
Lawrence Berkeley National Laboratory
LBL Publications

Title
Hybrid eigensolvers for nuclear configuration interaction calculations

Permalink
https://escholarship.org/uc/item/7rs8k8r6

Authors
Alperen, Abdullah
Aktulga, Hasan Metin
Maris, Pieter
et al.

Publication Date
2023-11-01

DOI
10.1016/j.cpc.2023.108888

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rs8k8r6
https://escholarship.org/uc/item/7rs8k8r6#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Computer Physics Communications 292 (2023) 108888

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Hybrid eigensolvers for nuclear configuration interaction calculations ✩

Abdullah Alperen a, Hasan Metin Aktulga a, Pieter Maris b, Chao Yang c,∗
a Michigan State University, East Lansing, MI 48824, USA
b Dept. of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
c Lawrence Berkeley National Laboratory, CA 94720, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 May 2023
Received in revised form 31 July 2023
Accepted 2 August 2023
Available online 7 August 2023

Keywords:
Nuclear configuration interaction calculation
Large-scale eigenvalue computation
Hybrid eigensolver

We examine and compare several iterative methods for solving large-scale eigenvalue problems
arising from nuclear structure calculations. In particular, we discuss the possibility of using block
Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method
accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms
compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate
gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when
the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively
combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has
several desirable properties. We will describe a few practical issues that need to be addressed to make
the hybrid solver efficient and robust.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

The computational study of the structure of atomic nuclei in-
volves solving the many-body Schrödinger equation for a nucleus
consisting of Z protons and N neutrons, with A = Z + N the total
number of nucleons,

Ĥ �i(�r1, . . . ,�rA) = Ei �i(�r1, . . . ,�rA) , (1)

where Ĥ is the nuclear Hamiltonian, Ei are the discrete energy
levels of the low-lying spectrum of the nucleus, and �i the cor-
responding A-body wavefunctions. A commonly used approach to
address this problem is the no-core Configuration Interaction (CI)
method (or No-Core Shell Model) [1], in which the many-body
Schrödinger equation, Eq. (1), becomes an eigenvalue problem

H xi = λi xi , (2)

where H is an n × n square matrix that approximates the many-
body Hamiltonian Ĥ , λi is the ith eigenvalue of H , and xi is the
corresponding eigenvector. The size n of the symmetric matrix H
grows rapidly with the number of nucleons A and with the de-
sired numerical accuracy, and can easily be several billion or more;
however, this matrix is extremely sparse, at least for nuclei with

✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author.
E-mail address: cyang@lbl.gov (C. Yang).
https://doi.org/10.1016/j.cpc.2023.108888
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
A ≥ 6. Furthermore, we are typically interested in only a few (5
to 10) eigenvalues at the low end of the spectrum of H . An itera-
tive method that can make use of an efficient Hamiltonian-vector
multiplication procedure is therefore often the preferred method
to solve Eq. (2) for the lowest eigenpairs.

For a long time, the Lanczos algorithm [2] with full orthog-
onalization was the default algorithm to use because it is easy
to implement and because it is quite robust even though it re-
quires storing hundreds of Lanczos basis vectors. Indeed, there are
several software packages [3–8] in which the Lanczos algorithm
is implemented for nuclear structure calculations. Here we focus
on the software MFDn (Many-Fermion Dynamics for nuclear struc-
ture) [9–11], which is a hybrid MPI/OpenMPI code that is being
used at several High-Performance Computing centers; it has re-
cently also been ported to GPUs using OpenACC [12,13].

In recent work [14], we have shown that the low-lying eigen-
values can be computed efficiently by using the Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [15].
The advantages of the LOBPCG algorithm, which we will describe
with some detail in the next section, over the Lanczos algorithm
include

• The algorithm is a block method that allows us to multiply
H with several vectors simultaneously. That is, instead of an
SpMV, one performs an Sparse Matrix-Matrix multiplication
(SpMM) of a sparse square n ×n matrix on a tall skinny n ×nb
matrix at every iteration, which introduces an additional level
of concurrency in the computation and enables us to exploit
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108888
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108888&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cyang@lbl.gov
https://doi.org/10.1016/j.cpc.2023.108888
http://creativecommons.org/licenses/by/4.0/

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
data locality better. In order to converge 5 to 10 eigenpairs we
typically use blocks of nb = 8 to nb = 16 vectors – this can also
be tuned to the hardware of the HPC platform.

• The algorithm allows us to make effective use of pre-existing
approximations to several eigenvectors.

• The algorithm allows us to take advantage of a preconditioner
that can be used to accelerate convergence.

• Other dense linear algebra operations can be implemented as
level 3 BLAS.

Even though Lanczos is efficient in terms of the number of Sparse
Matrix Vector multiplications (SpMV) it uses, we have shown that
the LOBPCG method often takes less wallclock time to run because
performing a single SpMM on nb vectors is more efficient than
performing nb SpMVs sequentially, which is required in the Lanc-
zos algorithm.

However, there are occasionally some issues with LOBPCG:

• The method can become unstable near convergence. Although
methods for stabilizing the algorithm has been developed and
implemented [16,17], they do not completely eliminate the
problem.

• Even though the algorithm in principle only requires storing
three blocks of vectors, in practice, many more blocks of vec-
tors are needed to avoid performing additional SpMMs in the
Rayleigh-Ritz procedure. This is a problem for machines on
which high bandwidth memory is in short supply (such as
GPUs).

In this paper, we examine several alternative algorithms for
solving large-scale eigenvalue problems in the context of nuclear
configuration interaction calculations. In particular, we will exam-
ine the block Lanczos algorithm [18] and the Chebyshev Filtered
Subspace Iteration (ChebFSI) [19,20]. Both are block algorithms
that can benefit from an efficient implementation of the SpMM
operation and can take advantage of good initial guesses to several
eigenvectors, if they are available. Neither one of these algorithms
can incorporate a preconditioner, which is a main drawback. How-
ever, as we will show in Sect. 3, in the early iterations of these
algorithms, good approximations to the desired eigenpairs emerge
quickly, even though the total number of SpMVs required to obtain
accurate approximations can be higher compared to the Lanczos
and LOBPCG algorithms. This observation suggests that these al-
gorithms can be combined with algorithms that are effective in
refining existing eigenvector approximations. One such refinement
algorithm is the Residual Minimization Method (RMM) with Direct
Inversion of Iterative Subspace (DIIS) correction [21–23]. This al-
gorithm has an additional feature that it can reach convergence to
a specific eigenpair without performing orthogonalization against
approximations to other eigenpairs as long as a sufficiently ac-
curate initial guess is available. Therefore, this algorithm can also
be used to compute (or refine) different eigenpairs independently.
This feature introduces an additional level of concurrency in the
eigenvalue computation that enhances the parallel scalability.

The paper is organized as follows. In the next section, we give
an overview of the Lanczos, block Lanczos, LOBPCG, and ChebFSI
algorithms. We also describe the RMM-DIIS algorithm and dis-
cuss how it can be combined with (block) Lanczos, LOBPCG and
ChebFSI to form a hybrid algorithm to efficiently compute the de-
sired eigenpairs. In Sect. 3, we give several numerical examples to
demonstrate the effectiveness of each of these algorithms in terms
of the number of iterations. The performance benefits of a hybrid
algorithm designed by combining RMM-DIIS with one of the block
algorithms are discussed in Sect. 4. We also discuss the practical
issue of deciding when switch to RMM-DIIS from block Lanczos or
2

LOBPCG and how to implement RMM-DIIS to maximize its perfor-
mance benefit.

2. Numerical algorithms

We review several algorithms for computing a few algebraically
smallest eigenvalues and the corresponding eigenvectors. We de-
note the eigenvalues of the n × n nuclear CI Hamiltonian H ar-
ranged in an increasing order by λ1 ≤ λ2 ≤ · · · ≤ λn . Their cor-
responding eigenvectors are denoted by x1, x2,..., xn . We are in-
terested in the first nev � n eigenvalues and eigenvectors. If we
define X = [x1, x2, . . . , xnev] and � = diag

{
λ1, λ2, . . . , λnev

}
, respec-

tively, we have H X = X�. For no-core CI calculations in nuclear
physics we are often interested in only a few eigenvalues, that is
nev ∼ 5 to 10. For the block solvers described below, it is generally
beneficial to use slightly more vectors than the number of desired
eigenvectors, nb > nev, and in practice we use nb = 8 or 16 for best
performance.

2.1. Lanczos algorithm

The Lanczos algorithm is a classical algorithm for solving large
scale eigenvalue problems. The algorithm generates an orthonor-
mal basis of a k-dimensional Krylov subspace

K(H; v1) = {v1, H v1, ..., Hk−1 v1}, (3)

where v1 is an appropriately chosen and normalized starting
guess. Such a basis is produced by a Gram–Schmidt process in
which the key step of obtaining the (j + 1)st basis vector v j+1

is

w j = (I − V j V T
j)H v j, v j+1 = w j/‖w j‖, (4)

where V j is a matrix that contains all previous orthonormal basis
vectors, i.e.,

V j = (
v1, v2, ..., v j

)
.

