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Pre-whitened matched filter and convolutional neural network-
based model observer performance for mass lesion detection in 
non-contrast breast CT

Su Hyun Lyu1,2, Craig K. Abbey3, Andrew M. Hernandez2, John M. Boone1,2

1Department of Biomedical Engineering, University of California Davis, Davis, CA, 95618, USA.

2Department of Radiology, University of California Davis, Sacramento, CA, 95817, USA

3Department of Psychological and Brain Sciences, UC Santa Barbara, Santa Barbara, CA, 93106 
USA

Abstract

Background: Mathematical model observers have been shown to reasonably predict human 

observer performance and are useful when human observer studies are infeasible. Recently, 

convolutional neural networks (CNNs) have also been used as substitutes for human observers, 

and studies have shown their utility as an optimal observer. In this study, a CNN model observer 

is compared to the pre-whitened matched filter (PWMF) model observer in detecting simulated 

mass lesions inserted into 253 acquired breast computed tomography (bCT) images from patients 

imaged at our institution.

Purpose: To compare CNN and PWMF model observers for detecting signal-known-exactly 

(SKE) location-known-exactly (LKE) simulated lesions in bCT images with real anatomical 

backgrounds, and to use these model observers collectively to optimize parameters and understand 

trends in performance with breast CT.

Methods: Spherical lesions with different diameters (1, 3, 5, 9 mm) were mathematically 

inserted into reconstructed patient bCT image data sets to mimic 3D mass lesions in the breast. 

2D images were generated by extracting the center slice along the axial dimension or by slice 

averaging across adjacent slices to model thicker sections (0.4, 1.2, 2.0, 6.0, 12.4, 20.4 mm). The 

role of breast density was retrospectively studied using the range of breast densities intrinsic to 

the patient bCT data sets. In addition, mass lesions were mathematically inserted into Gaussian 

images matched to the mean and noise power spectrum of the bCT images to better understand 

the performance of the CNN in the context of a known ideal observer (the PWMF). The simulated 

Gaussian and bCT images were divided into training and testing data sets. Each training data set 

consisted of 91,600 images, and each testing data set consisted of 9,6000 images. A CNN and 

PWMF was trained on the Gaussian training images, and a different CNN and PWMF was trained 
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on the bCT training images. The trained model observers were tested, and receiver operating 

characteristic (ROC) curve analysis was used to evaluate detection performance. The area under 

the ROC curve (AUC) was the primary performance metric used to compare the model observers.

Results: In the Gaussian background, the CNN performed essentially identically to the PWMF 

across lesion sizes and section thicknesses. In the bCT background, the CNN outperformed the 

PWMF across lesion size, breast density, and most section thicknesses. These findings suggest that 

there are higher-order features in bCT images that are harnessed by the CNN observer but are 

inaccessible to the PWMF.

Conclusions: The CNN performed equivalently to the ideal observer in Gaussian textures. In 

bCT background, the CNN captures more diagnostic information than the PWMF and may be a 

more pertinent observer when conducting optimal performance studies in breast CT images.

1. INTRODUCTION

Breast computed tomography (bCT) is a relatively new breast imaging modality based 

upon cone-beam CT geometry1,2, or helical CT geometry 3. While a number of human 

observer studies have been published on the performance of breast CT 1,4,5, such studies 

can be limited when assessing a large number of images, which is often the case when fine-

tuning an imaging system or identifying optimal parameter settings for lesion detectability. 

Mathematical model observers have been shown to reasonably predict human observer 

performance 6,7, and are useful when human observer studies are infeasible 8. Recently, 

convolutional neural networks (CNNs) have also been used as substitutes for human 

observers 9, 10, where they are referred to as anthropomorphic models. Studies have shown 

that appropriately trained CNNs have utility as an optimal observer, the so-called ideal 

observer 11–13. Ideal observers are useful for assessing how much diagnostic information is 

contained in an image in advance of processing or display effects that make this information 

accessible to human observers 14–16.

In this study, a CNN model observer is compared to a more conventional ideal-observer 

model, the pre-whitened matched filter (PWMF). The PWMF has an appealing definition 

that involves the signal to be detected as well as the texture of the image background, as 

specified by the power spectrum. The PWMF is known to be an optimal detection filter for 

images with variability that is described by a stationary Gaussian distribution 14,17,18 and 

it is related to image-quality measures like noise-equivalent quanta and detective quantum 

efficiency. However, it has been demonstrated that breast CT images are not Gaussian 

distributed 19, and so it is not clear that the PWMF represents an ideal observer in this case. 

