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Abstract
Extreme rainfall events drive the amount and spatial distribution of rainfall in theAmazon and are a
key driver of forest dynamics across the basin. This study investigates how the 3-hourly predictions in
theHighResolutionModel Intercomparison Project (HighResMIP, a component of the recent
CoupledModel Intercomparison Project, CMIP6) represent extreme rainfall events at annual,
seasonal, and sub-daily time scales. TRMM3B42 (Tropical RainfallMeasuringMission) 3 h datawere
used as observations. Our results showed that eleven out of seventeenHighResMIPmodels showed
the observed association between rainfall and number of extreme events at the annual and seasonal
scales. Twomodels captured the spatial pattern of number of extreme events at the seasonal and
annual scales better (higher correlation) than the othermodels. None of themodels captured the sub-
daily timing of extreme rainfall, though some reproduced daily totals. Our results suggest that higher
model resolution is a crucial factor for capturing extreme rainfall events in theAmazon, but itmight
not be the sole factor. Improving the representation ofAmazon extreme rainfall events inHighResMIP
models can help reducemodel rainfall biases and uncertainties and enablemore reliable assessments
of thewater cycle and forest dynamics in the Amazon.

1. Introduction

TheAmazon is a key component of the Earth systemby affecting climate regulation, carbon storage, andwater
recycling. TheAmazon covers 5.65× 106 km2 (53%) of global tropical forest area (Negrón-Juárez et al 2018) and
contains 25%of theworld’s terrestrial biomass (98 PgC), (Malhi et al 2011, Pan et al 2013). Regionswithin the
Amazon receive between 1500 and 4000mmof rain per year, and 32%of this rainfall is recycledwater by
evapotranspiration (Staal et al 2018).

Tropical convection is a key process producing large amounts of rainfall in the Amazon rainforest (Nobre
et al 2009). TheAmazon exhibits a gradient of rainfall from the southeast, which has a dry season of 5 to 6
months (consecutivemonthswith rainfall�100 mm), to the rainy north (no dry season) (Sombroek 2001,
Marengo et al 2012, Good et al 2016, Rasmussen et al 2016). Amazon rainfall is often characterized by extreme
rainfall events produced bymesoscale convective systems (MCS), which significantly contribute to total annual
rainfall (SilvaDias et al 2009, Pereira Filho et al 2015,Nunes et al 2016, Rehbein et al 2018). These systems are
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regulated by the SouthAmericanMonsoon System (SAMS) (Carvalho et al 2011,Marengo et al 2012) and the
location of the Intertropical Convergence Zone (ITCZ) (Santos et al 2017). TheMCSmoveswestward year-
round, and some episodes can last longer than 3 days and cross the entire Amazon basin (Pereira Filho et al 2015,
Rehbein et al 2018). Less frequentMCSmoving from southwestern to northeastern in the Amazon also produce
large amounts of rainfall (Negrón-Juárez et al 2017).

Extreme rainfall events in the Amazon represent∼5%of all precipitation events (figure 1), contribute about
46%of total rainfall (Jaramillo et al 2017) and are a key component of forest dynamics and function. Associated
with heavy rainfall fromMCS are downbursts that can producewindthrows (uprooted and broken trees by
wind), ranging from single trees to large areas of downed forest (Nelson et al 1994, Negrón-Juárez et al 2010,
Negrón-Juárez et al 2011,Negrón-Juárez et al 2018,Negron-Juarez et al 2023).Windthrows can promote forest
diversity by creating gaps in the canopy and increasing competition among species (MagnaboscoMarra et al
2018,Negrón-Juárez et al 2018, UrquizaMuñoz et al 2021). A recent study showed that Amazonwindthrows are
expected to increase in frequency in awarming environment (Feng et al 2023a) and therefore could have
significant implications for the functioning of theAmazon and its biodiversity.

TheWorldClimate Research Programme (WCRP) initiated theCoupledModel Intercomparison Project
Phase 6 (CMIP6) as a coordinated Earth SystemModels (ESM) experiment to improve understanding of the
Earth System (Eyring et al 2016). Despite CMIP6’s advancements in understanding the Earth system, accurately
reproducing observed patterns of extreme rainfall in theAmazon remains a challenge (Hagos et al 2021).
Includedwithin CMIP6, theHighResolutionModel Intercomparison Project (HighResMIP) seeks to quantify
the benefits of increased horizontalmodel resolution for representing climatology andweather patterns with
greaterfidelity (Haarsma et al 2016). The hypothesis posits that higher spatial resolution improves the accuracy
of rainfall patterns. Thus, this study aims to evaluate how theHighResMIPmodel represents Amazon rainfall
focusing on: (a) observed associations between seasonal, annual and extreme rainfall events, (b) seasonal
variability of extreme rainfall events, and (c) observed sub-daily patterns of extreme rainfall. This is the first
study to examine howHighResMIPmodels represent Amazon rainfall across annual, seasonal, and sub-daily
timescales.