The projection of H into the k-dimensional subspace spanned
by columns of Vk is a tridiagonal matrix Tk that satisfies

H Vk = Vk Tk + wkeT
k , (5)

where ek is the last column of a k × k identity matrix. Approxi-
mate eigenpairs of H are obtained by solving the k × k eigenvalue
problem

Tkq = θq. (6)

It follows from (5), (6) and the fact that V T
k Vk = Ik , V T

k wk = 0 that
the relative residual norm associated with an approximate eigen-
pair (θ, Vkq) can be estimated by

‖H(Vkq) − θ(Vkq)‖
|θ | = ‖wk‖ · |eT

k q|
|θ | , (7)

for θ 	= 0.

2.2. Block Lanczos

One of the drawbacks of the standard Lanczos algorithm is that
it is not easy for this algorithm to take advantage of good initial
guesses to more than one desired eigenvector. Although we can
take a simple linear combination (or average) of the initial guesses
to several desired eigenvectors as the initial vector v1, the Lanczos
algorithm tends to converge to one of the eigenvectors much faster
than others.

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
An algorithm that can take advantage of multiple starting
guesses to different eigenvectors is the Block Lanczos algorithm.
The Block Lanczos algorithm generates an orthonormal basis of a
block Krylov subspace

K(H; V 1) = {V 1, H V 1, ..., Hk−1 V 1}, (8)

where V 1 is a matrix that contains nb ≥ nev orthonormal basis
vectors, where nev is the number of desired eigenvectors; in prac-
tice, we take nb slightly larger than nev. With this method we can
make use of good initial guesses to the desired eigenvectors, e.g.
obtained in smaller calculations.

The Gram–Schmidt process used to generate an orthonormal
basis in Lanczos is replaced by a block Gram–Schmidt step that
is characterized by

W j = (I − V jV
T
j)H V j, (9)

where the matrix V j contains j block orthonormal bases, i.e.,

V j = (
V 1, V 2, ..., V j

)
. (10)

The normalization step in (4) is simply replaced by a QR factoriza-
tion step, i.e.

W j = V j+1 R j+1,

where V T
j+1 V j+1 = Inb , and R j+1 is an nb × nb upper triangular

matrix.
The projection of H into the subspace spanned by the columns

of Vk is a block tridiagonal matrix Tk that satisfies

HVk = VkTk + Wk E T
k , (11)

where Ek is the last nb columns of an nb ·k ×nb ·k identity matrix.
Approximate eigenpairs of H are obtained by solving the nb ·

k × nb · k eigenvalue problem

Tkq = θq. (12)

It follows from (11), (12) and the fact that VT
k Vk = Inbk , VT

k Wk =
0 that the relative residual norm associated with an approximate
eigenpair (θ, Vkq) can be estimated by

‖H(Vkq) − θ(Vkq)‖
|θ | = ‖Wk‖F · ‖E T

k q‖
|θ | , (13)

Algorithm 1 outlines the main steps of the Block Lanczos algo-
rithm.

Both the Lanczos and Block Lanczos algorithms produce approx-
imation to the desired eigenvector in the form of

z = pd(H)v0,

where v0 is some starting vector and d is the degree of the polyno-
mial. The convergence rate of these algorithms is often analyzed in
terms of a minmax polynomial approximation of a Dirac-δ function
centered at the eigenvalue of interest on the interval that contains
the spectrum of H [24,25]. Intuitively, the higher the degree of the
polynomial, the more accurate the approximate eigenvector and
the corresponding eigenvalue are. However, for the same number
of multiplications of the sparse matrix H with a vector (SpMVs),
denoted by m, the degree of the polynomial generated in a Block
Lanczos algorithm is d = m/nb , whereas, in the standard Lanczos
algorithm, the degree of the polynomial is d = m. Because the
accuracy of the approximate eigenpairs obtained from the Lanc-
zos and Block Lanczos methods is directly related to d, we expect
more SpMVs to be used in a Block Lanczos algorithm to reach con-
vergence. On the other hand, in a Block Lanczos method, one can
3

Algorithm 1: The Block Lanczos algorithm.
Input: The sparse matrix H , the number of desired eigenvalues nev, an

initial guess to the eigenvectors associated with the lowest nb ≥ nev

eigenvalues X (0) ∈Rn×nb , convergence tolerance (tol) and maximum
number of iteration allowed (maxiter);

Output: (�, X), where � is a nev × nev diagonal matrix containing the
desired eigenvalues, and X ∈Rn×nev contains the corresponding
eigenvector approximations;

1 Generate V 1 ∈Rn×nb that contains an orthonormal basis of X (0);
2 V1 = (V 1);
3 T1 = VT

1 HV1;
4 Solve the projected eigenvalue problem T1U = U�, where U T U = I , � is a

diagonal matrix containing eigenvalues of T1 in an ascending order;
5 Determine number of converged eigenpairs nc by checking the Ritz residual

estimate (13);
6 goto 16 if nc ≥ nev;
7 do i = 1, 2, . . .,maxiter
8 W i = (I − Vi VT

i)H V i ;
9 Generate V i+1 that contains an orthonormal basis of W i ;

10 Vi+1 ← (Vi V i);
11 Update Ti+1 = VT

i+1 HVi+1;

12 Solve the projected eigenvalue problem Ti+1U = U�, where U T U = I ,
� is a diagonal matrix containing eigenvalues of Ti+1 in an ascending
order;

13 Xi+1 = Vi+1U (:, 1 : nev);
14 Determine number of converged eigenpairs nc by checking the Ritz

residual estimate (13);
15 i ← i + 1 and exit the loop if nc ≥ nev;

16 � ← �; X ← Xi ;

perform nb SpMVs as a single SpMM on a tall skinny matrix con-
sisting of a block of nb vectors, which is generally more efficient
than performing nb separate SpMVs in succession. As a result, the
Block Lanczos method can take less time even if it performs more
SpMVs. The computational efficiency of the Block Lanczos algo-
rithm is carefully discussed in [26] in the context of shift-invert
Block Lanczos algorithm.

Furthermore, both with the standard Lanczos algorithm and
with the Block Lanczos algorithm the memory to store the pre-
vious Lanczos vectors and the computational cost of the Gram–
Schmidt process, Eq. (4), increase with the number of iterations.
In both the Lanczos and Block Lanczos algorithm, one can restart
the algorithm after d iteration with an improved set of approxi-
mate eigenvectors if the Gram–Schmidt process or the storage of
m Lanczos vectors becomes a bottleneck [27–29,8]. This approach
can also be used for check-point and restart purposes.

2.3. LOBPCG

It is well known that the invariant subspace associated with the
smallest nev eigenvalues and spanned by columns of X ∈Rn×nev is
the solution to the trace minimization problem

min
X T X=I

trace(X T H X). (14)

The LOBPCG algorithm developed by Knyazev [15] seeks to
solve (14) by using the updating formula

X (i+1) = X (i)C (i+1)
1 + W (i)C (i+1)

2 + P (i−1)C (i+1)
3 , (15)

to approximate the eigenvector corresponding to the nev leftmost
eigenvalues of H , where W (i) ∈ Rn×nev is the preconditioned gra-
dient of the Lagrangian

L(X,�) = 1

2
trace(X T H X) − 1

2
trace

[
(X T X − I)�

]
(16)

associated with (14) at X (i) , and P (i−1) is the search direction ob-
tained in the (i − 1)st iterate of the optimization procedure, and
C (i+1) , C (i+1) , C (i+1) are a set of coefficient matrices of matching
1 2 3

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
dimensions that are obtained by minimizing (16) within the sub-
space S(i) spanned by

S(i) ≡
(

X (i) W (i) P (i−1)
)

. (17)

To improve the convergence of the LOBPCG algorithm, one can in-
clude a few more vectors in X (i) so that the number of columns in
X (i) , W (i) and P (i) is nb ≥ nev.

The preconditioned gradient W (i) can be computed as

W (i) = K −1(H X (i) − X (i)�(i)), (18)

where �(i) = X (i)T H X (i) , and K is a preconditioner that approx-
imates H in some way. Properties of a good preconditioner are
discussed in [30–32]. However, for many applications, it is not
easy to find K ’s that have these properties. When H is diago-
nally dominant, choosing K to be the diagonal or block diagonal
part of H often works well. Other possibilities include incomplete
factorizations [33] of H − σ I for some appropriately chosen shift
σ . Here, we use a preconditioner based on a specific block diago-
nal part of H that preserves an important symmetry of H , namely
the total spin (vector sum of the orbital motion and the intrin-
sic nucleon spin). We subtract a constant that approximates the
smallest eigenvalue of H from the diagonal of this block diagonal
matrix. This block diagonal structure arises naturally in the im-
plementation of MFDn; furthermore, this choice leads to a local
preconditioner, that is, there is no communication overhead when
applying the preconditioner.1

The subspace minimization problem that yields the coefficient
matrix C (i+1)

1 , C (i+1)
2 , C (i+1)

3 , which are three block rows of a
3nb × nb matrix C (i+1) , can be solved as a generalized eigenvalue
problem
(

S(i)T H S(i)
)

C (i+1) =
(

S(i)T S(i)
)

C (i+1)D(i+1), (19)

where D(i+1) is a nb × nb diagonal matrix containing nb leftmost
eigenvalues of the projected matrix pencil

(
S(i)T H S(i), S(i)T S(i)

)
.

