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Abstract

Extreme rainfall events drive the amount and spatial distribution of rainfall in the Amazon and are a
key driver of forest dynamics across the basin. This study investigates how the 3-hourly predictions in
the High Resolution Model Intercomparison Project (HighResMIP, a component of the recent
Coupled Model Intercomparison Project, CMIP6) represent extreme rainfall events at annual,
seasonal, and sub-daily time scales. TRMM 3B42 (Tropical Rainfall Measuring Mission) 3 h data were
used as observations. Our results showed that eleven out of seventeen HighResMIP models showed
the observed association between rainfall and number of extreme events at the annual and seasonal
scales. Two models captured the spatial pattern of number of extreme events at the seasonal and
annual scales better (higher correlation) than the other models. None of the models captured the sub-
daily timing of extreme rainfall, though some reproduced daily totals. Our results suggest that higher
model resolution is a crucial factor for capturing extreme rainfall events in the Amazon, but it might
not be the sole factor. Improving the representation of Amazon extreme rainfall events in HighResMIP
models can help reduce model rainfall biases and uncertainties and enable more reliable assessments
of the water cycle and forest dynamics in the Amazon.

1. Introduction

The Amazon is a key component of the Earth system by affecting climate regulation, carbon storage, and water
recycling. The Amazon covers 5.65 x 10° km? (53%) of global tropical forest area (Negrén-Judrez et al 2018) and
contains 25% of the world’s terrestrial biomass (98 PgC), (Malhi et al 2011, Pan et al 2013). Regions within the
Amazon receive between 1500 and 4000 mm of rain per year, and 32% of this rainfall is recycled water by
evapotranspiration (Staal et al 2018).

Tropical convection is a key process producing large amounts of rainfall in the Amazon rainforest (Nobre
etal2009). The Amazon exhibits a gradient of rainfall from the southeast, which has a dry season of 5t0 6
months (consecutive months with rainfall <100 mm), to the rainy north (no dry season) (Sombroek 2001,
Marengo et al 2012, Good et al 2016, Rasmussen ef al 2016). Amazon rainfall is often characterized by extreme
rainfall events produced by mesoscale convective systems (MCS), which significantly contribute to total annual
rainfall (Silva Dias et al 2009, Pereira Filho et al 2015, Nunes et al 2016, Rehbein et al 2018). These systems are

© 2024 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Cumulative number of 3 h rainfall events from 1998 to 2017 using TRMM 3 h (TRMM 3B42) data. The inset shows the
mean annual number of extreme rainfall events (N) (rainfall events > 5.6 mm h™ !y over the Amazon. The red arrow shows the value
of 5.6 mmh™'.

regulated by the South American Monsoon System (SAMS) (Carvalho et al 2011, Marengo et al 2012) and the
location of the Intertropical Convergence Zone (ITCZ) (Santos et al 2017). The MCS moves westward year-
round, and some episodes can last longer than 3 days and cross the entire Amazon basin (Pereira Filho et al 2015,
Rehbein et al 2018). Less frequent MCS moving from southwestern to northeastern in the Amazon also produce
large amounts of rainfall (Negrén-Juarez et al 2017).

Extreme rainfall events in the Amazon represent ~5% of all precipitation events (figure 1), contribute about
46% of total rainfall (Jaramillo et al 2017) and are a key component of forest dynamics and function. Associated
with heavy rainfall from MCS are downbursts that can produce windthrows (uprooted and broken trees by
wind), ranging from single trees to large areas of downed forest (Nelson et al 1994, Negrén-Judrez et al 2010,
Negron-Judrez etal 2011, Negron-Judrez et al 2018, Negron-Juarez et al 2023). Windthrows can promote forest
diversity by creating gaps in the canopy and increasing competition among species (Magnabosco Marra et al
2018, Negrén-Juarez et al 2018, Urquiza Munoz et al 2021). A recent study showed that Amazon windthrows are
expected to increase in frequency in a warming environment (Feng et al 2023a) and therefore could have
significant implications for the functioning of the Amazon and its biodiversity.