2. Study area, data, andmethods

2.1. Study area
The study area is the Amazon rainforest (figure 1). TheAmazon has east-west gradients of rainfall, forest
dynamics, and soil nutrient availability (Malhi andDavidson 2009). Deforestation has reduced the extent of the
Amazon, and ismore prevalent in the southern fringes, which also have the longest dry season. Deforestation in
the Amazon is driven by a number of factors, including lowproductivity and unsustainable agricultural practices

Figure 1.Cumulative number of 3 h rainfall events from 1998 to 2017 using TRMM3 h (TRMM3B42) data. The inset shows the
mean annual number of extreme rainfall events (Ne

a) (rainfall events� 5.6 mm h−1) over theAmazon. The red arrow shows the value
of 5.6 mm h−1.
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(Nobre et al 2016). TheAmazon area used in this study (figure 1) corresponds to the biogeographic limits of the
Amazon from the RedAmazónica de Información Socioambiental Georreferenciada (https://.raisg.org).

2.2. Rainfall data
Weused the 3-hour data from the Tropical RainfallMeasuringMission (TRMM)Multi-Satellite Precipitation
(TMPA) rainfall Level 3V7 (3B42) (Huffman et al 2016). This data has a horizontal resolution of 0.25°× 0.25°
and the period used is from January 1, 1998 toDecember 31, 2017. This data is hereafter referred to as TRMM
3 h. TRMM3 hdata is available at https://disc.gsfc.nasa.gov/datasets/, and covers all longitudes and latitudes
between−50° and 50° on a 0.25° grid (1440× 400). TRMM3 hdata are instantaneous rainfall (Huffman and
Bolvin 2018,Huffman et al 2018). The TRMMsatellite stopped collecting data in 2015, but TRMM-like data
were processed using the successor satellite, theGlobal PrecipitationMission (Skofronick-Jackson et al 2017,
Huffman et al 2018) until 2019. Previous studies have shown that TRMM3 h accurately represents Amazon
rainfall at the sub-daily (Machado et al 2002, Sapucci et al 2022), daily (Michot et al 2018), monthly (Zulkafli et al
2014), and annual (Michot et al 2018) time scales.

Themean annual rainfall (MAR)was calculated by adding all rainfall events per grid cell and dividing this
total by the number of years in the observational record. An analogous approachwas used for each season (DJF,
MAM, JJA, SON). The number of extreme rainfall events (Ne)was calculated as the number of rainfall events�
5.6 mm h−1. This value reflects the average value of rainfall rates forMCSs across northwest, western, southern,
central and eastern Amazon regions as reported in table 2 in Jaramillo et al (2017). Themean annual number of
extreme rainfall events (Ne

a) per grid cell was calculated by adding the number of extreme rainfall events and
dividing this total by the number of years in the observational record. An analogous approachwas used to
calculate themean seasonal number of extreme events (N ,e

DJF N ,e
MAM N ,e

JJA Ne
SON ). Figure 1 shows the rainfall

events across thewhole time series of TRMM3 hdata over theAmazon, and the spatial distribution of N .e
a

2.3.HighResMIPmodels
Weusedmodel data fromHighResMIP (available at https://esgf-node.llnl.gov), which investigates the impact
of horizontal resolution in themodel representation of the climate system (Haarsma et al 2016). HighResMIP is
divided into experiments (tiers); for this studywe usedTier1, HighResSST-Present. HighResSST-Present
simulations are historically forced atmosphere-only (ForcedAtmos) runs from1950 to 2014. The simulations
are forced by observed sea surface temperature, sea ice cover, CO2 concentration, solar variability, and ozone
concentrationwithfixed land use according to theHighResMIP protocol (Haarsma et al 2016).