The procedure that forms the projected matrices S(i)T H S(i) and
S(i)T S(i) and solves the projected eigenvalue problem (19) is of-
ten referred to as the Rayleigh–Ritz procedure [34]. Note that the
summation of the last two terms in (15) represents the search di-
rection followed in the ith iteration, i.e.,

P (i) = W (i)C (i+1)
2 + P (i−1)C (i+1)

3 . (20)

Algorithm 2 outlines the main steps of the basic LOBPCG algo-
rithm. The most computationally costly step of Algorithm 2 is the
multiplication of H with a set of vectors. Although it may appear
that we need to perform such calculations in steps 8 (where the
projected matrix S(i)T H S(i) is formed) and 10, the multiplication
of H with X (i) , X (i+1) and P (i) can be avoided because H X (i+1)

and H P (i) satisfy the following recurrence relationships

H X (i+1) = H X (i)C (i+1)
1 + H W (i)C (i+1)

2 + H P (i−1)C (i+1)
3 , (21)

H P (i) = H W (i)C (i+1)
2 + H P (i−1)C (i+1)

3 . (22)

Therefore, the only SpMM we need to perform is H W (i) . Again,
for the nuclear CI calculations of interest, the dimension n of the
sparse symmetric matrix H can be several billions, whereas W (i)

is a tall skinny n × nb matrix with nb typically of the order of 8 to
16.

1 Note that other CI codes for nuclear structure calculations generally have a
different ordering of the basis states, which may obfuscate this block diagonal struc-
ture.
4

Algorithm 2: The basic LOBPCG algorithm.
Input: The sparse matrix H , a preconditioner K , an initial guess to the

eigenvectors associated with the lowest nb ≥ nev eigenvalues
X (0) ∈Rn×nb , number of desired eigenvalues (nev), convergence
tolerance (tol) and maximum number of iteration allowed (maxiter);

Output: (�, X), where � is a nev × nev diagonal matrix containing the
desired eigenvalues, and X ∈Rn×nev contains the corresponding
eigenvector approximations;

1 [C (1), �(1)] = RayleighRitz(H, X (0));
2 X (1) = X (0)C (1);
3 R(1) = H X (1) − X (1)�(1);
4 P (0) = ∅;
5 do i = 1, 2, . . .,maxiter
6 W (i) = K −1 R(i);

7 S(i) = [
X (i), W (i), P (i−1)

]
;

8 [C (i+1), �(i+1)] = RayleighRitz(H, S(i));

9 X (i+1) = S(i)C (i+1);

10 R(i+1) = H X (i+1) − X (i+1)�(i+1);

11 P (i) = W (i)C (i+1)
2 + P (i−1)C (i+1)

3 ;
12 Determine number of converged eigenpairs nc by comparing the

relative norms of the leading nev columns of R(i+1) against the
convergence tolerance tol;

13 exit if nc ≥ nev;

14 � ← �(i)(1 : nev, 1 : nev); X ← X (i)(:, 1 : nev);

Fig. 1. Chebyshev polynomials of the first kind.

2.4. Chebyshev filtering

An mth-degree Chebyshev polynomial of the first kind can be
defined recursively as

Tm(t) = 2tTm−1(t) − Tm−2(t), (23)

with T0(t) = 1 and T1(t) = t . The magnitude of Tm(t) is bounded
by 1 within [−1, 1] and grows rapidly outside of this interval.
By mapping the unwanted eigenvalues of the nuclear many-body
Hamiltonian H enclosed by [λF, λub] to [−1, 1] through the lin-
ear transformation (t − c)/e, where c = (λF + λub)/2 and e =
(λub − λF)/2, we can use T̂m(H) = Tm((H − cI)/e)v to amplify the
eigenvector components in v that correspond to eigenvalues out-
side of [λF, λub]. Fig. 1 shows a 10th degree Chebyshev polynomial
defined on the spectrum of a Hamiltonian matrix and how the left-
most eigenvalues λi , i = 1, 2, ..., 8 are mapped to T10(λi).

Applying Tm((H − cI)/e) repeatedly to a block of vectors V fil-
ters out the eigenvectors associated with eigenvalues in [λF, λub].
The desired eigenpairs can be obtained through the standard
Rayleigh–Ritz procedure [34].

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
Algorithm 3: The Chebyshev filtering based subspace itera-
tion (ChebFSI).

Input: The sparse matrix H , an initial guess to the eigenvectors associated
with the lowest nb ≥ nev eigenvalues X (0) ∈Rn×nb , number of
desired eigenvalues (nev), the degree of the Chebyshev polynomial d;
the spectrum cutoff λF and upper bound λub; convergence tolerance
(tol) and maximum number of subspace iteration allowed (maxiter);

Output: (�, X), where � is a nev × nev diagonal matrix containing the
desired eigenvalues, and X ∈Rn×nev contains the corresponding
eigenvector approximations;

1 e = (λub − λF)/2;
2 c = (λub + λF)/2;
3 [Q , R] = CholeskyQR(H, X (0));
4 do i = 1, 2, . . .,maxiter
5 W = 2(H Q − c Q)/e;
6 do j = 2, . . . , d
7 Y = 2(H W − cW)/e − Q ;
8 Q ← W ;
9 W ← Y ;

10 [Q , R] = CholeskyQR(Y);
11 T = Q T H Q ;
12 Solve the eigenvalue problem T S = S�, where � is diagonal, and

update Q by Q ← Q S;
13 Determine number of converged eigenpairs nc by comparing the

relative norms of the leading nev columns of R = H Q − Q D against
the convergence tolerance tol;

14 exit if nc ≥ nev;

15 � ← �(1 : nev, 1 : nev); X ← Q (:, 1 : nev);

To obtain an accurate approximation to the desired eigenpairs, a
high degree Chebyshev polynomial may be needed. Instead of ap-
plying a high degree polynomial once to a block of vectors, which
can be numerically unstable, we apply Chebyshev polynomial fil-
tering within a subspace iteration to iteratively improve approxi-
mations to the desired eigenpairs. We will refer to this algorithm
as a Chebyshev Filtering based Subspace Iteration (ChebFSI). The
basic steps of this algorithm are listed in Algorithm 3.

Owing to the three-term recurrence in (23), W = T̂m(H)V can
be computed recursively without forming T̂m(H) explicitly in ad-
vance. Lines 5 to 9 of Algorithm 3 illustrates how this step is
carried out in detail. To maintain numerical stability, we orthonor-
malize vectors in W . The orthonormalization can be performed by
a (modified) Gram–Schmidt process or by a Householder transfor-
mation based QR factorization [35].

In Algorithm 3, the required inputs are a filter degree, d, an es-
timated upper bound of the spectrum of H , λub, and an estimated
spectrum cutoff level, λF. The estimation of the upper bound λub
can be calculated by running a few Lanczos iterations [36–38], and
λF can often be set at 0 or an estimation of the nb + 1st leftmost
eigenvalue of H obtained from the Lanczos algorithm. In the sub-
sequent subspace iterations, λF can be modified based on more
accurate approximations to the desired eigenvalues. See the work
of Saad [19] and Zhou et al. [20] for more details on Chebyshev
filtering.

2.5. RMM-DIIS

The Residual Minimization Method (RMM) [21,22] accelerated
by Direct Inversion of Iterative Subspace (DIIS) [23] was devel-
oped in the electronic structure calculation community to solve a
linearized Kohn-Sham eigenvalue problem in each self-consistency
field (SCF) iteration. Given a set of initial guesses to the desired
eigenvectors, {x0

j }, j = 1, 2, ..., nev, the method produces succes-
sively more accurate approximations by seeking an optimal linear
combination of previous approximations to the jth eigenvector by
minimizing the norm of the corresponding sum of residuals. To
be specific, let x(i)

j , i = 0, 1, ..., 	 − 1 be approximations to the
jth eigenvector of H obtained in the previous 	 − 1 steps of the
5

RMM-DIIS algorithm, and θ(i)
j be the corresponding eigenvalue ap-

proximations. In the 	th iteration (for 	 > 1), we first seek an
approximation in the form of

x̃ j =
	−1∑

i=min{0,	−s}
αi x

(i)
j , (24)

where

	−1∑
i=	−s

αi = 1, (25)

for some fixed 1 ≤ s ≤ smax. The coefficients αi ’s are obtained by
solving the following constrained least squares problem

min‖
	−1∑

i=min{0,	−s}
αir

(i)
j ‖2, (26)

where r(i)
j = Hx(i)

j − θ
(i)
j x(i)

j is the residual associated with the

approximate eigenpair (θ
(i)
j , x(i)

j), subject to the same constraint
defined by (25). The constrained minimization problem can be
turned into an unconstrained minimization problem by substitut-
ing α	−1 = 1 − ∑	−2

i=min{	−s} αi into (26).
Once we solve (26), we compute the corresponding residual

r̃ j = Hx̃ j − θ̃ j x̃ j,

where θ̃ j = 〈x̃ j, Hx̃ j〉/〈x̃ j, ̃x j〉. A new approximation to the desired
eigenvector is obtained by projecting H into the two-dimensional
subspace W j spanned by x̃ j and r̃ j , and solving the 2 × 2 general-
ized eigenvalue problem

(W T
j H W j)g = θ(W T

j W j)g. (27)

Such an approximation can be written as

x()
j = W j g, (28)

where g is the eigenvector associated with the smaller eigenvalue
of the matrix pencil (W T

j H W j, W T
j W j).

