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1. INTRODUCTION

N

This article is concerned with the problem of strong coupling as it ie
manifested in the properties of the ""ordinary" particles, pions and nu(:leona.' It is
_not possgible to sepafate such a discussion cleanly from strange particles, which
also undergo strongv interactions, but at the current level of understanding of the
pion-nucleon interaction the complications due to strange particles can be minimized.

Although it seems likely that the masses of the‘pion_g_;._) and the nucleon (M)
are consequences of strong coupling, no attempt is made here fo discuss the masses
" in this sense. We consider._l.x_ and M to be given parameters. The same {8 true
for the plon-nucleon (g) and pion-pion (\) coupling constants, even though future
developments may show these quantities to be not really fundamental. The problem,
then, is to relate the cross sectiqns fqr the various interactions involving pions and
" nucleons to the four constants ..E_" M, g, and ). We shall restrict ourselves to
processes in &hi¢h there are two ingoing and two outgoing particles, These
processes are the following:

L mdmeamdnw FPion-pion scattering,
2. v+ IHI}_I_*.E: v Nucleon pair production in pion-pion
collisions and_nucleon—anﬁnucleon .

annihilation to produce two pions.
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3. m+N&dIw+ N or . Pion-nucleon or
_u_+t1i o + N pion-antinucleon scattering.
4. N+ NN+ N Nucleon-nucleonb scattering,
5. N+ N@N+N Nucleon-antinucleon scattering,

The above processes are different manifestations of three fundamental
matrix elements that can be represcented aa shown in Figure 1. Here the wiggly
lines refer to pions and the straight lines to nucleons. Any pair of lines may |
represent tfxe ingoing two particles, with the other pair representing'the oufgoing,
and going opposite to the direction of an arrow simply means changing particle to
émtiparticle with a change of sign of the four-momentum, Thus Figure 1(b) includes
both Frocess ‘2 and Process 3, while Figure 1l(c) includes Préceéaes 4 and 5.

It is instructive also to consider diagrams of the type of Figures 1(a) and
1{b) with one of the pions replaced by a photon. Such diagrams correspond to the

following 'processes:

6. ytuo@nr+aw Fhotopion production from pions and

radiative capture of a pion by a pion,

7. ytmw ¢—9£J_+ N~ Nucleon pair production in photopion
collisione and nucleon-antinucleon

annihilation to produce a pion plus a photon,

or Photopion production from nucleon
(or antinucleon) and radiative capture of

a pion by a nucleon,
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These last three processes will require. for their description at least one
additional parameter, the elementary electric charge e,

The above four-particle reactions are to be discussed here by means of
spectral represeutations, often referred to as '"dispersion relations.” Actually
these representations have much moré content and utility than the original dispersion
relations of electromagnetic theory, but they developed out of attempts to generalize
the Kramers-Kronig equations (1, 2)The systematic derivation of the new dlnperélon
relationa ie complicﬁted and not al all suitabie to a review of this kind,‘i therefore we

restrict ourselvés to a short qualitafive dedcription of the main ingredienta, The

. current justification of dlsparsion;reiations rests on two fundamental physical

assumptions thatvha.ve become prominent only within the past ten years, even

- though their origin is much older., Extensive use is also made of standard aymmeti‘y

principles and associated conservation laws that are recognized as important in all
areas of particle physics; we ghall take these principles for granted and make no

! The two distinctive principles are:

special mention Qi them,
A. Signale never propagate with a velocity faster than that of light,
no matter how short the distance involved. This is ‘the principle of '""microscopic
causality." In the language of local quantum ﬂéld theory, it {o expressed by saying
that the commutator of two Helsenberg field operators, taken at different space- '
time points,, vénlshes i{ the separation between these points is spacelike. Without
use of the framework of local field theory no precise way io knownvof formulating
microcausality,

B. The totality of all possible physical states of the universe forms a

complete set of basis vectors in the quantum mechanical sense. That is to say, an

-arbitrary state vector may be expressed' as a linear superposition of vectors, each
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representing a possible physical state with a total energy-momentum four vector '
that ié positive timelike. This ""'spectral condition, " although it sounds extremély N
plausible, is not universally accepted, the conjecture having often been made that
local field theory is inconsistent unless "ghost' states, with no direct physical
interpretation, are included, | »

The uéual starting point in the derivation of a dispersion relation is the
reduction formula, first given in a general form by Lehmann, Zimmermann, &
Symanzik(a) and for the special case of w-N acattering by Low“" The reduction
formula allows one to v)rite the amplitude for an arbitrary transition in terrbs of
the Foﬁrier transforrﬁ of a matrix element of a commutator of two Heisenberg
field operators. The energy variable occurs only in the imaginary exponent,
multiplying the s_pa,ce-timé cooz;di_nate. and the vanishing of .thg commutator outside
tho light cone then allows one to extend the energy dependence into the coﬁxplex
plane. Goldberger was the first to ‘use‘such an approach, (5) which after this
crucial step leads immaediately to dispersién relatioﬁa. Later it was realized that -
a rigorous justification of Goldberger's extension into the complex plane was not
rcally easy to achieve except for zero-mass particles scattered in the forward
direction. Syménzil:(é) was the first to solve the nonzero mass problem.' and ”
Bogolh’hbo,v”) then showed that the extension was justifiable even for nonforward
| scattering if the parﬁcle mass were formally made imaginary and aufficienily large
in a.bsolu‘te x.'alue. However, the difficult problem remained of investigating the
behavior of the amplitude as a function of particle mass; it was necessary, of ¥
course, to show that dispersion relations continue to hold as the mass s made real

v v
and equal to its actuzl physical value.
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Bogoliubov developed methods of proof appropriate to certain special cases, (7)

but these have now been superseded by the work of Bremermann, Oehme, & Taylor, (8)
based on the theory of many complex varia;bles‘. and by the work of Jost & Lehmann(”

and of'Dyson, (10) based on more famihar but still tricky mathematics.

Although the detaile of the derivation cannot be given here. we write down

' the Dyson representation, (10) which expresses conditions A and B in a form suitable

to the deduction of dispersion relationa‘, No specific use of Dyson's representation {o

made in this article, but it serves to illustrate the kind of connection between physics

and mathematics that characterizes disperéion relations. Consider the (four-dimensione

Fourier transform of the matrix element of the commutator of two local Heisenberg

oparators._j.(_._"i/Z) and h{-x/2)

Flq) J__:g et u;.(x/l). h(-_Jf_/Zﬂlg_. ﬁ__>. | (I.1)

The matrix element here connects two phyeical states whose total energy-momentum
four vectors are P_and @, respectively. The indices a_and B refer to the other
degrees of freedom needed to complete the specification of these states. According

to ths rxiicroéausality assumptioﬁ A, the matrix element vanishes for
2

x" = xoz - 3?24... 0, that is, for spacelike separation of the two operator-arguments,

——

Assumption B comes into play if we insert a complete set of "intermediate"
physical states between the operators j and h, It may then be seen by ueing

displacement operators, which shift the arguments of §j and h to the origin, that

L4

F(q) vanishes unless E— (P + Q) + ?.J is the energy~momentum of a state I_n_>

A —

for which both the matrix elements

<_1§‘-g_ | 10 3_> and < |n@|Q > b (L. 2)
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fail to vanish, or %— | BF_{:& Q) - gj ls the energy-momentum of a state for which both

(e p@]e) o &l 2e) (.3)
' Vv

fail to vanish, The four-momenta of the states -x__x___ >are_an positive timelike, and
we designate by .any the smallest mases of a state satisfying (I, Z) and by m, the
corresponding smallest mass for (I.3). Assumption B thus leads to the property

that F(g) vanishes except for

P+ 0 v 2
=0 =0 . 99 = 0 and (E“*Q‘" +q _Sm-gz

> 3 5 >,

{1.4)
or

Pa+Q \ 2
L 4y D0 and (ﬁi.is%m DQ ,&.maz .

2 4 M

Ryson was able to prove that, for F{g) to satisfy the condition {I.4} and at
the same time be the Fourier transform of a function that vanishes for spacelike

argument, it is necessary and sufficient that F¥({q) can be represented as

F(q) jd xj * (qg oua) & Bq - n) - R J ¢lu, & D {L. 5)

The integratians here extend over a region such that the vectors

ErQ +a -.;E-:j..._... ~ 2. both lie in the forward light cone, while k_is positive
2 2 ' 1
and larger than either my - ( e +_1_J._;> ¢ or I3, - »\/(g:;t.g’:. .ﬂgﬁ)z . Within this
2 2 ‘

region ¢ (u, gz) is arbitrary.
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Previously Lehman & Jost had deduced a somewhat similar representation

for the special case m, =m,. @) We shall not write down the Jost-Lehmann

representation, but historically it represented a significant step in the understanding

‘of dispersion relations. The alternative approach to the problem through the theory

of manjr corhplex variables, exploited by Bremermann, Oehme, & Taylor(s, yields
the same results as achieved through the Dyson representation. These results havé
been summarized r.ece‘ntly.by Goldberger. (11) |

For the reader who wishes to see all the essential éteps in a complete and
yet economical derivation of the pion-nucleon dispersion relation, the following use
of the pﬁblished literéfure is rec§mmended: (a) Read the first and about half of the
second section of Reference (8), up to the point where dispersion relations have been
obtained for imagina'ry mass. (b) Switch here to a recent paper by Lehma,n(lz,
which uses theA Dyson representation not only to carry out the necessary extension in
the mass variable but also to justify the use of Legendre polynomials in implementing
dispersion relations. (c) If any strength remains, read the Dyson paper, (10)

It should be stated at this point that interest in dispersion relations as a tool

for strong coupling physicas was first aroused by the 1955 papers of Goldberger‘s)

“‘3’, although at that time the mathematical difficulties in

and Karplus & Rﬁderman
giving a systematic derivation were not realized. At present it remains true that
the methods of implementation of dispersion relations are elementary and quite
unrelated to tl'_ie sophisticated mathematical tecﬁiqués required for éheir derivation,
Such a situation may not persist indefinitely, but {t motivates the declsidn to avoid in
this review the matheﬁxatics of derivation,

In the following section certain important kinématica_l questions are dealt with,
preparatory to a general statement of the rules fox; formulating dispersion relations.