HighResSST allows for high resolution analysis of interannual variability ofmonsoons (Haarsma et al 2016)
and is relevant for this study because an important fraction of the Amazon rainfall variability is related to the
SouthAmericanMonsoon (Robertson andMechoso 2000,Marengo et al 2012,Wang et al 2018). In this study
we used the last 20 years ofHighResSST-Present data (1995 to 2014) to comparewith TRMM3 h.

Table 1 shows themodels used, themodel variants, and the reference for eachmodel. For everymodelMAR
and Ne was calculatedwith the same approach described for the TRMM3 hdata.We include in our analysis 17
HighResMIPmodels for a total of 18 simulations: (a) threemodels from the Institute Pierre-Simon Laplace
(IPSL) in France: IPSL-CM6A-ATM-HR, IPSL-CM6A-ATM-ICO-HR, and IPSL-CM6A-ATM-ICO-VHR; (b)
twomodels from theModel for Interdisciplinary Research onClimate (MIROC) in Japan:NICAM16-7S and
NICAM16-8S; (c) twomodels from the European community Earth SystemModel (EC-Earth): EC-Earth3P-
HR and EC-Earth3P; (d) twomodels from theMeteorological Research Institute (MRI) in Japan:MRI-AGCM3-
2-H andMRI-AGCM3-2-S; (e) twomodels from theChinese Academy of Sciences Flexible GlobalOcean-
Atmosphere-Land SystemModel (CAS FGOALS): CAS FGOALS-f3-H andCAS FGOALS-f3-L; (f) onemodel
from the BeijingClimate Center-BCC inChina: BCC-CSM2-HR; (g) onemodel from theCentreNational de
RecherchesMétéorologiques- CNRM in France: CNRM-CM6-1; (h) onemodel from theMetOfficeHadley
Centre (MOCH) inUK:HadGEM3-CG31-LM; (i) onemodel from theNationalOceanic andAtmospheric
Administration (NOAAGeophysical FluidDynamics Laboratory (GFDL) inUSA:GFDL-CM4C192; (j) one
model from the from the ResearchCenter for Environmental Changes, Academia Sinica- AS-REC inTaiwan:
HIRAM-SIT-LR and; (k) onemodel from theChinese Academy ofMeteorological Sciences - Climate
SimulationModel - CAMS-CSM:CAMS-CSM1-0.

2.4. Regridding
Toperform comparative analyses between TRMM3 h andHighResMIPmodels, we used the TempestRemap
remapping software (Ullrich andTaylor 2015,Ullrich et al 2016).We remapped the TRMM3 hdata grid to every
HighResMIPmodel grid (Chen andKnutson 2008, Gervais et al 2014,Wehner et al 2021).
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2.5. Analysis
To compare howHighResMIPmodels performed compared to regridded TRMM3 hdata, we used a relative
errormetric (100×(HighResMIP -TRMM3 h)/TRMM3 h) andTaylor diagrams (Taylor 2001) from
SkillMetrics (Rochford 2016). To facilitate the comparison, we normalized the standard deviation of eachmodel
by the corresponding values of the observed (TRMM3 h) extremes (Wehner et al 2021).

To calculate the seasonal 3 h diurnal cycle (00 h, 03 h, 06 h, 09 h, 12 h, 15 h, 18 h, 21 hUTC) arealmean
number of extreme events, wefirst calculate the sumof the Ne values for all grid cells at each three-hour interval
and then divide this sumby the number of grid cells.

3. Results

High correlation values (r)were found betweenMAR and Ne fromTRMM3 h across all four seasons,
confirming the importance of observed extreme events for predicting rainfall (figure 2 and Supplementary figure
S1). However, not all HighResMIPmodels captured the observed association between Ne and total rainfall at
annual and seasonal scales (figure 2). Specifically, NICAM16-7S, NICAM16-8S, IPSL-CM6A-ATM-ICO-VHR,
IPSL-CM6A-ATM-HR,HadGEM3-CG31-HM,GFDL-CM4C192, FGOALS-f3-H, BCC-CSM2-HR, and
HIRAM-SIT-LR had the highest correlation valueswhileMRI-AGCM3-2-H,MRI-AGCM3-2-S, IPSL-CM6A-
ATM-ICO-MR, EC-Earth3P, andCNRM-CM6-1 had the lowest correlation values.

The relative error between the Ne fromHighResMIPmodels andTRMM3 h for annual and seasonal time
scales variedwidely amongmodels (figure 3).Withinmodel variants, consistent wet and dry seasonality patterns
were found, but those patternswere very different betweenmodels fromdifferent institutions.