Although Rayleigh–Ritz procedures defined by (27) and (28) are
often used to compute the lowest eigenvalue of H , the additional
constraint specified by (24) and (25) keeps x()

j close to the ini-
tial guess of the jth eigenvector. Therefore, if the initial guess is
sufficiently close to the jth eigenvector, x()

j can converge to this
eigenvector instead of the eigenvector associated with the small-
est eigenvalue of H . Algorithm 4 outlines the main steps of the
RMM-DIIS algorithm.

2.6. Comparison summary

The computational cost of all iterative methods discussed above
is dominated by the number of Hamiltonian matrix vector multi-
plications, that is, the number of SpMVs. In the Lanczos algorithm,
the number of SpMVs is the same as the number of iterations.
In block algorithms such as the Block Lanczos algorithm and the
LOBPCG algorithm, the number of SpMVs is the product of the
block size, nb , and the number of iterations. The number of Sp-
MVs used in the ChebFSI method is the product of the number
of subspace iterations, the block size nb , and the degree d of the
Chebyshev polynomial used. The number of SpMVs used in RMM-
DIIS is the sum of the RMM-DIIS iterations for each of the nev
desired eigenpairs; depending on the architecture, one could com-
bine nev SpMVs on single vectors in one SpMM on a tall skinny
n × nev matrix to improve performance.

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
Algorithm 4: The RMM-DIIS algorithm.
Input: The sparse matrix H , an initial guess to the nev desired eigenvectors

{x(0)
j }, j = 1, 2, ...nev; maximum dimension of DIIS subspace s;

convergence tolerance (tol) and maximum number of iteration
allowed (maxiter);

Output: {(θ j , x j)}, j = 1, 2, ..., nev, where θ j is the approximation to the jth
lowest eigenvalue, and x j is the corresponding approximate
eigenvector ;

1 for j=1,2,. . . ,nev do
2 x(0)

j ← x(0)
j /‖x(0)

j ‖;

3 θ(0) = 〈x(0)
j , Hx(0)

j 〉;

4 r(0)
j = Hx(0)

j − θ
(0)
j x(0)

j ;

5 x̃(1)
j = x(0)

j ;

6 r̃(1)
j = r(0)

j ;

7 do i = 1, 2, . . .,maxiter
8 if i > 1 then
9 Solve the residual minimization least squares problem (26);

10 Set x̃(i)
j according to (24);

11 x̃(i)
j ← x̃(i)

j /‖x̃(i)
j ‖;

12 Set the residual r̃(i)
j = ∑i−1

	=min{0,i−s} αi x
()
j ;

13 Set W j = (x̃(i)
j , r̃(i)

j);

14 Solve the Rayleigh–Ritz problem (27) and obtain (θ(i)
j , x(i)

j);

15 Compute the residual r(i)
j = Hx(i)

j − θ
(i)
j x(i)

j ;

16 exit the do loop if ‖r(i)
j ‖/|θ(i)

j | < tol;

Table 1
A comparison of memory footprint associated with the Lanczos, Block
Lanczos, LOBPCG, ChebFSI and RMM-DIIS methods.

Method Memory cost

Lanczos n · (kLan + nev) +O
(
k2

Lan

)

Block Lanczos n · nb · (kblockLan + nev) +O
((

nb · kblockLan
)2

)

LOBPCG 7n · nb +O
(
9n2

b

)
ChebFSI 4n · nb +O

(
n2

b

)
RMM-DIIS n · (3nev + smax

)

In addition to SpMVs, some dense linear algebra operations are
performed in these algorithms to orthonormalize basis vectors and
to perform the Rayleigh–Ritz calculations. The cost of orthonor-
malization can become large if too many Lanczos iterations or
Block Lanczos iterations are performed; for the Lanczos and Block
Lanczos algorithm once can perform a restart once the orthonor-
malization cost becomes too large. The orthonormalization cost is
relatively small in LOBPCG, ChebFSI, and RMM-DIIS.

In Table 1, we compare the memory usage of each method dis-
cussed above. Note that the first term for Lanczos, Block Lanczos,
LOBPCG and ChebFSI in this table is generally the dominant term.
We use O(c) to denote a small multiple (i.e., typically 2 or 3)
of c. The number of iterations taken by a Block Lanczos iteration
kblockLan is typically smaller than the number of Lanczos iterations
kLan when the same number of eigenpairs are computed by these
methods. However, kblockLan · nb is often larger than kLan. It is pos-
sible to use a smaller amount of memory in LOBPCG and ChebFSI
at the cost of performing more SpMMs. For example, if we were
to explicitly compute H X (i+1) and H P (i) in the LOBPCG algorithm
to perform the Rayleigh–Ritz calculation instead of updating these
blocks according to (21) and (22) respective, we can reduce the
LOBPCG memory usage to 4n · nb + O(9n2

b). For the RMM-DIIS al-
gorithm, we assume that we compute one eigenpair at a time. The
parameter smax is the maximum dimension of the DIIS subspace
constructed to correct an approximate eigenvector. This parameter
is often chosen to be between 10 and 20. If we batch the refine-
ment of several eigenvectors together to make use of SpMMs, the
memory cost of RMM-DIIS will increase by a factor of nev.
6

2.7. Hybrid algorithms

Among the methods discussed above, the Lanczos, Block Lanc-
zos, LOBPCG, and ChebFSI methods can all proceed with an arbi-
trary starting guess of the desired eigenvectors although all, except
the Lanczos algorithm, can (and generally do) benefit from the
availability of good starting guesses to several eigenvectors. On the
other hand, as an eigenvector refinement method, the RMM-DIIS
method requires a reasonably accurate approximation of the de-
sired eigenvectors as a starting point. Therefore, a more effective
way to use the RMM-DIIS method is to combine it with one of
the other methods, i.e., we can start with Lanczos, Block Lanczos,
LOBPCG or ChebFSI method and switch to RMM-DIIS when the ap-
proximate eigenvectors become sufficiently accurate.

In particular, in the Lanczos and Block Lanczos methods the
basis orthogonalization cost as well as the memory requirement
become progressively higher with increasing number of iterations.
Therefore, a notable benefit to switch from the Lanczos or Block
Lanczos methods to RMM-DIIS is to lower the orthogonalization
cost and memory requirement.

Although the orthogonalization cost and memory requirement
for the LOBPCG method is fixed throughout all LOBPCG iterations,
the subspace (17) from which eigenvalue and eigenvector approx-
imations are drawn becomes progressively more ill-conditioned
as the norms of the vectors in (18) become smaller. The ill-
conditioned subspace can make the LOBPCG algorithm numerically
unstable even after techniques proposed in [16,17] are applied.
Therefore, it may be desirable to switch from LOBPCG to RMM-
DIIS, when the condition number of the subspace is not too large.

The orthogonalization cost and memory requirement for ChebFSI
are also fixed. The method is generally more efficient in the early
subspace iterations when Tn(H) is applied to a block of vectors in
each iteration. However, as the approximate eigenvectors converge,
applying Tn(H) to a block of vectors in a single iteration results in
a higher cost compared to RMM-DIIS that can refine each approx-
imate eigenvector separately. Again, it may become advantageous
to switch to RMM-DIIS, when approximate eigenvectors become
sufficiently accurate in ChebFSI.

3. Numerical examples

In this section, we compare and analyze the performance of
each of the five algorithms presented in Section 2 using numeri-
cal examples, in terms of the number of SpMVs that are needed to
achieve the requested tolerance for the lowest nev eigenpairs. The
initial tests were done using MATLAB, and we tested the effective-
ness of algorithms in terms of the number of SpMVs required to
reach the requested tolerance for nev eigenpairs. Subsequently, we
have also implemented these algorithms in Fortran90 and experi-
mented with these algorithms in MFDn.

3.1. Test problems

The test problems we use are the many-body Hamiltonian ma-
trices associated with four different nuclei, 6Li, 7Li, 11B, and 12C,
where the superscripts indicate the total number of nucleons (pro-
tons plus neutrons) in the nuclei. These Hamiltonian matrices are
constructed in different CI model spaces labeled by the Nmax pa-
rameter, using the two-body potential Daejeon16 [39]. In Table 2,
we list the matrix size n as well as the number of nonzero matrix
elements in half the symmetric matrices. Note that the matrix size
n depends on A (the number of nucleons) and the basis truncation
parameter Nmax, but is independent of the interaction. The num-
ber of nonzero matrix elements for a given nucleus and interaction
is the same for any two-body interaction; but with three-body in-
teractions, the number of nonzero matrix elements is more than

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
Table 2
Test problems used in the numerical experiments.

