
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
State-based Policy Representation for Deep Policy Learning

Permalink
https://escholarship.org/uc/item/7rt6j3rx

Author
Liu, Fangchen

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rt6j3rx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

State-based Policy Representation for Deep Policy Learning

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Fangchen Liu

Committee in charge:

Professor Hao Su, Chair
Professor Sicun Gao
Professor Zhuowen Tu

2020

Copyright

Fangchen Liu, 2020

All rights reserved.

The thesis of Fangchen Liu is approved, and it is acceptable

in quality and form for publication on microfilm and electron-

ically:

Chair

University of California San Diego

2020

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Vita . ix

Abstract of the Thesis . x

Chapter 1 Introduction . 1

Chapter 2 Reinforcement Learning with State-based Environment Model 3
2.1 Introduction . 3
2.2 Related work . 5
2.3 Background . 7

2.3.1 Reinforcement Learning and Notation 7
2.3.2 Universal Markov Decision Process (UMDP) 8

2.4 Universal Goal Reaching . 9
2.5 Approach . 10

2.5.1 Basic Idea . 11
2.5.2 Learning a Local UVFA with HER 12
2.5.3 Building a Map by Sampling Landmarks 13
2.5.4 Planning with the Map . 14

2.6 Experiments . 14
2.6.1 FourRoom: An Illustrative Example 14
2.6.2 Continuous Control . 15
2.6.3 Ablation Study . 16

Chapter 3 Imitation Learning with State Prediction and Alignment 19
3.1 Introduction . 19
3.2 Related work . 21
3.3 Backgrounds . 22

3.3.1 Variational Autoencoders 22
3.3.2 Wasserstein distance . 23

3.4 Approach . 24
3.4.1 Overview . 24
3.4.2 Local Alignment by State Predictive VAE 25

iv

3.4.3 Global Alignment by Wasserstein Distance 25
3.4.4 Regularized PPO Policy Update Objective 27
3.4.5 Pre-training . 28

3.5 Experiments . 29
3.5.1 Imitation Learning across Agents of Different Action Dynamics 29
3.5.2 Actors of the Same Dynamics (Standard Imitation Learning) 31

Appendix A Environment Settings . 33
A.1 Goal-reaching Environments . 33
A.2 Cross-Morphology Imitation Learning Environments 34

Appendix B Imitation Benchmark Experiments . 36

Bibliography . 39

v

LIST OF FIGURES

Figure 2.1: An illustration of our framework. The agent is trying to reach the other
side of the maze by planning on a landmark-based map. The landmarks are
selected from its past experience, and the edges between the landmarks are
formed by a UVFA. 10

Figure 2.2: The results on FourRoom Environment. Figure 2.2a shows the sampled
landmarks and the planned path based on our algorithm. Figure 2.2b indicates
the success rate to reach the goal. 15

Figure 2.3: Experiments on the continuous control environments. The red curve indicates
the performance of our method at different training steps. 16

Figure 2.4: AntMaze of multi-level difficulty. Figure 2.4b is the average steps and success
rate to reach different level of goals, respectively. 17

Figure 2.5: Figure 2.5a shows the relationship with the landmarks and clip range in
the planner. Figure 2.5b shows FPS outperforms uniform sampling. And
Figure 2.5c is the landmark-based map at different training steps constructed
by FPS. 18

Figure 3.1: Using VAE as a state predictive model will be more self-correctable because
of the stochastic sampling mechanism. But this won’t happen when we use
VAE to predict actions. 23

Figure 3.2: Visualization of state alignment . 24
Figure 3.3: Comparison with BC, GAIL and AIRL when dynamics are different from

experts. 29
Figure 3.4: Imitation Learning of Actors with Heterogeneous Action Dynamics. 31

Figure A.1: The environments we use for continuous control experiments. 33

vi

LIST OF TABLES

Table 3.1: Performance on Hopper-v2 and HalfCheetah-v2 32

Table A.1: Performance on modifeid Swimmer . 35
Table A.2: Performance on modified Ant . 35

Table B.1: Performance on benchmark control tasks 36
Table B.2: Performance on Swimmer-v2 with different trajectories 37
Table B.3: Performance on Hopper-v2 with different trajectories 37
Table B.4: Performance on Walker2d-v2 with different trajectories 37
Table B.5: Performance on Ant-v2 with different trajectories 38
Table B.6: Performance on HalfCheetah-v2 with different trajectories 38
Table B.7: Performance on Humanoid-v2 with different trajectories 38

vii

ACKNOWLEDGEMENTS

I am very fortunate to join the lab led by Prof. Hao Su in 2018, where I got the courage

and inspiration to explore many exciting and fundamental problems in the field of artificial

intelligence. Hao is a brave explorer and pure researcher with curiosity on fundamental problems,

who has served as my role model during my academic studies. From Hao, I have learned to be

passionate, dedicated, and ambitious in research and in life.

I am very lucky to know my great labmates, who are my collaborators and also my close

friends, particularly, Zhiao Huang, Jiayuan Gu, Tongzhou Mu, Zhiwei Jia, Shuang Liu, Zhan Ling,

Fanbo Xiang, Yuzhe Qin, and many others. They are indeed honest, dedicated and solid, and our

collaborations have enhanced my skills and enlarged my research views. I also owe enormous

thanks to other friends and researchers who have offered me incredible support, especially Huazhe

Xu, Dequan Wang, Xinyue Zhang and Siyu Yao. Also, I am very grateful to my parents, for their

unconditional love, trust and support.

I would thank so many exceptional professors at UC San Diego, such as Prof. Zhuowen

Tu, Prof. Xiaolong Wang, Prof. Sicun Gao and Prof. Ravi Ramamoorthi, who have offered me

helps and suggestions in my graduate studies, and also demonstrated what great researchers are

like. The experience in UC San Diego will always be the greatest treasure in my life.

Chapter 2, in full, is a material found in the Thirty-third Conference on Neural Information

Processing Systems 2019. Huang, Zhiao; Liu, Fangchen; Su, Hao. Mapping State Space Using

Landmarks for Universal Goal Reaching. The thesis author was the co-first author of this paper.

Chapter 3, in full, is a material found in the Eighth International Conference on Learning

Representations 2020. Liu, Fangchen; Ling, Zhan; Mu, Tongzhou; Su, Hao. State Alignment-

based Imitation Learning. The thesis author was the first author of this paper.

viii

VITA

2014-2018 B. S. in Computer Science summa cum laude, Peking University, China

2018-2020 M. S. in Computer Science, University of California San Diego

PUBLICATIONS

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, Li Yi, He Wang, Angel Chang, Leonidas Guibas, Hao Su, “SAPIEN:
a SimulAted Part-based Interactive ENvironment”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Fangchen Liu, Zhan Ling, Tongzhou Mu, Hao Su, “State Alignment-based Imitation Learning”,
Eighth International Conference on Learning Representations (ICLR), 2020.

Zhiao Huang†, Fangchen Liu†, Hao Su, “Mapping State Space Using Landmarks for Universal
Goal Reaching”, Thirty-third Conference on Neural Information Processing Systems (NeurIPS),
2019. († indicates equal contribution)

Bo Sun, Nian-hsuan Tsai, Fangchen Liu, Ronald Yu, Hao Su, “Adversarial Defense by Stratified
Convolutional Sparse Coding”, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

ix

ABSTRACT OF THE THESIS

State-based Policy Representation for Deep Policy Learning

by

Fangchen Liu

Master of Science in Computer Science

University of California San Diego, 2020

Professor Hao Su, Chair

Reinforcement Learning has achieved noticeable success in many fields, such as video

game playing, continuous control, and the game of Go. One the other hand, current approaches

usually require large sample complexity, and also lack the transferability to similar tasks. Imitation

learning, also known as “learning from demonstrations”, is possible to mitigate the former problem

by providing successful experiences. However, current methods usually assume the expert and

imitator are the same, which lack flexibility and robustness when the dynamics change.

Generalizability is the core of artificial intelligence. An agent should be able to ap-

ply its knowledge for novel tasks after training in similar environments, or providing related

demonstrations. Given current observation, it should have the ability to predict what can happen

x

(modeling), and what need to happen (planning). This brings out challenges on how to represent

the knowledge and how to utilize the knowledge by learning from interactions or demonstrations.

In this thesis, we will systematically study two important problems, the universal goal-

reaching problem and the cross-morphology imitation learning problem, which are representative

challenges in the field of reinforcement learning and imitation learning. Laying out our research

work that attends to these challenging tasks unfolds our roadmap towards the holy-grail goal:

make the agent generalizable by learning from observations and model the world.

xi

Chapter 1

Introduction

Learning a good policy for complicated tasks has attracted a lot of attention in recent years,

with the rising trends and noticeable capacity of deep reinforcement learning. Some methods

are value-centric by utilizing Bellman equations, while other methods focus more on directly

optimizing policy, or combine value and policy (also known as actor-critic methods). From the

standard definition for a sequential decision-making process used in the above methods, a policy

π is defined as a probabilistic distribution of action a at certain state s, i.e. π(a|s), which can be

directly optimized or induced from value function.

While π can be regarded as certain action distribution every step, one can also rethink

the essence of π from a high-level perspective. To fulfill an ultimate goal, there are certain

pre-conditions that should be satisfied. For example, to use a coffee machine, a robot needs to

grasp a cup, put the cup under the machine outlet, and then push some buttons. These “milestones”

are subgoals for the final challenging goal, and need to be finished sequentially by the learned

policy. Thus, a successful policy needs to figure out the dependency and relationships of these

subgoals purely from interactions.