Somemodels exhibited strong skill in simulating N N, ,e
a

e
DJF N ,e

MAM N ,e
JJA and Ne

SON (figure 4). GFDL-
CM4C192 andHadGEM3-CG31-HMconsistently produced good results, whileNICAM16-7S andNICAM16-
8S also produce good results, except for N .e

SON FGOALS-f3-H displayed particular strength across all seasons
except for N .e

JJA BCC-CSM2-HRproduced good results for both Ne
DJF and N ,e

JJA andHiRAM-SIT produced
good results for Ne

MAM and N .e
JJA It is worth noticing thatMRI-AGCM3-2-H,MRI-AGCM3-2-S, and EC-

Earth3P-HR captured observedMAR (Figure S2), but their performance with Ne deviated fromobservations at
annual and seasonal scales.

GFDL-CM4C192 andHadGEM3-CG31-HMreproduced the TRMM3 h spatial pattern of Ne better than
the othermodels.We also found that, even if amodel reasonably represented the annual and seasonal
association between rainfall and Ne (shown infigures 2 and 3), itmightmisrepresent the observed spatial
patterns of N .e For example, BCC-CSM2-HR showed a high correlation betweenMARand Ne (figure 2) at the
annual and seasonal scales, but its spatial patterns of Ne had large difference with TRMM3h N .e Specifically, this
model showed a low Ne in the northeastern part of the Amazon (Figure S2). Similarly, IPSL-CM6A-ATM-ICO-
VHR showed a lower Ne across the Amazonwhen compared toTRMM3h N .e

Analysis of TRMM3 hdata showed that the averagemaximumnumber of extreme rainfall events occurred
at 18, and 21UTC across all seasons. However, all HighResMIPmodels predicted earlier average times of day for
maximum rainfall values (figure 5). Further, the average temporal diurnal pattern of extreme rainfall events was

Table 1. List ofHighResMIPmodels and variant used.

Institution ModelName Resolution lat°× lon° Variant used References

BCC BCC-CSM2-HR 0.45× 0.45 r1i1p1f1 Wu et al (2021)
CAS FGOALS-f3-H 0.25× 0.25 r1i1p1f1 An et al (2022)
CAS FGOALS-f3-L 1× 1.25 r1i1p1f1 He et al (2020)
MIROC NICAM16-7S 0.56× 0.56 r1i1p1f1 Kodama et al (2021)
MIROC NICAM16-8S 0.28× 0.28 r1i1p1f1 Kodama et al (2021)
MRI MRI-AGCM3-2-H 0.56× 0.56 r1i1p1f1 Mizuta et al (2019a)
MRI MRI-AGCM3-2-S 0.187× 0.187 r1i1p1f1 Mizuta et al (2019b)
CNRM CNRM-CM6-1 1.4× 1.4 r2i1p1f2 Voldoire et al (2019)
MOHC HadGEM3-CG31-HM 0.23× 0.35 r1i1p1f1 Roberts (2019)
GFDL GFDL-CM4C192 0.5× 0.625 r1i1p1f1 Zhao et al (2018)
AS-REC HIRAM-SIT-LR 0.5× 0.5 r1i1p1f1 Tu (2020)
CAMS CAMS-CSM1-0 0.46× 0.46 r1i1p1f1 Rong et al (2018)
EC-Earth-Consortium EC-Earth3P-HR 0.35× 0.35 r1i1p1f1 Haarsma et al (2020)
EC-Earth-Consortium EC-Earth3P 0.7× 0.7 r2i1p1f1, r3i1p1f1 Haarsma et al (2020)
IPSL IPSL-CM6A-ATM-HR 0.50× 0.70 r1i1p1f1 Boucher et al (2019)
IPSL IPSL-CM6A-ATM-ICO-MR 1× 1 r1i1p1f1 Boucher et al (2019)
IPSL IPSL-CM6A-ATM-ICO-VHR 0.25× 0.25 r1i1p1f1 Boucher et al (2022)
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not reproduced by themodels.We also observed that GFDL-CM4C192,HadGEM3-GC31-HM,NICAM16-7S
andNICAM16-8S,HiRAM-SIT, and BCC-CSM2-HR, closely captured the average daily rainfall amounts for
extreme events during each season (Figure S3).