The rules are then given in Sectione IIL IV, and V in such.a‘ way as to cover not only

those relations that have been rigorously derived but also many relations conjectured

~on the basis of perturbation theory.
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II. KINEMATICAL PRELIMINARIES

A, Enerpy and Angle Variables. In order to dé_scrlbe scattering amplitudes

for processes with iwo ingoing and two outgoing particles, one needs in addition to
spin and charge variables at least two invariants that correapoﬁd to the energy and
angle of acattering in the barycentric system. To maintain a maximum symmetry
let us assign four-momenta, P11P2rP3sPar all of which correspond formally to
ingoing particles. Two of these momenta will always be nepative timelike, »

representing the actual outgoing particles, while the other two are positive timelike "

and represent the incoming particles. Energy-momentum conservation is stated -

through the condition _
Ly

Pyt P, tp3 tPs =0
while the particle masses are introduced through the four constraints,

For the purposes of dispersion relations it {s convenient to define three
invariants
2
)

2
AR S FUNRS PR O
55 = (0, + 24)° = () + py)?
22712 %Ry Py " B3)
53 = By + 40 = () +2,0°
23 T AR3 TB4 £y Byl
each of which is the square of the total energy in the barycentric system for a
particular pairing of incoming and outgoing particles, 2 For example, when

P amcl‘_g2 are incoming and Py and Py outgoing, the total energy is Nf_g—; « In

this case .8, and 8, may be interpreted as squares of four-momentum transfers,
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It is easy to show that the physical range of an & variable when it is the square
of an énergy does not overlap the range when it {s the square of a momentum transfer,
In particular, in the former case 8 is always positive and extends ‘to tw, whtile in
the latf’er it rﬂay be negative and extends to -o , |

The thiée variables 8 1+ 85+ 83 are not independent of one another, but with _

the constraints (II. 1) and (II. 2) they can be shown to satisfy the relation
| 2 2 2, 2
Byt 8, 8,7 vm, tmy tmy . o o (1L, 3)

Any two of the s8's may be considered as indepdndent variables, v&!th the third
determined by (I!. 3). In the dispersién-relétion approach it ia necessary for the>_§'
variables to bg extended not only to.nonphysiéal regions of the real axis but also
throughout the complex plane. Condition (II, 3) requires that in such extensiéna the . .
sum of the imaginary parts of the three s variables shall vanish.

In the theory of dispersion relations the substitution rule plays an important.

part. This rule was discovered in perturbation t:heory3 and relates the different

channels corresponding to a single diagram. For our purposes this rule will be
contained in the statement that a single analytic‘functlon describes all three channels
contained in the same diagram. In particular, the physical amplitude for the process
when Farticles 1 and 2 are ingoing is the boundary value,of an analytic function as
the variable 83 approaches the positive real axis in its physical energy range, with -
one of the other two 8 variables held fixed ata physical value while the amplitudes
for Particles 1 and 3 or 1 and 4 ingoing é.re obtained from correaponding limits

of the same function taken with the variables_s 2 Or _8,, respectively. Condition
(11. 3) is to be obeyed, so that one is dealing in the limiting process _with} a single
complex'variable. However, the general rule has meaning only if the two independent

2. variables can both be extended into the complex pléme. The above statement
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of the substitution rule has been rlQofdusly prbv’ed 'onlf in a few epecial cases, but
- the general form of perturbatiofx theory makes it ext'remely plausible. |

An invariance principle related to the substitution rule, that follows when
there are two or more identical particles amoﬂg the four involved in a particular ¢
process, is the so-called "crosasing symmetry. " F,xchanging two identical pé.rticlés
at most changee the sign of the amplitude, but such an intérchange means exéhanging
two of the 8 variables, leaving the third alone. For example, suppose Particles 1
and 3 are identical. Then, depending on whether these are bosons or fer mions thc‘
amplifude {s either symmetric or antisymmetric under an exchange of E.l and P3»
which means interchanging 8, and By leaving- 8, _alon@.4 if 32 anci 23 ére g
both incoming or both outgoing (i.e., @ ie the energy), the symmetry in question
is familiar and directly related to the Pauli principle. If one is inéoming and the
other outgoing, however, the symrxietry éé.hnot be so identifled and is a spe.cial
characteristic of field theory. In this case, if one starts with phyaical values of the g
variables, the exchange in question necessarily leads to nonphysical values because
of the above-mentioned nﬁnoverlappmg nature of the enervgy and momentum-transfer

ranges, Thus, the general crossing symmetry has meaning only when a continuation

of the amplitude into unphysical regions i possible.
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B, Charge and Spin Variables, In this discussion the possibility of degrees

of freedom of spin and charge has so far been ignored. It will now be explained
how internal degrees of freedom may always be absox;bed into invariant matrices,
whose coefficients are invariant functions of the 8 variables only. The number of
such functions depends on the complexity of the internal degrees of freedom: For |
processes associated with Figure 1(a), three independent functions are reciuired.
Figure 1(b) requires four functions, and Figure 1(c) ten functions. Remarkally
enough, réplaclng'a pion with a photon in Figure 1(a) or 1(b) has a very different
effoct in the two cases. Figure l(é.) with "a photon requires just a single invariant
function, while Figure 1(b) with _.a pﬁoton r'équirea twelve, ‘We shall now write
down for the simpler problems the invariant matrices required .az_xd point out.

the implications qf crossing symmetry for the corresponding {nvariant functions,

The four-pion problem is one of thev simplest because there are no spins '

aﬁd all three branches of the diagram correspond to the same process, w-w scatiering. 5;
Each pion has a charge degree of freedom, however, and this s described in the
conventional way6 by an index that takes values 1,2, 3 For the pion with momentum
Py we assoclate the charge index a, with B the index f§ , with B3 the index.

3_ , and with Py the index \. Let us assume that(gl,o.) and_(_g;. B) are incoming,
~ with ('BS’Y) and -(-134. \) outgoing. The scattering amplitude may then be considered
a matrix in a nine-dimensional ctharge space that {s the product of two three-
dimensional spaces. The requirement of charge indépendence leads to the conclusion
that only three independent matrices are allowed, corresponding to the fact that
only three values of tétal I spin occur for the two-pion eyatémz I=01,2, It is

convenient to choose as the three fundamental matrices,
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A | | (L) v

Eslyrap™pylan:
and to write the complete amplitude as
}1&({;022033)4'3(2? (21'32053, + §39 (elofzu 23’ . | (IL 5)

The oPeratidn of particle exchange involves both the charge and the momentum.,

Since all four particles are identical boeoris we get the following créb;ing relations:

AL—A
E.. - .Exé""""éﬂ» ’
" (L. 6)
Ae—3B _
' 524“’9930
C—>C -7

plus other relations that are redundant in co’ntent., The first of the above two lines
- simply represents the Pauli principle, but the second puts on the pion-pion
scattering amplitude a type of a dynamical requirement unknown outside field theory.
 With the definite assignment of (p,a) and {p,B) as incoming particles it is
possible to e:;:press A, B, and C in terms of the conventional amplitudem _&I—- for
ecattéring in states of well-defined I spin. The relations _tui»’n out ‘to' be '
aAd=3a+B+cC, | - , v

A" = B-C, | © (1L 7)



-14- " UCRL-8670

In the barycentric system, {f the magnitude of the three-momentum of any pion
is called q and the angle of scattering €, the physical meaning of the s_

et

variabies is

g_l'=- 23_2(1+c039_) .

_gz=-2c£(l=cosg). ' - (11, 8)
2 | |
8, =4lg* +uh.
The exchange of 8 and g, thus cor'resp'o;nds to changing cos 6 to -cos 9; and the
first line of (I1.6), when applied to (II. 7), says no more and no less than that ﬁo

' and 1}_‘2 are even functions of cos @ while A_l {s an odd function. The second line
of (11, 6), however, which relates to the exchange of _gzl and 83 expresses a
condition on tiw energy and angular depeﬁdence, considered together,

A final e‘saehtially kinematical feature of the pion-pion problem is the '.
connection between the amplitudes ﬁ_l- and conventional phase shiftsa, The formula
here is ambiguocus as to normalization, but the dependence on energy and angle is |

(15)

unique, Chew & Mandelstam We choose to normalize so that

z 1 o
Mg cosg) = Va2 (2041127 sinza_’- 5 (coss). (11.9)
i = |

where gzl— iz the i:hase shift for a state of angular momentum _‘... ~and isotopic spin

3
energies, where production of two additional pions becomes possible, Single-pion

I, The phase shifts are real for s, & 16 p.; (s:lZ L 3p.z) and complex at higher

production is forbidden by a combination of charge-conjugaﬁoh invariance and
charge independence, 7 which in general forbids the production of any odd number of
plons. As noted above, only even _{ values occur in (II.9) for I = 0,2, while only

odd_ﬁ values occur for_l =1,
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T.he two processes described by Figure 1 (b},
pioxihxiuclegn scattering ahd npcleon pair production in pionQplqn collisions, are W
phy’aiéally quite different even though they are limits of the same analytic function,
Since the scattering problerm is the more familiar of the two, we shall adjust our
notation to conform with existing literature on pion-nucleon aca‘ttering.
[chew, et ar)1®)

Le§ ué then assign to the incident and outgoing plons the momenta
E‘ and ~P3 and the charge indices a and B, respectively. The co:responding
nucleon momenta are i:z é.rid l-pﬁ‘. but the degrees of freedom of the nucleon

charge and spin will be suppressed in the conventional way.8 The invariant amplitude

‘may then be written as a sum of four terma.