Reinforcement learning methods usually require massive explorations to discover such a

structure of goals, especially when the state and action spaces are large and episodes are long.

1

That is quite common in many RL problems that we are interested in, such as robot learning and

video game playing. To solve this problem, researchers introduce a hierarchical structure and

extend the current RL framework, which will be briefly reviewed in Chapter 2.

Imitation Learning can mitigate the exploration problem by learning from successful

demonstrations. The sample complexity can be largely reduced if the agent can mimic the expert’s

behavior and reproduce the trajectory. Some methods use behavior cloning to memorize the

action sequence in a supervised way, while another important line in imitation learning is inverse

reinforcement learning, which learns the imitator policy in another RL problem, whose rewards

are generated to encourage the current policy and to approach the expert policy. These methods

will be reviewed in Chapter 3. For all the above approaches, there is a natural assumption that

the expert and the imitator are the same kinds of agents. Therefore, directly copying actions or

matching the distribution of actions will produce a good imitation policy, even without utilizing

subgoals. However, when it comes to a more challenging setting, where agent dynamics are

different but the task remains the same, all the methods cannot be directly applied.

How can a 7-DoF robot arm learn to manipulate objects from a human video demonstra-

tion? For the robot, a lot of important subgoals should be accomplished in the same way as the

human expert, even though the actions to reach them are never the same. In this setting, the

imitation policy can also be regarded as transitions between subgoals in the demonstration, but no

longer from an action distribution perspective.

In this thesis, we will introduce two papers that systematically study the above problems

in reinforcement learning and imitation learning, and use a state-based high-level policy rep-

resentation for planning and cross-morphology imitation. These representative states selected

from experience or demonstration are a compact representation of a successful policy, as well

as an abstraction for the environment or task, and can also be regarded as some knowledge

representation during the learning process.

2

Chapter 2

Reinforcement Learning with State-based

Environment Model

2.1 Introduction

Reinforcement learning (RL) allows training agents for planning and control tasks by

feedbacks from the environment. While significant progress has been made in the standard setting

of achieving a goal known at training time, e.g., to reach a given flag as in MountainCar [Moo90],

very limited efforts have been exerted on the setting when goals at evaluation are unknown at

training time. For example, when a robot walks in an environment, the destination may vary from

time to time. Tasks of this kind are unanimous and of crucial importance in practice. We call them

Universal Markov Decision Process (UMDP) problems following the convention of [LPS18].

Pioneer work handles UMDP problems by learning a Universal Value Function Approx-

imator (UVFA). In particular, [SHGS15] proposed to approximate a goal-conditioned value

function V (s,g)1 by a multi-layer perceptron (MLP), HER [AWR+17] proposed a framework

called hindsight experience replay (HER) to smartly reuse past experience to fit the universal

1s is the current state and g is the goal.

3

value function by TD-loss. However, for complicated policies of long-term horizon, the UVFA

learned by networks is often not good enough.

This is because UVFA has to memorize the cumulative reward between all the state-goal

pairs, which is a daunting job. In fact, the cardinality of state-goal pairs grows by a high-order

polynomial over the horizon of goals.

While the general UMDP problem is extremely difficult, we consider a family of UMDP

problems whose state space is a low-dimension manifold in the ambient space. Most control

problems are of this type and geometric control theory has been developed in the literature [BL04].

Our approach is inspired by manifold learning, e.g., Landmark MDS [DST04]. We

abstract the state space as a small-scale map, whose nodes are landmark states selected from the

experience replay buffer, and edges connect nearby nodes with weights extracted from the learned

local UVFA. A network is still used to fit the local UVFA accurately. The map allows us to run

high-level planning using pairwise shortest path algorithm, and the local UVFA network allows

us to derive an accurate local decision. For a long-term goal, we first use the local UVFA network

to direct to a nearby landmark, then route among landmarks using the map towards the goal, and

finally reach the goal from the last landmark using the local UVFA network.

Our method has improved sample efficiency over purely network learned UVFA. There

are three main reasons. First, the UVFA estimator in our framework only needs to work well

for local value estimation. The network does not need to remember for faraway goals, thus the

load is alleviated. Second, for long-range state-goal pairs, the map allows propagating accurate

local value estimations in a way that neural networks cannot achieve. Consider the extreme case

of having a long-range state-goal pair never experienced before. A network can only guess the

value by extrapolation, which is known to be unreliable. Our map, however, can reasonably

approximate the value as long as there is a path through landmarks to connect them. Lastly, the

map provides a strong exploration ability and can help to obtain rewards significantly earlier,

especially in the sparse reward setting. This is because we choose the landmarks from the replay

4

buffer using a farthest-point sampling strategy, which tends to select states that are closer to the

boundary of the visited space. In experiments, we compared our methods on several challenging

environments and have outperformed baselines.

Our contributions are: First, We propose a sample-based method to map the visited state

space using landmarks. Such a graph-like map is a powerful representation of the environment,

maintains both local connectivity and global topology. Second, our framework will simultaneously

map the visited state space and execute the planning strategy, with the help of a locally accurate

value function approximator and the landmark-based map. It is a simple but effective way to

improve the estimation accuracy of long-range value functions and induces a successful policy at

the early stage of training.

2.2 Related work

Variants of goal-conditioned decision-making problems have been studied in litera-

ture [SMD+11, MDL18, SHGS15, PGDL18]. We focus on the goal-reaching task, where the

goal is a subset of the state space. The agent receives meaningful rewards if and only if it has

reached the goal, which brings significant challenges to existing RL algorithms. A significant

recent approach along the line is Hindsight Experience Replay (HER) by [AWR+17]. They

proposed to relabel the reached states as goals to improve data efficiency. However, they used

only a single neural network to represent the Q value, learned by DDPG [LHP+15]. This makes it

hard to model the long-range distance. Our method overcomes the issue by using a sample-based

map to represent the global structure of the environment. The map allows to propagate rewards

to distant states more efficiently. It also allows to factorize the decision-making for long action

sequences into a high-level planning problem and a low-level control problem.

Model-based reinforcement learning algorithms usually need to learn a local forward

model of the environment, and then solve the multi-step planning problem with the learned model

5

[HLF+18, OSL17, SHM+16, HWL17, SJA+18, YSSF19]. These methods rely on learning an

accurate local model and require extra efforts to generalize to the long term horizon [KST+18].

In comparison, we learn a model of environment in a hierarchical manner, by a network-based

local model and a graph-based global model (map). Different from previous works to fit forward

dynamics in local models, our local model distills local cumulative rewards from environment

dynamics. In addition, our global model, as a small graph-based map that abstracts the large

state space, supports reward propagation at long range. One can compare our framework with

Value Iteration Networks (VIN) [TWT+16]. VIN focused on the 2D navigation problem. Given

a predefined map of known nodes, edges, and weights, it runs the value iteration algorithm

by ingeniously simulating the process through a convolutional neural network [LBBH98]. In

contrast, we construct the map based upon the learned local model.

Sample-Based Motion Planning (SBMP) has been widely studied in the robotics con-

text [HNR68, LaV98, KSO94]. The traditional motion planning algorithm requires the knowledge

of the model. Recent work has combined deep learning and deep reinforcement learning for

[IP18, QY18, KB19, FOR+18]. In particularly, PRM-RL addressed the 2D navigation problem

by combining a high-level shortest path-based planner and a low-level RL algorithm. To connect

nearby landmarks, it leveraged a physical engine, which depends on sophisticated domain knowl-

edge and limits its usage to other general RL tasks. In the general RL context, our work shows that

one can combine a high-level planner and a learned local model to solve RL problems more effi-

ciently. Some recent work also utilize the graph structure to perform planning [SDK18, ZLS+18],

however, unlike our approach that discovers the graph structure in the process of achieving goals,

both [SDK18, ZLS+18] require supervised learning to build the graph. Specifically, [SDK18]

need to learn a Siamese network to judge if two states are connected, and [ZLS+18] need to learn

the state-attribute mapping from human annotation.

Our method is also related to hierarchical RL research [LPS18, KNST16, NGLL18b].

The sampled landmark points can be considered as sub-goals. [LPS18, NGLL18b] also used

6

HER-like relabeling technique to make the training more efficient. These work attack more

general RL problems without assuming much problem structure. Our work differs from previous

work in how high-level policy is achieved. In their methods, the agent has to learn the high-level

policy as another RL problem. In contrast, we exploit the structure of our universal goal reaching

problem and find the high-level policy by solving a pairwise shortest path problem in a small-scale

graph, thus more data-efficient.

2.3 Background

2.3.1 Reinforcement Learning and Notation

First, we introduce the standard reinforcement learning setting. For simplification, we

assume that the environment is fully observable, which can be described as a Markov Decision

Process (MDP) defined by a tuple 〈S ,A ,P ,R ,ρ0,γ〉. Here, S and A are the state space and action

space, respectively, P represents the transition probability P (s′|s,a), R is the reward function, ρ0

is the distribution of the initial state, and γ ∈ (0,1] is the discounting factor.

The policy π of an agent maps the state space to an action π : S → A . The goal of

reinforcement learning is to find an optimal policy π∗ that maximizes the expectation of the

accumulated future rewards J(π) = Eρ0,π[∑
∞
t=0 γtR (st ,at ,st+1)], according to the initial state

distribution ρ0.

