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ABSTRACT: The use of biodiesel and renewable diesel fuels
in compression ignition engines and aftertreatment technolo-
gies may affect vehicle exhaust emissions. In this study two
2012 light-duty vehicles equipped with direct injection diesel
engines, diesel oxidation catalyst (DOC), diesel particulate
filter (DPF), and selective catalytic reduction (SCR) were
tested on a chassis dynamometer. One vehicle was tested over
the Federal Test Procedure (FTP) cycle on seven biodiesel
and renewable diesel fuel blends. Both vehicles were exercised
over double Environmental Protection Agency (EPA) High-
way fuel economy test (HWFET) cycles on ultralow sulfur
diesel (ULSD) and a soy-based biodiesel blend to investigate
the aerosol hygroscopicity during the regeneration of the DPF.

*Diesel Particulate Filter (DPF), Secondary Organic Aerosol (SOA)
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Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (k < 0.1) for all fuels over
the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average k values
range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of “fresh” tailpipe emissions as
nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce
significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant
enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of
regeneration emissions from a growing fleet of diesel vehicles will be important.

1. INTRODUCTION

Diesel particulate matter (PM) is associated with adverse health
effects and is classified as a toxic air contaminant.' In an effort
to reduce diesel emissions, modern light-duty diesel vehicles are
now equipped with robust emission control systems such as
diesel oxidation catalysts (DOCs), diesel particulate filters
(DPFs), and selective catalytic reduction (SCR) systems that
effectively reduce diesel emission rates. However, specific
operating conditions may affect particle formation pathways,
which consequently modifies particulate composition” and
potentially enhances the formation of ultrafine semivolatile
particles that are not captured by the filtering process.” These
ultrafine particles make up a small fraction of particulate mass,
but represent a large fraction of the overall particle number
count. Thus, when considering an equivalent mass concen-
tration, the higher number concentrations of ultrafine particles
may be more detrimental to health than larger particles with the
same chemically toxic composition.*®

DPFs effectively reduce PM emission rates but require
periodic filter regenerations through particulate oxidation to
clear or “burn oft” the soot that has accumulated on the filter.
The temperature of diesel exhaust gases does not always meet
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the required levels to efficiently oxidize the PM collected in the
DPF. As a result, a variety of strategies were developed to help
drive the regeneration process, and includes, but is not limited
to, using catalyst technology to generate nitrogen dioxide
(NO,) from the oxidation of nitric oxide (NO) to assist in the
combustion of soot® and using fuel-borne catalysts.” During
DPF regeneration the vehicle operates under different
conditions from those during typical operation and exhaust
temperatures can reach above 550 °C.

Several studies have investigated the chemical and physical
properties of aerosols formed during the regeneration of DPFs
for light-duty diesel passenger vehicles."™"" Filter regeneration
can produce sharp increases in particle emissions, typically
greater by multiple orders of magnitude when compared to
nonregeneration operation.”'’ Slightly elevated particle emis-
sions are also observed immediately after a regeneration event,
but regains filtering efficiency when a sufficient amount of soot
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builds up on the filter surface again.'” Evaporation tube
measurements by Mohr et al.'> demonstrated that in spite of
the increase in particle concentrations, the nonvolatile solid
number concentrations remained fairly consistent between a
nonregeneration and a regeneration event. This indicates that
the regeneration derived emissions may be dominated by
condensed hydrocarbons and less by solid soot. Similarly,
Giechaskiel et al.” measured the total solid particle number
using a particle measurement program (PMP) compliant
system and also determined that the emitted exhaust consisted
of stored volatile material, but combined with lubricant oil and
unburnt fuel. In addition, the regeneration of DPFs can increase
the soluble organic fractions.® For example, during regener-
ation, a nucleation mode is typically present; that can be
dominated by hydrocarbons and sulfate.”'*> DOCs can serve as
a sulfur trap during normal operating conditions (250 °C),
which can then desorb at elevated temperatures'® during
regenerations that can reach above 550 °C.

