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We examine and compare several iterative methods for solving large-scale eigenvalue problems 
arising from nuclear structure calculations. In particular, we discuss the possibility of using block 
Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method 
accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms 
compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate 
gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when 
the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively 
combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has 
several desirable properties. We will describe a few practical issues that need to be addressed to make 
the hybrid solver efficient and robust.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

The computational study of the structure of atomic nuclei in-
volves solving the many-body Schrödinger equation for a nucleus 
consisting of Z protons and N neutrons, with A = Z + N the total 
number of nucleons,

Ĥ �i(�r1, . . . ,�rA) = Ei �i(�r1, . . . ,�rA) , (1)

where Ĥ is the nuclear Hamiltonian, Ei are the discrete energy 
levels of the low-lying spectrum of the nucleus, and �i the cor-
responding A-body wavefunctions. A commonly used approach to 
address this problem is the no-core Configuration Interaction (CI) 
method (or No-Core Shell Model) [1], in which the many-body 
Schrödinger equation, Eq. (1), becomes an eigenvalue problem

H xi = λi xi , (2)

where H is an n × n square matrix that approximates the many-
body Hamiltonian Ĥ , λi is the ith eigenvalue of H , and xi is the 
corresponding eigenvector. The size n of the symmetric matrix H
grows rapidly with the number of nucleons A and with the de-
sired numerical accuracy, and can easily be several billion or more; 
however, this matrix is extremely sparse, at least for nuclei with 
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A ≥ 6. Furthermore, we are typically interested in only a few (5 
to 10) eigenvalues at the low end of the spectrum of H . An itera-
tive method that can make use of an efficient Hamiltonian-vector 
multiplication procedure is therefore often the preferred method 
to solve Eq. (2) for the lowest eigenpairs.

For a long time, the Lanczos algorithm [2] with full orthog-
onalization was the default algorithm to use because it is easy 
to implement and because it is quite robust even though it re-
quires storing hundreds of Lanczos basis vectors. Indeed, there are 
several software packages [3–8] in which the Lanczos algorithm 
is implemented for nuclear structure calculations. Here we focus 
on the software MFDn (Many-Fermion Dynamics for nuclear struc-
ture) [9–11], which is a hybrid MPI/OpenMPI code that is being 
used at several High-Performance Computing centers; it has re-
cently also been ported to GPUs using OpenACC [12,13].

In recent work [14], we have shown that the low-lying eigen-
values can be computed efficiently by using the Locally Optimal 
Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [15]. 
The advantages of the LOBPCG algorithm, which we will describe 
with some detail in the next section, over the Lanczos algorithm 
include

• The algorithm is a block method that allows us to multiply 
H with several vectors simultaneously. That is, instead of an 
SpMV, one performs an Sparse Matrix-Matrix multiplication 
(SpMM) of a sparse square n ×n matrix on a tall skinny n ×nb
matrix at every iteration, which introduces an additional level 
of concurrency in the computation and enables us to exploit 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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data locality better. In order to converge 5 to 10 eigenpairs we 
typically use blocks of nb = 8 to nb = 16 vectors – this can also 
be tuned to the hardware of the HPC platform.

• The algorithm allows us to make effective use of pre-existing 
approximations to several eigenvectors.

• The algorithm allows us to take advantage of a preconditioner 
that can be used to accelerate convergence.

• Other dense linear algebra operations can be implemented as 
level 3 BLAS.

Even though Lanczos is efficient in terms of the number of Sparse 
Matrix Vector multiplications (SpMV) it uses, we have shown that 
the LOBPCG method often takes less wallclock time to run because 
performing a single SpMM on nb vectors is more efficient than 
performing nb SpMVs sequentially, which is required in the Lanc-
zos algorithm.

However, there are occasionally some issues with LOBPCG:

• The method can become unstable near convergence. Although 
methods for stabilizing the algorithm has been developed and 
implemented [16,17], they do not completely eliminate the 
problem.

• Even though the algorithm in principle only requires storing 
three blocks of vectors, in practice, many more blocks of vec-
tors are needed to avoid performing additional SpMMs in the 
Rayleigh-Ritz procedure. This is a problem for machines on 
which high bandwidth memory is in short supply (such as 
GPUs).

In this paper, we examine several alternative algorithms for 
solving large-scale eigenvalue problems in the context of nuclear 
configuration interaction calculations. In particular, we will exam-
ine the block Lanczos algorithm [18] and the Chebyshev Filtered 
Subspace Iteration (ChebFSI) [19,20]. Both are block algorithms 
that can benefit from an efficient implementation of the SpMM 
operation and can take advantage of good initial guesses to several 
eigenvectors, if they are available. Neither one of these algorithms 
can incorporate a preconditioner, which is a main drawback. How-
ever, as we will show in Sect. 3, in the early iterations of these 
algorithms, good approximations to the desired eigenpairs emerge 
quickly, even though the total number of SpMVs required to obtain 
accurate approximations can be higher compared to the Lanczos 
and LOBPCG algorithms. This observation suggests that these al-
gorithms can be combined with algorithms that are effective in 
refining existing eigenvector approximations. One such refinement 
algorithm is the Residual Minimization Method (RMM) with Direct 
Inversion of Iterative Subspace (DIIS) correction [21–23]. This al-
gorithm has an additional feature that it can reach convergence to 
a specific eigenpair without performing orthogonalization against 
approximations to other eigenpairs as long as a sufficiently ac-
curate initial guess is available. Therefore, this algorithm can also 
be used to compute (or refine) different eigenpairs independently. 
This feature introduces an additional level of concurrency in the 
eigenvalue computation that enhances the parallel scalability.

The paper is organized as follows. In the next section, we give 
an overview of the Lanczos, block Lanczos, LOBPCG, and ChebFSI 
algorithms. We also describe the RMM-DIIS algorithm and dis-
cuss how it can be combined with (block) Lanczos, LOBPCG and 
ChebFSI to form a hybrid algorithm to efficiently compute the de-
sired eigenpairs. In Sect. 3, we give several numerical examples to 
demonstrate the effectiveness of each of these algorithms in terms 
of the number of iterations. The performance benefits of a hybrid 
algorithm designed by combining RMM-DIIS with one of the block 
algorithms are discussed in Sect. 4. We also discuss the practical 
issue of deciding when switch to RMM-DIIS from block Lanczos or 
2

LOBPCG and how to implement RMM-DIIS to maximize its perfor-
mance benefit.

2. Numerical algorithms

We review several algorithms for computing a few algebraically 
smallest eigenvalues and the corresponding eigenvectors. We de-
note the eigenvalues of the n × n nuclear CI Hamiltonian H ar-
ranged in an increasing order by λ1 ≤ λ2 ≤ · · · ≤ λn . Their cor-
responding eigenvectors are denoted by x1, x2,..., xn . We are in-
terested in the first nev � n eigenvalues and eigenvectors. If we 
define X = [x1, x2, . . . , xnev ] and � = diag

{
λ1, λ2, . . . , λnev

}
, respec-

tively, we have H X = X�. For no-core CI calculations in nuclear 
physics we are often interested in only a few eigenvalues, that is 
nev ∼ 5 to 10. For the block solvers described below, it is generally 
beneficial to use slightly more vectors than the number of desired 
eigenvectors, nb > nev, and in practice we use nb = 8 or 16 for best 
performance.

2.1. Lanczos algorithm

The Lanczos algorithm is a classical algorithm for solving large 
scale eigenvalue problems. The algorithm generates an orthonor-
mal basis of a k-dimensional Krylov subspace

K(H; v1) = {v1, H v1, ..., Hk−1 v1}, (3)

where v1 is an appropriately chosen and normalized starting 
guess. Such a basis is produced by a Gram–Schmidt process in 
which the key step of obtaining the ( j + 1)st basis vector v j+1

is

w j = (I − V j V T
j )H v j, v j+1 = w j/‖w j‖, (4)

where V j is a matrix that contains all previous orthonormal basis 
vectors, i.e.,

V j = (
v1, v2, ..., v j

)
.

The projection of H into the k-dimensional subspace spanned 
by columns of Vk is a tridiagonal matrix Tk that satisfies

H Vk = Vk Tk + wkeT
k , (5)

where ek is the last column of a k × k identity matrix. Approxi-
mate eigenpairs of H are obtained by solving the k × k eigenvalue 
problem

Tkq = θq. (6)

It follows from (5), (6) and the fact that V T
k Vk = Ik , V T

k wk = 0 that 
the relative residual norm associated with an approximate eigen-
pair (θ, Vkq) can be estimated by

‖H(Vkq) − θ(Vkq)‖
|θ | = ‖wk‖ · |eT

k q|
|θ | , (7)

for θ 	= 0.