4.Discussion and conclusions

Analysis of extreme rainfall events in the Amazon basin is highly dependent on the observational data used.Due
to the lack of long-term rain gauge data over the Amazon, we used the TRMM3 hdata. The satellites used to
develop the TRMM3 hprecipitation dataset do not view the Amazon (or any other region) continuously but
only when the satellite’s orbit places it over the region. By contrast, HighResMIPmodel outputs, aggregate
precipitation continuously over each 3 h period.Hence, TRMM likely underestimates the actual number and
magnitude of extreme rainfall events due to this incomplete sampling (Huffman et al 2016, Timmermans et al
2019). Rasmussen et al (2013) found that TRMMrainfall data can underestimate rainfall by up to 40% in areas
with deep, intense thunderstorms. Despite the TRMM3 hunderestimation of extreme rainfall events, the
HighResMIPmodels failed to reproduce either the frequency or spatial patterns of extreme rainfall events in the
TRMM3 hdata. Furthermore, studies have shown that the spatial and temporal patterns from sub-daily to
annual time scales of TRMM3 hover the Amazon agreewell with rainfall observations (Machado et al 2002,
Zulkafli et al 2014,Michot et al 2018, Sapucci et al 2022). Specifically, a recent study found that TRMM3 hdata
showedmaximumprecipitation occurring at the same time as ground-based observations (Sapucci et al 2022).

Regridding TRMM3 hdata tomatch differentHighResMIPmodel grids could alter the threshold for
defining extreme rainfall events. Nevertheless, comparingHighResMIPmodels andTRMM3-hourly data
remains valid because any threshold changewould impact both datasets similarly. The biases we observed in
HighResMIPmodels within theAmazon basin appear linked to limitations in representing regional
relationships between total rainfall and extreme event frequency. Notably,HighResMIPmodelsmissed the
observed correlation between higher rainfall andmore frequent extreme events, especially in the northwestern
Amazon.Over theAmazon, TRMM3 hdata showed a clear association between rainfall and extreme rainfall
events. Eleven of the seventeenmodels showed this association (figure 2). Of these eleven, only fivemodels
performedwell with the annual or seasonal number of extreme events, and only twomodels (GFDL-CM4C192,
HadGEM3-CG31-HM) performedwell in every season and throughout the year (figure 4 andfigure S1).While
mostmodels underestimated the number of extreme events, NICAM16-7S andNICAM16-8S overestimated
these events, producing the largest areas with positive relative errors. This result is consistent with previous
studies that have shown thatNICAMmodels overestimate the frequency of rainfall because themodel’s
precipitation process scheme triggers rainfall very easily (Jing et al 2017,Na et al 2020). Unlike convection
parameterization schemes, NICAMemploys a cloudmicrophysics scheme to explicitly resolve convective
circulations (Kodama et al 2021) that can lead to overestimates in rainfall (Na et al 2020). To address these biases,

Figure 2.Correlation coefficient (r) between the number of extreme rainfall events (Ne) and rainfall using TRMM3 h (observations)
andHighResMIPmodels, for annual and seasonalmean periods. For this calculation eachmodel uses its own resolution.
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Figure 3.Relative error of number of extreme rainfall events Ne betweenHighResMIP andTRMM3 h for the average year Ne
a (left

hand column) and seasons, N ,e
DJF N ,e

MAM N ,e
JJA N .e

SON
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a newmicrophysics scheme has been developed forNICAM that improves agreement betweenmodeled rainfall
and observations (Seiki andOhno 2023).

TheHadGEM3-CG31-HMandGFDL-CM4C192models performed better at simulating the average annual
and seasonal rainfall over theAmazon basin. TheHadGEM3-CG31-HMhas one of thefinest horizontal
resolutions. It has been suggested that higher resolution can improvemodeled rainfall in tropical regions
(Monerie et al 2020). However, sinceGFDL-CM4C192 has nearly twice the horizontal resolution ofHadGEM3-
CG31-HM, yet performed similarly, we conckuded that resolutionmay be necessary but not sufficient to
accurately reproduce extremeAmazon rainfall.