This means that it may be possible that the PWMF is systematically missing diagnostic 

information in breast CT images, and may therefore underestimate optimal performance 

across patient and imaging factors.

Neural networks 20 have been suggested as a way to implement the ideal observer when the 

analytical approach of defining a likelihood ratio is not feasible, and more recently CNNs 

specifically have been evaluated for this purpose 21,22. This general approach is based on 

the flexibility of the network architecture and the ability to train the model on samples of 

data rather than derive accurate probabilistic models of images with complex non-Gaussian 
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statistical properties. Flexible network architectures allow the network models to extract 

image information that may not be accessible to a model like the PWMF that is constrained 

to be linear.

The field has generally found that network models are capable of higher performance 

than an optimal linear filter like the PWMF, and this includes recent studies by Baek and 

colleagues 23–25 using synthetic bCT images with simulated anatomical backgrounds. In this 

report, we seek to extend these results to bCT images acquired from patients, for the task 

of detecting a simulated lesion that is embedded in real anatomical background. This, to 

our knowledge, is the first comparison between CNNs and mathematical model observers in 

bCT images with real anatomical backgrounds, and may provide a more accurate assessment 

of the model observers when applied to bCT. This detection paradigm has been studied 

previously using the PWMF 26, and was found useful for understanding how detection 

performance is dependent on the interaction between lesion diameter and section thickness.

This study involves a data set of 322 patient breast CT images acquired at the UC Davis 

Medical Center under an IRB approved protocol 1,5. We also investigate Gaussian images 

matched to the mean and power-spectrum of the breast CT images. This allows us to 

implement our particular CNN in an imaging condition where the PWMF is known to be 

an ideal observer. If the CNN is able to closely approximate the ideal observer, then we 

have some confidence that the architecture and training process is adequate for comparing 

performance more generally. In the breast CT images, we compare the CNN to the PWMF 

across lesion diameter, slice thickness, and breast-density categories.

2. METHODS

2.1. Image generation

2.1.1 Insertion of lesions into breast background—Spherical lesions were 

mathematically inserted into reconstructed patient bCT image volumes to mimic 3D mass 

lesions in breast parenchyma. Human bCT images were acquired at the UC Davis Medical 

Center under IRB-approved clinical trials which recruited patients receiving BIRADS 4 or 

5 on their breast screening exams 1,5. Enrolled patients were scanned on prototype bCT 

scanners 27 developed in our laboratory. All patients subsequently underwent biopsy to 

yield the ground truth diagnosis for suspicious lesions as benign or malignant. Of the four 

existing iterations of prototype bCT scanners, the first two scanners, which are very similar 

in design, were used to scan a total of 322 women. From this cohort we selected 253 image 

volume data sets for this study on the basis of not containing artifacts and not involving 

contrast-imaging. Each volume data set contained 300–500 reconstructed slices (512 × 512 

matrix size) with isotropic voxel sizes of 0.4 mm.

A previously published method developed by Packard et al. 26 was used to insert spherical 

lesions into bCT images and is briefly detailed here. Let f i, j, k  be a reconstructed 

bCT image volume and s i, j, k  be a segmented version of f i, j, k , where each voxel is 

segmented as adipose tissue, fibroglandular tissue, skin, or air 28. s i, j, k  is used to compute 

TB i, j, k , a binary volume identifying tissue boundaries (TB) in the breast, and having a 

value of 1 for every voxel segmented as glandular tissue but having one of its six adjacent 
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voxels (in 3D) segmented as adipose tissue, and 0 for all other voxels. TB i, j, k  is used to 

compute dTB i, j, k , the distance from every voxel to the nearest tissue boundary identified in 

TB i, j, k . dTB i, j, k  is signed such that it is positive for voxels segmented as adipose tissue 

and negative for voxels segmented as glandular tissue.