Nucleus Nmax Matrix size n # Non-zeros
6Li 6 197,822 106,738,802
7Li 6 663,527 421,938,629
11B 4 814,092 389,033,682
12C 4 1,118,926 555,151,572

Table 3
The dimensions and number of nonzero matrix elements in half the matrices for
6Li, 7Li, 11B and 12C that are constructed in a lower dimensional configuration
model space labeled by a smaller Nmax value.

System Nmax Matrix size n #Non-zeros
6Li 4 17,040 4,122,448
7Li 4 48,917 14,664,723
11B 2 16,097 2,977,735
12C 2 17,725 3,365,099

an order of magnitude larger for the same matrix size. Also, the
number of iterations needed in any of the iterative solvers will
generally depend on the interaction (as well as the nucleus and
the truncation).

Before solving eigenvalue problems for the nuclei and model
spaces listed in Table 2, we first construct a good initial guess for
each of the nev desired eigenvectors by computing the lowest few
eigenvalues and the corresponding eigenvectors of smaller Hamil-
tonian matrices constructed from a lower dimensional CI model
space labeled by Nmax − 2 values. Table 3 shows the matrix di-
mensions n and the number of nonzero matrix elements in these
smaller Hamiltonians. The initial guesses to the desired eigenvec-
tors of the Hamiltonian matrices listed in Table 2 are obtained
by padding the eigenvectors of the smaller Hamiltonian matrices
by zeros to match the dimension of the original problems to be
solved. As we can see, since the dimension of the problems listed
in Table 3 are an order of magnitude or two smaller than the cor-
responding problems listed in Table 2, they can be solved relatively
easily and quickly by almost any method.

All algorithms presented in section 2 have been implemented
in MATLAB which is ideal for prototyping new algorithms. The
preconditioner we use in each LOBPCG run is choosen to be K =
H D − σ I , where H D is a block diagonal matrix obtained from the
diagonal blocks of H , and σ is chosen to be an approximation to
the smallest eigenvalue of H obtained from a few iterations of a
LOBPCG run without preconditioning. We do not explicitly form
the inverse of K . The application of K −1 in (18) is achieved by
solving linear systems of equations

K W (i) = H X (i) − X (i)�(i)

using an iterative solver such as the MINRES [40] or the formal
orthogonal method [41].

For each test problem, we typically perform two sets of ex-
periments for each algorithm. In the first set of experiments, we
compute nev = 5 lowest eigenvalues and their corresponding eigen-
vectors. In the second set, we increase the number of eigenpairs to
be computed to nev = 10. All calculations are performed in double
precision arithmetic.

3.2. The performance of single method solvers

In this section, we report and compare the performance of the
Lanczos, block Lanczos, LOBPCG, ChebFSI and RMM-DIIS methods
when they are applied to the test problems listed in Table 2. For
block methods such as the block Lanczos, LOBPCG and ChebFSI
methods, we set the block size, i.e., the number of vectors in the
matrix V j in (9), the matrix X (i) in (15), to nb = 8 when computing
7

the nev = 5 lowest eigenpairs of H , or to nb = 16 when computing
the nev = 10 lowest eigenpairs of H , and an SpMM is performed to
multiply H with nb vectors all at once, rather than performing nev
separate SpMVs. Even though RMM-DIIS is not a block method, the
nev SpMVs performed in this algorithm can also be fused together
as a single SpMM as we explain below.

For block methods, we choose the starting guess for each
method as the eigenvectors of the Hamiltonian constructed in a
smaller CI space (with a smaller Nmax value), as listed in Table 3,
padded with zeros to match the size of the Hamiltonian in the
larger CI space (with a larger Nmax value) as mentioned earlier.
This is also used in the RMM-DIIS method which only requires a
starting guess for each of the desired eigenpairs. We should note
that when such a starting guess is not sufficiently close to the
desired eigenvector associated with the larger Nmax value, the con-
vergence of the RMM-DIIS method can be slow as we will see from
the numerical examples presented below. Note that it is also pos-
sible that the RMM-DIIS algorithm converges to a set of eigenpairs
that do not correspond to the lowest nev eigenvalues of H .

For the Lanczos algorithm, we take the initial guess v0 to be
the linear combination of augmented eigenvectors associated with
the lowest nev eigenvalues of the Hamiltonian constructed from
the smaller CI space, i.e.,

v0 = 1

nev

nev∑
i=1

ẑi ,

where ẑi is the zero padded eigenvector associated with the ith
eigenvalue of the Hamiltonian constructed from the smaller CI
space.

All methods are terminated when the relative residual norms
or estimated residual norm associated with all desired eigenpairs
are below the threshold of τ = 10−6. A relative residual norm for
an approximate eigenpair (θ, z) is defined to be

|H z − zθ |
|θ | .

For the Lanczos and block Lanczos methods, we use (7) and (13) to
estimate the relative residual norm without performing additional
Hamiltonian matrix and vector multiplications.

The convergence of the ChebFSI algorithm depends on the
choice of several parameters. Here, we use a 10th degree Cheby-
shev polynomial, i.e. d = 10 in the ChebFSI method. The upper
bound of the spectrum λub is determined by first running 10
Lanczos iterations and using Rayleigh–Ritz approximation to the
largest eigenpairs (θ10, u10) to set λub to θ10 + ‖r10‖, where r10 =
Hu10 − θ10u10. We set the parameter λF simply to 0 because the
desired eigenvalues are bound states of the nucleus of interest and
are expected to be negative. We apply the technique of deflation
for converged eigenvectors, i.e., once the relative residual norm of
an approximate eigenpair falls below the convergence tolerance of
10−6, we “lock” the approximate eigenvector in place and do not
apply H to this vector in subsequent computations. These vectors
will still participate in the Rayleigh–Ritz calculation performed in
steps 11 and 12 of Algorithm 3 and be updated as part of the
Rayleigh–Ritz procedure.

In Tables 4 and 5, we compare the performance of Lanczos,
block Lanczos, LOBPCG, ChebFSI and RMM-DIIS in terms of the to-
tal number SpMVs performed in each of these methods. It is clear
from these tables that the Lanczos method uses the least num-
ber of SpMVs. However, the number of SpMVs used by both the
LOBPCG, block Lanczos and RMM-DIIS is within a factor of 3 when
nev = 5 eigenpairs are computed. Because 8 SpMVs can be fused as
a single SpMM, which is more efficient, in the block Lanczos and
LOBPCG method, the total wall clock time used by these methods

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
Table 4
SpMV count for different algorithms on MATLAB to compute five lowest eigenvalues.

System Lanczos Block Lanczos LOBPCG ChebFSI RMM-DIIS
6Li 95 208 184 480 174
7Li 109 280 240 960 291
11B 82 240 192 950 152
12C 106 248 192 890 181

Table 5
SpMV count for different algorithms on MATLAB to compute ten lowest eigenvalues.

System Lanczos Block Lanczos LOBPCG ChebFSI RMM-DIIS
6Li 114 464 464 690 686
7Li 192 512 464 1,350 884
11B 180 480 432 2,470 > 3,000
12C 164 480 400 2,300 499

Fig. 2. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the
Lanczos algorithm as function of the number of iterations, which equals the number
of SpMVs.

can be less than that used by the Lanczos method. Five SpMVs can
also be fused in the RMM-DIIS method, even though the algorithm
targets each eigenvalue separately. Because different eigenvalues
may converge at a different rate, we may switch to using SpMVs
when some of the eigenpairs converge. Whether it is beneficial to
make such a switch depends on the performance difference be-
tween SpMM and SpMV, which may be architecture dependent.
We will discuss this issue more in the next section.

Table 5 shows that the number of SpMVs used in the Lanc-
zos algorithm increases only slightly when we compute nev = 10
eigenpairs. However, the number of SpMVs required in the block
Lanczos, LOBPCG, ChebFSI and RMM-DIIS increase at a higher rate.
This is mainly due to the fact that once a sufficiently large Krylov
subspace has been constructed, we can easily obtain approxima-
tions to more eigenpairs without enlarging the subspace much
further. Furthermore, RMM-DIIS fails to converge for the 7th, 8th,
and 9th eigenpairs of 11B. Inspection of the obtained spectra with
the other methods reveals that these three eigenvalues for this
particular case are near-degenerate. Specifically, the eigenvalues of
the 7th and 8th state differ by 0.6% and these two states have the
same conserved quantum numbers so they can easily mix; while
the 8th and 9th states do have different quantum numbers, but
their eigenvalues differ by only 0.03%. Indeed, it should not be sur-
prising that refining individual eigenpairs may fail to converge for
near-degenerate states.
8

Fig. 3. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in
the block Lanczos algorithm; the number of SpMVs is nb = 8 times the number of
iterations.