2.2. Block Lanczos

One of the drawbacks of the standard Lanczos algorithm is that 
it is not easy for this algorithm to take advantage of good initial 
guesses to more than one desired eigenvector. Although we can 
take a simple linear combination (or average) of the initial guesses 
to several desired eigenvectors as the initial vector v1, the Lanczos 
algorithm tends to converge to one of the eigenvectors much faster 
than others.
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An algorithm that can take advantage of multiple starting 
guesses to different eigenvectors is the Block Lanczos algorithm. 
The Block Lanczos algorithm generates an orthonormal basis of a 
block Krylov subspace

K(H; V 1) = {V 1, H V 1, ..., Hk−1 V 1}, (8)

where V 1 is a matrix that contains nb ≥ nev orthonormal basis 
vectors, where nev is the number of desired eigenvectors; in prac-
tice, we take nb slightly larger than nev. With this method we can 
make use of good initial guesses to the desired eigenvectors, e.g. 
obtained in smaller calculations.

The Gram–Schmidt process used to generate an orthonormal 
basis in Lanczos is replaced by a block Gram–Schmidt step that 
is characterized by

W j = (I − V jV
T
j )H V j, (9)

where the matrix V j contains j block orthonormal bases, i.e.,

V j = (
V 1, V 2, ..., V j

)
. (10)

The normalization step in (4) is simply replaced by a QR factoriza-
tion step, i.e.

W j = V j+1 R j+1,

where V T
j+1 V j+1 = Inb , and R j+1 is an nb × nb upper triangular 

matrix.
The projection of H into the subspace spanned by the columns 

of Vk is a block tridiagonal matrix Tk that satisfies

HVk = VkTk + Wk E T
k , (11)

where Ek is the last nb columns of an nb ·k ×nb ·k identity matrix.
Approximate eigenpairs of H are obtained by solving the nb ·

k × nb · k eigenvalue problem

Tkq = θq. (12)

It follows from (11), (12) and the fact that VT
k Vk = Inbk , VT

k Wk =
0 that the relative residual norm associated with an approximate 
eigenpair (θ, Vkq) can be estimated by

‖H(Vkq) − θ(Vkq)‖
|θ | = ‖Wk‖F · ‖E T

k q‖
|θ | , (13)

Algorithm 1 outlines the main steps of the Block Lanczos algo-
rithm.

Both the Lanczos and Block Lanczos algorithms produce approx-
imation to the desired eigenvector in the form of

z = pd(H)v0,

where v0 is some starting vector and d is the degree of the polyno-
mial. The convergence rate of these algorithms is often analyzed in 
terms of a minmax polynomial approximation of a Dirac-δ function 
centered at the eigenvalue of interest on the interval that contains 
the spectrum of H [24,25]. Intuitively, the higher the degree of the 
polynomial, the more accurate the approximate eigenvector and 
the corresponding eigenvalue are. However, for the same number 
of multiplications of the sparse matrix H with a vector (SpMVs), 
denoted by m, the degree of the polynomial generated in a Block 
Lanczos algorithm is d = m/nb , whereas, in the standard Lanczos 
algorithm, the degree of the polynomial is d = m. Because the 
accuracy of the approximate eigenpairs obtained from the Lanc-
zos and Block Lanczos methods is directly related to d, we expect 
more SpMVs to be used in a Block Lanczos algorithm to reach con-
vergence. On the other hand, in a Block Lanczos method, one can 
3

Algorithm 1: The Block Lanczos algorithm.
Input: The sparse matrix H , the number of desired eigenvalues nev, an 

initial guess to the eigenvectors associated with the lowest nb ≥ nev

eigenvalues X (0) ∈Rn×nb , convergence tolerance (tol) and maximum 
number of iteration allowed (maxiter);

Output: (�, X), where � is a nev × nev diagonal matrix containing the 
desired eigenvalues, and X ∈Rn×nev contains the corresponding 
eigenvector approximations;

1 Generate V 1 ∈Rn×nb that contains an orthonormal basis of X (0);
2 V1 = (V 1);
3 T1 = VT

1 HV1;
4 Solve the projected eigenvalue problem T1U = U�, where U T U = I , � is a 

diagonal matrix containing eigenvalues of T1 in an ascending order;
5 Determine number of converged eigenpairs nc by checking the Ritz residual 

estimate (13);
6 goto 16 if nc ≥ nev;
7 do i = 1, 2, . . .,maxiter
8 W i = (I − Vi VT

i )H V i ;
9 Generate V i+1 that contains an orthonormal basis of W i ;

10 Vi+1 ← (Vi V i);
11 Update Ti+1 = VT

i+1 HVi+1;

12 Solve the projected eigenvalue problem Ti+1U = U�, where U T U = I , 
� is a diagonal matrix containing eigenvalues of Ti+1 in an ascending 
order;

13 Xi+1 = Vi+1U (:, 1 : nev);
14 Determine number of converged eigenpairs nc by checking the Ritz 

residual estimate (13);
15 i ← i + 1 and exit the loop if nc ≥ nev;

16 � ← �; X ← Xi ;

perform nb SpMVs as a single SpMM on a tall skinny matrix con-
sisting of a block of nb vectors, which is generally more efficient 
than performing nb separate SpMVs in succession. As a result, the 
Block Lanczos method can take less time even if it performs more 
SpMVs. The computational efficiency of the Block Lanczos algo-
rithm is carefully discussed in [26] in the context of shift-invert 
Block Lanczos algorithm.

Furthermore, both with the standard Lanczos algorithm and 
with the Block Lanczos algorithm the memory to store the pre-
vious Lanczos vectors and the computational cost of the Gram–
Schmidt process, Eq. (4), increase with the number of iterations. 
In both the Lanczos and Block Lanczos algorithm, one can restart 
the algorithm after d iteration with an improved set of approxi-
mate eigenvectors if the Gram–Schmidt process or the storage of 
m Lanczos vectors becomes a bottleneck [27–29,8]. This approach 
can also be used for check-point and restart purposes.

2.3. LOBPCG

It is well known that the invariant subspace associated with the 
smallest nev eigenvalues and spanned by columns of X ∈Rn×nev is 
the solution to the trace minimization problem

min
X T X=I

trace(X T H X). (14)

The LOBPCG algorithm developed by Knyazev [15] seeks to 
solve (14) by using the updating formula

X (i+1) = X (i)C (i+1)
1 + W (i)C (i+1)

2 + P (i−1)C (i+1)
3 , (15)

to approximate the eigenvector corresponding to the nev leftmost 
eigenvalues of H , where W (i) ∈ Rn×nev is the preconditioned gra-
dient of the Lagrangian

L(X,�) = 1

2
trace(X T H X) − 1

2
trace

[
(X T X − I)�

]
(16)

associated with (14) at X (i) , and P (i−1) is the search direction ob-
tained in the (i − 1)st iterate of the optimization procedure, and 
C (i+1) , C (i+1) , C (i+1) are a set of coefficient matrices of matching 
1 2 3
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dimensions that are obtained by minimizing (16) within the sub-
space S(i) spanned by

S(i) ≡
(

X (i) W (i) P (i−1)
)

. (17)

To improve the convergence of the LOBPCG algorithm, one can in-
clude a few more vectors in X (i) so that the number of columns in 
X (i) , W (i) and P (i) is nb ≥ nev.

The preconditioned gradient W (i) can be computed as

W (i) = K −1(H X (i) − X (i)�(i)), (18)

where �(i) = X (i)T H X (i) , and K is a preconditioner that approx-
imates H in some way. Properties of a good preconditioner are 
discussed in [30–32]. However, for many applications, it is not 
easy to find K ’s that have these properties. When H is diago-
nally dominant, choosing K to be the diagonal or block diagonal 
part of H often works well. Other possibilities include incomplete 
factorizations [33] of H − σ I for some appropriately chosen shift 
σ . Here, we use a preconditioner based on a specific block diago-
nal part of H that preserves an important symmetry of H , namely 
the total spin (vector sum of the orbital motion and the intrin-
sic nucleon spin). We subtract a constant that approximates the 
smallest eigenvalue of H from the diagonal of this block diagonal 
matrix. This block diagonal structure arises naturally in the im-
plementation of MFDn; furthermore, this choice leads to a local 
preconditioner, that is, there is no communication overhead when 
applying the preconditioner.1

The subspace minimization problem that yields the coefficient 
matrix C (i+1)

1 , C (i+1)
2 , C (i+1)

3 , which are three block rows of a 
3nb × nb matrix C (i+1) , can be solved as a generalized eigenvalue 
problem
(

S(i)T H S(i)
)

C (i+1) =
(

S(i)T S(i)
)

C (i+1)D(i+1), (19)

where D(i+1) is a nb × nb diagonal matrix containing nb leftmost 
eigenvalues of the projected matrix pencil 

(
S(i)T H S(i), S(i)T S(i)

)
. 