The fact that amodel reproduced the annual and/or seasonal patterns of extreme rainfall events does not
imply that it also reproduced the sub-daily patterns of extreme rainfall. TRMM3 h showed a high number of
observed Ne at 18 and 21 hUTC across the entire Amazon, and consistent with a previous study that analyzed
regional Amazon hourly rainfall of the Amazon by regions (Nunes et al 2016).We found that while somemodels
reproduce the daily seasonal total of Ne allmodels reproduced earlier in the day the time of observed Ne peak.
Thisfinding agrees with the earlier peak in the diurnal cycle of rainfall of CMIP6models when comparedwith
observations (Dong et al 2023). Recent studies suggested that grid spacing between 0.012° to 0.026°near the
equator (1.56 to 3.25 km) is needed to capture the diurnal cycle of precipitation (Stevens et al 2020, Caldwell et al
2021). However, it is unclear whether tuning at high-resolutionwill improve these results, asmany outstanding

Figure 4.Taylor diagram comparing (a)MAR, and number of extreme events fromHighResMIPmodels andTRMM3 h for (b)mean
annual N ,e and (c)—(f) seasonal N .e
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issues remainwith parameterized precipitation processes. HighResMIP2may offer some insight, since in this
next phase of experimentsmodeling groupswill be able to re-tune theirmodels at high-resolution.Our results
suggest that resolution is necessary but not sufficient to improve extreme precipitation. This is particularly true
in cases where convective precipitation is themain contributor to extreme precipitation. It is important to also
note that convective precipitation inHighResMIP is parameterized (Haarsma et al 2016) and these
parameterizations are tuned to ensure that energy is balanced, but are not designed to capture precipitation
extremes. The recent development of global convection permitting very high resolutionmodels offers the
prospect of directly simulating better extreme tropical precipitation statistics butmuchwork remains to be done
(Feng et al 2023b). Other factors affectingmodel performance includemodel resolutionwith higher resolution
improvingmodel performance of heavy rainfall (Seth et al 2004,Wehner et al 2010, Giorgi et al 2014), and biases
in cloudmicrophysical properties (Jing et al 2017).Measurements and understanding of extreme rainfall events
in tropical forests are research areas that deserves further attention. Future studies should also explore the
interannual variability of Amazon rainfall at different spatial and temporal scales (Nunes et al 2016, Ramirez-
Nina and SilvaDias 2024).

Extreme rainfall events play a key role in determining the pattern of rainfall in the Amazon. Although some
HighResMIPmodels have good performance in representing the annual and seasonal patterns of N ,e none of the
models reproduced the sub daily time ofmaximumextreme rainfall events in theAmazon. In general,
HighResMIPmodels produced a low Ne in the northwesternAmazon, consistent with previous studies that
CMIP6models underestimate rainfall in this region (Hagos et al 2021). The persistent issue of ESMs
underestimating rainfall in the northwestern Amazon has persisted for decades. Therefore, we suggest
conducting observational studies in this region to enhance understanding of the underlyingmechanisms driving
rainfall. Our results are unlikely to change by using the lowest threshold forMCS rainfall reported in Jaramillo
et al (2017) of 5.3 mm h−1. Across the 20-years of 3-hourly data fromHighResMIPmodels, the change in the
number of grid cells isminimal, with an average increase of only 0.04%± 0.03% (mean± standard deviation),
exceptNICAM that increased by 0.11%.However, this lower threshold represented an increase of 0.33%±
0.1% in the number of grid cells identified in the TRMM3-hourly data regridded to eachmodel resolution.

The importance of accurately characterizing extreme rainfall events in ESMs extends beyond thewater cycle.
It also plays a crucial role in understanding the dynamics of Amazonian forests, particularly regarding
windthrow-related disturbances. Negrón-Juárez et al 2018 employed a forest demographicmodel to simulate a
doubling of windthrowmortality, resulting in a 30%decrease in aboveground biomass and a 7%decrease in
aboveground net primary productivity (ANPP) in the northwestern Amazon forest. Notably, forest species
composition remained largely unchanged.However, when the samemortality increase was applied to the
Central Amazon, themodel projected substantially higher reductions in biomass andANPP, alongwith a
significant shift in forest composition.While thesefindings represent initial estimates for specific locations, they

Figure 5. Seasonal 3 hmean of number of extreme events fromTRMM3 h (thick black line) andHighResMIPmodels used. (a)DJF,
(b)MAM, (c) JJA, and (d), SON.
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highlight the potentially significant impact of extreme precipitation events on forest carbon cycling. Given the
projected increase in extreme precipitation during the coming decades (Myhre et al 2019, Papalexiou and
Montanari 2019) andwindthrows (Feng et al 2023a), incorporating thesemechanisms into ESMs becomes
increasingly crucial.
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