We also define the state value function Vπ as Vπ(s) = Eπ[∑
∞
t=0 γtR (st ,at ,st+1)|s0 = s]. The

optimal value function V ∗ satisfies V ∗(s) = maxπ Eπ[∑
∞
t=0 γtR (st ,at ,st+1)|s0 = s] for any s ∈ S ,

and the policy π∗ to make Vπ∗(s) =V ∗(s) for every s ∈ S , is called optimal policy.

Similarly, we define the Q function Qπ(s,a) = Eπ[∑
∞
t=0 γtR (st ,at ,st+1)|s0 = s,a0 = a]

and Q∗(s,a) = maxπ Eπ[∑
∞
t=0 γtR (st ,at ,st+1)|s0 = s,a0 = a]. It is easy to show the following

equation holds, which is called the Bellman Equation:

7

Q(s,a) = r(s,a)+ γEs′∼P (s′|s,a)max
a′

Q(s′,a′)

An important algorithm based on the Bellman Equation to calculate the V ∗ and π∗ is value

iteration:

Vn+1(s) = maxa Qn(s,a),∀s where Qn(s,a) = r(s,a)+ γEs′P (s′|s,a)Vn(s′)

It is well known that the value function Vn converges to V ∗ as n→ ∞.

2.3.2 Universal Markov Decision Process (UMDP)

Universal Markov Decision Process (UMDP) extends an MDP with a set of goals G .

UMDP has reward function R : S ×A×G → R , where S is the state space and A is the action

space. Every episode starts with a goal selected from G by the environment and is fixed for the

whole episode.

We aim to find a goal conditioned policy π : S ×G → A to maximize the expected

cumulative future return Vg,π(s0) = Eπ[∑
∞
t=0 γtR(st ,at ,g)], which called goal-conditioned value,

or universal value. Universal Value Function Approximators (UVFA) [SHGS15] use neural

network to model V (s,g)≈Vg,π∗(s) where π∗ is the optimal policy, and apply Bellman equation

to train it in a bootstrapping way. Usually, the reward in UMDP is sparse to train the network.

For a given goal, the agent can receive non-trivial rewards only when it can reach the goal. This

brings a challenge to the learning process.

Hindsight Experience Replay (HER) [AWR+17] proposes goal-relabeling to train UVFA

in sparse reward setting. The key insight of HER is to “turn failure to success”, i.e., to make

a failed trajectory become success, by replacing the original failed goals with the goals it has

achieved. This strategy gives more feedback to the agent and improves the data efficiency for

sparse reward environments. Our framework relies on HER to train an accurate low-level policy.

8

2.4 Universal Goal Reaching

Problem Definition: Our universal goal reaching problem refers to a family of UMDP tasks.

The state space of our UDMP is a low-dimension manifold in the ambient space. Many useful plan-

ning problems in practice are of this kind. Example universal goal reaching environments include

labyrinth walking (e.g., AntMaze [DCH+16]) and robot arm control (e.g., FetchReach [PAR+18]).

Their states can only transit in a neighborhood of low-dimensionality constrained by the degree

of freedom of actions.

Following the notions in Sec 2.3.2, we assume that a goal g in goal space G which is a

subset of the state space S . For example, in a labyrinth walking game with continuous locomotion,

the goal can be to reach a specific location in the maze at any velocity. Then, if the state s is a

vector consisting of the location and velocity, a convenient way to represent the goal g would be a

vector that only contains the dimensions of location, i.e., the goal space is a projection of the state

space.

The universal goal reaching problem has a specific transition probability and reward

structure. At every time step, the agent moves into a local neighborhood based on the metric in

the state space, which might be perturbed by random noise. It also receives some negative penalty

(usually a constant, e.g., −1 in the experiments) unless it has arrived at the vicinity of the goal. A

0 reward is received if the goal is reached. To maximize the accumulated reward, the agent has

to reach the goal in fewest steps. Usually the only non-trivial reward 0 appears rarely, and the

universal goal reaching problem falls in the category of sparse reward environments, which are

hard-exploration problems for RL.

A Graph View: Assume that a policy π takes at most steps T to move from s to g and the

reward at each step rk’s absolute value is bounded by Rmax. Let wπ(s, t) be the expected total

reward along the trajectory, and dπ(s, t) =−wπ(s, t) for all s, t. If γ≈ 1, we can show that UVFA

9

Current State
Goal
Landmark
Planed Path

Experience

Edge

Figure 2.1: An illustration of our framework. The agent is trying to reach the other side of
the maze by planning on a landmark-based map. The landmarks are selected from its past
experience, and the edges between the landmarks are formed by a UVFA.

Vπ(s,g) can be approximated as:

Vπ(s,g)≈ E[wπ(s,g)] = E[−dπ(s,g)] (2.1)

This suggests us to view the MDP as a directed graph, whose nodes are the state set S , and

edges are sampled according to the transition probability in the MDP. The general value iteration

for RL problems is exactly the shortest path algorithm in terms of dπ(s,g) on this directed graph.

Besides, because the nodes form a low-dimensional manifold, nodes that are far away in the state

space can only be reached by a long path.

The MDP of our universal goal reaching problem is a large-scale directed graph whose

nodes are in a low-dimensional manifold. This structure allows us to estimate the all-pair shortest

paths accurately by a landmark based coarsening of the graph.

2.5 Approach

In this paper, we choose deep RL algorithms such as DQN and DDPG for discrete and

continuous action space, respectively. UVFA [SHGS15] is a goal-conditioned extension of the

10

original DQN, while HER (Sec 2.3.2), can produce more informative feedback for UVFA learning.

Our algorithm is thus based upon HER, and the extension of this approach for other algorithms is

also straightforward.

2.5.1 Basic Idea

Our approach aims at addressing the fundamental challenges in UVFA learning. As

characterized in the previous section, the UVFA estimation solves a pair-wise shortest path

problem, and the underlying graph has a node space of high cardinality. Note that UVFA has

to memorize the distance between every state-goal pairs, through trajectory samples from the

starting state to the goal, which is much larger than the original state space.

Such large set of state-goal pairs poses the challenge. First, it takes longer time to sample

enough state-goal pairs. Particularly, at the early stage, only few state-goal samples have been

collected, so learning from them requires heavy extrapolation by networks, which is well known

to be unreliable. Second, memorizing all the experiences is too difficult even for large networks.

We propose a map to abstract the visited state space by landmarks and edges to connect

them. This abstraction is reasonable due to the underlying structure of our graph — a low-

dimensional manifold [GH05]. We also learn local UVFA networks that only needs to be accurate

in the neighborhood of landmarks. As illustrated in Figure 2.1, an ant robot is put in an “U” Maze

to reach a given position. It should learn to model the maze as a small-scale map based on its past

experiences.

This solution addresses the challenges. For the UVFA network, it only needs to remember

experiences in a local neighborhood. Thus, the training procedure requires much lower sample

complexity. The map decomposes a long path into piece-wise short ones, and each of which is

from an accurate local network.

Our framework contains three components: a value function approximator trained with

hindsight experience replay, a map that is supported by sampled landmarks, and a planner that can

11

find the optimal path with the map. We will introduce them in Sec 2.5.2, Sec 2.5.3, and Sec 2.5.4,

respectively.

2.5.2 Learning a Local UVFA with HER

Specifically, we define the following reward function for goal reaching problem:

rt = R (st ,at ,g) =

 0 |s′t−g| ≤ δ

−1 otherwise

Here s′t is the next observation after taking action at . We first learn a UVFA based on HER, which

has proven its efficiency for UVFA. In experiments (see Sec 2.6.3), we find out that the agent

trained with HER does master the skill to reach goals of increasing difficulty in a curriculum way.

However, the agent can seldom reach the most difficult goals constantly, while the success rate of

reaching easier goals remains stable. All these observations prove that HER’s value and policy is

locally reliable.

One can pre-train the HER agent and then build map for planner. However, as an off-policy

algorithm, HER can work with arbitrary exploration policy. Thus we use the planner based on

current local HER agent as the exploration policy and train the local HER agent jointly. We

sample long horizon trajectories with the planner and store them into the replay buffer. We change

the replacement strategy in HER, ensuring that the replaced goals are sampled from the near

future within a fixed number of steps to increase the agent’s ability to reach nearby goals at the

early stage.

The UVFA trained in this step will be used in the planner for two purposes: (1) to estimate

the distance between two local states belonging to the same landmark, or between two nearby

landmarks; and (2) to decide whether two states are close enough so that we can trust the distance

estimation from the network. Although the learned UVFA is imperfect globally, it is enough for

12

the two local usages.

2.5.3 Building a Map by Sampling Landmarks

After training the UVFA, we will obtain a distance estimation d(s,g)2, a policy for any

state-goal pair (s,g), and a replay buffer that contains all the past experiences. We will build a

landmark-based map to abstract the state space based on the experiences.

Landmark Sampling The replay buffer stores visited states during training. Instead of localiz-

ing few important states that play a key role in connecting the environment, we seek to sample

many states to cover the visited state space.

Limited by computation budget, we first uniformly sample a big set of states from the

replay buffer, and then use the farthest point sampling (FPS) algorithm [AV07] to select landmarks

to support the explored state space. The metric for FPS can either be the Euclidean distance

between the original state representation or the pairwise value estimated by the agent.

We compare different sampling strategies in Section 2.6.3, and demonstrate the advantage

of FPS in abstracting the visited state space and exploration.

Connecting Nearby Landmarks We first connect landmarks that have a reliable distance

estimation from the UVFA and assign the UVFA-estimated distance between them as the weight

of the connecting edge.

Since UVFA is accurate locally but unreliable for long-term future, we choose to only

connect nearby landmarks. The UVFA is able to return a distance between any pair (s,g), so we

connect the pairs with distance below a preset threshold τ, which should ensure that all the edges

are reliable, as well as the whole graph is connected.