The procedure that forms the projected matrices S(i)T H S(i) and 
S(i)T S(i) and solves the projected eigenvalue problem (19) is of-
ten referred to as the Rayleigh–Ritz procedure [34]. Note that the 
summation of the last two terms in (15) represents the search di-
rection followed in the ith iteration, i.e.,

P (i) = W (i)C (i+1)
2 + P (i−1)C (i+1)

3 . (20)

Algorithm 2 outlines the main steps of the basic LOBPCG algo-
rithm. The most computationally costly step of Algorithm 2 is the 
multiplication of H with a set of vectors. Although it may appear 
that we need to perform such calculations in steps 8 (where the 
projected matrix S(i)T H S(i) is formed) and 10, the multiplication 
of H with X (i) , X (i+1) and P (i) can be avoided because H X (i+1)

and H P (i) satisfy the following recurrence relationships

H X (i+1) = H X (i)C (i+1)
1 + H W (i)C (i+1)

2 + H P (i−1)C (i+1)
3 , (21)

H P (i) = H W (i)C (i+1)
2 + H P (i−1)C (i+1)

3 . (22)

Therefore, the only SpMM we need to perform is H W (i) . Again, 
for the nuclear CI calculations of interest, the dimension n of the 
sparse symmetric matrix H can be several billions, whereas W (i)

is a tall skinny n × nb matrix with nb typically of the order of 8 to 
16.

1 Note that other CI codes for nuclear structure calculations generally have a 
different ordering of the basis states, which may obfuscate this block diagonal struc-
ture.
4

Algorithm 2: The basic LOBPCG algorithm.
Input: The sparse matrix H , a preconditioner K , an initial guess to the 

eigenvectors associated with the lowest nb ≥ nev eigenvalues 
X (0) ∈Rn×nb , number of desired eigenvalues (nev), convergence 
tolerance (tol) and maximum number of iteration allowed (maxiter);

Output: (�, X), where � is a nev × nev diagonal matrix containing the 
desired eigenvalues, and X ∈Rn×nev contains the corresponding 
eigenvector approximations;

1 [C (1), �(1)] = RayleighRitz(H, X (0));
2 X (1) = X (0)C (1);
3 R(1) = H X (1) − X (1)�(1);
4 P (0) = ∅;
5 do i = 1, 2, . . .,maxiter
6 W (i) = K −1 R(i);

7 S(i) = [
X (i), W (i), P (i−1)

]
;

8 [C (i+1), �(i+1)] = RayleighRitz(H, S(i));

9 X (i+1) = S(i)C (i+1);

10 R(i+1) = H X (i+1) − X (i+1)�(i+1);

11 P (i) = W (i)C (i+1)
2 + P (i−1)C (i+1)

3 ;
12 Determine number of converged eigenpairs nc by comparing the 

relative norms of the leading nev columns of R(i+1) against the 
convergence tolerance tol;

13 exit if nc ≥ nev;

14 � ← �(i)(1 : nev, 1 : nev); X ← X (i)(:, 1 : nev);

Fig. 1. Chebyshev polynomials of the first kind.

2.4. Chebyshev filtering

An mth-degree Chebyshev polynomial of the first kind can be 
defined recursively as

Tm(t) = 2tTm−1(t) − Tm−2(t), (23)

with T0(t) = 1 and T1(t) = t . The magnitude of Tm(t) is bounded 
by 1 within [−1, 1] and grows rapidly outside of this interval. 
By mapping the unwanted eigenvalues of the nuclear many-body 
Hamiltonian H enclosed by [λF, λub] to [−1, 1] through the lin-
ear transformation (t − c)/e, where c = (λF + λub)/2 and e =
(λub − λF)/2, we can use T̂m(H) = Tm((H − cI)/e)v to amplify the 
eigenvector components in v that correspond to eigenvalues out-
side of [λF, λub]. Fig. 1 shows a 10th degree Chebyshev polynomial 
defined on the spectrum of a Hamiltonian matrix and how the left-
most eigenvalues λi , i = 1, 2, ..., 8 are mapped to T10(λi).

Applying Tm((H − cI)/e) repeatedly to a block of vectors V fil-
ters out the eigenvectors associated with eigenvalues in [λF, λub]. 
The desired eigenpairs can be obtained through the standard 
Rayleigh–Ritz procedure [34].
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Algorithm 3: The Chebyshev filtering based subspace itera-
tion (ChebFSI).

Input: The sparse matrix H , an initial guess to the eigenvectors associated 
with the lowest nb ≥ nev eigenvalues X (0) ∈Rn×nb , number of 
desired eigenvalues (nev), the degree of the Chebyshev polynomial d; 
the spectrum cutoff λF and upper bound λub; convergence tolerance 
(tol) and maximum number of subspace iteration allowed (maxiter);

Output: (�, X), where � is a nev × nev diagonal matrix containing the 
desired eigenvalues, and X ∈Rn×nev contains the corresponding 
eigenvector approximations;

1 e = (λub − λF)/2;
2 c = (λub + λF)/2;
3 [Q , R] = CholeskyQR(H, X (0));
4 do i = 1, 2, . . .,maxiter
5 W = 2(H Q − c Q )/e;
6 do j = 2, . . . , d
7 Y = 2(H W − cW )/e − Q ;
8 Q ← W ;
9 W ← Y ;

10 [Q , R] = CholeskyQR(Y );
11 T = Q T H Q ;
12 Solve the eigenvalue problem T S = S�, where � is diagonal, and 

update Q by Q ← Q S;
13 Determine number of converged eigenpairs nc by comparing the 

relative norms of the leading nev columns of R = H Q − Q D against 
the convergence tolerance tol;

14 exit if nc ≥ nev;

15 � ← �(1 : nev, 1 : nev); X ← Q (:, 1 : nev);

To obtain an accurate approximation to the desired eigenpairs, a 
high degree Chebyshev polynomial may be needed. Instead of ap-
plying a high degree polynomial once to a block of vectors, which 
can be numerically unstable, we apply Chebyshev polynomial fil-
tering within a subspace iteration to iteratively improve approxi-
mations to the desired eigenpairs. We will refer to this algorithm 
as a Chebyshev Filtering based Subspace Iteration (ChebFSI). The 
basic steps of this algorithm are listed in Algorithm 3.

Owing to the three-term recurrence in (23), W = T̂m(H)V can 
be computed recursively without forming T̂m(H) explicitly in ad-
vance. Lines 5 to 9 of Algorithm 3 illustrates how this step is 
carried out in detail. To maintain numerical stability, we orthonor-
malize vectors in W . The orthonormalization can be performed by 
a (modified) Gram–Schmidt process or by a Householder transfor-
mation based QR factorization [35].

In Algorithm 3, the required inputs are a filter degree, d, an es-
timated upper bound of the spectrum of H , λub, and an estimated 
spectrum cutoff level, λF. The estimation of the upper bound λub
can be calculated by running a few Lanczos iterations [36–38], and 
λF can often be set at 0 or an estimation of the nb + 1st leftmost 
eigenvalue of H obtained from the Lanczos algorithm. In the sub-
sequent subspace iterations, λF can be modified based on more 
accurate approximations to the desired eigenvalues. See the work 
of Saad [19] and Zhou et al. [20] for more details on Chebyshev 
filtering.

2.5. RMM-DIIS

The Residual Minimization Method (RMM) [21,22] accelerated 
by Direct Inversion of Iterative Subspace (DIIS) [23] was devel-
oped in the electronic structure calculation community to solve a 
linearized Kohn-Sham eigenvalue problem in each self-consistency 
field (SCF) iteration. Given a set of initial guesses to the desired 
eigenvectors, {x0

j }, j = 1, 2, ..., nev, the method produces succes-
sively more accurate approximations by seeking an optimal linear 
combination of previous approximations to the jth eigenvector by 
minimizing the norm of the corresponding sum of residuals. To 
be specific, let x(i)

j , i = 0, 1, ..., 	 − 1 be approximations to the 
jth eigenvector of H obtained in the previous 	 − 1 steps of the 
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RMM-DIIS algorithm, and θ(i)
j be the corresponding eigenvalue ap-

proximations. In the 	th iteration (for 	 > 1), we first seek an 
approximation in the form of

x̃ j =
	−1∑

i=min{0,	−s}
αi x

(i)
j , (24)

where

	−1∑
i=	−s

αi = 1, (25)

for some fixed 1 ≤ s ≤ smax. The coefficients αi ’s are obtained by 
solving the following constrained least squares problem

min‖
	−1∑

i=min{0,	−s}
αir

(i)
j ‖2, (26)

where r(i)
j = Hx(i)

j − θ
(i)
j x(i)

j is the residual associated with the 

approximate eigenpair (θ
(i)
j , x(i)

j ), subject to the same constraint 
defined by (25). The constrained minimization problem can be 
turned into an unconstrained minimization problem by substitut-
ing α	−1 = 1 − ∑	−2

i=min{	−s} αi into (26).
Once we solve (26), we compute the corresponding residual

r̃ j = Hx̃ j − θ̃ j x̃ j,

where θ̃ j = 〈x̃ j, Hx̃ j〉/〈x̃ j, ̃x j〉. A new approximation to the desired 
eigenvector is obtained by projecting H into the two-dimensional 
subspace W j spanned by x̃ j and r̃ j , and solving the 2 × 2 general-
ized eigenvalue problem

(W T
j H W j)g = θ(W T

j W j)g. (27)

Such an approximation can be written as

x(	)
j = W j g, (28)

where g is the eigenvector associated with the smaller eigenvalue 
of the matrix pencil (W T

j H W j, W T
j W j).