The World Climate Research Programme (WCRP) initiated the Coupled Model Intercomparison Project
Phase 6 (CMIP6) as a coordinated Earth System Models (ESM) experiment to improve understanding of the
Earth System (Eyring et al 2016). Despite CMIP6’s advancements in understanding the Earth system, accurately
reproducing observed patterns of extreme rainfall in the Amazon remains a challenge (Hagos et al 2021).
Included within CMIP6, the High Resolution Model Intercomparison Project (HighResMIP) seeks to quantify
the benefits of increased horizontal model resolution for representing climatology and weather patterns with
greater fidelity (Haarsma et al 2016). The hypothesis posits that higher spatial resolution improves the accuracy
of rainfall patterns. Thus, this study aims to evaluate how the HighResMIP model represents Amazon rainfall
focusing on: (a) observed associations between seasonal, annual and extreme rainfall events, (b) seasonal
variability of extreme rainfall events, and (c) observed sub-daily patterns of extreme rainfall. This is the first
study to examine how HighResMIP models represent Amazon rainfall across annual, seasonal, and sub-daily
timescales.

2. Study area, data, and methods

2.1. Study area

The study area is the Amazon rainforest (figure 1). The Amazon has east-west gradients of rainfall, forest
dynamics, and soil nutrient availability (Malhi and Davidson 2009). Deforestation has reduced the extent of the
Amazon, and is more prevalent in the southern fringes, which also have the longest dry season. Deforestation in
the Amazon is driven by a number of factors, including low productivity and unsustainable agricultural practices
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(Nobre et al 2016). The Amazon area used in this study (figure 1) corresponds to the biogeographic limits of the
Amazon from the Red Amazoénica de Informacién Socioambiental Georreferenciada (https://.raisg.org).

2.2. Rainfall data

We used the 3-hour data from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation
(TMPA) rainfall Level 3 V7 (3B42) (Huffman et al 2016). This data has a horizontal resolution of 0.25° x 0.25°
and the period used is from January 1, 1998 to December 31, 2017. This data is hereafter referred to as TRMM
3 h. TRMM 3 h data is available at https: //disc.gsfc.nasa.gov/datasets/, and covers all longitudes and latitudes
between —50° and 50° on a 0.25° grid (1440 x 400). TRMM 3 h data are instantaneous rainfall (Huffman and
Bolvin 2018, Huffman et al 2018). The TRMM satellite stopped collecting data in 2015, but TRMM-like data
were processed using the successor satellite, the Global Precipitation Mission (Skofronick-Jackson et al 2017,
Huffman eral2018) until 2019. Previous studies have shown that TRMM 3 h accurately represents Amazon
rainfall at the sub-daily (Machado et al 2002, Sapucci et al 2022), daily (Michot et al 2018), monthly (Zulkafli et al
2014), and annual (Michot et al 2018) time scales.

The mean annual rainfall (MAR) was calculated by adding all rainfall events per grid cell and dividing this
total by the number of years in the observational record. An analogous approach was used for each season (DJF,
MAM, JJA, SON). The number of extreme rainfall events (N,) was calculated as the number of rainfall events >
5.6 mm h ™ '. This value reflects the average value of rainfall rates for MCSs across northwest, western, southern,
central and eastern Amazon regions as reported in table 2 in Jaramillo et al (2017). The mean annual number of
extreme rainfall events (N;') per grid cell was calculated by adding the number of extreme rainfall events and
dividing this total by the number of years in the observational record. An analogous approach was used to
calculate the mean seasonal number of extreme events (NED JF, NMAM NeUA, NESON ). Figure 1 shows the rainfall
events across the whole time series of TRMM 3 h data over the Amazon, and the spatial distribution of N/

2.3.HighResMIP models

We used model data from HighResMIP (available at https: //esgf-node.llnl.gov), which investigates the impact
of horizontal resolution in the model representation of the climate system (Haarsma et al 2016). HighResMIP is
divided into experiments (tiers); for this study we used Tier1, HighResSST-Present. HighResSST-Present
simulations are historically forced atmosphere-only (ForcedAtmos) runs from 1950 to 2014. The simulations
are forced by observed sea surface temperature, sea ice cover, CO, concentration, solar variability, and ozone
concentration with fixed land use according to the HighResMIP protocol (Haarsma et al 2016).

HighResSST allows for high resolution analysis of interannual variability of monsoons (Haarsma et al 2016)
and is relevant for this study because an important fraction of the Amazon rainfall variability is related to the
South American Monsoon (Robertson and Mechoso 2000, Marengo et al 2012, Wang et al 2018). In this study
we used the last 20 years of HighResSST-Present data (1995 to 2014) to compare with TRMM 3 h.