2If the algorithm returns a Q function, we will calculate the value by selecting the optimal action and calculate
the Q function and convert to d by Eq. 2.1

13

With these two steps, we have built a directed weighted graph which can approximate the

visited state space. This graph is our map to be used for high-level planning. Such map induces a

new environment, where the action is to choose to move to another landmark.

2.5.4 Planning with the Map

We can now leverage the map and the local UVFA network to estimate the distance

between any state-goal pairs, which induces a reliable policy for the agent to reach the goal.

For a given pair of (s,g), we can plan the optimal path between (s,g) by selecting a serial

of landmarks l1, · · · , lk, so that the approximated distance will be d̄(s,g) = minl1,··· ,lk d(s, l1)+

∑
k−1
i=1 d(li, li+1)+d(lk,g). The policy from s to g can then be approximated as: π̄(s,g) = π(s, l1)+

∑
k−1
i=1 π(li, li+1)+π(lk,g). Here the summation of π is the concatenation of the corresponding

action sequence.

In our implementation, we run the shortest path algorithm to solve the above minimization

problem. To speed up the pipeline, we first calculate the pairwise distances d(li,g) between each

landmark li and the goal g when episode starts. When the agent is at state s, we can choose the

next subgoal by finding gnext = argminli d(s, li)+d(li,g).

2.6 Experiments

2.6.1 FourRoom: An Illustrative Example

We first demonstrate the merits of our method in the FourRoom environment, where the

action space is discrete. The environment is visualized in Figure 2.2a. There are walls separating

the space into four rooms, with narrow openings to connect them. For this discrete environment,

we use DQN [MKS+13] with HER [AWR+17] to learn the Q value. Here, we use the one-hot

representation of the x-y position as the input of the network. The initial states and the goals are

14

(a) FourRoom
200 400 600 800 1000 1200

#episode

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s r

ate

Ours
HER

(b) Success Rate

Figure 2.2: The results on FourRoom Environment. Figure 2.2a shows the sampled landmarks
and the planned path based on our algorithm. Figure 2.2b indicates the success rate to reach the
goal.

randomly sampled during training.

We compare our method with DQN on success reaching rate, and their performances are

shown in Figure 2.2b. Our method can achieve better accuracy at the early stage.

2.6.2 Continuous Control

In this section, we will compare our method with HER on challenging classic control

tasks and MuJoCo [TET12a] goal-reaching environments.

The results compared with HER are shown in Figure 2.3. Our method trains UVFA with

planner and HER. It is evaluated under the test setting, using the model and replay buffer at

corresponding training steps.

In the 2DReach and 2DPush task (shown in Figure 2.3b), we can see our method achieves

better performance. When incorporating with control tasks, for BlockedFetchReach and Fetch-

Push environments, the results still show that our performance is better than HER, but the

improvement is not so remarkable. We guess this comes from the strict time limit of the two

environments, which is only 50. We observe that pure HER can finally learn well, when the task

horizon is not very long.

We expect that building maps would be more helpful for long-range goals, which is

15

0 10000 20000 30000 40000 50000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Ours
HER

(a) 2DReach

0 100000 200000 300000 400000 500000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Ours
HER

(b) 2DPush

2000 4000 6000 8000 10000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

R
at

e

Ours
HER

(c) BlockedFetchReach

0 100000 200000 300000 400000 500000 600000 700000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Ours
HER

(d) FetchPush

0 200000 400000 600000 800000 1000000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

R
at

e

Ours
HER

(e) PointMaze

0 500000 1000000 1500000 2000000 2500000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Ours
HER

(f) AntMaze

0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Ours
HER

(g) Complex AntMaze

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

R
at

e

Ours
HER

(h) Acrobot

Figure 2.3: Experiments on the continuous control environments. The red curve indicates the
performance of our method at different training steps.

evidenced in the environments with longer episode length. Here we choose PointMaze and

AntMaze with scale 12× 12. For training, the agent is born at a random position to reach a

random goal in the maze. For testing, the agent should reach the other side of the “U-Maze”

within 500 steps. For these two environments, the performance of planning is significantly better

and remains stable, while HER can hardly learn a reliable policy. Results are shown in Figure 2.3e

and Figure 2.3f.

We also evaluate our method on classic control, and more complex navigation + lo-

comotion task. Here we choose Complex Antmaze and Acrobot, and results are shown in

Figure 2.3h and Figure 2.3g. The advantage over baseline demonstrates our method is applicable

to complicated navigation tasks as well as general MDPs.

2.6.3 Ablation Study

We study some key factors that affect our algorithm on AntMaze.

Choice of clip range and landmarks There are two main hyper-parameters for the

planner – the number of landmarks and the edge clipping threshold τ. Figure 2.5a shows the

16

(a) Multi-level AntMaze (b) Success Rate

Figure 2.4: AntMaze of multi-level difficulty. Figure 2.4b is the average steps and success rate
to reach different level of goals, respectively.

evaluation result of the model trained after 0.8M steps in AntMaze. We see that our method is

generally robust under different choices of hyper-parameters. Here τ is the negative distance

between landmarks. If it’s too small, the landmarks will be isolated and can’t form a connected

graph. The same problem comes when the landmarks are not enough.

The local accuracy of HER We evaluate our model trained between 0∼2.5M steps, for

goals of different difficulties. We manually define the difficulty level of goals, as shown in

Figure 2.4a. Goal’s difficulty increases from Level 1 to Level 6. We plot the success rate as well

as the average steps to reach these goals. We find out that, for the easier goals, the agent takes

less time and less steps to master the skill. The success rate and average steps also remain more

stable during the training process, indicating that our base model is more reliable and stable in

the local area.

Landmark sampling strategy comparison Our landmarks are dynamically sampled

from the replay buffer by iterative FPS algorithm using distances estimated by UVFA, and get

updated at the beginning of every episode. The FPS sampling tends to find states at the boundary

of the visited space, which implicitly helps exploration. We test FPS and uniform sampling in fix-

start AntMaze (The ant is born at a fixed position to reach the other side of maze for both training

and testing). Figure 2.5b shows that FPS has much higher success rate than uniform sampling.

17

(a) Hyperparameters of the planner

0 200000 400000 600000 800000 1000000 1200000 1400000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

FPS
Uniform

(b) FPS vs. Uniform Sampling (c) Landmark-based Map

Figure 2.5: Figure 2.5a shows the relationship with the landmarks and clip range in the planner.
Figure 2.5b shows FPS outperforms uniform sampling. And Figure 2.5c is the landmark-based
map at different training steps constructed by FPS.

Figure 2.5c shows landmark-based graph at four training stages. Through FPS, landmarks expand

gradually towards the goal (red dot), even if it only covers a small proportion of states at the

beginning.

Chapter 2, in full, is a material found in Thirty-third Conference on Neural Information

Processing Systems 2019. Huang, Zhiao; Liu, Fangchen; Su, Hao. Mapping State Space Using

Landmarks for Universal Goal Reaching. The thesis author was the co-first author of this paper.

18

Chapter 3

Imitation Learning with State Prediction

and Alignment

3.1 Introduction

Learning from demonstrations (imitation learning, abbr. as IL) is a basic strategy to

train agents for solving complicated tasks. Imitation learning methods can be generally divided

into two categories: behavior cloning (BC) and inverse reinforcement learning (IRL). Behavior

cloning [RGB11a] formulates a supervised learning problem to learn a policy that maps states to

actions using demonstration trajectories. Inverse reinforcement learning [Rus98, NR00] tries to

find a proper reward function that can induce the given demonstration trajectories. GAIL [HE16]

and its variants [FLL, QBY18, XHW+19] are the recently proposed IRL-based methods, which

uses a GAN-based reward to align the distribution of state-action pairs between the expert and

the imitator.

Although state-of-the-art BC and IRL methods have demonstrated compelling perfor-

mance in standard imitation learning settings, e.g. control tasks [HE16, FLL, QBY18, XHW+19]

and video games [APB+18a], these approaches are developed based on a strong assumption:

19

the expert and the imitator share the same dynamics model; specifically, they have the same

action space, and any feasible state-action pair leads to the same next state in probability for both

agents. The assumption brings severe limitation in practical scenarios: Imagine that a robot with

a low speed limit navigates through a maze by imitating another robot which moves fast, then,

it is impossible for the slow robot to execute the exact actions as the fast robot. However, the

demonstration from the fast robot should still be useful because it shows the path to go through

the maze.

We are interested in the imitation learning problem under a relaxed assumption: Given

an imitator that shares the same state space with the expert but their dynamics may be different,

we train the imitator to follow the state sequence in expert demonstrations as much as possible.

This is a more general formulation since it poses fewer requirements on the experts and makes

demonstration collection easier. Due to the dynamics mismatch, the imitator becomes more

likely to deviate from the demonstrations compared with the traditional imitation learning setting.

Therefore, it is very important that the imitator should be able to resume to the demonstration

trajectory by itself. Note that neither BC-based methods nor GAIL-based IRL methods have

learned to handle dynamics misalignment and deviation correction.