Although Rayleigh–Ritz procedures defined by (27) and (28) are 
often used to compute the lowest eigenvalue of H , the additional 
constraint specified by (24) and (25) keeps x(	)

j close to the ini-
tial guess of the jth eigenvector. Therefore, if the initial guess is 
sufficiently close to the jth eigenvector, x(	)

j can converge to this 
eigenvector instead of the eigenvector associated with the small-
est eigenvalue of H . Algorithm 4 outlines the main steps of the 
RMM-DIIS algorithm.

2.6. Comparison summary

The computational cost of all iterative methods discussed above 
is dominated by the number of Hamiltonian matrix vector multi-
plications, that is, the number of SpMVs. In the Lanczos algorithm, 
the number of SpMVs is the same as the number of iterations. 
In block algorithms such as the Block Lanczos algorithm and the 
LOBPCG algorithm, the number of SpMVs is the product of the 
block size, nb , and the number of iterations. The number of Sp-
MVs used in the ChebFSI method is the product of the number 
of subspace iterations, the block size nb , and the degree d of the 
Chebyshev polynomial used. The number of SpMVs used in RMM-
DIIS is the sum of the RMM-DIIS iterations for each of the nev
desired eigenpairs; depending on the architecture, one could com-
bine nev SpMVs on single vectors in one SpMM on a tall skinny 
n × nev matrix to improve performance.
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Algorithm 4: The RMM-DIIS algorithm.
Input: The sparse matrix H , an initial guess to the nev desired eigenvectors 

{x(0)
j }, j = 1, 2, ...nev; maximum dimension of DIIS subspace s; 

convergence tolerance (tol) and maximum number of iteration 
allowed (maxiter);

Output: {(θ j , x j)}, j = 1, 2, ..., nev, where θ j is the approximation to the jth 
lowest eigenvalue, and x j is the corresponding approximate 
eigenvector ;

1 for j=1,2,. . . ,nev do
2 x(0)

j ← x(0)
j /‖x(0)

j ‖;

3 θ(0) = 〈x(0)
j , Hx(0)

j 〉;

4 r(0)
j = Hx(0)

j − θ
(0)
j x(0)

j ;

5 x̃(1)
j = x(0)

j ;

6 r̃(1)
j = r(0)

j ;

7 do i = 1, 2, . . .,maxiter
8 if i > 1 then
9 Solve the residual minimization least squares problem (26);

10 Set x̃(i)
j according to (24);

11 x̃(i)
j ← x̃(i)

j /‖x̃(i)
j ‖;

12 Set the residual r̃(i)
j = ∑i−1

	=min{0,i−s} αi x
(	)
j ;

13 Set W j = (x̃(i)
j , r̃(i)

j );

14 Solve the Rayleigh–Ritz problem (27) and obtain (θ(i)
j , x(i)

j );

15 Compute the residual r(i)
j = Hx(i)

j − θ
(i)
j x(i)

j ;

16 exit the do loop if ‖r(i)
j ‖/|θ(i)

j | < tol;

Table 1
A comparison of memory footprint associated with the Lanczos, Block 
Lanczos, LOBPCG, ChebFSI and RMM-DIIS methods.

Method Memory cost

Lanczos n · (kLan + nev) +O
(
k2

Lan

)

Block Lanczos n · nb · (kblockLan + nev) +O
((

nb · kblockLan
)2

)

LOBPCG 7n · nb +O
(
9n2

b

)
ChebFSI 4n · nb +O

(
n2

b

)
RMM-DIIS n · (3nev + smax

)

In addition to SpMVs, some dense linear algebra operations are 
performed in these algorithms to orthonormalize basis vectors and 
to perform the Rayleigh–Ritz calculations. The cost of orthonor-
malization can become large if too many Lanczos iterations or 
Block Lanczos iterations are performed; for the Lanczos and Block 
Lanczos algorithm once can perform a restart once the orthonor-
malization cost becomes too large. The orthonormalization cost is 
relatively small in LOBPCG, ChebFSI, and RMM-DIIS.

In Table 1, we compare the memory usage of each method dis-
cussed above. Note that the first term for Lanczos, Block Lanczos, 
LOBPCG and ChebFSI in this table is generally the dominant term. 
We use O(c) to denote a small multiple (i.e., typically 2 or 3) 
of c. The number of iterations taken by a Block Lanczos iteration 
kblockLan is typically smaller than the number of Lanczos iterations 
kLan when the same number of eigenpairs are computed by these 
methods. However, kblockLan · nb is often larger than kLan. It is pos-
sible to use a smaller amount of memory in LOBPCG and ChebFSI 
at the cost of performing more SpMMs. For example, if we were 
to explicitly compute H X (i+1) and H P (i) in the LOBPCG algorithm 
to perform the Rayleigh–Ritz calculation instead of updating these 
blocks according to (21) and (22) respective, we can reduce the 
LOBPCG memory usage to 4n · nb + O(9n2

b). For the RMM-DIIS al-
gorithm, we assume that we compute one eigenpair at a time. The 
parameter smax is the maximum dimension of the DIIS subspace 
constructed to correct an approximate eigenvector. This parameter 
is often chosen to be between 10 and 20. If we batch the refine-
ment of several eigenvectors together to make use of SpMMs, the 
memory cost of RMM-DIIS will increase by a factor of nev.
6

2.7. Hybrid algorithms

Among the methods discussed above, the Lanczos, Block Lanc-
zos, LOBPCG, and ChebFSI methods can all proceed with an arbi-
trary starting guess of the desired eigenvectors although all, except 
the Lanczos algorithm, can (and generally do) benefit from the 
availability of good starting guesses to several eigenvectors. On the 
other hand, as an eigenvector refinement method, the RMM-DIIS 
method requires a reasonably accurate approximation of the de-
sired eigenvectors as a starting point. Therefore, a more effective 
way to use the RMM-DIIS method is to combine it with one of 
the other methods, i.e., we can start with Lanczos, Block Lanczos, 
LOBPCG or ChebFSI method and switch to RMM-DIIS when the ap-
proximate eigenvectors become sufficiently accurate.

In particular, in the Lanczos and Block Lanczos methods the 
basis orthogonalization cost as well as the memory requirement 
become progressively higher with increasing number of iterations. 
Therefore, a notable benefit to switch from the Lanczos or Block 
Lanczos methods to RMM-DIIS is to lower the orthogonalization 
cost and memory requirement.

Although the orthogonalization cost and memory requirement 
for the LOBPCG method is fixed throughout all LOBPCG iterations, 
the subspace (17) from which eigenvalue and eigenvector approx-
imations are drawn becomes progressively more ill-conditioned 
as the norms of the vectors in (18) become smaller. The ill-
conditioned subspace can make the LOBPCG algorithm numerically 
unstable even after techniques proposed in [16,17] are applied. 
Therefore, it may be desirable to switch from LOBPCG to RMM-
DIIS, when the condition number of the subspace is not too large.

The orthogonalization cost and memory requirement for ChebFSI 
are also fixed. The method is generally more efficient in the early 
subspace iterations when Tn(H) is applied to a block of vectors in 
each iteration. However, as the approximate eigenvectors converge, 
applying Tn(H) to a block of vectors in a single iteration results in 
a higher cost compared to RMM-DIIS that can refine each approx-
imate eigenvector separately. Again, it may become advantageous 
to switch to RMM-DIIS, when approximate eigenvectors become 
sufficiently accurate in ChebFSI.

3. Numerical examples

In this section, we compare and analyze the performance of 
each of the five algorithms presented in Section 2 using numeri-
cal examples, in terms of the number of SpMVs that are needed to 
achieve the requested tolerance for the lowest nev eigenpairs. The 
initial tests were done using MATLAB, and we tested the effective-
ness of algorithms in terms of the number of SpMVs required to 
reach the requested tolerance for nev eigenpairs. Subsequently, we 
have also implemented these algorithms in Fortran90 and experi-
mented with these algorithms in MFDn.