U ACTENERE S '~z.3)§°«s.-zziss)]'

+ ...;.[.'.’E- L{H’ al (gl,gz,__.,) _i.._g-y_- (_ p;) B (al.az.ssﬂ
- (11, 10)

with the crossing relations, following from symmetry under tnteréhange of the two

piona.
A% a0, | Al yal, ,
3%¢>.5° 5! ;1 Bje>8;3- (11. 11)

The connection between the amplitudes ‘AO' l, _3_0 o and fhose correepond{ng

e

to states of well-defined 1 sapin, _A_é. ]_B_I-; where 1=

.L., 3 » is given by the
. 2 2 '
formulas
A2 A%, 24t | 5'/2 2 p% 4 28! :
Ty - (1L, 12)
_{3/2 aAO - Al ‘ 3/2 EO 91 \ .
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while the three 8 _variables are related to the barycentric-system momentum q and
the scattering angle @ (or equivalently to the total energy in the barycenfric system,

‘W, and the square of the momentum transfer, ,__Q.__z) by

= R S

8, =-2q% (1 - cos 0) = - &% | (11.13)

—2

sy et ezl Wil

Finally we need the corméction to phase shifts, This io given consfeniently in

terms of funcflons { L and f I defined by
v -} -2 1
. 18, =

ER l‘%’ E‘?‘ L+ singj, Py s (cos8)-22 "“‘-ﬁzé!flilﬂc°°-gﬂ
b e [ == | — =

el S
| d§ = A5, . '
-‘z'l"f‘,'.!.['ni otn g, b4 "‘ﬂ-ﬁﬁ{lf_lf feoo

| whére _ﬁ'(cbs £) is. the first derivative of the Legendre polynomial,

The quantities j#-l- are phase shifts for scattering in states of isotopic spin I,

orbital angular momentum £, and total angular momentum_{ &1 . These

4 . _ _ 2
phase shifts can be complex for w 2 M 4+ 2 u, where pion production becomes

possible. The relation between the_f's and our _A and B_ amplitudés {s given by

S, 2z 2
angy = WMl oe Ty w-mn].

4 | (IL. 15)
| W M)Z - ?
drgy n M) ok fa s w e B ],

4 wt

where, as in the pion-pion problem, the choice of normalization is an arbitrary one.
Now let us consider the same fundamental amplitude from the point of view

of nucleon pair production. Here one must distinguiah between k, the barycentric
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system 3-momentum of an incident pion, and K, that of an outgoing nucleon.

Since Py and p, are now both ingoing, with P, and “Py4 outgeing, we have
22 ”‘*Qﬁz +Ji?

2 _ 2

) = 4(K% + M%)

+ 2k K cos e (11. 16)

slnk R

-
et c——

2-»2choaﬁ,

Atrap—r. ———

_?;3““}.53

where @ is the angle in the barycentric system between an incident pion and an
outgoing nucleon. .

Again there are two isotopic spin values, but this timew_gln_iz 0, 1 and the
amplitudea for these states turn out to be just the quantities we have already
labeled with the sui)erscripts 0,1, The remaining requirement is the eguivalent of
Formulas (II. 14) and (I1. 15). Since ofi-diagonal elements of the § matrix ara(
{involved the process cannot be described simply in terms of phase shifts, but a
partial-wave deéompositian is still appropriate. One finds E?ulco(zaﬂfhat for
total angular momentum _J, the orbital angular momentum of the;__NE system
can be either J+ 1 or ] - 1, wMIe the isotopic spin is 0 for J even and 1 for

| _J odd. F\tlcd€20) has worked out the formulas connecting the traneition amplitudes
0,1 0.1

and B *°, but we shall

o e

_ in states of definite J to the invariant amplitudes
not give these £ormqlas here because of their complication,

Even more complicated are the internal degrees of freedom in the problem

of nucleon-nucleon or nucleon-antinucleon scattering, The relevant formulas have

(21)

been worked out by Goldberger, Nambu, & Ochme , among others, and involve

ten: independent scalar functions. In the NN channel, if we Vas’sociate _Py and P,
with the incoming nucleons and ~Pj and -p, with the outgoing, we again have

relations of the type (II.8):
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8, =~ qu'(l + cos 6)
s,=-20%0-cos0) | (1L 17)
8y = 4(@® + MD), | |
where_i {s the barycentric 3-momentum'an;i @ _the angle of scattering. These

relations switch over in the NN channel, where py becomes an ingoing antinucleon

and =P, an oﬁtgolng antinucleon, to

8, = 4% + M%)

8,=-2K1-cos § | C (mas)

8y =-2X%(1 + cos @, |
where now }_(__ i{s the bérycentric monient_um and O the angle of acattering, There
is of course a secondJ\lR channel where {F__Ez' is the encrgy. |

It is out of the question to go deeply into the NN and__.N‘f}_ problem in this

review. Suffice it to say that the same general approach may be used as in the

_ww_and wN problems. For the detalls of formulation, Reference 21 should be

consulted. Later we describe tho ifnportnnt results obtained to data.

The ‘.replace_ment of a pion by a photon in'Flgure }(a) leads to the only
problem in the group under cons‘ideration where a single invariant function suffices,
The process in questionis y + ¥ - 27, and it can be shown [Wong(zz,] that G
parity7 allows only the I =1 state and therefore only odd J valﬁes of the two-pion
ayaten&. Furthermore, gauge invariance eliminates all electric multipoles, so that
for each ___J__ value theré is just one tranaittoﬁ amplitudé. The relev#nt formulas can
be found in Reference 22.

Putting a photon in place of a pion in Figure 1(b) gives rise to a complicated
problem that requires twelve invariant functions [Chew et al, (23) . The most
familiar channel here is Y+ N+, where all possible {sotopic and angular
momentum states of the final plon-nucleon system may be produced by both electric
and magnetic transitions. Formulas for the invariant matrices as woll as the
cormectioxi between multipole transition amplitudes and irivarlant amblitudea are

given in Reference 23,
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III. POLES IN SCATTERING AMPLITUDES

Otie' of the most important practical consequences to date of the dispersion-

relatidn_approach to strong-cdupllng physics is the recognition of the presence in

: Y
scattering amplitudes of poles, whose residues have not only a simple physical meaning

but also great practical utility. One might almost say that everything so far un-
derstood theoretically about bstron‘g-co\zpling phenbmena flows from these poles.ﬁ

There are three different aspects of 'polology' that deserve emphasis: (A) The
existence and positions of the poles can be predicted s{mply on the baeis of particle
masses and internal quantum numbers, spin, parity, etc. (B) The ré_aidues of
poles in dﬁfferent amplitudes or i;i_different regions of the same amplitude are
often simply related. In particular, "fundamental" coupling constants are usually
defined directly in terms of residues. (C) Poles dominate the behavior of the
scattering amplitude in their {mmediate neighborhood. On these three pillars a
very subsatantial theoretical structure can be erected.

To 1m'plem’g=.nt the third aspect of ""polology' it is of course necessary to
know something about the other singularities, generally branéh points, of the
scattering amplitude in the complex plane. A good definition of the subject of
"dispersion relatiohs" is that it {8 the study of the location and nature of these
éingularities. Of course if enough were known about all the singularities one
could construct the complete function, but at present we are far from such a
situation, at least in practice, We are just now achieving a comfortable familiarity

with the poles and beginning to understand what to do about the nearest branch points.ﬁ



-20- ' UCRL-8670

A. Location of Foles

The existence of poles in a few particular amplitudes has been rigorously
proved in thé course of deriving dispersion relations by the methods discussed in
the introduction. {See, for example, Symanzlk(6).) Perturbation theory, however,
suggests a broad rule that covers not only the poles rigorously derived bui many
others--some already establicshed experimentally, The rule {s _the following, as
applied to our problem of two incoming and two outgoing ﬁartlclea:q If the two
incoming particles and the two outgoing particles in any of the three channéla of

'a diagram can be '"connected' by a stable }?

single particle of mass m,, then
there will be a pole when the s variable corresponding to the square of the total
four-momentum in this channel ’is equal to ._{n_zo. By "connec_:ted"' we mean that
the initial two-particle state and the final two-particle state can both assume all
the same quantum numbers as the single particle in question. From the require-
ment of stability for the intermediate particle it follows that poles, although
on the real axis, are never in the physical energy region, If they were, the
single particle responsible for the pole could decay via strong interactions into
either of the fwo particle states to which it couples. It also can be shown that
polesv are alwaye outside the physical momentum-transfer region,

.Let us ﬁxvestigate the diagrams of Figure 1 from the point of view of poles.
In Figuré l(a) there are no pt;les at all if we ignore electromagnetic effects hecause
a two-pion state has quantum mm_nbers different from any known particle escept
the photon, Of course there may exist a ‘still undis.covered boson of mass less
than 2p, baryon number and strangeness zero, | isotopic spin 0,1, or 2 with the
appropriate even or odd spin, and with even G parity. If so, there willvbe poles

in the pion-pion scattering amplitude in addition to the photon pole, 1 which is to be

ignored in a strictly strong-coupling approach.
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Figure 1(b) similarly contains no pole from the channel where two pions are

incoming or outgoing but from the two channels where one pion and one nucleon occur, .

poles arise at s, = M? ana 8y = M_Z. respectively, corresponding to a single

nucleon connecting initial and final states. Figure l{c) has three poles, one from

each channel. The twoenucleon channel gives rise to a pole at 8, = MDZ,

corfesponding to the deuteron, while the nucleon-antinucleon channels g.-i’ve rise to
poles at 8, = pz. and 8, = p,zl, bioth corresponding to the pion.