To address the issues, we propose a novel approach with four main features: 1) State-

based. Compared to the majority of literature in imitation learning, our approach is state-based

rather than action-based. Not like BC and IRL that essentially match state-action pairs between

the expert and the imitator, we only match states. An inverse model of the imitator dynamics

is learned to recover the action; 2) Deviation Correction. A state-based β-VAE [HMP+17] is

learned as the prior for the next state to visit. Compared with ordinary behavior cloning, this

VAE-based next state predictor can advise the imitator to return to the demonstration trajectory

when it deviates. The robustness benefits from VAE’s latent stochastic sampling; 3) Global State

Alignment. While the VAE can help the agent to correct its trajectory to some extent, the agent

may still occasionally enter states that are far away from demonstrations, where the VAE has no

20

clue how to correct it. So we have to add a global constraint to align the states in demonstration

and imitation. Inspired by GAIL that uses reward to align the distribution of state-action pairs, we

also formulate an IRL problem whose maximal cumulative reward is the Wasserstein Distance

between states of demonstration and imitation. Note that we choose not to involve state-action

pairs as in GAIL[HE16], or state-state pairs as in an observation-based GAIL [TWS18b], because

our state-only formulation imposes weaker constraints than the two above options, thus providing

more flexibility to handle different agent dynamics; 4) Regularized Policy Update. We combine

the prior for next state learned from VAE and the Wasserstein distance-based global constraint

from IRL in a unified framework, by imposing a Kullback-Leibler divergence based regularizer

to the policy update in the Proximal Policy Optimization algorithm.

To empirically justify our ideas, we conduct experiments in two different settings. We first

show that our approach can achieve similar or better results on the standard imitation learning

setting, which assumes the same dynamics between the expert and the imitator. We then evaluate

our approach in the more challenging setting that the dynamics of the expert and the imitator are

different. In a number of control tasks, we either change the physics properties of the imitators or

cripple them by changing their geometries. Existing approaches either fail or can only achieve

very low rewards, but our approach can still exhibit decent performance. Finally, we show that

even for imitation across agents of completely different actuators, it is still possible for the state-

alignment based method to work. Surprisingly, a point mass and an ant in MuJoCo [TET12b] can

imitate each other to navigate in a maze environment.

3.2 Related work

Imitation learning is widely used in solving complicated tasks where pure reinforce-

ment learning might suffer from high sample complexity, like robotics control [LYCL17, YA17,

PML+18], autonomous vehicle [FLL, Pom89], and playing video game [APB+18b]. Behavioral

21

cloning [BS99] is a straight-forward method to learn a policy in a supervised way. However, behav-

ioral cloning suffers from the problem of compounding errors as shown by [RB10], and this can be

somewhat alleviated by interactive learning, such as DAGGER [RGB11a]. Another important line

in imitation learning is inverse reinforcement learning [Rus98, NR00, AN04, ZMBD08, FLL],

which finds a cost function under which the expert is uniquely optimal.

Since IRL can be connected to min-max formulations, works like GAIL, SAM [HE16,

BK18] utilize this to directly recover policies. Its connections with GANs [GPAM+14] also

lead to f -divergence minimization [KBS+19, NCT16] and Wasserstein distance minimization

[XHW+19]. One can also extend the framework from matching state-action pairs to state

distribution matching, such as [TWS18b, SVBB19, SI17]. Other works [APB+18a, LGAL18,

PKM+18] also learn from observation alone, by defining reward on state and using IRL to solve

the tasks. Works like [LEP+19, LEP+] also use state-based reward for exploration. [TWS18a,

ESSI18] will recover actions from observations by learning an inverse model or latent actions.

However, our work aims to combine the advantage of global state distribution matching and

local state transition alignment, which combines the advantage of BC and IRL through a novel

framework.

3.3 Backgrounds

3.3.1 Variational Autoencoders

[KW13, RMW14] provides a framework to learn both a probabilistic generative model

pθ(x|z) as well as an approximated posterior distribution qφ(z|x). β-VAE is a variant VAE that

introduces an adjustable hyperparameter β to the original objective:

L(θ,φ;x,z,β) = Eqφ(z|x) [log pθ(x|z)]−βDKL
(
qφ(z|x)‖p(z)

)
(3.1)

22

Figure 3.1: Using VAE as a state predictive model will be more self-correctable because of the
stochastic sampling mechanism. But this won’t happen when we use VAE to predict actions.

Larger β will penalize the total correlation [CLGD18] to encourage more disentangled

latent representations, while smaller β often results in sharper and more precise reconstructions.

3.3.2 Wasserstein distance

The Wasserstein distance between two density functions p(x) and q(x) with support on

a compact metric space (M,d) has an alternative form due to Kantorovich-Rubenstein duality

[Vil08]:

W (p,q) = sup
φ∈L1

Ep(x)[φ(x)]−Eq(x)[φ(x)] (3.2)

Here, L1 is the set of all 1-Lipschitz functions from M to R. Compared with the prevalent

KL-divergence and its extension, the f-divergence family, Wasserstein distance has a number of

advantages theoretically and numerically. Please refer to [ACB17] and [Sol18] for a detailed

discussion.

23

Figure 3.2: Visualization of state alignment

3.4 Approach

3.4.1 Overview

Our imitation learning method is based on state alignment from both local and global

perspectives. For local alignment, the goal is to follow the transition of the demonstration as

much as possible, and allow the return to the demonstration trajectory whenever the imitation

deviates. To achieve both goals, we use a β-VAE [HMP+17] to generate the next state (Figure 3.2

Left). For global alignment, we set up an objective to minimize the Wasserstein distance between

the states in the current trajectory and the demonstrations (Figure 3.2 Right). There has to be a

framework to naturally combine the local alignment and global alignment components. We resort

to the reinforcement learning framework by encoding the local alignment as policy prior and

encoding the global alignment as reward over states. Using Proximal Policy Optimization (PPO)

by [SWD+17] as the backbone RL solver, we derive a regularized policy update. To maximally

exploit the knowledge from demonstrations and reduce interactions with the environment, we

adopt a pre-training stage to produce a good initialization based on the same policy prior induced

by the local alignment. Our method is summarized in Algorithm ??. In the rest parts of this

section, we will introduce all the components of our method in details.

24

3.4.2 Local Alignment by State Predictive VAE

To align the transition of states locally, we need a predictive model to generate the next

state which the agent should target at. And then we can train an inverse dynamics model to

recover the corresponding action, so as to provide a direct supervision for policy.

Instead of using an ordinary network to memorize the subsequent states, which will suffer

from the same issue of compounding errors as behavioral cloning [RB10, RGB11b], we propose

to use VAE to generate the next state based on the following two reasons. First, as shown in

[DWA+18], VAE is more robust to outliers and regularize itself to find the support set of a data

manifold, so it will generalize better for unseen data. Second, because of the latent stochastic

sampling, the local neighborhood of a data point will have almost the same prediction, which is

self-correctable when combined with a precise inverse dynamics model as illustrated in Figure 3.1.

We can also use a VAE to generate action based on the current state. But if the agent

deviated from the demonstration trajectory a little bit, this predicted action is not necessarily guide

the agent back to the trajectory, as shown in Figure 3.1. And in Sec ??, we conduct experiments

to compare the state predictive VAE and the action predictive VAE.

Instead of the vanilla VAE, we use β-VAE to balance the KL penalty and prediction error,

with formulation shown in (3.1). In Sec 3.5, we discuss the effects of the hyper-parameter β in

different experiment settings as one of the ablation studies.

3.4.3 Global Alignment by Wasserstein Distance

Due to the difference of dynamics between the expert and the imitator, the VAE-based

local alignment cannot fully prevent the imitator from deviating from demonstrations. In such

circumstances, we still need to assess whether the imitator is making progress in learning from

the demonstrations. We, therefore, seek to control the difference between the state visitation

distribution of the demonstration and imitator trajectories, which is a global constraint.

25

Note that using this global constraint alone will not induce policies that follow from

the demonstration. Consider the simple case of learning an imitator from experts of the same

dynamics. The expert takes cyclic actions. If the expert runs for 100 cycles with a high velocity

and the imitator runs for only 10 cycles with a low velocity within the same time span, their

state distribution would still roughly align. That is why existing work such as GAIL aligns

state-action occupancy measure. However, as shown later, our state-based distribution matching

will be combined with the local alignment component, which will naturally resolve this issue. The

advantage of this state-based distribution matching over state-action pair matching as in GAIL or

state-next-state pair matching in [TWS18b] is that the constraint becomes loosened.

We use IRL approach to achieve the state distribution matching by introducing a rein-

forcement learning problem. Our task is to design the reward to train an imitator that matches the

state distribution of the expert.

Before introducing the reward design, we first explain the computation of the Wasserstein

distance between the expert trajectories {τe} and imitator trajectory {τ} using the Kantorovich

duality:

W (τe,τ) = sup
φ∈L1

Es∼τe[φ(s)]−Es∼τ[φ(s)] (3.3)

where φ is the Kantorovich’s potential, and serves as the discriminator in WGAN [ACB17]. φ is

trained with a gradient penalty term as WGAN-GP introduced in [GAA+17]

After the rollout of imitator policy is obtained, the potential φ will be updated by (3.3).

Assume a transition among an imitation policy rollout of length T is (si,si+1). To provide a dense

signal every timestep, we assign the reward as:

r(si,si+1) =
1
T
[φ(si+1)−Es∼τeφ(s)] (3.4)

We now explain the intuition of the above reward. By solving (3.3), those states of higher

probability in demonstration will have a larger φ value. The reward in (3.4) will thus encourage

26

the imitator to visit such states.

Maximizing the curriculum reward will be equivalent to

J(π) =
T

∑
t=1

Est ,st+1∼π[r(st ,st+1)] =
T

∑
t=1

Est+1[φ(st+1)−Es∼τe [φ(s)]]
T

=−W (τe,τ)

In other words, the optimal policy of this MDP best matches the state visitation distributions w.r.t

Wasserstein distance.