Fig. 4. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the
LOBPCG algorithm; the number of SpMVs is nb = 8 times the number of iterations.

Figs. 2, 3, 4, 5, 6 show the convergence history of the Lanc-
zos, block Lanczos, LOBCPG, ChebFSI and RMM-DIIS methods for
6Li. In these figures, we plot the relative residual norm of each ap-
proximate eigenpair with respect to the iteration number. We can
clearly see that accurate approximations to some of the eigenpairs
start to emerge in the Lanczos method when the dimension of the
Krylov subspace (i.e., iteration number) is sufficiently large. Note
that the eigenpairs do not converge at the same rate. Generally,
the smallest eigenvalue converges first, followed by the second,
third, fourth and the fifth eigenvalues. However, these eigenvalues
do not necessarily have to converge in order. Although the relative
residual for each eigenpair eventually goes below the convergence
threshold of 10−6, the reduction of the relative residual norm is
not monotonic with respect to the Lanczos iteration number. The
relative residual can sometimes increase after the Krylov subspace
becomes sufficiently large and new spectral information becomes
available.

All approximate eigenpairs appear to converge at a similar rate
in the block Lanczos and LOBPCG methods. This is one of the ad-
vantages of a block method. The LOBPCG method performs slightly

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
Fig. 5. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in
the Chebyshev algorithm. The number of SpMVs is nb = 8 times the degree of the
Chebyshev polynomial, d = 10, times the number of iterations.

better in terms of the total number of SpMMs (or the number of
iterations) used. This is due to the fact that LOBPCG makes use of
an effective preconditioner.

The ChebFSI is also a block method. Fig. 5 shows that only five
subspace iterations are required to obtain converged λ2, λ4 and λ5,
and two more subspace iterations are required to obtain converged
λ1 and λ3. The difference in the convergence rates for different
eigenvalues is likely due to the variation in the contributions from
different eigenvectors in the initial subspace constructed from the
eigenvectors of the Hamiltonian associated with a smaller con-
figuration space. This could also be related to differences in the
internal structure of the different states. Although the number of
subspace iterations used in ChebFSI is relatively small, each sub-
space iteration needs to perform nb · d SpMVs, where nb is the
number of vectors in the initial subspace and d is the degree of
the Chebyshev polynomial. When nb = 8 and d = 10, a total of 480
SpMVs are used to compute the lowest five eigenpairs as reported
in Table 4. Note that this count is less than 8 × 10 × 7 = 560 be-
cause a deflation scheme that locks the converged eigenvector is
used in ChebFSI. When nb = 16, d = 10, a total of 690 SpMVs are
used to compute 10 lowest eigenpairs, as reported in Table 5. Be-
cause these SpMV counts are significantly higher than those used
in other methods, ChebFSI appears to be not competitive for solv-
ing this type of eigenvalue problem. Therefore, from this point on,
we will not discuss this method any further.

The convergence of the RMM-DIIS method is interesting. We
observe from Fig. 6 that the first three eigenvalues of the 6Li
Hamiltonian converge relatively quickly. The number of RMM-DIIS
iterations required to reach convergence is 31 for the first eigen-
value, 25 for the third eigenvalue and 23 for the second eigenvalue.
Altogether, 79 SpMVs are used to obtain accurate approximations
to the three smallest eigenvalues and their corresponding eigen-
vectors, which is almost same as the 78 SpMVs used in the Lanc-
zos algorithm for obtaining these three eigenpairs. However, the
fourth and fifth eigenvalues take much longer to converge. Yet, it is
important to note that RMM-DIIS iterations that start with differ-
ent initial guesses all converge to different eigenpairs even though
no orthogonalization is performed between approximate eigenvec-
tors produced in different RMM-DIIS iterations. Table 5 shows that
more RMM-DIIS iterations are needed to obtain accurate approx-
imations to larger eigenvalues deeper inside the spectrum of 6Li
9

Fig. 6. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the
RMM-DIIS algorithm. The number of SpMVs is the sum of the number of iterations
for each eigenvalue.

Hamiltonian, partly due to the near-degeneracy of these eigenval-
ues in this case.

4. Performance of hybrid algorithms

As we already discussed in Section 2, the RMM-DIIS algorithm
can be very effective when a good initial guess to the target eigen-
vector is available, with the caveat that it may perform poorly for
near-degenerate states, even if they have different quantum num-
bers. In principle, we can obtain reasonably accurate initial guesses
for the target eigenvectors from any of the Lanczos, block Lanczos,
LOBPCG or ChebFSI algorithms. However, combining the RMM-DIIS
algorithm with the Lanczos algorithm or the ChebFSI algorithm
may be less attractive, partly because convergence rates for dif-
ferent eigenpairs in these algorithms are different, at least in the
example discussed in Section 3. With the Lanczos algorithm we see
from Fig. 2 that the left most eigenvalues typically converge much
faster than larger eigenvalues. As a result, the RMM-DIIS method
can only be effectively used to refine the eigenvectors associated
with larger eigenvalues when they become sufficiently accurate. At
that point, the left most eigenvalues are likely to have converged
already. Similarly, in Fig. 5 we see that the first and third eigenpair
converge slower than the other three eigenpairs. Furthermore, the
ChebFSI algorithm tends to be less efficient than either the block
Lanczos or the LOBPCG algorithms; and also the Lanczos algorithm
tends to be less efficient than block Lanczos or LOBPCG, at least
when the multiplication of the sparse Hamiltonian H with sev-
eral vectors can be implemented efficiently. We therefore do not
consider the hybrid ChebFSI and RMM-DIIS nor the hybrid Lanczos
and RMM-DIIS method here.

In this section we therefore combine RMM-DIIS with either
the block Lanczos or the LOBPCG algorithm to devise a hybrid
algorithm that first runs a few block Lanczos or LOBPCG itera-
tions and then use the RMM-DIIS method to refine approximated
eigenvectors returned from the block Lanczos or the LOBPCG al-
gorithm simultaneously. Fig. 7 shows that RMM-DIIS indeed con-
verges rapidly when the initial guesses to the eigenvectors associ-
ated with the lowest 5 eigenvalues are chosen to be the approxi-
mated eigenvectors produced from 10 LOBPCG iterations.

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888

Table 6
SpMV count in hybrid block Lanczos/RMM-DIIS for computing five lowest eigenvalues.

Nucleus 5 block Lanczos 10 block Lanczos 15 block Lanczos 20 block Lanczos block Lanczos only
6Li 183 163 173 185 208
7Li 205 218 234 221 280
11B 170 178 195 199 240
12C 179 180 179 201 248
Fig. 7. The convergence of the lowest five eigenvalues of the 6Li Hamiltonian in the
RMM-DIIS algorithm after 10 iterations of LOBPCG.

4.1. Switching to RMM-DIIS

A practical question that arises when implementing a hybrid
block Lanczos/RMM-DIIS or LOBPCG/RMM-DIIS eigensolver is how
to decide when to switch from one algorithm to another. Running
more block Lanczos or LOBPCG iterations will produce more accu-
rate approximations to the desired eigenvectors that can then be
quickly refined by the RMM-DIIS algorithm. But the cost of run-
ning block Lanczos or LOBPCG may dominate the overall cost of
the computation. On the other hand, running fewer block Lanczos
or LOBPCG iterations may produce a set of approximate eigenvec-
tors that require more RMM-DIIS iterations. There is clearly a trade
off, and the optimal point to switch from one to the other depends
not only on the specific nucleus, model space, and interaction, but
also on details of the numerical implementation and the computa-
tional hardware.

Table 6 shows the total number of SpMVs required in a hy-
brid block Lanczos/RMM-DIIS algorithm in which 5, 10, 15 or 20
block Lanczos iterations are performed first, subsequently followed
by the RMM-DIIS procedure. We observe that this hybrid scheme
uses fewer total SpMVs for all test problems than that used in a
simple block Lanczos or RMM-DIIS run. A similar observation can
be made from Table 7 when 10 lowest eigenvalues are computed
except for one case, out of 16 cases: for 7Li, the hybrid algorithm
that starts with 5 block Lanczos iterations uses more SpMVs than
the non-hybrid block Lanczos only algorithm. The optimal num-
ber of block Lanczos iterations we should perform (in terms of the
total SpMV count) before switching to the RMM-DIIS procedure
is problem dependent. Because good approximations to interior
eigenvalues only emerge when the Krylov subspace produced by
the block Lanczos iteration is sufficiently large, more block Lanczos
iterations are required in the hybrid algorithm to yield an optimal
SpMV count when 10 eigenvalues and the corresponding eigenvec-
tors are needed, as we can see in Table 7.
10
Also a hybrid LOBPCG and RMM-DIIS algorithm performs better
than the LOBPCG algorithm by itself, provided a sufficiently large
number of LOBPCG iterations are performed first to obtain good
starting vectors for the subsequent RMM-DIIS procedure, as can
be seen in Tables 8 and 9. From Tables 6, 7, 8 and 9, we observe
that the total SpMV count is optimal when the number of block
Lanczos or LOBPCG iterations is sufficiently large, but not too large.
However, the optimal number of block Lanczos/LOBPCG iterations
is problem dependent.

