1791–1803.

Satterthwaite, W. H., Carlson, S. M., and Criss, A. (2017), “Ocean Size and
Corresponding Life History Diversity among the Four Run Timings of California
Central Valley Chinook Salmon,” Transactions of the American Fisheries Society,
146, 594–610.

Sethuraman, J. (1994), “A Constructive Definition of Dirichlet Priors,” Statistica
Sinica, 4, 639–650.

192



Shahbaba, B. and Neal, R. (2009), “Nonlinear Models Using Dirichlet Process
Mixtures,” Journal of Machine Learning Research, 10, 1829–1850.

Shi, J. Q., Murray-Smith, R., and Titterington, D. M. (2003), “Bayesian regression
and classification using mixtures of Gaussian processes,” International Journal
of Adaptive Control and Signal Processing, 17, 149–161.

Shumway, R. H. and Stoffer, D. S. (2017), Time Series Analysis and Its Applications:
With R Examples, Springer International Publishing, 4th edition.

Smith, M. and Kohn, R. (2002), “Parsimonious Covariance Matrix Estimation
for Longitudinal Data,” Journal of the American Statistical Association, 97,
1141–1153.

Sobol, I. M. (2001), “Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates,” Mathematics and Computers in Simulation,
55, 271–280.

Sugihara, G., Grenfell, B., May, R. M., Chesson, P., Platt, H., and Williamson, M.
(1990), “Distinguishing error from chaos in ecological time series [and discussion],”
Philosophical Transactions of the Royal Society of London B: Biological Sciences,
330, 235–251.

Taddy, M. A. and Kottas, A. (2009), “Markov switching Dirichlet process mixture
regression,” Bayesian Analysis, 4, 793–816.

Takens, F. (1981), “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980 , volume 898 of Lecture Notes in Mathe-
matics, Springer Berlin Heidelberg.

Tang, Y. and Ghosal, S. (2007a), “A consistent nonparametric Bayesian procedure
for estimating autoregressive conditional densities,” Computational Statistics &
Data Analysis, 51, 4424–4437.

— (2007b), “Posterior consistency of Dirichlet mixtures for estimating a transition
density,” Journal of Statistical Planning and Inference, 137, 1711–1726.

Tank, A., Fox, E. B., and Shojaie, A. (2017), “Granger Causality Networks for
Categorical Time Series,” arXiv preprint arXiv:1706.02781.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), 58, 267–288.

Tong, H. (1990), Non-linear Time Series: A Dynamical System Approach, Oxford:
Clarendon Press.

193



Tucker, L. R. (1966), “Some mathematical notes on three-mode factor analysis,”
Psychometrika, 31, 279–311.

Wade, S., Dunson, D. B., Petrone, S., and Trippa, L. (2014a), “Improving Predic-
tion from Dirichlet Process Mixtures via Enrichment,” The Journal of Machine
Learning Research, 15, 1041–1071.

Wade, S., Walker, S. G., and Petrone, S. (2014b), “A Predictive Study of Dirichlet
Process Mixture Models for Curve Fitting,” Scandinavian Journal of Statistics,
41, 580–605.

Webb, E. L. and Forster, J. J. (2008), “Bayesian model determination for multi-
variate ordinal and binary data,” Computational Statistics & Data Analysis, 52,
2632–2649.

West, M. and Harrison, J. (1997), Bayesian Forecasting and Dynamic Models,
Springer Series in Statistics, Springer-Verlag New York, 2nd edition.

Wong, C.-m. and Kohn, R. (1996), “A Bayesian Approach to Estimating and
Forecasting Additive Nonparametric Autoregressive Models,” Journal of Time
Series Analysis, 17, 203–220.

Wong, C. S. and Li, W. K. (2000), “On a mixture autoregressive model,” Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 62, 95–115.

Wong, T.-T. (1998), “Generalized Dirichlet distribution in Bayesian analysis,”
Applied Mathematics and Computation, 97, 165–181.

Wood, S., Rosen, O., and Kohn, R. (2011), “Bayesian Mixtures of Autoregressive
Models,” Journal of Computational and Graphical Statistics, 20, 174–195.

Wu, Y., Ghosal, S., et al. (2008), “Kullback Leibler property of kernel mixture priors
in Bayesian density estimation,” Electronic Journal of Statistics, 2, 298–331.

Yang, Y. and Dunson, D. B. (2016), “Bayesian Conditional Tensor Factoriza-
tions for High-Dimensional Classification,” Journal of the American Statistical
Association, 111, 656–669.

Yau, C., Papaspiliopoulos, O., Roberts, G. O., and Holmes, C. (2011), “Bayesian
non-parametric hidden Markov models with applications in genomics,” Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 73, 37–57.

Yee, T. W. et al. (2010), “The VGAM Package for Categorical Data Analysis,”
Journal of Statistical Software, 32, 1–34.

Zeger, S. L. and Liang, K.-Y. (1986), “Longitudinal Data Analysis for Discrete
and Continuous Outcomes,” Biometrics, 42, 121–130.

194



Zellner, A. (1986), “On Assessing Prior Distributions and Bayesian Regression
Analysis With g-Prior Distributions,” in Goel, P. K. and Zellner, A. (editors),
Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de
Finetti, Elsevier North-Holland, 233–243.

Zhang, H. (2004), “Inconsistent Estimation and Asymptotically Equal Interpola-
tions in Model-Based Geostatistics,” Journal of the American Statistical Associ-
ation, 99, 250–261.

Zucchini, W. and MacDonald, I. L. (2009), Hidden Markov Models for Time Series:
An Introduction Using R, CRC Press, 2nd edition.

195