3.4.4 Regularized PPO Policy Update Objective

As mentioned in the second paragraph of Sec 3.4.3, the global alignment has to be

combined with local alignment. This is achieved by adding a prior to the original clipped PPO

objective.

We maximize the following unified objective function:

J(πθ) = LCLIP(θ)−λDKL

(
πθ(·|st)

∥∥∥ pa

)
(3.5)

We will explain the two terms in detail. LCLIP(θ) denotes the clipped surrogate objective

used in the original PPO algorithm:

LCLIP (θ) = Êt

[
min

(
πθ(a|s)

πθold(a|s)
Ât ,clip

(
πθ(a|s)

πθold(a|s)
,1− ε,1+ ε

)
Ât

)]
, (3.6)

where Ât is an estimator of the advantage function at timestep t. The advantage function is

calculated based on a reward function described in Sec 3.4.3.

The DKL term in (3.5) serves as a regularizer to keep the policy close to a learned policy

prior pa. This policy prior pa is derived from the state predictive VAE and an inverse dynamics

model. Assume the β-VAE is f (st) = st+1 and the inverse dynamics model is ginv(st ,st+1) = a.

To solve the case when the agents have different dynamics, we learn a state prediction network

27

and use a learned inverse dynamics to decode the action. We define the action prior as

pa(at |st) ∝ exp
(
−
∥∥∥ginv(st , f (st))−at

σ

∥∥∥2
)

(3.7)

where the RHS is a pre-defined policy prior, a Gaussian distribution centered at ginv(st , f (st)). σ

controls how strong the action prior is when regularizing the policy update, which is a hyper-

parameter. Note that the inverse model can be further adjusted during interactions.

LCLIP is computed through the advantage Ât and reflects the global alignment. The policy

prior is obtained from the inverse model and local β-VAE, which makes the DKL serve as a local

alignment constraint. Furthermore, our method can be regard as a combination of BC and IRL

because our KL-divergence based action prior encodes the BC policy and we update the policy

leveraging reward.

We would note that our state-alignment method augments state distribution matching by

taking relationships of two consecutive states into account with robustness concern.

3.4.5 Pre-training

We pretrain the state predictive VAE and the inverse dynamics model, and then obtain

the policy prior in (3.7), which is a Gaussian distribution. For pre-training, we want to initialize

PPO’s Gaussian policy π by this prior pa, by minimizing the KL-divergence between them.

Practically, we use direct supervision from ginv(st , f (st)) and σ in (3.7) to directly train both the

mean and variance of the policy network, which is more efficient during the pre-training stage.

During the online interaction, the update rule of PPO’s policy is by optimizing (3.5), and the

variance will be further adjusted for all the dimensions of the action space.

28

3.5 Experiments

We conduct two different kinds of experiments to show the superiority of our method.

In Sec 3.5.1, we compare our method with behavior cloning [BS99], GAIL [HE16], and AIRL

[FLL] in control setting where the expert and the imitator have different dynamics model, e.g.,

both of them are ant robots but the imitator has shorter legs. In Sec 3.5.1, we further evaluate in

the traditional imitation learning setting. Finally, in Sec ??, we conduct ablation study to show

the contribution of the components.

3.5.1 Imitation Learning across Agents of Different Action Dynamics

Actors of Modified Physics and Geometry Properties

We create environments using MuJoCo [TET12b] by changing some properties of experts,

such as density and geometry of the body. We create 6 different environments: Heavy/Light/Disabled

Ant/Swimmer. The Heavy/Light agents have modified density, and the disabled agents have

modified head/tail/leg lengths. The demonstrations are collected from the standard Ant-v2 and

Swimmer-v2. More descriptions of the environments can be founded in the Appendix.

0 200000 400000 600000 800000 1000000
Steps

6000

4000

2000

0

2000

4000

Sc
or

e

(a) DisabledAnt

0 200000 400000 600000 800000 1000000
Steps

2000

0

2000

4000

6000

Sc
or

e

(b) LightAnt

0 200000 400000 600000 800000 1000000
Steps

8000

6000

4000

2000

0

2000

4000

6000

8000

Sc
or

e

(c) HeavyAnt

0 200000 400000 600000 800000 1000000
Steps

50

0

50

100

150

200

250

300

Sc
or

e

(d) DisableSwimmer

0 100000 200000 300000 400000 500000
Steps

50

0

50

100

150

200

250

300

350

Sc
or

e

(e) LightSwimmer

0 200000 400000 600000 800000 1000000
Steps

50

0

50

100

150

200

250

300

Sc
or

e

SAIL(Ours)
AIRL
GAIL
BC

(f) HeavySwimmer

Figure 3.3: Comparison with BC, GAIL and AIRL when dynamics are different from experts.

29

Figure 3.3 demonstrates the superiority of our methods over all the baselines. Our

approach is the most stable in all the 6 environments and shows the leading performance in each

of them. GAIL seems to be the most sensitive to dynamics difference. AIRL, which is designed to

solve imitation learning for actors of different dynamics, can perform on par with our method in

two swimmer-based environments (DisabledSwimmer and HeavySwimmer) that have relatively

lower dimensional action space (2D for swimmer versus 8D for ants).

Interestingly, the stability and performance of vanilla behavior cloning are quite reason-

able, although it failed to move about in the DisabledAnt and HeavyAnt environments. In the

other four games, BC agents do not die but just move less efficiently, so they have a sub-optimal

yet still reasonable score.

Actors of Heterogeneous Action Dynamics

We consider a challenging setting that the imitator and demonstrator are functionally

different. One typical example of expert/imitator pair in practice would be a human and a

humanoid robot. We consider a much simplified version but with similar nature – a Point and

an Ant in MuJoCo. In this task, even if the state space cannot be exactly matched, there are still

some shared dimensions across the state space of the imitator and the actor, e.g., the location of

the center of mass, and the demonstration should still teach the imitator in these dimensions.

We use the same setting as many hierarchical RL papers, such as HIRO and Near-

Optimal RL [NGLL18a, NGLL18b]. The agent need to reach a goal position in a maze, which

is represented by (x,y) coordinates. We also know that the first two dimensions of states are the

position of the agent. The prior knowledge includes: (1) the goal space (or the common space

that need to be matched) (2) the projection from the state space to the goal space (select the first

two dimensions of the states).

The first task is that the Ant should reach the other side of the maze from several successful

demonstrations of a Point robot. As shown in Figure 3.4, the maze structure for the ant and point

30

Figure 3.4: Imitation Learning of Actors with Heterogeneous Action Dynamics.

mass is exactly the same.

To solve this problem, we first pre-train an VAE on the demonstrations, and use this VAE

to propose the next “subgoal” for the Ant. This VAE is trained on the goal space (i.e. the first two

dimensions) of the Point robot’s trajectory. Then we train an inverse model for Ant, which will

generate an action based on the Ant’s current state (high dimensional) and goal predicted by VAE

(2 dimensional. After 1M training steps, the agent has success rate of 0.8 to reach the other side

of the maze.

3.5.2 Actors of the Same Dynamics (Standard Imitation Learning)

We also evaluate our algorithm on 6 non-trivial control tasks in MuJoCo: Swimmer,

Hopper, Walker, Ant, HalfCheetach, and Humanoid. We first collect demonstration trajectories

with Soft Actor-Critic, which can learn policies that achieve high scores in most of these en-

vironments1. For comparison, we evaluate our method against 3 baselines: behavior cloning,

GAIL, and AIRL2. Also, to create even stronger baselines for the cumulative reward and imitator

run-time sample complexity, we initialize GAIL with behavior cloning, which would obtain

higher scores in Swimmer and Walker. Lastly, to evaluate how much each algorithm depends on

the amount of demonstrations, we sampled demonstration trajectories of ten and fifty episodes.

1We collect near-optimal demonstration on Swimmer using TRPO due to the limited performance of SAC.
2AIRL and EAIRL[QBY18] have similar performance, and we only compare to AIRL.

31

Table 3.1 depicts representative results in Hopper and HalfCheetah3. The advantage of our

methods over BC should be attributed to the inherent data augmentation by VAE. On Hopper-v2,

we are significantly better with 10 demos but are just on par if the demos are increased to 50.

On HalfCheetah-v2, the demo cheetah runs almost perfectly (12294 scores); in other words, the

demo provides limited instruction when the imitator is even slightly off the demo states, thus the

robustness from VAE becomes critical.

Chapter 3, in full, is a material found in Eighth International Conference on Learning

Representations 2020. Liu, Fangchen; Ling, Zhan; Mu, Tongzhou; Su, Hao. State Alignment-

based Imitation Learning. The thesis author was the first author of this paper.

Table 3.1: Performance on Hopper-v2 and HalfCheetah-v2

Hopper-v2 HalfCheetah-v2
Demo 10 50 10 50
Expert 3566 ± 1.24 12294.22 ± 273.59

BC 1318.76 ± 804.36 3525.87 ± 160.74 971.42 ± 249.62 4813.20 ± 1949.26
GAIL 3372.66 ± 130.75 3363.97 ± 262.77 474.42 ± 389.30 -175.83 ± 26.76

BC-GAIL 3132.11 ± 520.65 3130.82 ± 554.54 578.85 ± 934.34 1597.51 ± 1173.93
AIRL 3.07 ± 0.02 3.31 ± 0.02 -146.46 ± 23.57 755.46 ± 10.92

Our init 3412.58 ± 450.97 3601.16 ± 300.14 1064.44 ± 227.32 7102.29 ± 910.54
Our final 3539.56 ± 130.36 3614.19 ± 150.74 1616.34 ± 180.76 8817.32 ± 860.55

3Results for other environments can be founded in the Appendix.