In the ;i-agram :btain;d by replacing a ﬁion of Figure 1(a) By é photon there
- are no poles, but Figure 1(b) wi‘th a i)hdton has three, one from eaéh channel. The
channels containmg one nucleon and a pion or one nucleon and a photon each give
nucleorx poles, while the channel containing Y + 7_on one side and NN' on the other

— —

gives a pion pole. Table I summarizes the locatlon of poles in the pion-nucleon

problem.

B. Residues and Coupling Constants

Now, what about the residues? Again the rigorous dispersion-relation
derivations have given for a few special cases an answer to this question that '
agrees with the' rule suggested by perturbation theory. This rule is as follows: 12
(a) Pretend (whether ydﬁ belie?e it 6r not) ;hat éll four external particles g_rﬁ the
connecting particle a;re é}_ementary~ avx_xvc.l‘ associated with local fiélds in the conventional
sense.' Construct from lihe'sie ﬁelda invariant trilinear "interactions,' satisfying all
knowh symmetry reqﬁir;mehfa. that represent the two-particle to one-particle
transitiéna in question. Associate with each trilinear interaction a real coefﬁcient

which may be called a "coupling constant.'" (b) Calculate the contribution to the

gcattering amplitude by conventional second-order perturbation theory. There will

kY
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TABLE I |
The Positione of Poles (__mo) and Lowest Branch Foints (_3_0) Arising From the

Various Channels of Figure 1,

Channel m, S 85
. ntaedn+w — (Z__}f)z
2. w+wON+ N — (Zp.)z
3. wN GrtN M (M2
4. N+NeN+N Mg (21)*
5, N+NON+R . (2w’
6, ytusn+uw e (Z_&)Z
70y 43N+ N B '(%!i)z"
8. y+NOz+N M M)
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be one Feynman diagram for each connecting particle, the poles appearing
automaticaily from the propagators of the connectors, The residues of these poles
r:;ay be iidentiﬁed with the residues of the corresponding poles in tﬁg coﬁplete
scattering amplitude, which are thus in general proportional to the product of two
cx;upling conetants. |

Two important properties of the iesiduea may b¢ inferred from the above'
recipe. First: The residues are real. Secqnd: The residue of a pole in one
8 variable does not depend on the rerﬁaining s variables. Thus not only is the
residue proportional to products 6f coupling constants; it also is completely
determined by these constants.

Note that no \a'tatement is being made about the validity of perturbation
| theory or even. about the legitimacy of the concept of an interaction propbrtiohal to
the product of local fields. We are simply giving a recipe that is convenient because
the rules of perturbation calculation are familiar. It is perfectly poésible to
formulate a recipe for the residues that avoids a specification of the form of the
interaction and makes no use of the apparatus of perturbation theory. 13 Such a
formulation, however, would require us to develop elaborate notation otherwise
unnecessary in this review,

The most important coupling constant in our problem is that describing
the tlmree;prdnged vertex of Figure 2. Except for trivial and known factors, the
square of this constant determines the residue of all the poles of Figures 1(b) and
1{c) except that involving the deuteron. It also appears linearly in the residues of
the poles of IFigure 1(b) when a éluoton replaces a pion. 14 The vertex of Figure 2 -

V2

in general depends on the three invariants, qz.'pz.p . and the pion-nucleon coupling
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| congtant may be deﬂnedls as the value of this vertex function when all three particles
are on the mass shell, i.e., _13_2 = p_'z = Mz'. 9-2 =_£2. These conditions are guaranteed
to be satisfied when residues are :alculatedaccdrding to the above rules because

two of the three particles are "external"” and we consider the internal particle
momentum at the point where its i)ropagator is infinite, {.e., on ito mass shell, From
this point of view it is immaterial whether we introduce the coupling constant through |

the pseudoscalar " interaction'

a0y 1 o ve . (L)

{ 8 &, : ' '
Yy, v L (11 2)
E b |
-

where y {is the nucleon fleld and 4 the pion field. When all three particles are on

- the mass shell, the two forme are identical for

gl g, | (1. 3)
M '

Much less familar is the coupling constant asséciated with the vertex of
Figure 3, whose square determines the ‘residué of the deuteron pole in Figure 1(c).
Actually this vertex invoives fwo scalar functions, aasodated with the presence in
the deuterén of both S- and D-wave components, and the corresponding ""coupling
constant'' also has two parts. It can be shown [Goldber-ger et al, (21)] that the

S part is much larger than the D and bears a simple relation to the triplet
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‘ -effédtive range of the neutron-pro)ton Bystém. : Sinr.e the latter has Eeen rather'
-accurately measured it is possible to calculate the residue of the deutercm pole

'In order to calculate the re-iduea of F:gure l(b) with a pboton replc cing g
a pion, it is necessary to consider also the three- pronged vertices of Figure 4
The coupling constant for Figure 4(a) is juat e, the charge of the pionx but--as for
Figure 3--an analysis of the nucleon-photon vertex Figure 4(b) shows that two cpnstants.
are required (actually four, because the photon diatin@ishes ﬁetween neutron and |
proton), this time corresponding to the nucleon charge and anomalous magnetic
moment. The anomalous momenta are very important. but since they are |

accurately known there is no difﬁculty in calculating the required residues
[Chew et al, ‘23):]

| (C) Extrapolation ta the Neighborhood of a Pole--”Pololoamx i

It is obvio't/m that in the immediate vicinity of a pole, a -sca'ttering amplitﬁde
is coihpletely determined by the pole‘}s residue, Since these residues ar# ’fixecil‘”b‘y a
few'cqnstanta, "polology'' leads to many definite and ,intereating predictions about.
mééttering’ amplvitudes. The predictions, however, always involvev bsome kind ‘Aof» h
extrapolation of experimental data because, as we have séén. pvo_l'es invariably liej. |
in nonphyaical regions.

In order to formulate extrapolation procedures it is necessary to know something |
about the other singularities of the scattering amplitude. This question will not be
reached until the next section, but here we may describe an extremely simple type
of extrapolation LChevv(zs)] that is legitimate when a sufficiently large region of
the complex plane, includmg a physical range of the real axis as well as the
neighborhood of the pole, is singularity-free. This situation is believed to lzu'ever:).u16 |

for an g _variable in the region of its momentum- tra.nsfer range when one of the other

8_ variables is held fixed at a phymcal point in the energy range,
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Inspection of the kinematical relations of Section II Le. g+, Formula (II, 17):]
shows that when the energy is held fixed, the remaining s variables are linéai’ly related

to cos _f_ with real coeficients. We may therefore speak of a cos 6 complex plane

in whiciz the pdles are in'one-fo-'one correspondence with thosé 6f the momentum-
transfer s w-/ariables (which are reaily only a single variable because of (II. 3)),
The physical region in cos 0 is of course the interval -1 to +1 on the real axis.

It {s trivial to compute the location in the cos 0 plane of the poles enumerated
above., They all lie on the real axis but outeide the physical interval; {n Table II the
positions are given,

In every case the posaition. of the pole approaches the end of the physical
region, cos 6 = & 1, as the energy becomes very large, but at a finite energy the
- distance from the end of the physical interval to the poie varies sharply from ca;"se to

case., At currently accessiblé energies the only poles near enough to allow practical
‘extrapolations are those associated with pions in channels Nos. 4,5, and 8, 17

Since the neighborhood of the physical region in the cos_6 plane 1s'£ree from
singularities, the real and the imaginary parts of the scattering amplitude are
separately analytic functions. Now, our poles all lie on the real axis and have real
residues; thus they occur only in the extension of the real part of the araplitude, 18
A possible extrapolation proéadure. may then be based on the following: Consider the
function_jR(g). which is the real part of any one of the scalar amplitudes discussed
above, e\(:l:ated at a fixed physical energy for t;nc of the s variables. The
dependence on the other two_s variables {8 expresséd through z = cos 6. Tﬁen in

a region of the complex plane which includes the physical inter\ia_l_ -1 Lz <+, as

well as the position of the pole z = 2zg, the function

Bglz)= (z-z ) f(z) | o (I11. 4)
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TABLE IT
The Fositions of Poles Expressed in Terms of cos . The Channel Indicated is that -
whose Angular Distribution Contains the FPole. The Channel that Gives Rise to a Péle.