Let the index location iLC, jLC, kLC  be a randomly generated lesion center “LC” where the 

lesion is to be inserted. The lesion location iLC, jLC, kLC  is kept if the surrounding 64 × 64 × 

64 volume is fully contained within the patient breast and does not contain skin; otherwise, 

the lesion center coordinates are re-generated. Let D be the diameter of the lesion to be 

inserted and dLC i, j, k  be the distance from each voxel to lesion center iLC, jLC, kLC . The 

distance to the nearest lesion boundary dLB i, j, k  is then defined as:

dLB i, j, k = 1
2D − dLC i, j, k

(1)

and is positive for voxels within the spherical lesion and negative for voxels outside the 

spherical lesion.

Let Δ I be the mean differential intensity between all glandular and adipose voxels in the 

image. Then, the resulting image volume with the inserted spherical lesion fsim i, j, k  is:

fsim i, j, k = f i, j, k + Δ I × M dTB i, j, k × M dLB i, j, k

(2)

Intensity is added on a voxel-by-voxel basis in order to preserve the native image noise. 

Outside of the spherical lesion, the added term becomes zero. The added intensity at 

each voxel is modulated by M dTB i, j, k , the tissue-boundary modulation term, which 

ranges from 0–1 and approaches zero when dTB i, j, k  is negative. In effect, this term 

allows intensity only to be added to adipose regions and smooths the regions within the 

inserted lesion where adipose and glandular tissue coincide. The added intensity at each 

voxel is further modulated by M 1
2D − dLC i, j, k , the lesion-boundary modulation term, 

which also ranges from 0–1 and serves to smooth the edge of the spherical inserted 

lesion. The modulation function M is derived by mathematically modeling the edge-blurring 

at boundaries between adipose and glandular tissue in the native patient image. These 

modulation terms serve to retain the native image resolution (~ modulation transfer 

function).

A 2D 64 × 64 × 1 image was then generated from the 3D image volume by extracting 

the center slice along the axial dimension or by slice averaging across adjacent slices to 

model thicker sections. Previous model observer studies demonstrated that higher detection 

performance was found in the axial and sagittal views compared to the coronal view in bCT 
26. The resulting patch with the added lesion is denoted as In

+ x, y , where n represents the 
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nth lesion, and the same patch without the added signal is denoted as In
− x, y . Four lesion 

diameters (1, 3, 5, 9 mm) and six section thicknesses (0.4, 1.2, 2.0, 6.0, 12.4, 20.4 mm) were 

studied. Sample lesion-present patches with varying lesion diameters and section thicknesses 

are shown in Figure 1.

The role of breast density was retrospectively studied using the range of breast densities 

spanning the patient bCT data sets. For every patient, breast density was quantified by the 

volumetric glandular fraction (VGF). Let ng represent the number of voxels segmented as 

glandular tissue and na represent the number of voxels segmented as adipose tissue in the 

segmentation volume s i, j, k . The VGF is then defined as:

V GF = ng
ng + na

(3)

2.1.2. Insertion of lesions into Gaussian background—Mass lesions were 

mathematically inserted into Gaussian images matched to the mean and noise power 

spectrum of the bCT images. For bCT images a 3D lesion was inserted into a 3D 

background volume. In comparison, for Gaussian images a 2D lesion (derived from the 

bCT patches) was inserted into a 2D background patch. Let I+− x, y  and I−− x, y  denote the 

mean lesion-present and mean lesion-absent patches, respectively. The added lesion is the 

mean signal S− x, y  across image patches from all bCT training images:

S− x, y = I+− x, y − I−− x, y

(4)

This mean signal inherently smooths the lesion boundary and dampens the signal in thicker 

sections.

Generating the 2D Gaussian background patch requires knowledge of the bCT power 

spectrum. The power spectrum was estimated from the training bCT background images. 

Let In
− x, y  represent the nth lesion-absent patch and H x, y  represent a 2D Hamming filter. 

The windowed deviation function Δ In
− x, y  is then defined as:

Δ In
− x, y = H x, y × (In

− x, y − I−− x, y )

(5)

where H x, y  is a windowing function used to attenuate artifacts arising from the cyclic 

nature of the discrete Fourier transform as it approaches the edge of an image 7. Let N 

represent the total number of lesion-absent patches. The mean power spectrum PS fx, fy  of 

the image backgrounds is then estimated as:
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PS fx, fy = 1
N − 1 ∑

n = 1

N
Δ In

−(x, y) 2

(6)

where the caret is used to represent the Fourier transform. The mean power spectrum was 

then normalized to compensate for the windowing that occurs in Equation 5. To normalize 

the power spectrum, the mean pixel variance at each pixel across all the background images 

was first computed:

V = 1
N − 1 ∑

n = 1

N
(In

− x, y − I− x, y )2

(7)

Then, the normalized mean noise power spectrum PS fx, fy norm is defined as:

PS fx, fy norm = ∑x, y V
∑x, y PS fx, fy

× PS fx, fy

(8)

PS fx, fy norm was then converted to the spatial domain using a 2D inverse Fourier transform. 