Table 1 shows the models used, the model variants, and the reference for each model. For every model MAR
and N, was calculated with the same approach described for the TRMM 3 h data. We include in our analysis 17
HighResMIP models for a total of 18 simulations: (a) three models from the Institute Pierre-Simon Laplace
(IPSL) in France: IPSL-CM6A-ATM-HR, IPSL-CM6A-ATM-ICO-HR, and IPSL-CM6A-ATM-ICO-VHR; (b)
two models from the Model for Interdisciplinary Research on Climate (MIROC) in Japan: NICAM16-7S and
NICAM16-8S; (c) two models from the European community Earth System Model (EC-Earth): EC-Earth3P-
HR and EC-Earth3P; (d) two models from the Meteorological Research Institute (MRI) in Japan: MRI-AGCM3-
2-H and MRI-AGCM3-2-S; (e) two models from the Chinese Academy of Sciences Flexible Global Ocean-
Atmosphere-Land System Model (CAS FGOALS): CAS FGOALS-f3-H and CAS FGOALS-{3-L; (f) one model
from the Beijing Climate Center-BCC in China: BCC-CSM2-HR; (g) one model from the Centre National de
Recherches Météorologiques- CNRM in France: CNRM-CM6-1; (h) one model from the Met Office Hadley
Centre (MOCH) in UK: HadGEM3-CG31-LM; (i) one model from the National Oceanic and Atmospheric
Administration (NOAA Geophysical Fluid Dynamics Laboratory (GFDL) in USA: GFDL-CM4C192; (j) one
model from the from the Research Center for Environmental Changes, Academia Sinica- AS-REC in Taiwan:
HIRAM-SIT-LR and; (k) one model from the Chinese Academy of Meteorological Sciences - Climate
Simulation Model - CAMS-CSM: CAMS-CSM1-0.

2.4.Regridding

To perform comparative analyses between TRMM 3 h and HighResMIP models, we used the TempestRemap
remapping software (Ullrich and Taylor 2015, Ullrich et al 2016). We remapped the TRMM 3 h data grid to every
HighResMIP model grid (Chen and Knutson 2008, Gervais et al 2014, Wehner et al 2021).
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Table 1. List of HighResMIP models and variant used.
Institution Model Name Resolution lat® x lon® Variant used References
BCC BCC-CSM2-HR 0.45 x 0.45 rlilplfl Wuetal (2021)
CAS FGOALS-f3-H 0.25 x 0.25 rlilplfl Anetal (2022)
CAS FGOALS-f3-L 1x1.25 rlilp1fl Heetal (2020)
MIROC NICAM16-7S 0.56 x 0.56 rlilp1fl Kodamaetal (2021)
MIROC NICAM16-8S 0.28 x 0.28 rlilplfl Kodama et al (2021)
MRI MRI-AGCM3-2-H 0.56 x 0.56 rlilp1fl Mizuta et al (2019a)
MRI MRI-AGCM3-2-S 0.187 x 0.187 rlilp1fl Mizuta et al (2019b)
CNRM CNRM-CM6-1 14x1.4 r2ilplf2 Voldoire et al (2019)
MOHC HadGEM3-CG31-HM 0.23 x 0.35 rlilp1fl Roberts (2019)
GFDL GFDL-CM4C192 0.5 x 0.625 rlilplfl Zhao etal (2018)
AS-REC HIRAM-SIT-LR 0.5 x 0.5 rlilplfl Tu (2020)
CAMS CAMS-CSM1-0 0.46 x 0.46 rlilp1fl Rongetal (2018)
EC-Earth-Consortium EC-Earth3P-HR 0.35 % 0.35 rlilplfl Haarsma et al (2020)
EC-Earth-Consortium EC-Earth3P 0.7 x 0.7 r2ilplfl, r3ilp1fl Haarsma et al (2020)
IPSL IPSL-CM6A-ATM-HR 0.50 x 0.70 rlilplfl Boucher etal (2019)
IPSL IPSL-CM6A-ATM-ICO-MR 1x1 rlilplfl Boucher etal (2019)
IPSL IPSL-CM6A-ATM-ICO-VHR 0.25 x 0.25 rlilplfl Boucher etal (2022)

2.5. Analysis
To compare how HighResMIP models performed compared to regridded TRMM 3 h data, we used a relative
error metric (100 x ( HighResMIP -TRMM 3 h)/TRMM 3 h) and Taylor diagrams (Taylor 2001) from
SkillMetrics (Rochford 2016). To facilitate the comparison, we normalized the standard deviation of each model
by the corresponding values of the observed (TRMM 3 h) extremes (Wehner et al 2021).