3.1. Test problems

The test problems we use are the many-body Hamiltonian ma-
trices associated with four different nuclei, 6Li, 7Li, 11B, and 12C, 
where the superscripts indicate the total number of nucleons (pro-
tons plus neutrons) in the nuclei. These Hamiltonian matrices are 
constructed in different CI model spaces labeled by the Nmax pa-
rameter, using the two-body potential Daejeon16 [39]. In Table 2, 
we list the matrix size n as well as the number of nonzero matrix 
elements in half the symmetric matrices. Note that the matrix size 
n depends on A (the number of nucleons) and the basis truncation 
parameter Nmax, but is independent of the interaction. The num-
ber of nonzero matrix elements for a given nucleus and interaction 
is the same for any two-body interaction; but with three-body in-
teractions, the number of nonzero matrix elements is more than 
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Table 2
Test problems used in the numerical experiments.

Nucleus Nmax Matrix size n # Non-zeros
6Li 6 197,822 106,738,802
7Li 6 663,527 421,938,629
11B 4 814,092 389,033,682
12C 4 1,118,926 555,151,572

Table 3
The dimensions and number of nonzero matrix elements in half the matrices for 
6Li, 7Li, 11B and 12C that are constructed in a lower dimensional configuration 
model space labeled by a smaller Nmax value.

System Nmax Matrix size n #Non-zeros
6Li 4 17,040 4,122,448
7Li 4 48,917 14,664,723
11B 2 16,097 2,977,735
12C 2 17,725 3,365,099

an order of magnitude larger for the same matrix size. Also, the 
number of iterations needed in any of the iterative solvers will 
generally depend on the interaction (as well as the nucleus and 
the truncation).

Before solving eigenvalue problems for the nuclei and model 
spaces listed in Table 2, we first construct a good initial guess for 
each of the nev desired eigenvectors by computing the lowest few 
eigenvalues and the corresponding eigenvectors of smaller Hamil-
tonian matrices constructed from a lower dimensional CI model 
space labeled by Nmax − 2 values. Table 3 shows the matrix di-
mensions n and the number of nonzero matrix elements in these 
smaller Hamiltonians. The initial guesses to the desired eigenvec-
tors of the Hamiltonian matrices listed in Table 2 are obtained 
by padding the eigenvectors of the smaller Hamiltonian matrices 
by zeros to match the dimension of the original problems to be 
solved. As we can see, since the dimension of the problems listed 
in Table 3 are an order of magnitude or two smaller than the cor-
responding problems listed in Table 2, they can be solved relatively 
easily and quickly by almost any method.

All algorithms presented in section 2 have been implemented 
in MATLAB which is ideal for prototyping new algorithms. The 
preconditioner we use in each LOBPCG run is choosen to be K =
H D − σ I , where H D is a block diagonal matrix obtained from the 
diagonal blocks of H , and σ is chosen to be an approximation to 
the smallest eigenvalue of H obtained from a few iterations of a 
LOBPCG run without preconditioning. We do not explicitly form 
the inverse of K . The application of K −1 in (18) is achieved by 
solving linear systems of equations

K W (i) = H X (i) − X (i)�(i)

using an iterative solver such as the MINRES [40] or the formal 
orthogonal method [41].

For each test problem, we typically perform two sets of ex-
periments for each algorithm. In the first set of experiments, we 
compute nev = 5 lowest eigenvalues and their corresponding eigen-
vectors. In the second set, we increase the number of eigenpairs to 
be computed to nev = 10. All calculations are performed in double 
precision arithmetic.

3.2. The performance of single method solvers

In this section, we report and compare the performance of the 
Lanczos, block Lanczos, LOBPCG, ChebFSI and RMM-DIIS methods 
when they are applied to the test problems listed in Table 2. For 
block methods such as the block Lanczos, LOBPCG and ChebFSI 
methods, we set the block size, i.e., the number of vectors in the 
matrix V j in (9), the matrix X (i) in (15), to nb = 8 when computing 
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the nev = 5 lowest eigenpairs of H , or to nb = 16 when computing 
the nev = 10 lowest eigenpairs of H , and an SpMM is performed to 
multiply H with nb vectors all at once, rather than performing nev
separate SpMVs. Even though RMM-DIIS is not a block method, the 
nev SpMVs performed in this algorithm can also be fused together 
as a single SpMM as we explain below.

For block methods, we choose the starting guess for each 
method as the eigenvectors of the Hamiltonian constructed in a 
smaller CI space (with a smaller Nmax value), as listed in Table 3, 
padded with zeros to match the size of the Hamiltonian in the 
larger CI space (with a larger Nmax value) as mentioned earlier. 
This is also used in the RMM-DIIS method which only requires a 
starting guess for each of the desired eigenpairs. We should note 
that when such a starting guess is not sufficiently close to the 
desired eigenvector associated with the larger Nmax value, the con-
vergence of the RMM-DIIS method can be slow as we will see from 
the numerical examples presented below. Note that it is also pos-
sible that the RMM-DIIS algorithm converges to a set of eigenpairs 
that do not correspond to the lowest nev eigenvalues of H .

For the Lanczos algorithm, we take the initial guess v0 to be 
the linear combination of augmented eigenvectors associated with 
the lowest nev eigenvalues of the Hamiltonian constructed from 
the smaller CI space, i.e.,

v0 = 1

nev

nev∑
i=1

ẑi ,

where ẑi is the zero padded eigenvector associated with the ith 
eigenvalue of the Hamiltonian constructed from the smaller CI 
space.

All methods are terminated when the relative residual norms 
or estimated residual norm associated with all desired eigenpairs 
are below the threshold of τ = 10−6. A relative residual norm for 
an approximate eigenpair (θ, z) is defined to be

|H z − zθ |
|θ | .

For the Lanczos and block Lanczos methods, we use (7) and (13) to 
estimate the relative residual norm without performing additional 
Hamiltonian matrix and vector multiplications.

The convergence of the ChebFSI algorithm depends on the 
choice of several parameters. Here, we use a 10th degree Cheby-
shev polynomial, i.e. d = 10 in the ChebFSI method. The upper 
bound of the spectrum λub is determined by first running 10 
Lanczos iterations and using Rayleigh–Ritz approximation to the 
largest eigenpairs (θ10, u10) to set λub to θ10 + ‖r10‖, where r10 =
Hu10 − θ10u10. We set the parameter λF simply to 0 because the 
desired eigenvalues are bound states of the nucleus of interest and 
are expected to be negative. We apply the technique of deflation 
for converged eigenvectors, i.e., once the relative residual norm of 
an approximate eigenpair falls below the convergence tolerance of 
10−6, we “lock” the approximate eigenvector in place and do not 
apply H to this vector in subsequent computations. These vectors 
will still participate in the Rayleigh–Ritz calculation performed in 
steps 11 and 12 of Algorithm 3 and be updated as part of the 
Rayleigh–Ritz procedure.

In Tables 4 and 5, we compare the performance of Lanczos, 
block Lanczos, LOBPCG, ChebFSI and RMM-DIIS in terms of the to-
tal number SpMVs performed in each of these methods. It is clear 
from these tables that the Lanczos method uses the least num-
ber of SpMVs. However, the number of SpMVs used by both the 
LOBPCG, block Lanczos and RMM-DIIS is within a factor of 3 when 
nev = 5 eigenpairs are computed. Because 8 SpMVs can be fused as 
a single SpMM, which is more efficient, in the block Lanczos and 
LOBPCG method, the total wall clock time used by these methods 
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Table 4
SpMV count for different algorithms on MATLAB to compute five lowest eigenvalues.

System Lanczos Block Lanczos LOBPCG ChebFSI RMM-DIIS
6Li 95 208 184 480 174
7Li 109 280 240 960 291
11B 82 240 192 950 152
12C 106 248 192 890 181

Table 5
SpMV count for different algorithms on MATLAB to compute ten lowest eigenvalues.

System Lanczos Block Lanczos LOBPCG ChebFSI RMM-DIIS
6Li 114 464 464 690 686
7Li 192 512 464 1,350 884
11B 180 480 432 2,470 > 3,000
12C 164 480 400 2,300 499

Fig. 2. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the 
Lanczos algorithm as function of the number of iterations, which equals the number 
of SpMVs.

can be less than that used by the Lanczos method. Five SpMVs can 
also be fused in the RMM-DIIS method, even though the algorithm 
targets each eigenvalue separately. Because different eigenvalues 
may converge at a different rate, we may switch to using SpMVs 
when some of the eigenpairs converge. Whether it is beneficial to 
make such a switch depends on the performance difference be-
tween SpMM and SpMV, which may be architecture dependent. 
We will discuss this issue more in the next section.