Gaussian background patches were then generated by convolving the square root of 

PS x, y norm with a 64 × 64× 1 patch of random white noise E x, y . In using the normalized 

mean noise power spectrum of bCT images for Gaussian simulation, pixel variance between 

the two image types is maintained. The final Gaussian patch G+ x, y  with the inserted lesion 

is defined as:

G+ x, y = S− x, y + E(x, y) * PS(x, y)norm

(9)

and the same patch without the inserted lesion is defined as G− x, y . Sample Gaussian 

lesion-present patches with varying lesion diameters and section thicknesses are shown in 

Figure 1.

2.2. Model observers: Pre-whitened matched filter (PWMF)

2.2.1. PWMF computation—The PWMF is a mathematical model observer that makes 

use of the mean signal and background power spectrum of a set of images to compute a 

decision variable [16], [17]. A unique filter was computed for each combination of lesion 

diameter, section thickness, and background condition (bCT or Gaussian) to tune the filter to 

the environment. Let FT  denote the 2D Fourier transform, and FT −1 denote the 2D inverse 

Fourier transform. Let S− x, y  be the mean signal across all training images, and PS fx, fy norm

Lyu et al. Page 6

Med Phys. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be the normalized mean noise power spectrum of training image backgrounds. The PWMF 

w x, y  is then defined as:

w[x, y] = FT−1 FT{S− x, y }
PS fx, fy norm

(10)

Once the PWMF was computed from a set of training images, it was then applied to an 

independent set of testing image patches in order to evaluate lesion detection performance. 

For bCT conditions, lesion-present and lesion-absent testing patches were generated from 

completely separate bCT volume data sets using the lesion insertion process described in 

Section 2.1. Let In x, y  represent a testing image patch and w x, y  be the PWMF tuned to 

that specific lesion diameter, section thickness, and background condition. A scalar-valued 

decision variable λn  was then computed for each testing patch as follows:

λn = ∑
x, y

In x, y × w x, y

(11)

2.2.2. Training and testing the PWMF—Out of the 253 total bCT volume data sets, 

229 data sets (N = 229, ~90%) were used for training the PWMF. For each training data set, 

200 unique lesion centers were identified and used to generate 200 lesion-present patches 

and 200 lesion-absent patches. The remaining 24 data sets (K = 24s, ~10%) were used for 

testing the PWMF. For testing, 200 unique lesion centers were first identified to generate 

200 lesion-present patches, and 200 additional different lesion centers were identified to 

generate 200 lesion-absent patches so as not to correlate the decision variables. In total, 

for a given lesion diameter and section thickness, 91,600 bCT training patches (i.e., 229 × 

400) were generated and 9,600 bCT testing patches (i.e., 24 × 400) were generated. Though 

simulated Gaussian image patches were not dependent on patient data sets or lesion centers, 

the same number of training and testing data sets were generated to match the simulated 

bCT image data set.

2.3. Model observers: Convolutional neural network (CNN)

2.3.1 CNN architecture: A convolutional neural network (CNN) was implemented to 

perform a simple binary classification task and compute a decision variable. The input 

to the CNN was a single 2D image patch, and the output was a scalar-valued decision 

variable between 0 and 1, scaled by the sigmoid function. The network consisted of two 

convolutional layers followed by one fully connected layer. The two convolutional layers 

served to extract feature maps from the preceding layer, and the fully connected layer 

condensed the feature maps into a scalar-valued decision variable. The first convolutional 

layer contained 3 × 3 filters with a stride of 1, and the second convolutional layer contained 

3 × 3 filters with a stride of 1. Batch normalization was implemented after the first 

convolutional layer. Max pooling layers were implemented after each convolutional layer 
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with a pool size of 2 × 2. Dropout was implemented after the first max pooling layer with 

a rate of 0.2, after the second max pooling layer with a rate of 0.2, and after the fully 

connected layer with a rate of 0.5. The rectified linear unit (ReLU) activation function was 

used in all layers, including the fully connected layer.