{n the Sense of Table I, is Always Different from the Channel that Contains this

Pole in cos 0.

re——

Channél Position of Fole in cos _Q

I
I
]u

, ‘2
S M2 ek

- 7 - 2k K.
o | | 2 2 2
3. »+4 N+R A1 4 =) (1 By ¢ S
- 2 2 2
' a Q 23
. :
4. N+N N+N # (1 44 )
. - . Z_Cﬁ
5 N+N N+FN (a) +(1+-&-2'-)
' "" 2K

P

2
() - (1 +38)

2 2
7. yt+x N+N AR
R
8. y+N m+N (a) ¥ /Aeptin
. q
2 2
2
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is analytic, Further, gR(zo) = )\, where )\ is the residue of the pole, 19 At the name

time, if__fl (z) is the imaginary part of the amplitude, then

& = (2.~ 2g) £y(=) | (1L 5)

{s analytic in at least as large a region, with —81(50) z ), The ceoas section, witb

an appropriate normalizing factor that does not contain =z, is given byzo

_otz) = £ %e) + £%02) | (111, 6)

therefore

Glz) = (a2 0z) (1. 7y

{s an analytic function throughout‘this same region with the value xz at g = z,.

e

The function G(z) can be experimentally measured in the interval

-14 z .41 and fitted with a polynomial in 2z, or--what is equivalent but more

convenient--a polynomial in z - 2 :21
_G(z) = aq +_31(7;' EO) + iz(z: ‘EO)Z + . . (111, 8)

The coefficient 8y in this expansion evidently is equal to_x__z. so that we have a
direct method of confronting the theory with experiment, |

Sufficient experimentalv data exist already to have allowed application of
this procedure by Cziffra & Moravcsik{%) to the "backward'' pion pole in neutron-
proton scattering at average neutron energiea (lab) of 90 and 400 Mev. The broad
spread in the incident-neutron energy spectrum prevente__theaé data from yielding
an accurate value for the pion-nucleon coupling constant, but the residue obtained
agrees satisfactorily with other determinations of iz. which are to be discussed
below, Eventually, it may be expected that backward__xz-g_scatter ﬁg at a well-defined
energy will yleld an accurate determination of __f_z. which in this case ie related to the

coefficient g in (IIL 8) by the formula [ghew(zs)_:’
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___fi = (gf/_l%_if) (gf + Iﬁz)«:_-ao . | (111, 9)

Moravcsik, Taylor, & Uretsky (28) have Investigated the pion pole in photopion
produétion from nucleons by the same method. The data here are poor, but the
existence of the pole can be eétablished and a rough value for jf obtained, The
"forward" pion poles in nucleon-nucleon and nucleon-antinucleon scattering will
probably be harder to expleit because the imaginary part of the amplitude tenda"’t‘6 |
- be larger than the real part near the forward direction at high energies. This
familiar.diffract_ion effec;t means that the interesting part of the cross sectioﬁ.
containing the pole, is .only a emall fraction of what is measured. 22

It is élso possible to extrapblate to poles, starting frém the energy region.qf
the real axis, These energy éx.trapolationa can be done either at fixed momentum
transfer, fixed angle.,1or at fixed angular momentum, but in all cases one must
contend wifh a branch péint lﬁng at the lower efxd of the physical interval, betwecen
the ’experimental data and the pole. It is possible to get around this branch point,
but the necessary techniques are much less direct than in the angle extrapolations.
Often the term"'eff_ective Vrange" theory is uééd to describe techniques of éxtrépolmion

in the energy variable. 23
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IV, DISPERSION RELATIONS AT FIXED MOMENTUM TRANSFER

Let us now consider the extension ofan 8 variable into the complex plane
when one of the other _s variables is held fixed in the physical momentum-transfer
range of the real axis. This situation is the opposite of that discussed above in which
the fized variable was in the energy range. Holding the momentum transfer fixed is
actually the more familiar condition historically and the one for which nearly all the
rigorous derivations have been given.

As was our practice in discussing poles, we give without proof a prescription
for extension into the complex plane that includes all the syétefnatically derived results
as well as others conjectured on the basis of petturbation theory, Consider any
invariant scattering amplitude_:é(gl,_gz. _6_3). after the internal degfees of freedom
have been removed, and suppose that 5, is held fixed on the real axis in the
monaentum-trénsfer range. The remaining two variables are linearly related
through (II. 3), and it is convenient to break our amplitude into two parts,

L) 8, .

H(8408,,83) = Ay "(sy) + Ay T(s,), - (Iv. 1)
each of which is a function of a single variable; The rule for this decomposition has,
of course, not yet been given. It is 'clgeely tied to the extension rule, which is as
follows:

8 .8 ' ,
The functions éi_ z(7r') and ___!}3'2(2) are associated with the channels in which

5y and Bae respectively, act as energy variables, Each may contain simple 'polesM
of the type described above, with residues that are independent of _:_5_2'. The remainder
of the function in each case can be represented by an integral along the real axis of

the form
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1 1)

— deg* =B 321 (IV. 2)

" 8! -2 :
P

v 8
where _g_“z(e') is real for 5, sufficiently small in absolute value, and the lower limit "

__gd is the square of the lightest mass of a multiparticle state that has the quantum
numbers of the channel in question. Table I gives the values of 8o for the various

channels,

The above prescription evidently allows an extension to complex 2, and
corr'es’pqnds to the statefnent that ézgl(ﬁ)_ é.nd ésg l!ﬁ’ are each real analytic
functione in the cut plahe with esingularities confined to poles and branch pointé on
the real axis.zs | The cut s chosen io run along the positive real axis from the lowest
‘branch point to + «., Also implied by (IV. 2), although n'ot"neceasa.rily true in
practice, is the va.niiahiﬁg of our functions at infinity; but the lé.tter requirement
_may be :;ela::ed by the technique of xambtracticm.2‘6 To avoid'complicating the formulaa,
it will be assumed ir our general discussion that subtractions are unnecessary,
although in practical applications it is necessary to be careful about this point.

For values of 8, such that E__a_z is real.27 it follows that igz(_ﬂ_: ) is
© just the imaginary part of the function in question as z approaches the positive 7

real axis from above, that is, in the limit 2z - 8’ + i« . The complete representation

of the function is thus given by

A g Az = e v 2 e =T . av.3
’ ‘n, :
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In order to illustrate the foregoing, consider the diagram 1(a), for which
there are no poles, and let 83 be fixed at a small reél negative value. 'Each of the
three ixiclependent -1 amplitudes, A, B, C, may thén be broken into two parts as in
(IV.1), and each of these parts has an integral representatipn of the type (IV,3). The

complete function can then be written, for example, as

o ﬁ'Z . (o] v Sz_ i
. ImaA, “(s,') Im A, “(s,")
1 , fmAy (5, 1 , dmby 18y
A(2,48,,85) = - ds, - ds,
ay° 23 "2 (e 2y -2

where 8 and 84 'ma.y be complex but obey the relation s t6, 15, = "‘ILZ'. &0
that either may be eliminated in terms of the other, Suppose we want to apply
(IV.4) in the regiqu whero 84 is positive real and larger than 4:)_;.2. f.e. ... in the -
physical-energy region for By, It is then appr,o»priatebto eliminate By and the

physical scattering amplitude may be defined by 28

8 L ' T ow 22 g,
3 & 1 Im A, (s') Im Ay (s))
A (s ) =lim — ds' + = - (IV.5)
z-—sahe_' w A 2 8-z 8 - (4&, - 3.3"5)
B »

-

. The denominator of the second term cannot vanish for s 2" 4:&2 ., 80 that the

imaginary part of the expression comes entircly from the vanishing of the first

29

denominator, and ‘we have

8., '
JZ ’ . . <
Im A (53) mA3 (s). | | : (1v. 6)

By conmdermg the physical energy region for ﬁ.i in a similar way we would find ’

_Inl_lA (s ) =Im A‘l (sl) , ' (1v.7)
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there fore bah ¢erms_ in the integrand of the diepe'r-sion lﬁteérai can be é#éressed in terms
of imaginary. pérts of complete scatte'i'ing amplitudes‘ Since the imaginary part of )
(IV.5) is satisfied identically awe relation (IV 6) ls used the ﬂnal dlspersion relation .
is usually written for the real part only' | : "

Re3a (03) -._[ dg' ,IM_.__SE.'_ -I”‘LA- 2(e1) . (v.8)
" |

4p.2+8 18,

Entirely similar procedures may be used to obtain dispersion relations at
fixed momentum transfers for any of the procesaes 1 - 8, When poles occur, these

are simply to be added to. the dispersion integrals. The general relation then has the

form _ :
- 3,22,
8 Im A "(s,')
Re3A s,y m =23 p AL L ds,' = 3
_—— —r 3 4 . —=3 '
mogeey mo % Z m? aspmay) T Jag, S 7%
| 8
[ Im' A (e,
+ o _gfil' . (IV.6)
X o : 4 2
Py 4
01 8y = V(AZL E__ -8, -_3)
i=1

It is characteristic that in the second or "cfossed" term of a dispersion
relation the imaginary part of the amplitude for a different channel occurs. Some-
times crossing symmetry allows one to exprees‘ thia amplifude in terms bf the channel "
originally chosen for investigation. In the -7 sc;-att-ering problem, for example, |
the cro'zsinp relations (II, 6) tell us that, under the exchange of 81 and £ , AC,

Thus the numerator of the crossed term can be writtenJl'Q. Q_ (8'). which may be

more convenient for practical applications.
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The possibility of using crossing symmetry often determines which 8 variable
is to bq held fixed‘. In pion-nucleon scattering one nearly always halds B,y fixed,
rather than s,, because of the more usefhl relations that result. Holding s, fixéd
leads to a crossed term involving the channel 7 + w&HN + W, about which little is
known experimentally. In the nucleon-nucleon dispersion relations nothing can be
done to avoid the nucleon-antinucleon channel, and as a’reault the relation has been
difficult to apply. |

In the dispersion relation (IV.06) it is neaﬂy always true that, near the lower
limits of the integrations, nonphyéical values pf 8,' and __s_l‘ occur for a fixed value
of g, In pidn~pion.scattering, for example, the minimum phyaical.value of 8
for a fixed (negative) s, is ‘4&2 -8, and thus larger than the lower limit of t}}e
dispersion integral except in the case of forward scattering, where s, = 0. vThes_e
nonphysical.intervals give rise té most of the difficulty in pfoving dispersion relations,
because it must be shown that the imaginary parts of the amplitudes in question ha:ve
a m«;aning throughout the entire region of integration., The conjecture wa§ made very
early that the needed extension of the ixvmaginary’part ofv the amplitude could be achieved
through conventional Legendre polynomial expansions such as (II.9), but it is |
necessary for these expansions to converge for a range of cos_0 that exceeds the
physicai range -1to +1 on the negative side, A proof of this convergence has
recently been given by Lehmann (12) for the cases in which rigorbus derivationm. are
possible. | | |