Table 5 shows that the number of SpMVs used in the Lanc-
zos algorithm increases only slightly when we compute nev = 10
eigenpairs. However, the number of SpMVs required in the block 
Lanczos, LOBPCG, ChebFSI and RMM-DIIS increase at a higher rate. 
This is mainly due to the fact that once a sufficiently large Krylov 
subspace has been constructed, we can easily obtain approxima-
tions to more eigenpairs without enlarging the subspace much 
further. Furthermore, RMM-DIIS fails to converge for the 7th, 8th, 
and 9th eigenpairs of 11B. Inspection of the obtained spectra with 
the other methods reveals that these three eigenvalues for this 
particular case are near-degenerate. Specifically, the eigenvalues of 
the 7th and 8th state differ by 0.6% and these two states have the 
same conserved quantum numbers so they can easily mix; while 
the 8th and 9th states do have different quantum numbers, but 
their eigenvalues differ by only 0.03%. Indeed, it should not be sur-
prising that refining individual eigenpairs may fail to converge for 
near-degenerate states.
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Fig. 3. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in 
the block Lanczos algorithm; the number of SpMVs is nb = 8 times the number of 
iterations.

Fig. 4. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the 
LOBPCG algorithm; the number of SpMVs is nb = 8 times the number of iterations.

Figs. 2, 3, 4, 5, 6 show the convergence history of the Lanc-
zos, block Lanczos, LOBCPG, ChebFSI and RMM-DIIS methods for 
6Li. In these figures, we plot the relative residual norm of each ap-
proximate eigenpair with respect to the iteration number. We can 
clearly see that accurate approximations to some of the eigenpairs 
start to emerge in the Lanczos method when the dimension of the 
Krylov subspace (i.e., iteration number) is sufficiently large. Note 
that the eigenpairs do not converge at the same rate. Generally, 
the smallest eigenvalue converges first, followed by the second, 
third, fourth and the fifth eigenvalues. However, these eigenvalues 
do not necessarily have to converge in order. Although the relative 
residual for each eigenpair eventually goes below the convergence 
threshold of 10−6, the reduction of the relative residual norm is 
not monotonic with respect to the Lanczos iteration number. The 
relative residual can sometimes increase after the Krylov subspace 
becomes sufficiently large and new spectral information becomes 
available.

All approximate eigenpairs appear to converge at a similar rate 
in the block Lanczos and LOBPCG methods. This is one of the ad-
vantages of a block method. The LOBPCG method performs slightly 
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Fig. 5. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in 
the Chebyshev algorithm. The number of SpMVs is nb = 8 times the degree of the 
Chebyshev polynomial, d = 10, times the number of iterations.

better in terms of the total number of SpMMs (or the number of 
iterations) used. This is due to the fact that LOBPCG makes use of 
an effective preconditioner.

The ChebFSI is also a block method. Fig. 5 shows that only five 
subspace iterations are required to obtain converged λ2, λ4 and λ5, 
and two more subspace iterations are required to obtain converged 
λ1 and λ3. The difference in the convergence rates for different 
eigenvalues is likely due to the variation in the contributions from 
different eigenvectors in the initial subspace constructed from the 
eigenvectors of the Hamiltonian associated with a smaller con-
figuration space. This could also be related to differences in the 
internal structure of the different states. Although the number of 
subspace iterations used in ChebFSI is relatively small, each sub-
space iteration needs to perform nb · d SpMVs, where nb is the 
number of vectors in the initial subspace and d is the degree of 
the Chebyshev polynomial. When nb = 8 and d = 10, a total of 480 
SpMVs are used to compute the lowest five eigenpairs as reported 
in Table 4. Note that this count is less than 8 × 10 × 7 = 560 be-
cause a deflation scheme that locks the converged eigenvector is 
used in ChebFSI. When nb = 16, d = 10, a total of 690 SpMVs are 
used to compute 10 lowest eigenpairs, as reported in Table 5. Be-
cause these SpMV counts are significantly higher than those used 
in other methods, ChebFSI appears to be not competitive for solv-
ing this type of eigenvalue problem. Therefore, from this point on, 
we will not discuss this method any further.

The convergence of the RMM-DIIS method is interesting. We 
observe from Fig. 6 that the first three eigenvalues of the 6Li 
Hamiltonian converge relatively quickly. The number of RMM-DIIS 
iterations required to reach convergence is 31 for the first eigen-
value, 25 for the third eigenvalue and 23 for the second eigenvalue. 
Altogether, 79 SpMVs are used to obtain accurate approximations 
to the three smallest eigenvalues and their corresponding eigen-
vectors, which is almost same as the 78 SpMVs used in the Lanc-
zos algorithm for obtaining these three eigenpairs. However, the 
fourth and fifth eigenvalues take much longer to converge. Yet, it is 
important to note that RMM-DIIS iterations that start with differ-
ent initial guesses all converge to different eigenpairs even though 
no orthogonalization is performed between approximate eigenvec-
tors produced in different RMM-DIIS iterations. Table 5 shows that 
more RMM-DIIS iterations are needed to obtain accurate approx-
imations to larger eigenvalues deeper inside the spectrum of 6Li 
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Fig. 6. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the 
RMM-DIIS algorithm. The number of SpMVs is the sum of the number of iterations 
for each eigenvalue.

Hamiltonian, partly due to the near-degeneracy of these eigenval-
ues in this case.

4. Performance of hybrid algorithms

As we already discussed in Section 2, the RMM-DIIS algorithm 
can be very effective when a good initial guess to the target eigen-
vector is available, with the caveat that it may perform poorly for 
near-degenerate states, even if they have different quantum num-
bers. In principle, we can obtain reasonably accurate initial guesses 
for the target eigenvectors from any of the Lanczos, block Lanczos, 
LOBPCG or ChebFSI algorithms. However, combining the RMM-DIIS 
algorithm with the Lanczos algorithm or the ChebFSI algorithm 
may be less attractive, partly because convergence rates for dif-
ferent eigenpairs in these algorithms are different, at least in the 
example discussed in Section 3. With the Lanczos algorithm we see 
from Fig. 2 that the left most eigenvalues typically converge much 
faster than larger eigenvalues. As a result, the RMM-DIIS method 
can only be effectively used to refine the eigenvectors associated 
with larger eigenvalues when they become sufficiently accurate. At 
that point, the left most eigenvalues are likely to have converged 
already. Similarly, in Fig. 5 we see that the first and third eigenpair 
converge slower than the other three eigenpairs. Furthermore, the 
ChebFSI algorithm tends to be less efficient than either the block 
Lanczos or the LOBPCG algorithms; and also the Lanczos algorithm 
tends to be less efficient than block Lanczos or LOBPCG, at least 
when the multiplication of the sparse Hamiltonian H with sev-
eral vectors can be implemented efficiently. We therefore do not 
consider the hybrid ChebFSI and RMM-DIIS nor the hybrid Lanczos 
and RMM-DIIS method here.

In this section we therefore combine RMM-DIIS with either 
the block Lanczos or the LOBPCG algorithm to devise a hybrid 
algorithm that first runs a few block Lanczos or LOBPCG itera-
tions and then use the RMM-DIIS method to refine approximated 
eigenvectors returned from the block Lanczos or the LOBPCG al-
gorithm simultaneously. Fig. 7 shows that RMM-DIIS indeed con-
verges rapidly when the initial guesses to the eigenvectors associ-
ated with the lowest 5 eigenvalues are chosen to be the approxi-
mated eigenvectors produced from 10 LOBPCG iterations.
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Table 6
SpMV count in hybrid block Lanczos/RMM-DIIS for computing five lowest eigenvalues.

Nucleus 5 block Lanczos 10 block Lanczos 15 block Lanczos 20 block Lanczos block Lanczos only
6Li 183 163 173 185 208
7Li 205 218 234 221 280
11B 170 178 195 199 240
12C 179 180 179 201 248
Fig. 7. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the 
RMM-DIIS algorithm after 10 iterations of LOBPCG.

4.1. Switching to RMM-DIIS

A practical question that arises when implementing a hybrid 
block Lanczos/RMM-DIIS or LOBPCG/RMM-DIIS eigensolver is how 
to decide when to switch from one algorithm to another. Running 
more block Lanczos or LOBPCG iterations will produce more accu-
rate approximations to the desired eigenvectors that can then be 
quickly refined by the RMM-DIIS algorithm. But the cost of run-
ning block Lanczos or LOBPCG may dominate the overall cost of 
the computation. On the other hand, running fewer block Lanczos 
or LOBPCG iterations may produce a set of approximate eigenvec-
tors that require more RMM-DIIS iterations. There is clearly a trade 
off, and the optimal point to switch from one to the other depends 
not only on the specific nucleus, model space, and interaction, but 
also on details of the numerical implementation and the computa-
tional hardware.