The choice of a three-layered architecture was due to the relatively simple task of binary 

classification in a signal-known-exactly (SKE) setting. Increasing the depth of the network 

could have resulted in a more complex model but may have led to overfitting 29. In this 

model, the total number of parameters was 821,889. A diagram of the CNN architecture is 

shown in Figure 2.

2.3.2 Training and testing the CNN: The same training and testing simulated data sets 

described in Section 2.2.2 for bCT and Gaussian background images were used to train and 

test the CNN model observer. For each combination of lesion diameter, section thickness, 

and background condition, 91,600 images were used for training and validation, and 9,600 

images were used for testing.

The CNN was trained to minimize the binary-cross entropy (BCE) loss. Let y be the ground 

truth label (0 or 1), y be the predicted value, and N be the number of samples. BCE loss is 

then defined as:

BCE = − 1
N ∑

i = 1

N
yilog y + 1 − yi log 1 − yi

(12)

The training metric was accuracy:

Accuracy = # correct predictions
# total predictions

(13)

The Adam optimizer 30 was used with a learning rate of 1e-5 and a batch size of 64. The 

maximum number of training epochs was set to 150 but early stopping was implemented 

such that if the validation loss did not decrease after 4 epochs, training was stopped. The 

CNN model was implemented in Python using the Keras library 31. An NVIDIA GeForce 

GTX 1080 GPU was used.

2.4. Performance evaluation and statistical analysis—For detection performance 

evaluation, receiver operating characteristic (ROC) curve analysis was used on the scalar-

valued decision variables produced by the model observers. For a range of thresholds that 

discriminated each variable as true positive, true negative, false positive, or false negative, 

the true positive rate was plotted against the false positive rate to produce an empirical 

ROC curve. The area under the ROC curve (AUC) was computed individually for each 

testing data set K = 24  instead of from one pool of all decision variables in order to be 
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able to study the effect of breast density on individual bCT images. In addition, the mean 

and standard deviation of AUCs across all 24 data sets were also computed to characterize 

the average detectability for that combination of parameters. Mean AUCs were plotted with 

95% confidence error bars in Section 3. Let AUC and σ be the mean and standard deviation, 

respectively, of AUCs across the K testing data sets. The 95% confidence interval CI95 is 

then defined as:

CI95 = AUC ± 1.96 × σ
K

(14)

In Section 3.1, PWMF and CNN detection performance was compared on Gaussian 

background images. To quantify the similarity between the model observers, the maximum 

absolute difference between individual and mean AUCs were computed across clinical 

parameters. The maximum absolute difference between individual PWMF and CNN AUCs 

from 24 testing data sets is defined as:

Δ AUC max = max AUCPW MF − AUCCNN

(15)

In Section 3.2, PWMF and CNN detection performance was compared across clinical 

parameters using paired t-tests. To address the multiple comparisons problem, we employed 

the Bonferroni correction to adjust the family-wise error rate. One asterisk (*) is used to 

indicate p < . 05 and two asterisks (**) are used to indicate p < . 01.

3. RESULTS

3.1 Comparison of PWMF and CNN model observers in Gaussian background

The CNN observer closely matched the PWMF observer in detection performance across all 

section thicknesses and lesion diameters. Across these parameters, Δ AUC max was 0.0096. 

PWMF and CNN detection performance on Gaussian images for the native section thickness 

(0.4 mm) as a function of lesion diameter are displayed in Figure 3a. Detection performance 

is nearly identical. Figures 3b–c show PWMF and CNN detection performance on Gaussian 

images as a function of section thickness for 1- and 5-mm lesions. In these settings, the 

CNN observer also closely aligned with the PWMF observer.

3.2 Comparison of PWMF and CNN model observers in bCT background

3.2.1 Model observer comparison across lesion diameter—Model observer 

performance on bCT images displayed in the native section thickness Z = 0.4 mm  were 

averaged across breast densities and plotted as a function of lesion diameter in Figure 4a. 

Across all lesion diameters, the CNN outperformed the PWMF (p < . 01 . These findings 

were further analyzed in the context of breast density in Figures 4b–c. Of the 24 testing data 

sets, bCT patches extracted from patients with lower VGF breasts N = 12  were evaluated 
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and the mean AUC was plotted in Figure 4b, and bCT patches extracted from patients 

with higher VGF breasts N = 12  were evaluated and the mean AUC was plotted in Figure 

4c. The range of breast densities in the testing data set was [0.118, 0.597]. The CNN 

consistently outperformed the PWMF in higher- and lower-density breasts p < . 05 .