Although several studies have investigated the changes in the
physical and chemical nature of these aerosols derived during
the regeneration of DPFs for light-duty diesel passenger
vehicles, the potential impact of alternative fuels in addition
to diesel emission control systems on aerosol hygroscopicity or
its water uptake properties with regards to the cloud
condensation nuclei (CCN) budget has not been explored.
Fuel-based strategies (e.g., biomass-derived fuels) have been
used to mitigate greenhouse gas emissions and address climate
change concerns. However, the addition of oxygenated biofuels
has been shown to modify the water-soluble organic carbon
fractions of diesel emissions.'”'® There is very limited
information in regards to the particle CCN activity and
apparent hygroscopicity during DPF regeneration, while it has
been shown that the regeneration of DPFs can increase the
soluble organic fractions and concentration of water-soluble
materials (e.g, sulfates) emitted and that the addition of
oxygenated biofuels can modify aerosol hygroscopicity. Thus,
their impacts on regional climate and radiative forcing in
regards to the CCN budget are not well-known. As a result, the
objectives of this study were (a) to examine the impact of fuels
on the hygroscopictiy of emissions of modern technology light-
duty diesel vehicles, and (b) to evaluate the impact of
aftertreatment control devices on the hygroscopicity of particles
derived from filter regeneration.

2. EXPERIMENTAL METHODS

2.1. Test Fuels, Vehicles, and Driving Cycles. Seven
fuels were used in this study. Fuels include a Federal ultralow
sulfur diesel (FED ULSD) and a California Air Recourses
Board (CARB) ULSD, and serve as the baseline fuels. Three
fatty acid methyl esters (FAMEs), commonly known as
biodiesel, produced from soybean oil (SME), animal fat oil
(AFME), and waste cooking oil (WCO), respectively, and a
hydrogenated vegetable oil (HVO) were utilized as blendstocks
to prepare 20 vol % blends with the FED ULSD (FED ULSD/
SME-20, FED ULSD/WCO-20, FED ULSD/AFME-20, FED
ULSD/HVO-20). Only the WCO biodiesel was used to
prepare a 20 vol % blend in the CARB ULSD (CARB ULSD/
WCO-20). The main physical and chemical properties of the
test fuels are shown in Table S1, Supporting Information.

Two 2012 model year vehicles with direct injection
common-rail diesel engines and DOC, DPF, and SCR were
used for this study. For confidentiality reasons, the vehicles in
this publication will be referred to as Vehicle 1 and Vehicle 2.
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Vehicle 1 was tested twice over the Federal Test Procedure
(FTP) cycle on each of the seven fuels. The FTP consists of
three phases: a cold-start phase (Phase 1), transient/stabilized
operation (Phase 2), and a hot-start phase (Phase 3). The
Vehicles 1 and 2 were tested over two double EPA Highway
Fuel Economy Test (HWFET) cycles for FED ULSD and
FED/SME-20 to investigate the emissions generated during
DPF regeneration. A double HWFET was conducted to
provide adequate time for the regeneration to go to completion.
Details of the drive cycles and speed traces for the driving
cycles are shown in Figure S1 and Figure S2 (Supporting
Information). Prior to the first FTP for each of the two
regeneration fuels, the DPF was forced to regenerate to
eliminate potential artifacts from previous fuels. One baseline
double HWFET without a regeneration was conducted for
Vehicle 1 on Fed ULSD. A baseline double HWFET for
Vehicle 2 is not available. Following the FTPs and the baseline
double HWFETS, the vehicles were driven for ~160 miles,
equivalent of 20 LA4 cycles, on road to build up soot in the
DPF. The on-road route was designed to simulate the speeds
and number of stops in the LA4 portion of the FTP cycle.
Double HWFETSs were then conducted in a manner where the
regenerations were designed to trigger and be completed
during the course of the test. For Vehicle 1, the engine control
module was programmed to regenerate every 170 miles so that
it was ready to regenerate after the soot buildup was completed.
Regeneration was triggered manually in the laboratory for
Vehicle 2. Details of the regeneration testing protocol are
described in Figure S3, Supporting Information. A more
detailed description of the fuels, preconditioning protocol, and
testing procedures is available in Karavalakis et al.''

2.2. Emissions Testing and Instrumentation. All
measurements were conducted at the University of California,
Riverside (UCR) Center for Environmental Research and
Technology (CE-CERT) Vehicle Emissions Research Labo-
ratory (VERL). For certification quality measurements, VERL
is equipped with a 48 in. single roller chassis dynamometer
(Burke E. Porter), and a positive displacement pump constant
volume sampling (PDP-CVS) system. PM emissions were
sampled directly off of the PDP-CVS tunnel (Figure S4,
Supporting Information). The exhaust is diluted in the CVS,
thus driving the dew point down to levels comparable to the
room temperature (10—15 °C). It is noted that additional
dilution occurs during sampling further drying particles and
thus RH is not expected to strongly effect the CCNC
supersaturation measurements. The emissions sampled from
the CVS are considered to be an appropriate simulation of
ambient conditions.