To calculate the seasonal 3 h diurnal cycle (00 h,03 h,06 h,09 h, 12 h, 15h, 18 h,21 h UTC) areal mean
number of extreme events, we first calculate the sum of the N, values for all grid cells at each three-hour interval
and then divide this sum by the number of grid cells.

3. Results

High correlation values (r) were found between MAR and N, from TRMM 3 h across all four seasons,
confirming the importance of observed extreme events for predicting rainfall (figure 2 and Supplementary figure
S1). However, not all HighResMIP models captured the observed association between N, and total rainfall at
annual and seasonal scales (figure 2). Specifically, NICAM16-7S, NICAM16-8S, IPSL-CM6A-ATM-ICO-VHR,
IPSL-CM6A-ATM-HR, HadGEM3-CG31-HM, GFDL-CM4C192, FGOALS-f3-H, BCC-CSM2-HR, and
HIRAM-SIT-LR had the highest correlation values while MRI-AGCM3-2-H, MRI-AGCM3-2-S, IPSL-CM6A-
ATM-ICO-MR, EC-Earth3P, and CNRM-CM6-1 had the lowest correlation values.

The relative error between the N, from HighResMIP models and TRMM 3 h for annual and seasonal time
scales varied widely among models (figure 3). Within model variants, consistent wet and dry seasonality patterns
were found, but those patterns were very different between models from different institutions.

Some models exhibited strong skill in simulating N¢, NP, NMAM NJA and NSOV (figure 4). GEDL-
CM4C192 and HadGEM3-CG31-HM consistently produced good results, while NICAM16-7S and NICAM16-
8Salso produce good results, except for N>ON, FGOALS-f3-H displayed particular strength across all seasons
except for N4, BCC-CSM2-HR produced good results for both N”F and N4, and HIRAM-SIT produced
good results for NY4M and N/, It is worth noticing that MRI-AGCM3-2-H, MRI-AGCM3-2-S, and EC-
Earth3P-HR captured observed MAR (Figure S2), but their performance with N, deviated from observations at
annual and seasonal scales.

GFDL-CM4C192 and HadGEM3-CG31-HM reproduced the TRMM 3 h spatial pattern of N, better than
the other models. We also found that, even if a model reasonably represented the annual and seasonal
association between rainfall and N, (shown in figures 2 and 3), it might misrepresent the observed spatial
patterns of N,. For example, BCC-CSM2-HR showed a high correlation between MAR and N, (figure 2) at the
annual and seasonal scales, but its spatial patterns of N, had large difference with TRMM 3h N,. Specifically, this
model showed alow N, in the northeastern part of the Amazon (Figure S2). Similarly, IPSL-CM6A-ATM-1CO-
VHR showed alower N, across the Amazon when compared to TRMM 3h N,.

Analysis of TRMM 3 h data showed that the average maximum number of extreme rainfall events occurred
at 18, and 21UTC across all seasons. However, all HighResMIP models predicted earlier average times of day for
maximum rainfall values (figure 5). Further, the average temporal diurnal pattern of extreme rainfall events was
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Figure 2. Correlation coefficient (r) between the number of extreme rainfall events (IN;) and rainfall using TRMM 3 h (observations)
and HighResMIP models, for annual and seasonal mean periods. For this calculation each model uses its own resolution.

not reproduced by the models. We also observed that GFDL-CM4C192, HadGEM3-GC31-HM, NICAM16-7S
and NICAM16-8S, HIRAM-SIT, and BCC-CSM2-HR, closely captured the average daily rainfall amounts for
extreme events during each season (Figure S3).