3.2.2 Model observer comparison across section thickness—Model observer 

performance on bCT images containing 1- and 5- mm lesions were averaged across all 

breast densities and plotted as a function of section thickness in Figures 5a and 6a, 

respectively. Across all section thicknesses for both lesion sizes, the CNN outperformed 

the PWMF p < . 01 . These findings were further analyzed in the context of breast density 

in Figures 5b–c and 6b–c. Of the 24 testing data sets, bCT patches extracted from patients 

with lower VGF breasts N = 12  were evaluated and the mean AUC was plotted in Figures 

5b and 6b, and bCT patches extracted from patients with higher VGF breasts N = 12  were 

evaluated and the mean AUC was plotted in Figure 5c and 6c. The CNN outperformed the 

PWMF in higher- and lower-density breasts for the detection of both lesion sizes p < . 05
except when detecting the 1 mm in high VGF breasts in section thicknesses of 1.2 and 

2 mm. As might be expected, both observers detected larger lesions better than smaller 

lesions.

Figure 5 shows that the thinnest section (0.4 mm) is not the ideal display thickness for 

detecting small (≤ 1 mm) lesions. Rather, the 1.2- and 2-mm section thicknesses enabled 

peak detection for both model observers. For the 5 mm lesion (Figure 6), detectability 

was minimally affected by section thickness, and detection performance decreased only 

slightly when section thickness exceeded 6 mm. In Figure 6, we observe that CNN detection 

performance of 5 mm lesions is minimally dependent on breast density. In comparison, the 

PWMF detection performance decreases for higher VGF.

4. DISCUSSION

In this study, a CNN model observer was compared to a more conventional model observer, 

the PWMF, for the binary detection task of detecting a SKE mass lesion. The PWMF is a 

well-established linear detection filter that has proven to be the ideal observer in background 

conditions with stationary Gaussian noise. CNNs have likewise been implemented as 

potential ideal observers given their ability to learn and extract relevant features from images 

even in the presence of complex backgrounds.

The model observers were used to detect mass lesions in Gaussian background to better 

understand the performance of the CNN in the context of a known ideal observer (the 

PWMF). The added signal and simulated Gaussian noise were matched to the mean signal 

and mean noise power spectrum of bCT images. We observed that the CNN performed 

nearly identically to the PWMF across lesion sizes and section thicknesses, with the largest 

absolute difference between AUCs being 0.0096. This result suggests that the CNN is 

effectively an ideal observer in Gaussian textures and that it extracts at least as much 

diagnostic information from an image as the PWMF does. It is likely that the CNN model 

can be applied to non-Gaussian imaging conditions and at minimum it would perform at 

least as well as the PWMF.
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The model observers were used to detect mass lesions mathematically inserted into bCT 

images with real anatomical background. The CNN outperformed the PWMF in detecting 

mass lesions across lesion size, most section thicknesses, and breast density. As expected, 

both observers detected larger lesions better than smaller lesions. For both observers, 

the optimal section thickness of display was between 1.2 – 2.0 mm, the equivalent of 

3–5 reconstructed slices, and reduced detection performance was observed in thinner and 

thicker sections. We suspect that quantum noise interference contributes to reduced detection 

performance in thinner sections, and that anatomical noise contributes to reduced detection 

performance in thicker sections due to the superposition of glandular anatomy. Packard et al. 

observed similar results in a previous study 26.

It is notable that the CNN outperformed the PWMF in bCT background while in Gaussian 

conditions the two observers performed equally. These findings suggest that there is a 

substantial amount of diagnostic information in bCT images that the CNN captures that is 

not accessible to the PWMF. The PWMF employs only the mean signal and mean noise 

power spectrum of an image to formulate a decision variable. The PWMF and linear model 

observers in general are evidently limited. In contrast, neural networks, which are non-linear, 

can perform (perhaps ideally) in an SKE setting. Our results should serve as motivation 

for future studies that identify the specific informative features that allow the CNN to 

outperform the PWMF (e.g., using reverse-correlation methods 32).