One practical way to determine when to switch from block
Lanczos or LOBPCG to RMM-DIIS is to examine the change in the
approximate eigenvalue. Because RMM-DIIS can be viewed as an
eigenvector refinement method, it works well when an approx-
imate eigenvalue becomes sufficiently accurate while the corre-
sponding approximate eigenvector still needs to be corrected. Since
we do not know the exact eigenvalues in advance, we use the aver-
age changes in the relative difference between approximate eigen-
values obtained in two consecutive iterations (e.g., the (k − 1)st
and the kth iterations) defined as

τ = 1

nev

√√√√√
nev∑
j=1

⎛
⎝θ

(k)
j − θ

(k−1)
j

θ
(k)
j

⎞
⎠

2

, (29)

as a metric to decide when to switch from block Lancos or LOBPCG
to RMM-DIIS.

Tables 10 and 11 show the optimal SpMV count of the hybrid
block Lanczos/RMM-DIIS and LOBPCG/RMM-DIIS algorithms when
computing five or 10 lowest eigenvalues, respectively. Unlike Ta-
bles 6, 7, 8 and 9 where we show the results only for 5, 10, 15
or 20 iterations, these optimal numbers are found by exhaustively
trying every possible iteration count of block Lanczos and LOBPCG
before switching to RMM-DIIS. Along with the optimal numbers,
Tables 10 and 11 also show the SpMV count of the hybrid algo-
rithms when block Lanczos and LOBPCG procedures are stopped as
τ goes below 10−4 and 10−7.

Table 11 shows that the number of SpMV counts in both the
hybrid block Lanczos/RMM-DIIS and LOBPCG/RMM-DIIS algorithms
appear to be nearly optimal when τ ≤ 10−7. However, when fewer
eigenvalues are needed, we can possibly stop the block Lanczos
procedure in the hybrid block Lanczos/RMM-DIIS algorithm when
τ is below 10−4 as shown in Table 10. The τ ≤ 10−7 criterion still
seems to be a good one for the hybrid LOBPCG/RMM-DIIS algo-
rithm even when fewer eigenpairs are needed.

4.2. Optimal implementation

As we indicated earlier, the SpMV count may not be the best
metric to evaluate the performance of a block eigensolver that
performs SpMVs for a block of vectors as a SpMM operation. It
has also been shown in [42,14] that on many-core processors,
the LOBPCG algorithm can outperform the Lanczos algorithm even
though its SpMV count is much higher. The reason that a block
algorithm can outperform a single vector algorithm such as the
Lanczos method on a many-core processor is that SpMM can take
advantage of high concurrency and memory locality.

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888

Table 7
SpMV count in hybrid block Lanczos/RMM-DIIS for computing 10 lowest eigenvalues.

Nucleus 5 block Lanczos 10 block Lanczos 15 block Lanczos 20 block Lanczos block Lanczos only
6Li 422 361 347 367 464
7Li 544 422 418 402 512
11B 419 422 392 382 480
12C 430 415 369 369 480

Table 8
SpMV count in hybrid LOBPCG/RMM-DIIS for computing five lowest eigenvalues.

System 5 LOBPCG 10 LOBPCG 15 LOBPCG 20 LOBPCG LOBPCG only
6Li 191 158 163 165 184
7Li 211 200 190 194 240
11B 260 162 159 165 192
12C 186 157 153 166 192

Table 9
SpMV count in hybrid LOBPCG/RMM-DIIS for computing 10 lowest eigenvalues.

System 5 LOBPCG 10 LOBPCG 15 LOBPCG 20 LOBPCG LOBPCG only
6Li 432 344 337 356 464
7Li 529 398 364 365 464
11B 758 397 334 355 423
12C 523 340 317 334 400

Table 10
SpMV count for hybrid algorithms wrt switching threshold on MATLAB to compute five lowest eigenvalues.

Nucleus Opt Hybrid Block Lan τ ≤ 10−4 τ ≤ 10−7 Opt Hybrid LOBPCG τ ≤ 10−4 τ ≤ 10−7

6Li 157 194 169 156 187 159
7Li 205 211 224 190 210 190
11B 166 176 195 158 188 159
12C 172 180 179 152 169 153

Table 11
SpMV count for hybrid algorithms wrt switching threshold on MATLAB to compute 10 lowest eigenvalues.

Nucleus Opt Hybrid Block Lan τ ≤ 10−4 τ ≤ 10−7 Opt Hybrid LOBPCG τ ≤ 10−4 τ ≤ 10−7

6Li 340 384 346 330 393 335
7Li 401 515 418 363 478 363
11B 379 525 384 332 625 333
12C 362 408 368 312 437 317
The performance of SpMV and SpMM can be measured in
terms of number of floating point operations performed per sec-
ond (GFLOPS). In the following experiments, we measure the per-
formance these computational kernels by running the LOBPCG
solver implemented in the MFDn software on a single AMD EPYC
7763 socket on a Perlmutter CPU node maintained at the National
Energy Research Scientific Computing (NERSC) Center. The EPYC
socket contains 64 cores [43]. We disabled hyperthreading so that
64 OpenMP threads were used within a single MPI rank. Tables 12
and 13 show that the SpMM GFLOPS measured in the LOBPCG al-
gorithm is much higher than the SpMV GFLOPS measured in the
Lanczos algorithm. As a result, we can evaluate the performance
of a block eigensolver by dividing the actual SpMV count by the
ratio between SpMM and SpMV GFLOPS to obtain an “effective”
SpMV count. For example, because the SpMM and SpMV GFLOPS
ratio is 24.2/4.1 ≈ 5.9 for 6Li, the effective SpMV count for per-
forming 23 iterations of the LOBPCG algorithm with a block size 8
is 23 × 8/5.9 ≈ 31 which is much lower than the 95 SpMVs per-
formed in the Lanczos method, even though the actual number of
SpMVs performed in the LOBPCG iteration is 23 × 8 = 184 > 95.

Strictly speaking, RMM-DIIS is a single vector method, i.e., in
each RMM-DIIS run, we refine one specific eigenvector associated
with a target eigenvalue which has become sufficiently accurate
as discussed earlier. However, because the refinement of different
11
Table 12
GFLOPs achieved by the SpMV/SpMM kernels within MFDn on one
AMD EPYC node with 64 threads in a single MPI rank. The sparse
Hamiltonian is applied to 8 vectors in SpMM.

Nucleus SpMV GFLOPS SpMM GFLOPS Ratio
6Li 4.1 24.2 5.9
7Li 6.7 36.0 5.4
11B 6.4 33.5 5.2
12C 6.0 28.0 4.7

Table 13
GFLOPs achieved by the SpMV/SpMM kernels within MFDn on one AMD
EPYC node with 64 threads. The sparse Hamiltonian is applied to 16 vec-
tors in SpMM.

Nucleus SpMV GFLOPS SpMM GFLOPS Ratio
6Li 4.1 38.9 9.5
7Li 6.7 56.0 8.4
11B 6.4 50.3 7.9
12C 6.0 47.5 7.9

eigenvectors can be performed independently from each other, we
can perform several RMM-DIIS refinements simultaneously. The si-
multaneous RMM-DIIS runs can be implemented by batching the
SpMVs in each RMM-DIIS iteration together as a single SpMM. This

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888

Fig. 8. Total effective SpMV cost of the block Lanczos/RMM-DIIS algorithm to compute the lowest five eigenvalues for 6Li w.r.t. the switching strategy from SpMM to SpMV
within RMM-DIIS. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
step constitutes the major cost of the RMM-DIIS method. The least
squares problems given in Eqs. (26)–(28) for different eigenvectors
can be solved in sequence in each step, since they do not cost
much computation.

Because different eigenvectors may converge at different rates
as we have already seen in Fig. 6, we need to decide what to do
when one or a few eigenvectors have converged. One possibility
is to decouple the batched RMM-DIIS method after a certain num-
ber of eigenvectors have converged, and switch from using a single
SpMM in a coupled RMM-DIIS implementation to using several Sp-
MVs in a decoupled RMM-DIIS implementation. Another possibility
is to just keep using the coupled RMM-DIIS with a single SpMM in
each step without updating the eigenvectors that have already con-
verged. In this case, the SpMM calculation performs more floating
point operations than necessary. However, because an SpMM can
be carried out at a much higher GFLOPs than an SpMV, the overall
performance of the computation may not be degraded even with
the extra computation.