32

Appendix A

Environment Settings

A.1 Goal-reaching Environments

We test our algorithms on the following environments: 2DReach A green point in a 2D

(a) 2DReach (b) 2DPush (c) BlockedFetchReach (d) FetchPush

(e) PointMaze (f) AntMaze (g) Complex AntMaze (h) Acrobot

Figure A.1: The environments we use for continuous control experiments.

U-maze aims to reach the goal represented by a red point, as shown in Figure A.1a. The size of

the maze is 15×15. The state space and the goal space are both in this 2D maze. At each step,

the agent can move within [−1,1]× [−1,1] as δx,δy in x and y directions.

33

2DPush The green point A now need to push a blue point B to a given goal (red point)

lying in the same U-maze as 2DReach, as shown in Figure A.1b. Once A has reached B, B

will follow the movement of A. In this environment, the state is a 4-dim vector that contains the

location of both A and B.

BlockedFetchReach & FetchPush We need to control a gripper to either reach a location

in 3d space or push an object in the table to a specific location, as shown in Figure A.1c and

Figure A.1d. Since the original FetchReach implemented in OpenAI gym [BCP+16] is very easy

to solve, we further add some blocks to increase the difficulty. We call this new environment

BlockedFetchReach.

PointMaze & AntMaze As shown in Figure A.1e and Figure A.1f, a point mass or an

ant is put in a 12×12 U-maze. Both agents are trained to reach a random goal from a random

location and tested under the most difficult setting to reach the other side of maze within 500

steps. The states of point and ant are 7-dim and 30-dim, including positions and velocities.

Complex AntMaze As shown in Figure A.1g, an ant is put in a 56×56 complex maze.

It is trained to reach a random goal from a random location and tested under the most difficult

setting to reach the farthest goal (indicated as the red point) within 1500 steps.

Acrobot As shown in Figure A.1h, an acrobot includes two joints and two links. Goals

are states that the end-effector is above the black line at specific joint angles and velocities. The

states and goals are both 6-dim vectors including joint angles and velocities.

A.2 Cross-Morphology Imitation Learning Environments

PointMaze & AntMaze As shown in Figure 3.4, a point mass or an ant is put in a 24×24

U-maze. The task is to make the agent reach the other side of U-maze with the demonstration

from the point mass. The ant is trained to reach a random goal in the maze from a random

location, and should reach the other side of the maze. The state space of ant is 30-dim, which

34

contains the positions and velocities.

HeavyAnt Two times of original Ant’s density. Two times of original gear of the armature.

LightAnt One tenth of original Ant’s density.

DisabledAnt Two front legs are 3 quarters of original Ant’s legs.

HeavySwimmer 2.5 times of original Swimmer’s density.

LightSwimmer One twentieth of original Swimmer’s density.

DisabledSwimmer Make the last joint 1.2 times longer and the first joint 0.7 times of the

original length

The exact results of these environments are listed in Table A.1, A.2. All the statistics are

calculated from 20 trails.

Table A.1: Performance on modifeid Swimmer

DisabledSwimmer LightSwimmer HeavySwimmer
BC 249.09 ± 1.53 277.99 ± 3.41 255.95 ± 2.5

GAIL 228.46 ± 2.02 -4.11 ± 0.51 254.91 ± 1.35
AIRL 283.42 ± 3.69 67.58 ± 25.09 301.27 ± 5.21

SAIL(Ours) 287.71 ± 2.31 342.61 ± 6.14 286.4 ± 3.2

Table A.2: Performance on modified Ant

DisabledAnt HeavyAnt LightAnt
BC 1042.45 ± 75.13 550.6 ± 77.62 4936.59 ± 53.42

GAIL -1033.54 ± 254.36 -1089.34 ± 174.13 -971.74 ± 123.14
AIRL -3252.69 ± 153.47 -62.02 ± 5.33 -626.44 ± 104.31

SAIL(Ours) 3305.71 ± 67.21 5608.47 ± 57.67 4335.46 ± 82.34

35

Appendix B

Imitation Benchmark Experiments

We use six MuJoCo [TET12b] control tasks. The name and version of the environments

are listed in Table B.1, which also list the state and action dimension of the tasks with expert

performance and reward threshold to indicate the minimum score to solve the task. All the experts

are trained by using SAC [HZAL18] except Swimmer-v2 where TRPO [SLA+15] get higher

performance.

Table B.1: Performance on benchmark control tasks

Environment State Dim Action Dim Reward threshold Expert Performance
Swimmer-v2 8 2 360 332
Hopper-v2 11 3 3800 3566

Walker2d-v2 17 6 - 4924
Ant-v2 111 8 6000 6157

HalfCheetah-v2 17 6 4800 12294
Humanoid-v2 376 17 1000 5187

The exact performance of all methods are list in Table B.2, B.3, B.4, B.5, B.6, B.7. We

compare GAIL[HE16], behavior cloning, GAIL with behavior cloning initilization and AIRL to

our method containing. Means and standard deviations are calculated from 20 trajectories after

the agents converge and the number total interactions with environments is less than one million

environment steps.

36

Table B.2: Performance on Swimmer-v2 with different trajectories

Swimmer-v2
#Demo 5 10 20 50
Expert 332.88 ± 1.24

BC 328.85 ± 2.26 331.17 ± 2.4 332.17 ± 2.4 330.65 ± 2.42
GAIL 304.64 ± 3.16 271.59 ± 11.77 56.16 ± 5.99 246.73 ± 5.76

BC-GAIL 313.80 ± 3.42 326.58 ± 7.87 294.93 ± 12.21 315.68 ± 9.99
AIRL 332.11 ± 2.57 338.43 ± 3.65 335.67 ± 2.72 340.08 ± 2.70

Our init 332.36 ± 3.62 335.78 ± 0.34 336.23 ± 2.53 334.03 ± 2.11
Our final 332.22 ± 3.23 339.67 ± 3.21 336.18 ± 1.87 336.31 ± 3.20

Table B.3: Performance on Hopper-v2 with different trajectories

Hopper-v2
#Demo 5 10 20 50
Expert 3566 ± 1.24

BC 1471.40 ± 637.25 1318.76 ± 804.36 1282.46 ± 772.24 3525.87 ± 160.74
GAIL 3300.32 ± 331.61 3372.66 ± 130.75 3201.97 ± 295.27 3363.97 ± 262.77

BC-GAIL 3122.23 ± 358.65 3132.11 ± 520.65 3111.42 ± 414.28 3130.82 ± 554.54
AIRL 4.12 ± 0.01 3.07 ± 0.02 4.11 ± 0.01 3.31 ± 0.02

Our init 2322.49 ± 300.93 3412.58 ± 450.97 3314.03 ± 310.32 3601.16 ± 300.14
Our final 3092.26 ± 670.72 3539.56 ± 130.36 3516.81 ± 280.98 3610.19 ± 150.74

Table B.4: Performance on Walker2d-v2 with different trajectories

Walker2d-v2
#Demo 5 10 20 50
Expert 5070.97 ± 209.19

BC 1617.34 ± 693.63 4425.50 ± 930.62 4689.30 ± 372.33 4796.24 ± 490.05
GAIL 1307.21 ± 388.55 692.16 ± 145.34 1991.58 ± 446.66 751.21 ± 150.18

BC-GAIL 3454.91 ± 792.40 2094.68 ± 1425.05 3482.31 ± 828.21 2896.50 ± 828.18
AIRL -7.13 ± 0.11 -7.39 ± 0.09 -3.74 ± 0.13 -4.64 ± 0.09

Our init 1859.10 ± 720.44 2038.90 ± 260.78 4509.82 ± 1470.65 4757.58 ± 880.45
Our final 2681.20 ± 530.67 3764.14 ± 470.01 4778.82 ± 760.34 4780.73 ± 360.66

37

Table B.5: Performance on Ant-v2 with different trajectories

Ant-v2
#Demo 5 10 20 50
Expert 6190.90 ± 254.18

BC 3958.20 ± 661.28 3948.88 ± 753.41 5424.01 ± 473.05 5852.79 ± 572.97
GAIL 340.02 ± 59.02 335.25 ± 89.19 314.35 ± 52.13 284.18 ± 32.40

BC-GAIL -1081.30 ± 673.65 -1177.27 ± 618.67 -13618.45 ± 4237.79 -1166.16 ± 1246.79
AIRL -839.32 ± -301.54 -386.43 ± 156.98 -586.07 ± 145.43 -393.90 ± 145.13

Our init 1150.82 ± 200.87 3015.43 ± 300.70 5200.58 ± 870.74 5849.88 ± 890.56
Our final 1693.59 ± 350.74 3983.34 ± 250.99 5980.37 ± 420.16 5988.65 ± 470.03

Table B.6: Performance on HalfCheetah-v2 with different trajectories

HalfCheetah-v2
#Demo 5 10 20 50
Expert 12294.22 ± 208.41

BC 225.42 ± 147.16 971.42 ± 249.62 2782.76 ± 959.67 4813.20 ± 1949.26
GAIL -84.92 ± 43.29 474.42 ± 389.30 -116.70 ± 34.14 -175.83 ± 26.76

BC-GAIL 1362.59 ± 1255.57 578.85 ± 934.34 3744.32 ± 1471.90 1597.51 ± 1173.93
AIRL 782.36 ± 48.98 -146.46 ± 23.57 1437.25 ± 25.45 755.46 ± 10.92

Our init 267.71 ± 90.38 1064.44 ± 227.32 3200.80 ± 520.04 7102.74 ± 910.54
Our final 513.66 ± 15.31 1616.34 ± 180.76 6059.27 ± 344.41 8817.32 ± 860.55

Table B.7: Performance on Humanoid-v2 with different trajectories

Humanoid-v2
#Demo 5 10 20 50
Expert 5286.21 ± 145.98

BC 1521.55± 272.14 3491.07± 518.64 4686.05 ±355.74 4746.88 ±605.61
GAIL 485.92± 27.59 486.44 ±27.18 477.15± 22.07 481.14± 24.37

BC-GAIL 363.68 ±44.44 410.03 ±33.07 487.99± 30.77 464.91 ±33.21
AIRL 79.72 ± 4.27 87.15 ± 5.01 -1293.86 ± 10.70 84.84 ± 6.46

Our init 452.31 ± 190.12 1517.63 ± 110.45 4610.25 ± 2750.86 4776.83 ± 1320.46
Our final 1225.58 ± 210.88 2190.43 ± 280.18 4716.91 ±680.29 4780.07 ± 700.01

38

Bibliography

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

[APB+18a] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando
de Freitas. Playing hard exploration games by watching youtube. In Advances in
Neural Information Processing Systems, pages 2930–2941, 2018.