Table 6 shows the total number of SpMVs required in a hy-
brid block Lanczos/RMM-DIIS algorithm in which 5, 10, 15 or 20 
block Lanczos iterations are performed first, subsequently followed 
by the RMM-DIIS procedure. We observe that this hybrid scheme 
uses fewer total SpMVs for all test problems than that used in a 
simple block Lanczos or RMM-DIIS run. A similar observation can 
be made from Table 7 when 10 lowest eigenvalues are computed 
except for one case, out of 16 cases: for 7Li, the hybrid algorithm 
that starts with 5 block Lanczos iterations uses more SpMVs than 
the non-hybrid block Lanczos only algorithm. The optimal num-
ber of block Lanczos iterations we should perform (in terms of the 
total SpMV count) before switching to the RMM-DIIS procedure 
is problem dependent. Because good approximations to interior 
eigenvalues only emerge when the Krylov subspace produced by 
the block Lanczos iteration is sufficiently large, more block Lanczos 
iterations are required in the hybrid algorithm to yield an optimal 
SpMV count when 10 eigenvalues and the corresponding eigenvec-
tors are needed, as we can see in Table 7.
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Also a hybrid LOBPCG and RMM-DIIS algorithm performs better 
than the LOBPCG algorithm by itself, provided a sufficiently large 
number of LOBPCG iterations are performed first to obtain good 
starting vectors for the subsequent RMM-DIIS procedure, as can 
be seen in Tables 8 and 9. From Tables 6, 7, 8 and 9, we observe 
that the total SpMV count is optimal when the number of block 
Lanczos or LOBPCG iterations is sufficiently large, but not too large. 
However, the optimal number of block Lanczos/LOBPCG iterations 
is problem dependent.

One practical way to determine when to switch from block 
Lanczos or LOBPCG to RMM-DIIS is to examine the change in the 
approximate eigenvalue. Because RMM-DIIS can be viewed as an 
eigenvector refinement method, it works well when an approx-
imate eigenvalue becomes sufficiently accurate while the corre-
sponding approximate eigenvector still needs to be corrected. Since 
we do not know the exact eigenvalues in advance, we use the aver-
age changes in the relative difference between approximate eigen-
values obtained in two consecutive iterations (e.g., the (k − 1)st 
and the kth iterations) defined as

τ = 1

nev

√√√√√
nev∑
j=1

⎛
⎝θ

(k)
j − θ

(k−1)
j

θ
(k)
j

⎞
⎠

2

, (29)

as a metric to decide when to switch from block Lancos or LOBPCG 
to RMM-DIIS.

Tables 10 and 11 show the optimal SpMV count of the hybrid 
block Lanczos/RMM-DIIS and LOBPCG/RMM-DIIS algorithms when 
computing five or 10 lowest eigenvalues, respectively. Unlike Ta-
bles 6, 7, 8 and 9 where we show the results only for 5, 10, 15
or 20 iterations, these optimal numbers are found by exhaustively 
trying every possible iteration count of block Lanczos and LOBPCG 
before switching to RMM-DIIS. Along with the optimal numbers, 
Tables 10 and 11 also show the SpMV count of the hybrid algo-
rithms when block Lanczos and LOBPCG procedures are stopped as 
τ goes below 10−4 and 10−7.

Table 11 shows that the number of SpMV counts in both the 
hybrid block Lanczos/RMM-DIIS and LOBPCG/RMM-DIIS algorithms 
appear to be nearly optimal when τ ≤ 10−7. However, when fewer 
eigenvalues are needed, we can possibly stop the block Lanczos 
procedure in the hybrid block Lanczos/RMM-DIIS algorithm when 
τ is below 10−4 as shown in Table 10. The τ ≤ 10−7 criterion still 
seems to be a good one for the hybrid LOBPCG/RMM-DIIS algo-
rithm even when fewer eigenpairs are needed.

4.2. Optimal implementation

As we indicated earlier, the SpMV count may not be the best 
metric to evaluate the performance of a block eigensolver that 
performs SpMVs for a block of vectors as a SpMM operation. It 
has also been shown in [42,14] that on many-core processors, 
the LOBPCG algorithm can outperform the Lanczos algorithm even 
though its SpMV count is much higher. The reason that a block 
algorithm can outperform a single vector algorithm such as the 
Lanczos method on a many-core processor is that SpMM can take 
advantage of high concurrency and memory locality.
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Table 7
SpMV count in hybrid block Lanczos/RMM-DIIS for computing 10 lowest eigenvalues.

Nucleus 5 block Lanczos 10 block Lanczos 15 block Lanczos 20 block Lanczos block Lanczos only
6Li 422 361 347 367 464
7Li 544 422 418 402 512
11B 419 422 392 382 480
12C 430 415 369 369 480

Table 8
SpMV count in hybrid LOBPCG/RMM-DIIS for computing five lowest eigenvalues.

System 5 LOBPCG 10 LOBPCG 15 LOBPCG 20 LOBPCG LOBPCG only
6Li 191 158 163 165 184
7Li 211 200 190 194 240
11B 260 162 159 165 192
12C 186 157 153 166 192

Table 9
SpMV count in hybrid LOBPCG/RMM-DIIS for computing 10 lowest eigenvalues.

System 5 LOBPCG 10 LOBPCG 15 LOBPCG 20 LOBPCG LOBPCG only
6Li 432 344 337 356 464
7Li 529 398 364 365 464
11B 758 397 334 355 423
12C 523 340 317 334 400

Table 10
SpMV count for hybrid algorithms wrt switching threshold on MATLAB to compute five lowest eigenvalues.

Nucleus Opt Hybrid Block Lan τ ≤ 10−4 τ ≤ 10−7 Opt Hybrid LOBPCG τ ≤ 10−4 τ ≤ 10−7

6Li 157 194 169 156 187 159
7Li 205 211 224 190 210 190
11B 166 176 195 158 188 159
12C 172 180 179 152 169 153

Table 11
SpMV count for hybrid algorithms wrt switching threshold on MATLAB to compute 10 lowest eigenvalues.

Nucleus Opt Hybrid Block Lan τ ≤ 10−4 τ ≤ 10−7 Opt Hybrid LOBPCG τ ≤ 10−4 τ ≤ 10−7

6Li 340 384 346 330 393 335
7Li 401 515 418 363 478 363
11B 379 525 384 332 625 333
12C 362 408 368 312 437 317
The performance of SpMV and SpMM can be measured in 
terms of number of floating point operations performed per sec-
ond (GFLOPS). In the following experiments, we measure the per-
formance these computational kernels by running the LOBPCG 
solver implemented in the MFDn software on a single AMD EPYC 
7763 socket on a Perlmutter CPU node maintained at the National 
Energy Research Scientific Computing (NERSC) Center. The EPYC 
socket contains 64 cores [43]. We disabled hyperthreading so that 
64 OpenMP threads were used within a single MPI rank. Tables 12
and 13 show that the SpMM GFLOPS measured in the LOBPCG al-
gorithm is much higher than the SpMV GFLOPS measured in the 
Lanczos algorithm. As a result, we can evaluate the performance 
of a block eigensolver by dividing the actual SpMV count by the 
ratio between SpMM and SpMV GFLOPS to obtain an “effective” 
SpMV count. For example, because the SpMM and SpMV GFLOPS 
ratio is 24.2/4.1 ≈ 5.9 for 6Li, the effective SpMV count for per-
forming 23 iterations of the LOBPCG algorithm with a block size 8 
is 23 × 8/5.9 ≈ 31 which is much lower than the 95 SpMVs per-
formed in the Lanczos method, even though the actual number of 
SpMVs performed in the LOBPCG iteration is 23 × 8 = 184 > 95.

Strictly speaking, RMM-DIIS is a single vector method, i.e., in 
each RMM-DIIS run, we refine one specific eigenvector associated 
with a target eigenvalue which has become sufficiently accurate 
as discussed earlier. However, because the refinement of different 
11
Table 12
GFLOPs achieved by the SpMV/SpMM kernels within MFDn on one 
AMD EPYC node with 64 threads in a single MPI rank. The sparse 
Hamiltonian is applied to 8 vectors in SpMM.

Nucleus SpMV GFLOPS SpMM GFLOPS Ratio
6Li 4.1 24.2 5.9
7Li 6.7 36.0 5.4
11B 6.4 33.5 5.2
12C 6.0 28.0 4.7

Table 13
GFLOPs achieved by the SpMV/SpMM kernels within MFDn on one AMD 
EPYC node with 64 threads. The sparse Hamiltonian is applied to 16 vec-
tors in SpMM.

Nucleus SpMV GFLOPS SpMM GFLOPS Ratio
6Li 4.1 38.9 9.5
7Li 6.7 56.0 8.4
11B 6.4 50.3 7.9
12C 6.0 47.5 7.9

eigenvectors can be performed independently from each other, we 
can perform several RMM-DIIS refinements simultaneously. The si-
multaneous RMM-DIIS runs can be implemented by batching the 
SpMVs in each RMM-DIIS iteration together as a single SpMM. This 
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Fig. 8. Total effective SpMV cost of the block Lanczos/RMM-DIIS algorithm to compute the lowest five eigenvalues for 6Li w.r.t. the switching strategy from SpMM to SpMV 
within RMM-DIIS. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
step constitutes the major cost of the RMM-DIIS method. The least 
squares problems given in Eqs. (26)–(28) for different eigenvectors 
can be solved in sequence in each step, since they do not cost 
much computation.