Rigorous derivations have been given only for the channels i + w&37 + ¥ with
either 8y or s, fixed, 3_{__1161 +:§I_ :with 8, 'vfi.xed. and y + N&3w + N with the
momentum transfer to the nucleon fvbe:e‘d. 3011: addition, proofs ha&e éo far been |

possible only for rather small magnitudes of the fixed momentum transfer.
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it ia expécted that future developraents wil) extend the Yr‘ig‘ormxa derivatiohs, bqth
in the number of channels and the range of momentum .tr'ahsfér.v In the meantime
most théorists‘ are disposed to use perturbation theory as a guide to the actual <
limitations of the dispersion-relation approach, and perturbation theory leads to
relations‘ of the type (IV.6) for all our eight channel‘s. There ;10 appear to be some
restrictions on the momentum-transfer range in which the above simple considerations
are valid, but (as will be seen in the next section) these limifétions _dd not ;:'ause any
real difficulty.
By far the most useful’ Dot f;hé fixed fﬁomexitu'm-tranéier dispeision riel'vati.ons

is that for pion-xmcleon scattering in the forward direction. Not ‘dnly is there no:
unphysical range here, but also--by luck--a direct measuremént of the heedéd |
| integrands cén be achieved thi-ough the "’opiical theorem" reiating the t_otai c’fbés
section to the imaginary part of the forward amplitude, Thve formulas for tlilis' B
‘. application were ﬁi‘st worked out by Goldberger. Miyazawa, & Oehme(30), éﬁd fﬁeir
relation to the invariant amplitudes ,l_}_o ' ana go' l.v int‘:robdu.ced abo“/e.i_n‘forﬁ%uzla

(11. 10), may be found in Reference 19. | | |

 An enormous expé—rimentai effort has gone into testing fhé fm;.ward-dire'étvivbn

piop-nucleon' dispersion relations, and some doubts ha§e been raisedwn conderning
the extent to which they are satisfied by the data. "As the errors involved bave become .
better understood, however, the apparent discrepan‘ci'ea between theory and expefiment
have diminished and the current belief by most workers who have carefully studied the .

question is that the relations are experimentally 9atisﬂéd.3z

Since the bhlt,f quantity
in these relations that is not dvii'ectly measurable {s the residue of the nucleon pole,
.we have here a relatively accurate means of détermining the pion-nucleon coupling

constnnt; The result is
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fZ

——

= 0,08 £ .01 . - (IV.9)

None of the other channels '(except__tf_n_"r!g_ w) on our list has dispersion
relationls without unphysical regions of integration. but serious efforts have been
made nonetheless to investigate N+N N+N [Matauyamam ) and Grisaru ( 4,‘]
and y + N+ N [Chew et al, (29,:{ because large parts of the dispersion integra.ls ‘
- for these two channels can be determined experimentally. The methods so far used in |
such attempts, however, are 'dirty' and certain to undergo radical improvement in
the near future, We prefer not to discuss these methods here and refer the interested
reader to tﬁe boriginal articles, Th§ conclusion from all investigations made to date
of these two channels is that the experimental data probably satisfy the dispersion
relations, with poles whose residues are foughly determined and correspond to values

of j_z_ in agreement W!th (IV.9).
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V. THE MANDELSTAM REPRESENTATION

\ The rule for extending the two ;ndgpendent _8_variables éimultaneously into
the complex piane has been given by Mandelstam, (35)_ Thia prescription {o based
mainly oﬁ per-tnx;batlon theory, #nd a llpng time may elapaé before tho rﬁlo'ln given
~ the rigorous h#sis,that now underlies some of the fixed momentum-transfer dispersion
rélatl'ons; _However, Mgndelutamf 8 represéntatidn hase \pésoed many oignificant -
| theoretical tests of internal consistency, and so far all its experimental consequences
seem satisfied. If the répresentatton' can‘tbe believed, it not only allows many. |
important types of extrapolation to .thé neighborhood of poles, but it ,appar-lently leads
to a complete dynamical description of strong-coupling physics in the conventimal
sense, That is. when thé ziximsee and Mtérnal quémtum numbers of elementary
particles. as well as the mutual coupling constants, are known, the represemaﬂon

seems in principle to allow the calculation of all physically intereating quantities.
We first write down the representation for the slmplgat case, that of pion-
plon scattering, and then generalize. According to Mandelstam the invariant
é.mplitu_de -‘5(?41'3 ' '5_3) . wher_e the arguments cé.n be complex but satisfy (II. 3),

‘may be expre;sed as follows:

RPLLINLTY

Alsyioyieg) = — dsy’ sy
o LA | fo)' -2y) (8] - 2p) v.1)
. !. ' 8 ,8 )
N N PR 51" LA N | PR U
/) (84" =5,)(2y" - 25) =) (351820085 -23)

The weight functions p j(g -j ') are real and the mtegrations in each s' variable go

over a region of the positive real axis extending to inf{n{ty. For_w-m scattering the
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region in which the weight functions are nonzero is aayrhptotic to the limiting values
& = tz., Bj: 4&_2. This particular region {s shown in Figure 5, The general recipe

(36) » but the asymptotic

for calculating boundary curves is not simple Mandelstam
limits are always given by the 89 of ’I".able 1. That is, the absolute lower limit of
any :‘_ ‘ variable of integration, which occurs when the other s' variable withv?‘ which
it ie paired goes to infinity, is équal to the lowest mass of a multiparticle gtéte
that has the quantum numbers of the channel in question, If single-particle states can
occur, then simple poles with constant residues are to be added to (V 'l). Also sub-
tractiond . 3 may be needed if the amplitude does not vanish at infmity for both |
independent variables.

It is easy to see that holding one 8_ variablevfixed at a real value outside its
energ} rvange andl ca‘rrying out one of the two integrations in the Mandelstam

representation leads to ordinary dispersion relations. If we wish to arrive at (iv.6),

for example, then the first and third terms of (V. 1) may be written as

© 8 © BZ
Bz (54" Bp3 (83")
1 gsr =221, 1 st =223 (v.2)
w T8y -5y . o 93' - 84
i 8y -8
10 f30

where the new welght functions,

(s.'s8,") . o
2j (’5‘ )z "'"] ____2 2 2 » _i.u 1,3, (v.3)
S (ﬁ c) EZ' -8, |

. 0(g.0 '
are real for s 8,0+ since the lower limit s, (gj ) is always larger than §,,.

2
This form is then exactly that required for the ordinary dispersion relations at fixed

b

5, For the second term of (V. 1), we make use of the identity



-39. UCRL-8670

1 | 1
- : ( — + )
(34" <81 (85" = 85) 8)' +8y' -8, -3, 8 - 8 g3’ -8,
- 1 (—2 s 1 (V. 4)
2, 5)'-8)  85'-3,
8, 8, -_2; my +8, _
i=1

to arrive at a similar form., Thus the entire expr'ession (V.1) can be written in the
' 8
forra (V.2) if glz”zigl‘) is augmented by the integral

w . .
-2 (5,'s 8 ) \ _
___l_f sy 131 %2 ' (V.5)
-
=, sy sy Zm |

85 _ .
and g32 (s3 ) by a corresponding integral over d l . The complete connection

-

between (V. 1) and (IV.6) is therefore given by

3 s * Paa(s,'s 2,5') ' = P yalay'gy")
A %, = 2 g =32=3"-2 L ds, =121 73
T T ) e T =y -, " ), T & 2
5, (85') %8, (83 ) ey *‘..%’.3"‘_2,.1;‘{.1; 1B,
L=
(V.6)
o 0 .
2, Pq108:°08,') (5,".85")
IE‘}*‘}_Z(BI'):-}-— da L1212’ 1 _g%,_fla 1773
- - L "o s,' -8 w 0, ., 4
—15,0(5)") = e — 75y (e -8, +~§3’2_m1 t5;
s S

Poles that may appear in the Mandelstam representation are to be carried over
without change into the one-dimensional representation, except that a pole in the
fixed variable is generally suppressed by making a subtraction, since it becomes

just a constant in the reduced equation,
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The denominators of the second integrals in (\.f.b) can vanish if 32 is
sufficiently large and negative, so that the f'im'aginary parts" defined by these ex-
pressions become complex. It can easily be shown, however, that the imaginary parts
of the "imaginary parts' cancel out when both terms of ('N..LG) are calculated because
the apparent gingularity was introduced artificially through the partial fractions of
(V.4).

A second elementary application of the Mandelstam representation is to
justify the procedure outlined in Sec. III for extrapolating to the neiglibofhood
of poles, Here the fixed g variable is in the physical-energy range; l.e., real and
larger than the 80 for this chapnel. It is easy to see by inspection of (V.1') that if
the remaining two variables are replaced by cos_@blthen the singularities in the cos
complex plane'all lie on th.e real akis and are outside the physical interval, -1 cos 6_ +1.
Furthermore the nearest branch point’a% are determined by the_go values and always

le beyond any poleé that occur. Thus there is ho impediment to a simple polynqihial
extrapolation from the physical region,

Many other applications of (V. 1) aré possible, For example, Cini, Fubini, &
/Stangh’ellinim” have derived dispersion relations at fixed'cos"f_, and several workers
have deduced dispersion relations for fixed angular momentum. The latter are
parvticularly powerful because they allow a simple incorporation of the unitarity of the
S matrix into the problemn. When unitarity is added to (V. 1) the dynamics of the
system seem to be almost completely determined.

In order to get dispersion relations for a given partial-wave amplitude (i.e.,
for a definite angular momentum), it is necessary to make a projection of (V. 1),
Taking W w_ scattering agein as an example and uszing (11, 8) to replace ﬁl and 8,

by cos 8 and 84 by c_;_f, we would expand_ﬂ_x(gl,_s_z, 8_3) as. follows:
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Alg?, cos 6) = Z (20 + ”ffl.é, (_cLZ)_I?L (cos €), (v.8)
9 =0 -
where
+1
C_l_z!'__é! (qf) =% ax ﬁ(g_z.zs) P, (%) . (v.9)
ol 1 .