Supersaturated hygroscopic properties were calculated using
online measurements. For the FTP and baseline double
HWEFET cycles, a TSI, Inc., Engine Exhaust Particle Sizer
(EEPS) spectrometer 3090 was operated in parallel with a
Droplet Measurement Technologies, Inc., single growth
column cloud condensation nuclei counter (CCNC) to obtain
aerosol hygroscopicity measurements every second. The EEPS
utilizes a unipolar corona charger and multiple electrometers to
charge and measure the particles based on electrical mobility
diameters. The currents are measured at 10 Hz and full size
distributions are averaged second by second for 32 channels
between 5.6 and 560 nm. Using a continuous-flow thermal
gradient diffusion column, the CCNC generates a super-
saturated environment for water vapor to condense onto CCN
active aerosols to form droplets.'” The CCNC is operated at a
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Figure 1. Vehicle 1, measured kappa values for each phase of the FTP for all seven fuels.

total flow rate of 0.5 L/min using a sheath to aerosol flow ratio
of 10:1.

For the double HWEFET cycles, size resolved aerosol
hygrosocopicity was measured using Scanning Mobility CCN
Analysis (SMCA).'"® This method characterizes the size
resolved aerosol hygroscopic properties every 135 s. Using a
TSI 3080 electrostatic classifier, polydisperse aerosols flow
through a bipolar krypton-85 charger and are classified based
on electrical mobility with a TSI, Inc, 3081L differential
mobility analyzer (DMA). Next, the classified or monodisperse
aerosol is split between a butanol based condensation particle
counter (CPC) (TSI, Inc., 3772) and a CCNC to obtain the
total aerosol concentration (CN) and the CCN active aerosol
concentration, respectively. The DMA is operated in scanning
voltage mode to provide size resolved aerosol hygroscopicity
data over a full size distribution. The CCNC is operated at a
single critical supersaturation, s, for the duration of the cycle.
The CCNC was calibrated using aerosolized dry ammonium
sulfate, (NH,),SO,, to determine the supersaturations in the
column.'®"

2.3. Data Analysis. The apparent hygroscopicity is
determined every second by deriving the critical activation
diameter (Dy) using number size distribution data measured by
the EEPS and CCN concentrations measured with the CCNC.
A complete description and evaluation of the method is found
in Vu et al;*° a brief description is provided here. Dy is derived
by integrating the aerosol concentration from the largest size
bin in the measured size distribution down to a D, until the
particle number concentration agrees with the measured CCN
concentrations from the CCNC.

D,

d
N measure: = _f
CON( 9 D,, dlogD

(D)dlog D
% )

Hygroscopicity calculated from eq 1 has been used in previous
studies”~** and is applied to the FTP and baseline double
HWFEFET cycles.

In anticipation of the higher concentrations expected from
regenerations during the double HWFET, SMCA was utilized
to keep the concentration within the counting limitations of the
instruments. CCN/CN are measured for a given dry diameter.
Dy is determined at the point in which CCN/CN is 0.5.'8

To describe the water uptake potential of particulate vehicle
emissions, a single hygroscopcity parameter, k, can be used. k
incorporates thermodynamic and physical properties, such as
aerosol and water density (p, and p,, respectively), molecular
weight of water (M,,), temperature (T), and droplet interfacial
surface tension (o,,,), to describe particle hygroscopicity. It has
been applied in studies to determine the relative hygroscopicity
of complex aerosols.”””*~** Typical « ranges include 0
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(nonhygroscopic, but wettable), 0.01—0.5 (slightly to very
hygroscopic), and >0.5 (significantly hygroscopic, most CCN
active).

With s, which is derived from the calibration of the CCNC,
and Dy derived from one of the two above methods, k is

determined:*>*°
A 40,/ M,
K= %, where A = /2%
27D3In” S, RTp, (2)

where R is the universal gas constant, and S, is the critical
saturation (>1, defined by s. = S, — 1). The surface tension of
the droplet is assumed to be equivalent to that of pure water. It
is noted that the vehicle exhaust emissions may be fractal,
which can affect the electrical mobility diameter measurements
and subsequent CCN activation.””*® However, for the analysis
of these emissions, the particles are assumed to be spherical. It
is assumed that emissions during nonregeneration are likely
organic and fractal and will lower k measured values. Particles
emitted during regeneration are likely dominated by spherical
inorganic particles. Mixing state may also modify perceived x
but no mixing state information is available in this study.