[APB+18b] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando
de Freitas. Playing hard exploration games by watching youtube. In Advances in
Neural Information Processing Systems, pages 2930–2941, 2018.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics,
2007.

[AWR+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. In Advances in Neural Information Pro-
cessing Systems, pages 5048–5058, 2017.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[BK18] Lionel Blondé and Alexandros Kalousis. Sample-efficient imitation learning via
generative adversarial nets. arXiv preprint arXiv:1809.02064, 2018.

[BL04] Francesco Bullo and Andrew D. Lewis. Geometric Control of Mechanical Systems,
volume 49 of Texts in Applied Mathematics. Springer Verlag, New York-Heidelberg-
Berlin, 2004.

39

[BS99] Michael Bain and Claude Sommut. A framework for behavioural cloning. Machine
intelligence, 15(15):103, 1999.

[CLGD18] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating
sources of disentanglement in variational autoencoders. In Advances in Neural
Information Processing Systems, pages 2610–2620, 2018.

[DCH+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. CoRR,
abs/1604.06778, 2016.

[DST04] Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using
landmark points. Technical report, 2004.

[DWA+18] Bin Dai, Yu Wang, John Aston, Gang Hua, and David Wipf. Connections with
robust pca and the role of emergent sparsity in variational autoencoder models. The
Journal of Machine Learning Research, 19(1):1573–1614, 2018.

[ESSI18] Ashley D Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L Isbell.
Imitating latent policies from observation. arXiv preprint arXiv:1805.07914, 2018.

[FLL] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial
inverse reinforcement learning. ICLR 2018.

[FOR+18] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia,
Marek Fiser, and James Davidson. Prm-rl: Long-range robotic navigation tasks
by combining reinforcement learning and sampling-based planning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 5113–5120.
IEEE, 2018.

[GAA+17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in neural information
processing systems, pages 5767–5777, 2017.

[GH05] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A search
meets graph theory. In Proceedings of the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 156–165. Society for Industrial and Applied
Mathematics, 2005.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[HE16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in neural information processing systems, pages 4565–4573, 2016.

40

[HLF+18] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. Learning latent dynamics for planning from pixels.
arXiv preprint arXiv:1811.04551, 2018.

[HMP+17] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning
basic visual concepts with a constrained variational framework. ICLR, 2(5):6, 2017.

[HNR68] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[HWL17] Mikael Henaff, William F Whitney, and Yann LeCun. Model-based planning with
discrete and continuous actions. arXiv preprint arXiv:1705.07177, 2017.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
arXiv preprint arXiv:1801.01290, 2018.

[IP18] Brian Ichter and Marco Pavone. Robot motion planning in learned latent spaces.
CoRR, abs/1807.10366, 2018.

[KB19] Tobias Klamt and Sven Behnke. Towards learning abstract representations for loco-
motion planning in high-dimensional state spaces. arXiv preprint arXiv:1903.02308,
2019.

[KBS+19] Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and
Siddhartha Srinivasa. Imitation learning as f -divergence minimization. arXiv
preprint arXiv:1905.12888, 2019.

[KNST16] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation. In Advances in neural information processing systems, pages
3675–3683, 2016.

[KSO94] Lydia Kavraki, Petr Svestka, and Mark H Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces, volume 1994. Unknown
Publisher, 1994.

[KST+18] Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua
Bengio, Devi Parikh, and Dhruv Batra. Modeling the long term future in model-
based reinforcement learning. 2018.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

41

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[LEP+] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Ruslan Salakhutdinov, and Sergey
Levine. State marginal matching with mixtures of policies.

[LEP+19] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and
Ruslan Salakhutdinov. Efficient exploration via state marginal matching. arXiv
preprint arXiv:1906.05274, 2019.

[LGAL18] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from
observation: Learning to imitate behaviors from raw video via context translation.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
1118–1125. IEEE, 2018.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[LPS18] Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement learning
with hindsight. arXiv preprint arXiv:1805.08180, 2018.

[LYCL17] Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-agent
imitation learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1995–2003. JMLR. org, 2017.

[MDL18] Jiayuan Mao, Honghua Dong, and Joseph J Lim. Universal agent for disentangling
environments and tasks. 2018.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

[Moo90] Andrew William Moore. Efficient memory-based learning for robot control. Tech-
nical report, 1990.

[NCT16] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative
neural samplers using variational divergence minimization. In Advances in neural
information processing systems, pages 271–279, 2016.

[NGLL18a] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal
representation learning for hierarchical reinforcement learning. arXiv preprint
arXiv:1810.01257, 2018.

42

[NGLL18b] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. In Advances in Neural Information Processing
Systems, pages 3303–3313, 2018.

[NR00] Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning.
In Icml, volume 1, page 2, 2000.

[OSL17] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In NIPS,
2017.

[PAR+18] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash
Kumar, and Wojciech Zaremba. Multi-goal reinforcement learning: Challenging
robotics environments and request for research. CoRR, abs/1802.09464, 2018.

[PGDL18] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference
models: Model-free deep RL for model-based control. CoRR, abs/1802.09081,
2018.

[PKM+18] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
Sfv: Reinforcement learning of physical skills from videos. ACM Trans. Graph.,
37(6), November 2018.

[PML+18] Deepak Pathak, Parsa Mahmoudieh, Michael Luo, Pulkit Agrawal, Dian Chen,
Fred Shentu, Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell.
Zero-shot visual imitation. international conference on learning representations,
2018.

[Pom89] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
Advances in neural information processing systems, pages 305–313, 1989.

[QBY18] Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation via
variational inverse reinforcement learning. arXiv preprint arXiv:1809.06404, 2018.

[QY18] Ahmed H. Qureshi and Michael C. Yip. Deeply informed neural sampling for robot
motion planning. CoRR, abs/1809.10252, 2018.

[RB10] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 661–668, 2010.

[RGB11a] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011.

43

[RGB11b] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011.

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

[Rus98] Stuart J Russell. Learning agents for uncertain environments. In COLT, volume 98,
pages 101–103, 1998.

[SDK18] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topo-
logical memory for navigation. arXiv preprint arXiv:1803.00653, 2018.

[SHGS15] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In International conference on machine learning, pages
1312–1320, 2015.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, Jan 2016.

[SI17] Yannick Schroecker and Charles L Isbell. State aware imitation learning. In
Advances in Neural Information Processing Systems, pages 2911–2920, 2017.

[SJA+18] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Universal planning networks. CoRR, abs/1804.00645, 2018.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015.

[SMD+11] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M
Pilarski, Adam White, and Doina Precup. Horde: A scalable real-time architecture
for learning knowledge from unsupervised sensorimotor interaction. In The 10th
International Conference on Autonomous Agents and Multiagent Systems-Volume 2,
pages 761–768. International Foundation for Autonomous Agents and Multiagent
Systems, 2011.

[Sol18] Justin Solomon. Optimal transport on discrete domains. AMS Short Course on
Discrete Differential Geometry, 2018.

44

[SVBB19] Wen Sun, Anirudh Vemula, Byron Boots, and J Andrew Bagnell. Provably efficient
imitation learning from observation alone. arXiv preprint arXiv:1905.10948, 2019.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[TET12a] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[TET12b] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[TWS18a] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954, 2018.

[TWS18b] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation
from observation. arXiv preprint arXiv:1807.06158, 2018.

[TWT+16] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value
iteration networks. In Advances in Neural Information Processing Systems, pages
2154–2162, 2016.

[Vil08] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &
Business Media, 2008.

[XHW+19] Huang Xiao, Michael Herman, Joerg Wagner, Sebastian Ziesche, Jalal Etesami,
and Thai Hong Linh. Wasserstein adversarial imitation learning. arXiv preprint
arXiv:1906.08113, 2019.

[YA17] Gu Ye and Ron Alterovitz. Guided motion planning. In Robotics research, pages
291–307. Springer, 2017.

[YSSF19] Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea Finn. Unsupervised visuo-
motor control through distributional planning networks. CoRR, abs/1902.05542,
2019.

[ZLS+18] Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam.
Composable planning with attributes. arXiv preprint arXiv:1803.00512, 2018.

[ZMBD08] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. 2008.

45