Since the dependence of (V. 1) on _a;i and 85 and hence on cos @ is contained explicitly

¢ in the d_enomi_natois. one may carry out the integration (V.9) and obtain an expression

for _A:(ef’) in which the singularities in the g_z complex plane are clearly exhibited.
There are of course no poles in the y__'w_case.. and all the branc‘:hﬂ points turﬁ

out to lie on the real axis [_Cl‘_xew & _Mandelatazh"g)] . There is a branch point at

qz = 0, the threshold of the-phyéical region, another at gf = B_E_Z. the threshold for

"producing two addi}tibonalypions. and so on. It is convenient, then, to chooag a cut

running along the poéitive rcal axis from 0 to « . On the negative real axis there is

a cofrespdnding set of branch points, the first occurring a,t_q_2 = -ﬁz. the second at

qz Z - ﬁEz; and so forth, so that a second cut may be chosen to run along the

negative real axis from - « to -_p_z.
In more complicated channels the Branch points may not all lie on the real

axis, but theif positions can be determined by inspection of (V. 1) after the projection

is carried out. There are in general three cuts, corresponding to the three channels of
a single diagram, but when two or more {dentical parti.cles applear in the same diagram
there may be a coincidence of the singularities arising from different channels. Such

a coincidence occurs in the w 7 problem just described, where the left-hand cui covers
a superposition of two sets of branch points. The results for # + N7 + N have been
given by McDowellBB), for 7 + TN +R_by Fulco(zo), for N + NeaN + N by |

(39) . (22)

Noyes & Wong » and for y+ w¢m+ w by H. Wong.
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The partial-wave amplitudes may be expressed in each case in terms of
integrals along the cuts, where the integrand {s the discontinuity in going across
the cut and may be written in terms of the imaginary part of the physical amplitude
for the channel which gives rise to the cut in question. It is possible, therefore, to
consider these relations as coupled integral equations which determine the dynaln"xics
of the system.,

To illustrate the situation consider the S-wave part of the amplitude A
in pion-pion scattering. This amplitude, by projection according to (V.9) from
(V.1), satisfies the disperaioh relation

o0 o«

2
2 pola”) ImA,4(d)) |
Agahr= L ag ‘Z'-“ - ! dq? - 02 . (V.10)
- E HZ ot —= 0 B c_f_ -4
where
. u2
2 d 12 " 2 ‘1‘&:—- ' 11

poldN) =2 -:f'z—-__!r_z__l B(g"% 1 - zﬁa—-—q"& ). v

o R ——

B and_C, satisfy similar re-

——r

'fhe other partial A amplitudes, as well as those of
lations, and by taking the linear combinations (II. 7) one can form dispersion relations
for partial waves of well-defined isotopic spin. At this stage the imaginary part

on the right-hand cut, at least for Ol‘gft_ 3'&_2 , can be very simply expressed in

terms of the unitarity condition. That is, since according to (I 9),

2, 2 1
B R et L) R T (v.12)
L4 2 — |
q

with __% “l; real {n this interval, it follows that
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N 2 s .
mate?e- —— atedh 7. (v.13)

Beyond. qZ =3 p,z , 1t is neceeaary to iﬁclude\ inelastic processes in the expression
for the imaginary part of tbe amplitude. |

The expression (V. 11) for the coﬁtribution from the cut along the negative
real axis involves the {maginary part of the pion-pion amplitude for cos § £-1. By
inspection of the boundaries in E‘igu_re‘ 5 it can be chown that the polynozﬁial expansion
of the imaginary part. for the values of cos __6; required in (V. 11), converges fqr
?: z < 9&2. [Chew & Mandels_tam“_‘s):] . There {8 no difficulty then in representing
~ the fuxic;:-{c\in. P 0~(q‘ .z) ‘up to this point; beyond it new techniques, such as suggested by
Mandelstamﬁs,. —must be u;sed. These techniques are too complicated to be ‘described
_here,
| Attempts are currently being made to solve the plon-pion equations in a iow-
" energy approximatibn in which only S and P waves and only the lowest branch points‘
are considered [_Chew & Mandelstam( S)J The latter sxmphf-ic’aﬁon correaporxds to
the neglect of inelastic procesaes and allows the use of (V. 13) throughout the physical :
region.v The former permits an elementary calculation.of the contribution from the
left-hand (unphysical) cut. , |

The equations to be solved contain one free parameter. which may be called
the piéi’x'—pion coupling constant. It is introduced conveniently as the value of the
amplitude at the point s;5s;=¢ By = g = 4 E_Z » where the three amplitudes |

3 : _ :
_A/B and C are all real and equal to one another. Frecisely, we may define

et LU RE LD R IR | (V. 14)
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It is clear that at least one arbitrary constant is needed in the elastic approximation
because the equations permit as a soluﬁon an amf:litude that is zero everywhere, It |
is not known whether an arbitrary constant would be necessary in a cllcuation that
included inelastic processes, such as # + ¥4 N + N'; however, it will be 80 difficult
to calculate such high-energy effects accurately that in practice l will surely play
the role of an "independent' constant for a long time to come. At the time of this
writing it is known only from the absence of a 2m:bound.state that 0L £.1, but:
experimental efforts are ;ﬁnder way which sheuld soon yield some information,
Attempts are also being made to solve the integral eq\iations resulting from
the application of Mandelstam's representation to Figures 1(b) and 1{c), and in the
final section the relationships of the different channels and thelr current status of

(36) that the results of conventioné.l

‘ understandi.ng are surveyed, Mandelatani has shown
perturbation theory can be reproduced by iteration of his integral equations, therefore
there is a strong inclination to believe that they represent a complete dynamical
framework, given the masses and conventional coupling constants. Of course thesge
highly nonlinear equations, if they can be solved at all, must be applied to large
coupling conatanté for which the perturbation series is meaningless, Whether the
e‘quati'ons have unique solutions in such a situation is not known. Ferhaps they have

no solutions at all except for certain definite values of the masses and coupling

constantsd,
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V1. SUMMARY AND CONCLUSION

The reader may wonder why so few concrete results have been given in this
review., The reason is that in the author's opinion the results obta.ined toc date are
relatively insignificant compared with what will be forthcoming in the next year or two.
The pdwer of the generalized dispersion relations, when supplemented by unitarity,
has only recently been recognized, and theoretical attermpts to utilize '.thia power are
1in their infancy. |

It {8 true that a large literature on dispersion relations ah;eady exists, but
this is based almost entirely on fixed momentum-transfer relations which contain
only a part of the estory. All questions investigated to date will surely be reexamined
within the snore general framework and a vast clarification is guaranteed. The current
literature is filled with confusion about "'subtractions' and exmnsiona in the momentume
~ transfer variable that we see no point in propagating further in this review,

It ie poasi‘bie already to see the outline of a general line of attack on vthe
pi.onn'-nuclefon problem that should go quite a distance toward answering the conventional
questions. The starting point must be plon-pion scattering, where, as explained |
above, one can hope to calculate the amplitude up to &2 ~ 3_9.2 in terms of a single
constant 1\, Next one would go to the two channels of Figuré 1(b),

F+Ne>m +N- and =+ E@.I:_I +_§: which in such an approach must be considered
- simultaneously and for which the uw interaction must already be known.l
One of the most misleading aspects of the hi:atbry of pion-'nucleor'x theory is

the partial success of attempts to understand low-energy pion nucleon 8Scattering

without any inclusion of a pion-pion interaction Chew & Low(zg)] . Such success

appears now to be largely accidental; it had the beneficial effect of reviving interest
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in field theory for strong-coupling phenomena, but if pion-pion scattering at very
low kinetic energics were as strong as it must be at higher energies, simple models
of the pion-nuéleon {nteraction Would- not work, These models, of course, have
never even pretended to answer such basic questions as why the S-wave pion-nucleon
phase shifts are small,
It is perhaps worth spelling out the interrelation of the three processes

o+ W +_ir, 7+ Nedw + N, aﬁd_}_r + (—)_Ii+_i§' “in th.e Mandelatam framework,
" If one derives diaperaioh relations for plon-nucleon partial waves then there are two
left_-hand unphysical cuts, one corresponding to pion-nucleon scattering itself and
one to the channel # + we— N +_§' . Keeping only the former leads to integral

equations roughly of the kind proposed by Chew & Low(zg ), provided the inelastic
branch points ére ignored, 35 |

The nearest portion of the other cut requires a knowledge of the amplitude for

v+ 5O N+N atenergies for this proéesa between 2p and 4p. Such an energy region
is unphysical, and fortunately so, because if the dispersion r.elations for this
amplitude are derived the contribution from the right-hand cut in the corresponding
interval is controlled entirely by pion-pion elastic scat&ering.' Precisely, the
unitarity condition for this interval is that the phase of a partial-wave amplitude

for Tt aeHN + E is the same as the phase of the correéponding elastic pion-pion
amplitude, This information, together with a knowledge of the contribution {rom the

left-hand cuts, 36 is sufficient to determine the amplitude for w + w&)N + N,

provided always that highér branch points are neglected,
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The coupled integral equations that must be solved in carrying out
Mandelstam's program are complicated but apparently manageable with fast electronic
computers, There is reason to hope, then, that low-energy pion-nucleon scattering
can be roughly calculated in terms of the two constants ) and gz. The neglect of
ﬁigher branch points of course limits the accuracy of the calculation and precludes
a treatment of high-energy scattering by this method, |