Because different eigenvectors may converge at different rates 
as we have already seen in Fig. 6, we need to decide what to do 
when one or a few eigenvectors have converged. One possibility 
is to decouple the batched RMM-DIIS method after a certain num-
ber of eigenvectors have converged, and switch from using a single 
SpMM in a coupled RMM-DIIS implementation to using several Sp-
MVs in a decoupled RMM-DIIS implementation. Another possibility 
is to just keep using the coupled RMM-DIIS with a single SpMM in 
each step without updating the eigenvectors that have already con-
verged. In this case, the SpMM calculation performs more floating 
point operations than necessary. However, because an SpMM can 
be carried out at a much higher GFLOPs than an SpMV, the overall 
performance of the computation may not be degraded even with 
the extra computation.

In Fig. 8, we show the effective number of SpMVs performed 
in several hybrid block Lanczos and RMM-DIIS runs for the 6Li 
test problem. The horizontal axis represents the number of block 
Lanczos iterations performed before we switch to RMM-DIIS. The 
blue dots show the number of effective SpMVs used in the hybrid 
method when we switch from SpMM to SpMV after one eigen-
vector has converged. Similarly, the red, orange and magenta dots 
show the effective SpMV counts when we switch from SpMM to 
SpMV after two, three and four eigenvectors have converged re-
spectively. The green dots show the effective number of SpMVs 
when we always use SpMM regardless of how many eigenvectors 
have converged. As we can see from this figure, the number of ef-
fective SpMVs is relatively high when we switch to RMM-DIIS after 
a few block Lanczos iterations. This is because it will take RMM-
DIIS longer to converge if the initial eigenvector approximations 
produced from the block Lanczos iterations are not sufficiently 
accurate. Regardless of when we switch from block Lanczos to 
RMM-DIIS, using SpMM throughout the RMM-DIIS algorithm ap-
pears to almost always yield the lowest effective SpMV count. We 
can also see that the difference in the effective SpMV count is 
relatively large when we switch from block Lanczos to RMM-DIIS 
too early. This is understandable because some of the approximate 
eigenvectors are more accurate than others when we terminate 
the block Lanczos iteration too early. As a result, the number of 
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RMM-DIIS steps required to reach convergence may vary signifi-
cantly from one eigenvector to another. The difference in the rate 
of convergence prevents us from batching several SpMVs into a 
single SPMM. If we switch after more block Lanczos iterations have 
been performed, this difference becomes quite small as all approx-
imate eigenvectors are sufficiently accurate and converge more or 
less at the same rate. The relative difference (τ ) between eigen-
value approximations from two consecutive RMM-DIIS iterations 
falls below 10−7 at the 13th block Lanczos iteration. If we switch 
to RMM-DIIS at that point and use SpMM throughout the RMM-
DIIS iteration, the number of effective SpMVs used in the hybrid 
scheme is about 40, which is slightly higher than the optimal 32 
effective SpMVs required if we were to switch to RMM-DIIS after 
23 block Lanczos iterations.

An early switch allows us to keep the basis orthogonalization 
cost of the block Lanczos algorithm as low as possible. As we can 
see from Fig. 9, the cost of orthogonalization as a percentage of the 
SpMM cost can become significantly higher as we perform more 
block Lanczos iterations. In particular, for all test problems, the or-
thogonalization cost exceeds 50% of the SpMM cost after 20 block 
Lanczos iterations. We note that the performance shown in Fig. 9
is measured from the wallclock time of an implementation of the 
block Lanczos algorithm in the MFDn software executed on a sin-
gle node of the Perlmutter using one MPI rank and 64 threads.

Fig. 10 shows that it is beneficial to use SpMM throughout the 
hybrid LOBPCG/RMM-DIIS algorithm even after some of the eigen-
vectors have converged. When a sufficient number of LOBPCG it-
erations have been performed, the total SPMV count does not vary 
much. In this case, we should terminate LOBPCG as early as possi-
ble to avoid potential numerical instabilities that can be introduced 
by the numerical rank deficiency of the preconditioned residual 
vectors [17]. Fig. 11 shows that the estimated condition number 
of the subspace from which approximated eigenvalues and eigen-
vectors are extracted in the LOBPCG algorithm increases rapidly as 
we perform more LOBPCG iterations. Although the optimal SpMV 
count is attained when we switch to RMM-DIIS after 20 LOBPCG 
iterations, it is not unreasonable to terminate LOBPCG sooner, for 
example, after 12 iterations, when the estimated condition num-
ber of the LOBPCG subspace is around 109. This is also the point 
at which the average relative change in the approximations to the 
desired eigenvalues τ just moves below 10−7. Therefore, the pre-
viously discussed strategy of using τ < 10−7 to decide when to 
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Fig. 9. The percentage of cumulative time spent on orthogonalization compared to SpMM in the block Lanczos algorithm for all test problems to compute the lowest five 
eigenvalues.

Fig. 10. Total effective SpMV cost of the LOBPCG/RMM-DIIS algorithm to compute the lowest five eigenvalues for 6Li w.r.t. switching strategy from SpMM to SpMV within 
RMM-DIIS.
switch to RMM-DIIS works well. Even though this strategy would 
lead to a slight increase in the number of effective SpMV opera-
tions compared with the optimal effective SpMV count achieved 
when we switch to RMM-DIIS after 20 iterations, it makes the hy-
brid algorithm more robust and stable. We should also note that in 
a practical calculation the optimal effective SpMV count and when 
the optimality is achieved is unknown a priori. This optimality is 
problem dependent, and is also architecture dependent.

5. Conclusion

In this paper, we examine and compare a few iterative meth-
ods for solving large-scale eigenvalue problems arising from nu-
clear structure calculations. We observe that the block Lanczos and 
LOBPCG methods are generally more efficient than the standard 
Lanczos method and the stand-alone RMM-DIIS method in terms 
of the effective number of SpMVs. The Chebyshev filtering based 
subspace iteration method is not competitive with other methods 
even though it requires the least amount of memory and has been 
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found to be very efficient for other applications. We show that by 
combining the block Lanczos or LOBPCG algorithm with the RMM-
DIIS algorithm, we obtain a hybrid solver that can outperform 
existing solvers. The hybrid LOBPCG/RMM-DIIS method is gener-
ally more efficient than block Lanczos/RMM-DIIS when a good 
preconditioner is available. The use of RMM-DIIS in the block Lanc-
zos/RMM-DIIS hybrid algorithm allows us to limit the orthogonal-
ization cost in the block Lanczos iterations. In the LOBPCG/RMM-
DIIS hybrid algorithm, the use of RMM-DIIS allows us to avoid the 
numerical instability that may arise in LOBPCG when the residu-
als of the approximate eigenpairs become small. We discuss the 
practical issue of how to decide when to switch from block Lanc-
zos or LOBPCG to RMM-DIIS. A strategy based on monitoring the 
averaged relative changes in the desired approximate eigenvalues 
has been found to work well. Although the RMM-DIIS method is 
a single vector refinement scheme, we show the SpMVs in multi-
ple independent RMM-DIIS iterations targeting different eigenpairs 
can be batched together and implemented as a single SpMM. Such 
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Fig. 11. The condition number of the LOBPCG subspace from which approximate eigenpairs are extracted to compute the lowest five eigenvalues of the 6Li Hamiltonian.
a batching scheme significantly improves the performance of the 
hybrid solver and is found to be useful even after some of the ap-
proximate eigenpairs have converged.

The actual performance of the solvers discussed in this work, 
in terms of wall clock time, depends not only on the algorithm, 
but also on the detailed implementation and underlying hardware. 
For extremely large (matrix sizes n of well over 10 billion), but 
extremely sparse matrices, the standard Lanczos algorithm may ac-
tually be the most efficient in terms of wall-clock time for obtain-
ing approximate eigenpairs, due to lower communication overhead 
when utilizing thousands of compute nodes. Also for applications 
that need thousands of eigenvalues and corresponding eigenvec-
tors, the memory requirement for Lanczos, block Lanczos, LOBPCG 
and Chebyshev filtering may be too high for problems of very large 
dimensions. In such a case, alternative algorithms such as the spec-
tral slicing algorithm presented in [44,45] may be used to compute 
a subset of desired eigenvalues and eigenvectors at a time as we 
sweep through the low end of the spectrum. The approximated 
eigenvectors can be refined by the RMM-DIIS algorithm discussed 
earlier.

In typical large-scale nuclear structure calculations, we are pri-
marily interested in the lowest eigenvalues and corresponding 
quantum numbers. In such cases, one can use approximate con-
vergence of the eigenvalues as an initial stopping criterion, and 
subsequently refine a subset of those eigenvectors (not necessarily 
those corresponding to the lowest eigenvalues) with the RMM-DIIS 
algorithm, before using those refined eigenvectors to evaluate ad-
ditional observables of interest such as charge radii, magnetic and 
quadrupole moments, and electroweak transitions.
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