4, Discussion and conclusions

Analysis of extreme rainfall events in the Amazon basin is highly dependent on the observational data used. Due
to the lack of long-term rain gauge data over the Amazon, we used the TRMM 3 h data. The satellites used to
develop the TRMM 3 h precipitation dataset do not view the Amazon (or any other region) continuously but
only when the satellite’s orbit places it over the region. By contrast, HighResMIP model outputs, aggregate
precipitation continuously over each 3 h period. Hence, TRMM likely underestimates the actual number and
magnitude of extreme rainfall events due to this incomplete sampling (Huffman et al 2016, Timmermans et al
2019). Rasmussen et al (2013) found that TRMM rainfall data can underestimate rainfall by up to 40% in areas
with deep, intense thunderstorms. Despite the TRMM 3 h underestimation of extreme rainfall events, the
HighResMIP models failed to reproduce either the frequency or spatial patterns of extreme rainfall events in the
TRMM 3 h data. Furthermore, studies have shown that the spatial and temporal patterns from sub-daily to
annual time scales of TRMM 3 h over the Amazon agree well with rainfall observations (Machado et al 2002,
Zulkafli et al 2014, Michot et al 2018, Sapucci et al 2022). Specifically, a recent study found that TRMM 3 h data
showed maximum precipitation occurring at the same time as ground-based observations (Sapucci et al 2022).
Regridding TRMM 3 h data to match different HighResMIP model grids could alter the threshold for
defining extreme rainfall events. Nevertheless, comparing HighResMIP models and TRMM 3-hourly data
remains valid because any threshold change would impact both datasets similarly. The biases we observed in
HighResMIP models within the Amazon basin appear linked to limitations in representing regional
relationships between total rainfall and extreme event frequency. Notably, HighResMIP models missed the
observed correlation between higher rainfall and more frequent extreme events, especially in the northwestern
Amazon. Over the Amazon, TRMM 3 h data showed a clear association between rainfall and extreme rainfall
events. Eleven of the seventeen models showed this association (figure 2). Of these eleven, only five models
performed well with the annual or seasonal number of extreme events, and only two models (GFDL-CM4C192,
HadGEM3-CG31-HM) performed well in every season and throughout the year (figure 4 and figure S1). While
most models underestimated the number of extreme events, NICAM16-7S and NICAM16-8S overestimated
these events, producing the largest areas with positive relative errors. This result is consistent with previous
studies that have shown that NICAM models overestimate the frequency of rainfall because the model’s
precipitation process scheme triggers rainfall very easily (Jing et al 2017, Na et al 2020). Unlike convection
parameterization schemes, NICAM employs a cloud microphysics scheme to explicitly resolve convective
circulations (Kodama et al 2021) that can lead to overestimates in rainfall (Na et al 2020). To address these biases,
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anew microphysics scheme has been developed for NICAM that improves agreement between modeled rainfall
and observations (Seiki and Ohno 2023).

The HadGEM3-CG31-HM and GFDL-CM4C192 models performed better at simulating the average annual
and seasonal rainfall over the Amazon basin. The HadGEM3-CG31-HM has one of the finest horizontal
resolutions. It has been suggested that higher resolution can improve modeled rainfall in tropical regions
(Monerie et al 2020). However, since GFDL-CM4C192 has nearly twice the horizontal resolution of HadGEM3-
CG31-HM, yet performed similarly, we conckuded that resolution may be necessary but not sufficient to
accurately reproduce extreme Amazon rainfall.

The fact that a model reproduced the annual and/or seasonal patterns of extreme rainfall events does not
imply that it also reproduced the sub-daily patterns of extreme rainfall. TRMM 3 h showed a high number of
observed N, at 18 and 21 h UTC across the entire Amazon, and consistent with a previous study that analyzed
regional Amazon hourly rainfall of the Amazon by regions (Nunes et al 2016). We found that while some models
reproduce the daily seasonal total of N, all models reproduced earlier in the day the time of observed N, peak.
This finding agrees with the earlier peak in the diurnal cycle of rainfall of CMIP6 models when compared with
observations (Dong et al 2023). Recent studies suggested that grid spacing between 0.012° to 0.026° near the
equator (1.56 to 3.25 km) is needed to capture the diurnal cycle of precipitation (Stevens et al 2020, Caldwell et al
2021). However, it is unclear whether tuning at high-resolution will improve these results, as many outstanding