It is perhaps worth emphaéizing the philosophy behind the approximation of
neglecting high-energy singularities. The underlying motivation lies in the property
of an analytic function that its bebavior in a small region is8 dominated by near-by |

. singularities, The diépersion relations make this feature'very clear, since they
resemble Coulomb‘é law for a static potential pro_duced by point chargeé (poles) and

. line charges (branch.cuts). Faraway charges produce at most a slowly varying
potential in a local region; strong variations of potential are produced by near=-by

: charges.‘ It is obvious that in strong-coupling ﬁroblema no calculation can be exact;
séme' approximation must be made. A program of successive approximations based on

- the distance of singularities from the region of interest seems to the author more
plausible than any other procedure yet proposed,

Many valuable theoretical by-products would flow from a successful integration
of Manéelstam's equations for Figure 1(b). A knowledge of the amplitude
T+ BN + E}T would albow at long last a correct ca.lcﬂlation of the two-pion exchange
contribution to the nucleon-nucleon interaction., Precisely, one may derive

[I_\ones & Wong(39)] dispersion relations for partial-wave nucleon-nucleon elastic-
scattering amplitudes, where the two left-hand cuts are coincident and associated

with the process N + N¢3 N+ N . The nearest contribution comes from the
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single~-pion intermediate state in this process, which is determined entirely by _gz.
The next contribution is from the 2u state and is known as eoon as one knows the
araplitude for ‘N + E*f%—-}z_uf_ . There is some reason to believe that inclusion of these
two singularities will allow a rough calculation of low-energy nucleon-nucleon phase
shifts withou‘t any new parameters. If the faraway left-hand singularities are
represented by an adjustable constant, 37 one may hope to achieve an accurate
theory. It should be emphasized that in the solution of the nucleon-nucleon integral
equations, the deuteron pole will appear automatically; it does not have to be inserted
as an independent entity., Thus one e:;apecta to calculate the binding encrgy and
quadrupole moment of the deutecron, as well as the triplet effective range, in terms
of "fundamental' constants,

A second application of the amplitude for N + @'{——5 2u is to the problem of
nucleon electromagnetic structure [Chew, et a.l_k.w‘ﬁ). Federbush, et al.(é“_] . Here,
" in conjunction with the vertex function for Y —> &, this amplitude determines the/
structure and magnitude of the anomaioms magnetic moment. The pion-photon vertex
function can easily be calculated once the pion-pion scattering amplitude is available.

Also immediately calculable in terms of w-w scattering is the amplitude for
y + @ &>2w, which is needed in the problem y + Né237 + M. One of the two lefi~hand
cuts in the latter case involves plmtopionhroﬁuction itgelf but the other requires
ytm &N+ TES_", which in turn involves y + w4 2r . It should be possible, then, to
put the theory of low energy photopion production {rom nucleons on a sound basis.

The chain does not end here. With a proper understanding of photopion
prodixction one can calculate photon-nucleon elastic scattering, and this latter
amplitude may allow a calculation of the nmitron—praton mass difference

[Cini. et al, (4‘:)] . Similarly the charged-ncutral pion mass difference may be
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calculable in terms of s x_r_é—)y_-& , which in turn depends on AARI YL The
chance of achieving quantitatively reliable results from mass calculations {8, however,.
much smaller than that for scattering amplitudes.

Even if, as is unlikely, the calculations outlined here were to yield good' '
results in terms of the four conataﬁts.‘ Mo Is_{l. A and g_z. it must not be auppbéea
that all questions would have been answered. Why should these constants have the
particular values that are observed? Why are nucleons and pions the only nonstrange
strongly interacting "elementary' particles? Why is the pion pseudoscalor? There
is no understanding yet of such questibns. ‘and if we start to consider the hyperon@' )
and K particles the number of puzilea mﬁltlplie. Exciting as the prospects ﬁr'e
fof dynamical calculations with the Mandelstam representation, it must be rémeﬁbergd .
" that these calculations are based on conventional ﬁeld theory, juat as it was invented
30 Years ago, and that the bfeakthrough which will tell us the origin of elementary

particles has not been achicved,
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FOOTNOTES
Faged
lIt will be assumed that for the strong coupling phenomena with which we are
concerned, charge conjugation invariance and parity conservation are separately.

valid, as well as charge independence.

Pape 9

2yre shall refer to each possible pairing as a 'channel". For each diagram there
are three channels,
Page 10
3$eez. for example, Jauch & Rohrlich (14), p. 161,

Page 11
4Note that such an exchange is consistent with the constraint (IL. 3).

Page 12

5For a more complete diacﬁsaion of the w.w problem, see Chew & Mandelstam(15).

6See. for example, Bethe & deHoffman (16), p. 49.
Page 14

7The so-called G parity of Lee & Yang (17), which for states containing only

pions is even or odd depending on whether the total number of piona is even or odd,

States with nonzero baryon number generally do not have well-defined G parity.

8.‘:'Se(e.. for example, the review by Chew (19).

Page 20

I The more general rule is stated in Sec. IIl of Reference 24,

loSince we are neglecting weak and electromagnetic interactions, all the usually

discussed "elementary' particles are to be counted as stable.

nThe photon pole for charged particles manifests itself in the Coulomb part of the.

amplitude that becomes infinite at zero momentum transfer,
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Pa.ge 21

12A generalization of this rule for processes {nvolving more than four particles

is given in Reference 24.

Page 22
13See. for example, Symanzik (6).

14

The pion-nucleon coupling constant also occurs in the residues of poles for
processes involving more than four particles, See, for example, Chew and Low (24).

Page 4

15thn electromagnetic effects are considered, one must define three constants,

one for the processes £+ + _x_}_(..)é and ngp + _1_7_'. one for the process lr_o + POP.
and one for 310 +nean. These three consténts are expected to differ by a few
percent,

Page 25

mLehmann (12) has given a rigorous proof of analyticity properties in the
momentume-transfer variable that a.lzﬁorat. but not quite, guarantees the domain of
analyticity required here.

Page 27

ar e T e vt

17We shall 2ls0 see in the next section that the nearest branch pointe lie relatively

close to the nucleon poles and further add to the diffficulty of extrapolation in these cases.

18']I‘he imaginary part of the amplitude has only branch points, which in the next

section will be seen to be further from the physical region than the nearest Srangh_

points in the real part.



Page 28
19

The residue )\ is proportional to g2 in the case of the poles Nos. 4 and 5a and to eg

in the case of (8a).

ZOWith internal degrees of freecdom there will be generally more than one |

scalar amplitude, but since all have the same properties of analyticity, the
procedure ocutlined is still valid.

Zl'i‘he question of how high an order of polynomial should be used depends on the
energy, the angular interval of the experiment, and the accuracy, as well as the

_ location of the nearest branch point, The most careful study of this question to

date has been by Cziffra & Moravcéik (26) and by Frazer, (27)

Page 29
zzExtra.polationa to poles in angular distributions can be and are being carried

~ out for many processes not considered here because they involve strange or complex
particles or more than four particles all together, The basic principles involved

are always the same,

23An example of the effective-range type of extrapolation is that proposed by

Chew & Low (29) in connection with P-wave pion-nucleon scattering., The Chew-Low
procedure was very crude, however, since (among other circumstances) there really
is no pole in the amplitudé they considered. These authors approximated a pair of
neighboring branch points by a simple pole, a procedure that is exact only for an

infinitely heavy nucleon. Also, singularities associated with the pion-pion interaction

were ignored. ' : 5
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Page 30

24In practice as seen in Table I the particular channels with which we are
concerned in the pion-nucleon problem have at most one pole each,
Page 31

szee, for example, Reference 19, Sec, 40,

26Tlnue necessity for subtractions in dispersion relations is discussed in a

systematic way by Bogoliubov et al, (7), p. 5
273ce the discussion below, following equation (V.8).

Page 32

28 Ld

Note carefully the difference between @3(53) and é3 2{33) . The former is the
complete amplitude, while the latter is only one of two parts. Their imaginary

parts are the same, but not their real parts.

Zgl-iere one may use the rule 1 =P 1 + i’mS(sf_ - §3) .
o -(sy+id  Tstesy T

where P signifies that the principal value of the integral is to be taken.
Page 34 |

304 . _

See the review by Goldberger (11).

Page 35

31

Pion-pion scattering has thus far eluded direct observation because of the
relatively short lifetime of the particles.

32See, for example, Schnitzer & Salzman (32). References to other work on the

verification of the forward w-N relation can be found in these articles.
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Page 38

33Thetse subtractions do not correspond to the introduction of new arbitrary

: | ‘
constants if they are raade in only one variable. See Mandelstam(‘3 ).
Page 40

34‘1‘}10 nearest right-hand branch point (or left) is given by the equation
sl(cos 6, 53) =840 and the nearest left-hand branch point (or right) by
_8,(c08 6, 8,) = 8, if the fixed variable is 8y
Page 46 ' |
35. To evaluate the contribution of the left-hand pion-nucleon cut an extension to
cos 6L -1 is requifed, just as in the plon-pion problem, and it may be necessary

to introduce a cutoff if this extension is carried out by Legendre polynomials,

36’[‘53 two left-hand cuts here are coincidént. both being‘assbda‘ted with pione

- nucleon scattering.
Page 48

37Thie constant may be thought of as equivalent to the hard-core radius of

conventional potentials,



-58- UCRL-8670

N N
~Py Py
A Py
N N

(a) (b)  (c)

MU — 16982

Figure 1. The three fundamental diagrams of the pion-nucleon
system. Outgoing particles are assigned negative momenta
in accordance with the convention of Section II,
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Figure 2. The pion-nucleon vertex.
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Fig. 3. The nucleon-deuteron vertex.
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The pion-photon vertex.
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Fig. 5. - The nucleon-photon vertex.
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