3. RESULTS AND DISCUSSION

3.1. Fuel Effects over the FTP: Vehicle 1. The effect of
the seven fuels on the hygroscopic properties of fresh vehicle
particle emissions operating over the FTP was examined. Size
distribution measurements and CCN concentrations were
collected for Vehicle 1 using the seven fuels described in
Section 2.1. The CCNC was operated at s, = 0.54% and 0.88%
for the transient aerosol tests. Second-by-second aerosol
hygroscopicity measurements were used (eq.1).

Overall, the results indicate consistently low apparent
hygroscopicities for all fuels (Figure 1). Although subtle,
differences were observed between different driving phases;
phase 2 produces slightly more hygroscopic particles than phase
1 and phase 3. The least hygroscopic particles are observed for
the Fed ULSD (x = 0.0023 to 0.0026) and the highest for the
CARB/WCO-20 blend (x = 0.0157 to 0.0258). The error bars
are the averaged standard deviations obtained from the multiple
FTPs for each fuel. The average standard deviation in error
associated with the kappa values are relatively small and
indicate repeatability between measurements. Detailed kappa
results are provided in Table S2 (Supporting Information).

These results are consistent with studies finding fresh vehicle
emissions with low hygroscopicity. Size dependent chemical
information are unavailable and the lack of mixing state
information may contribute some uncertainty to the CCN
analysis. However, the results are similar to previously
published work that attributed low hygroscopic emissions to

DOI: 10.1021/acs.est.6b03908
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Figure 3. Vehicle 1 Regenerations. Particle size distributions shown (left axis) and kappa (right axis) as a function of time elapsed.

an externally mixed state where soluble materials are less likely
to condense, insoluble material present in the aerosols (e.g.,
soot), and small sizes where a majority of the aerosols exist in
the nucleation mode.””””™>* When comparing the overall
apparent hygroscopicity of particles over the FTIP, the results
show relatively low hygroscopicity in relation to more
hygroscopic species from secondary organics (k ~ 0.2) and
inorganic aerosol species like ammonium sulfate (k = 0.61).

3.2. Baseline Effects over the Double HWFET: Vehicle
1. A baseline double HWFET was performed for Vehicle 1 on
Fed ULSD with no regeneration. Hygroscopicity is calculated
every second (eq 2) during baseline testing. Overall, the
apparent particle hygroscopicity was low throughout the
baseline test (k = 0.0023 to 0.0026) (Figure 2). This range
of kappa values is similar to kappa values measured during the
FTP cycles for this vehicle.
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3.3. Regeneration Effects over the Double HWFET:
Vehicle 1 and 2. Regeneration testing was performed on
Vehicle 1 and Vehicle 2 on Fed ULSD and Fed/SME-20 over
the double HWFET cycles. Two double HWFET regeneration
tests were performed for each of the two fuels with the
exception of Vehicle 2, which had three tests on the Fed ULSD.
The CCNC was operated at s. = 0.69% and 0.91% for the
transient aerosol tests. SMCA was used to characterize the
hygroscopicity properties. These results are summarized in
Figure 2 with detailed kappa results in Tables S3 and S4
(Supporting Information).

For Vehicle 1 and 2 the regenerations lasted approximately
7—12 min and 11-22 min, respectively. The length of
regeneration and the amount of PM emitted can vary as they
are a function of the driving patterns of the vehicle (e.g., steady-
state high speed cycles) and mileage accumulation.'® All

DOI: 10.1021/acs.est.6b03908
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regeneration events were signified by elevated exhaust
emissions and exhaust temperatures for both vehicles. Size
and concentration data (EEPS) are only available for Vehicle 1
(Figure 3). A large nucleation mode is observed, which is
consistent with other studies conducting regenerations.13 The
fuels are not observed to affect the size distributions.

The highest hygroscopicity is observed for the aerosols
emitted during regeneration for both vehicles and both fuels;
with average  values ranging from 0.242 to 0.434 (Figure 4).

10

mmm FED ULSD

08 =% FED ULSD/SME-20

0.6 -

Kappa

0.4

0.2 1

0.0
Vehicle 1

Vehicle 2

Figure 4. Average Kappa values for the regeneration events.