7



10P Publishing

Environ. Res. Commun. 6 (2024) 091001 W Letters

a. DJF b. MAM

s TRMM
HIRAM-SIT
—— BCC-CSM2-HR
—A— CAMS-CSM1-0
—4- CNRM-CM6-1
¢ EC-Earth3P-HR
EC-Earth3P_r2
~@- EC-Earth3P_r3
FGOALS-f3-H
~@- FGOALS-3-L
—— GFDL-CM4C192

1.8
15
1.2
1.0
0.8
0.5
0.2
0.0

HadGEM3-GC31-HM
—— IPSL-CM6A-ATM-HR
—— IPSL-CMBA-ATM-ICO-MR
~@- IPSL-CMBA-ATM-ICO-VHR
¥~ NICAM16-7S

NICAM16-8S
— MRI-AGCM3-2-H

MRI-AGCM3-2-5

00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21
hour (UTC) hour (UTC)

c. JJA d. SON
1.0 1.4

0.8

0.6

0.4

mean number extreme rainfall events across the Amazon

0.2

0.0

00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21
hour (UTC) hour (UTC)
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issues remain with parameterized precipitation processes. HighResMIP2 may offer some insight, since in this
next phase of experiments modeling groups will be able to re-tune their models at high-resolution. Our results
suggest that resolution is necessary but not sufficient to improve extreme precipitation. This is particularly true
in cases where convective precipitation is the main contributor to extreme precipitation. It is important to also
note that convective precipitation in HighResMIP is parameterized (Haarsma et al 2016) and these
parameterizations are tuned to ensure that energy is balanced, but are not designed to capture precipitation
extremes. The recent development of global convection permitting very high resolution models offers the
prospect of directly simulating better extreme tropical precipitation statistics but much work remains to be done
(Feng et al 2023b). Other factors affecting model performance include model resolution with higher resolution
improving model performance of heavy rainfall (Seth et al 2004, Wehner et al 2010, Giorgi et al 2014), and biases
in cloud microphysical properties (Jing et al 2017). Measurements and understanding of extreme rainfall events
in tropical forests are research areas that deserves further attention. Future studies should also explore the
interannual variability of Amazon rainfall at different spatial and temporal scales (Nunes et al 2016, Ramirez-
Nina and Silva Dias 2024).

Extreme rainfall events play a key role in determining the pattern of rainfall in the Amazon. Although some
HighResMIP models have good performance in representing the annual and seasonal patterns of N,, none of the
models reproduced the sub daily time of maximum extreme rainfall events in the Amazon. In general,
HighResMIP models produced alow N, in the northwestern Amazon, consistent with previous studies that
CMIP6 models underestimate rainfall in this region (Hagos et al 2021). The persistent issue of ESMs
underestimating rainfall in the northwestern Amazon has persisted for decades. Therefore, we suggest
conducting observational studies in this region to enhance understanding of the underlying mechanisms driving
rainfall. Our results are unlikely to change by using the lowest threshold for MCS rainfall reported in Jaramillo
etal (2017) of 5.3 mm h™". Across the 20-years of 3-hourly data from HighResMIP models, the change in the
number of grid cells is minimal, with an average increase of only 0.04% = 0.03% (mean = standard deviation),
except NICAM that increased by 0.11%. However, this lower threshold represented an increase of 0.33% =+
0.1% in the number of grid cells identified in the TRMM 3-hourly data regridded to each model resolution.

The importance of accurately characterizing extreme rainfall events in ESMs extends beyond the water cycle.
It also plays a crucial role in understanding the dynamics of Amazonian forests, particularly regarding
windthrow-related disturbances. Negron-Judrez et al 2018 employed a forest demographic model to simulate a
doubling of windthrow mortality, resulting in a 30% decrease in aboveground biomass and a 7% decrease in
aboveground net primary productivity (ANPP) in the northwestern Amazon forest. Notably, forest species
composition remained largely unchanged. However, when the same mortality increase was applied to the
Central Amazon, the model projected substantially higher reductions in biomass and ANPP, along with a
significant shift in forest composition. While these findings represent initial estimates for specific locations, they
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highlight the potentially significant impact of extreme precipitation events on forest carbon cycling. Given the
projected increase in extreme precipitation during the coming decades (Myhre et al 2019, Papalexiou and
Montanari 2019) and windthrows (Feng et al 2023a), incorporating these mechanisms into ESMs becomes
increasingly crucial.
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