Previous studies have demonstrated that the PWMF is the ideal observer in Gaussian 

image backgrounds 14,17,18. This study suggests that in non-Gaussian backgrounds (such as 

bCT), the PWMF fails to recognize higher order statistical information and image features, 

whereas the CNN clearly yields superior performance. Hence, a CNN observer may be more 

appropriate when estimating peak performance across patient and imaging factors.

This study had limitations. Model observers were compared for the detection of relatively 

simple signals: SKE-LKE mass lesions. Microcalcifications were not simulated in this study, 

and an appropriate simulation would require more complex modeling of partial volume 

effects. Previously, human observer studies have indicated that microcalcifications are more 

difficult to detect than mass lesions in breast CT 1. Therefore, to fully understand the 

utility of PWMF and CNN model observers in breast CT, an evaluation of their abilities to 

detect microcalcifications is necessary. Future studies will investigate this. A three-layered 

CNN was used in this study. We recognize that for more complex detection tasks, a 

deeper architecture may be required and that additional training methods such as transfer 

learning may be useful. Furthermore, we recognize that the CNN performed exceptionally 

well in this study primarily due to two reasons: 1) the signal was known exactly, and 2) 

there was a large amount of labeled training data. These conditions were only possible 

since we mathematically simulated the training signals, albeit on actual breast anatomy. 

Finally, we chose the PWMF among other linear observers for this study. Future studies 

comparing CNNs with other linear observers such as the Hotelling observers may be useful 

to underscore the utility of the CNN-based observer in bCT.
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CONCLUSION

In this study, we used PWMF and CNN model observers to detect SKE mass lesions in 

patient bCT images. The CNN outperformed the PWMF across lesion size, most section 

thicknesses, and breast density. We conclude that the CNN captures more diagnostic 

information from bCT images than the PWMF and may be a more suitable observer when 

conducting optimal performance studies.

While model observer studies are important, they do not fundamentally replace the need for 

human observer studies. However, there is an increasing emphasis on virtual clinical trials 

in the literature. The power in these model observer studies is of course that many more 

lesions and lesion placements can be studied than with human observers, and this provides 

the ability to generate statistically meaningful results which can aid in optimizing breast CT 

parameters prior to human observer studies.
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Figure 1. 
Example lesion-present patches in a) patient bCT background and b) simulated Gaussian 

background for varying lesion diameters and section thicknesses.
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Figure 2. 
Convolutional neural network architecture.
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Figure 3. 
Comparison of PWMF and CNN model observers on Gaussian background images as 

a function of (a) lesion diameter, displayed in the native section thickness (0.4 mm), 

(b) section thickness for a 1-mm lesion, and (c) section thickness for a 5-mm lesion. 

Detection performance is nearly identical across all parameters. Error bars correspond to 

95% confidence intervals for each performance estimate.
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Figure 4. 
Comparison of PWMF and CNN model observers on bCT images displayed in the native 

section thickness Z = 0.4 mm  as a function of lesion diameter across (a) all VGFs N = 24 , 

(b) low VGFs N = 12 , and (c) high VGFs N = 12 . Paired t-tests were used with Bonferroni 

correction to adjust for multiple comparisons. One asterisk (*) is used to indicate p < . 05, 

and two asterisks (**) are used to indicate p < . 01. Error bars correspond to 95% confidence 

intervals for each performance estimate.
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Figure 5. 
Comparison of PWMF and CNN model observers on bCT images with 1 mm lesions as 

a function of section thickness across (a) all VGFs N = 24 , (b) low VGFs N = 12 , and 

(c) high VGFs N = 12 . Paired t-tests were used with Bonferroni correction to adjust for 

multiple comparisons. One asterisk (*) is used to indicate p < . 05, and two asterisks (**) 

are used to indicate p < . 01. Error bars correspond to 95% confidence intervals for each 

performance estimate.
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Figure 6. 
Comparison of PWMF and CNN model observers on bCT images with 5 mm lesions as 

a function of section thickness across (a) all VGFs N = 24 , (b) low VGFs N = 12 , and 

(c) high VGFs N = 12 . Paired t-tests were applied with Bonferroni correction to adjust for 

multiple comparisons. One asterisk (*) is used to indicate p < . 05, and two asterisks (**) 

are used to indicate p < . 01. Error bars correspond to 95% confidence intervals for each 

performance estimate.
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