The highest and lowest hygroscopicity was observed for Vehicle
2 on the FED ULSD (k = 0.843 and x = 0.0661). Additional
kappa values are available in Table S3, S4, and SS (Supporting
Information). The higher kappa values may be attributed to the
higher amount of sulfates released during regeneration (derived
from sulfur on the soot particles, sulfur in the DPF). This is
consistent with the findings from Bikas and Zervas® who
observed an increase in the nucleation nanoparticles, which
consisted mostly of HC or sulfates during the regeneration of a
noncatalyzed SiC filter and a Pt catalyst retrofitted on a
passenger car equipped with a 1.9 L diesel Euro4 engine. They
also found that soluble organic fractions increased during
regeneration from 0 to 50%, which were determined to be
composed of hydrocarbons with 77% from fuel and the
remaining 23% from engine oil. In addition, sulfates made up
12% of the total PM (from 3% before regeneration) and were
correlated with increased fuel consumption, higher DPF
temperatures, increased sulfate concentrations with larger
diameter particles (median diameter of 40 nm). Both vehicles
1 and 2 had lower fuel economy during the DPF
regenerations,' " thereby increasing the amount of sulfur due
to increased fuel consumption.

Sulfur may play an important role in elevating aerosol
emission hygroscopicity. To drive the regeneration, ULSD may
be injected to lower the required DPF temperatures for
regeneration. An increase in fuel consumption durin
regeneration measurements can result in an increase in SO,.
Studies suggest that SO, may be oxidized to SOj; in the catalyst
and lead to the formation of sulfate particles in the nucleation
mode.” DOCs can serve as a sulfur trap and store a large
fraction of the emitted SO,; which can oxidize to form SO;.
This can then form sulfuric acid in the presence of water or
sulfates with metal oxides (e.g, alumina, titania, zirconia) on
the surface of the DOC."* This process is irreversible and the
sulfuric acid/SO, can begin desorbing at temperatures as low as
250 °C."* Sulfuric acid is very hygroscopic, with a reported
kappa value of 0.9.°° If mixed with less soluble materials,
sulfuric acid may greatly modify the CCN activity. Aerosols
internally mixed with sulfuric acid vapor can be highly
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hygroscopic.”> The observed large kappa values (>0.8) may
be due to sulfuric acid or interactions of SO, with water vapor
in the exhaust or the CCN. It should also be noted that SCR
systems use urea to reduce NO,, ammonia slip may be
occurring due to the urea injection system. This ammonia may
potentially react with sulfuric acid to form ammonium sulfate,
which has a kappa value of 0.61.*°

This is the first study to investigate the supersaturated
hygroscopic properties of particle emissions derived from the
regeneration of DPFs while operating on commercially
available ULSDs and biodiesel blends. For the FTP tests for
Vehicle 1, although subtle, the changes in kappa indicate the
sensitivity of the chemical composition to the different
renewable and biodiesel fuels and the transient nature of the
drive cycle. Overall, kappa values of these emissions are less
than 0.03 and did not display any order of magnitude
differences in value; emissions directly from the tail-pipe
exhibit low kappa values and are consistent with fresh vehicle
aerosol emissions typically classified as nonhygroscopic.

Regeneration will produce significantly more particle
emissions and modify the aerosol composition from non-
hygroscopic to hygroscopic. DPF Regeneration has a stronger
impact on particle emissions than modifying fuels. The particle
hygroscopicity during regeneration was considerably higher
than that of the nonregeneration cycles; reaching average kappa
values of 0.242 to 0.434, but upward of 0.843. This indicates the
presence of highly soluble materials, which may greatly affect
the water uptake properties of compounds that are insoluble.*®

DPF regeneration increases both particle number and
hygroscopicity. The potential impact of modifying a significant
fraction of the modern vehicle fleet with diesel engine
technologies such as DPFs may have unforeseen environmental
consequences. Vehicle emissions are traditionally characterized
as nonhygroscopic in radiative forcing estimates and the results
of the biodiesel and renewable diesel fuel blends utilized in this
study further supports this phenomenon, as no significant fuel
effects were observed and the majority of the PM emissions
were collected by the filter. However, during the oxidation and
regeneration process, the particle number and hygroscopic
properties were greatly modified and a significant increase in
water uptake was observed. Although it is difficult to quantify
the overall CCN contribution due to the varying levels of
hygrosocopicity, intensity and duration of regeneration events,
current emissions testing that does not incorporate regener-
ation is not fully representative of the emissions from modern
diesel vehicles equipped with robust emission control
technologies. As more vehicles continue to utilize this
technology, the impact on local health, regional visibility, and
climate due to the application of robust emission control
systems becomes increasingly important and should be
evaluated in future studies.
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The Supporting Information is available free of charge on the
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Data used in this study and additional figures are
available in Supporting Information. There are three
figures, which include two speed traces for the test cycles
(FTP and double HWFET), and regeneration emissions
testing protocol diagram. The tables include the physical
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and chemical properties of the test fuels and the
numerical values for the Figures 1, 2, and 4 (PDF)
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