In Fig. 8, we show the effective number of SpMVs performed
in several hybrid block Lanczos and RMM-DIIS runs for the 6Li
test problem. The horizontal axis represents the number of block
Lanczos iterations performed before we switch to RMM-DIIS. The
blue dots show the number of effective SpMVs used in the hybrid
method when we switch from SpMM to SpMV after one eigen-
vector has converged. Similarly, the red, orange and magenta dots
show the effective SpMV counts when we switch from SpMM to
SpMV after two, three and four eigenvectors have converged re-
spectively. The green dots show the effective number of SpMVs
when we always use SpMM regardless of how many eigenvectors
have converged. As we can see from this figure, the number of ef-
fective SpMVs is relatively high when we switch to RMM-DIIS after
a few block Lanczos iterations. This is because it will take RMM-
DIIS longer to converge if the initial eigenvector approximations
produced from the block Lanczos iterations are not sufficiently
accurate. Regardless of when we switch from block Lanczos to
RMM-DIIS, using SpMM throughout the RMM-DIIS algorithm ap-
pears to almost always yield the lowest effective SpMV count. We
can also see that the difference in the effective SpMV count is
relatively large when we switch from block Lanczos to RMM-DIIS
too early. This is understandable because some of the approximate
eigenvectors are more accurate than others when we terminate
the block Lanczos iteration too early. As a result, the number of
12
RMM-DIIS steps required to reach convergence may vary signifi-
cantly from one eigenvector to another. The difference in the rate
of convergence prevents us from batching several SpMVs into a
single SPMM. If we switch after more block Lanczos iterations have
been performed, this difference becomes quite small as all approx-
imate eigenvectors are sufficiently accurate and converge more or
less at the same rate. The relative difference (τ) between eigen-
value approximations from two consecutive RMM-DIIS iterations
falls below 10−7 at the 13th block Lanczos iteration. If we switch
to RMM-DIIS at that point and use SpMM throughout the RMM-
DIIS iteration, the number of effective SpMVs used in the hybrid
scheme is about 40, which is slightly higher than the optimal 32
effective SpMVs required if we were to switch to RMM-DIIS after
23 block Lanczos iterations.

An early switch allows us to keep the basis orthogonalization
cost of the block Lanczos algorithm as low as possible. As we can
see from Fig. 9, the cost of orthogonalization as a percentage of the
SpMM cost can become significantly higher as we perform more
block Lanczos iterations. In particular, for all test problems, the or-
thogonalization cost exceeds 50% of the SpMM cost after 20 block
Lanczos iterations. We note that the performance shown in Fig. 9
is measured from the wallclock time of an implementation of the
block Lanczos algorithm in the MFDn software executed on a sin-
gle node of the Perlmutter using one MPI rank and 64 threads.

Fig. 10 shows that it is beneficial to use SpMM throughout the
hybrid LOBPCG/RMM-DIIS algorithm even after some of the eigen-
vectors have converged. When a sufficient number of LOBPCG it-
erations have been performed, the total SPMV count does not vary
much. In this case, we should terminate LOBPCG as early as possi-
ble to avoid potential numerical instabilities that can be introduced
by the numerical rank deficiency of the preconditioned residual
vectors [17]. Fig. 11 shows that the estimated condition number
of the subspace from which approximated eigenvalues and eigen-
vectors are extracted in the LOBPCG algorithm increases rapidly as
we perform more LOBPCG iterations. Although the optimal SpMV
count is attained when we switch to RMM-DIIS after 20 LOBPCG
iterations, it is not unreasonable to terminate LOBPCG sooner, for
example, after 12 iterations, when the estimated condition num-
ber of the LOBPCG subspace is around 109. This is also the point
at which the average relative change in the approximations to the
desired eigenvalues τ just moves below 10−7. Therefore, the pre-
viously discussed strategy of using τ < 10−7 to decide when to

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888

Fig. 9. The percentage of cumulative time spent on orthogonalization compared to SpMM in the block Lanczos algorithm for all test problems to compute the lowest five
eigenvalues.

Fig. 10. Total effective SpMV cost of the LOBPCG/RMM-DIIS algorithm to compute the lowest five eigenvalues for 6Li w.r.t. switching strategy from SpMM to SpMV within
RMM-DIIS.
switch to RMM-DIIS works well. Even though this strategy would
lead to a slight increase in the number of effective SpMV opera-
tions compared with the optimal effective SpMV count achieved
when we switch to RMM-DIIS after 20 iterations, it makes the hy-
brid algorithm more robust and stable. We should also note that in
a practical calculation the optimal effective SpMV count and when
the optimality is achieved is unknown a priori. This optimality is
problem dependent, and is also architecture dependent.

5. Conclusion

In this paper, we examine and compare a few iterative meth-
ods for solving large-scale eigenvalue problems arising from nu-
clear structure calculations. We observe that the block Lanczos and
LOBPCG methods are generally more efficient than the standard
Lanczos method and the stand-alone RMM-DIIS method in terms
of the effective number of SpMVs. The Chebyshev filtering based
subspace iteration method is not competitive with other methods
even though it requires the least amount of memory and has been
13
found to be very efficient for other applications. We show that by
combining the block Lanczos or LOBPCG algorithm with the RMM-
DIIS algorithm, we obtain a hybrid solver that can outperform
existing solvers. The hybrid LOBPCG/RMM-DIIS method is gener-
ally more efficient than block Lanczos/RMM-DIIS when a good
preconditioner is available. The use of RMM-DIIS in the block Lanc-
zos/RMM-DIIS hybrid algorithm allows us to limit the orthogonal-
ization cost in the block Lanczos iterations. In the LOBPCG/RMM-
DIIS hybrid algorithm, the use of RMM-DIIS allows us to avoid the
numerical instability that may arise in LOBPCG when the residu-
als of the approximate eigenpairs become small. We discuss the
practical issue of how to decide when to switch from block Lanc-
zos or LOBPCG to RMM-DIIS. A strategy based on monitoring the
averaged relative changes in the desired approximate eigenvalues
has been found to work well. Although the RMM-DIIS method is
a single vector refinement scheme, we show the SpMVs in multi-
ple independent RMM-DIIS iterations targeting different eigenpairs
can be batched together and implemented as a single SpMM. Such

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888

Fig. 11. The condition number of the LOBPCG subspace from which approximate eigenpairs are extracted to compute the lowest five eigenvalues of the 6Li Hamiltonian.
a batching scheme significantly improves the performance of the
hybrid solver and is found to be useful even after some of the ap-
proximate eigenpairs have converged.

The actual performance of the solvers discussed in this work,
in terms of wall clock time, depends not only on the algorithm,
but also on the detailed implementation and underlying hardware.
For extremely large (matrix sizes n of well over 10 billion), but
extremely sparse matrices, the standard Lanczos algorithm may ac-
tually be the most efficient in terms of wall-clock time for obtain-
ing approximate eigenpairs, due to lower communication overhead
when utilizing thousands of compute nodes. Also for applications
that need thousands of eigenvalues and corresponding eigenvec-
tors, the memory requirement for Lanczos, block Lanczos, LOBPCG
and Chebyshev filtering may be too high for problems of very large
dimensions. In such a case, alternative algorithms such as the spec-
tral slicing algorithm presented in [44,45] may be used to compute
a subset of desired eigenvalues and eigenvectors at a time as we
sweep through the low end of the spectrum. The approximated
eigenvectors can be refined by the RMM-DIIS algorithm discussed
earlier.

In typical large-scale nuclear structure calculations, we are pri-
marily interested in the lowest eigenvalues and corresponding
quantum numbers. In such cases, one can use approximate con-
vergence of the eigenvalues as an initial stopping criterion, and
subsequently refine a subset of those eigenvectors (not necessarily
those corresponding to the lowest eigenvalues) with the RMM-DIIS
algorithm, before using those refined eigenvectors to evaluate ad-
ditional observables of interest such as charge radii, magnetic and
quadrupole moments, and electroweak transitions.

Declaration of competing interest

We declare that we have no financial and personal relation-
ships with other people or organizations that can inappropriately
influence our work, there is no professional or other personal in-
terest of any nature or kind in any product, service or company
that could be construed as influencing the position presented in,
or the review of, the manuscript titled “Hybrid Eigensolvers for
Nuclear Configuration Interaction Calculations”.

Data availability

Data will be made available on request.
14
Acknowledgements

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Nuclear Physics under
Grants DE-SC0023495 and DE-SC0023175, Office of Advanced Sci-
entific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program via the FASTMath Institute under
Contract No. DE-AC02-05CH11231, and National Science Founda-
tion’s Office of Advanced Cyberinfrastructure under Grant 1845208.
This work used resources of the National Energy Research Scien-
tific Computing Center (NERSC) using NERSC Award ASCR-ERCAP
m1027 for 2023, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

[1] B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl. Phys. 69 (2013) 131–181,
https://doi .org /10 .1016 /j .ppnp .2012 .10 .003.

[2] C. Lanczos, J. Res. Natl. Bur. Stand. 45 (4) (1950) 255–282.
[3] E. Caurier, F. Nowacki, Acta Phys. Pol. B 30 (1999) 705.
[4] B. Brown, W. Rae, Nucl. Data Sheets 120 (2014) 115–118, https://doi .org /10 .

1016 /j .nds .2014 .07.022.
[5] C.W. Johnson, W.E. Ormand, P.G. Krastev, Comput. Phys. Commun. 184 (2013)

2761–2774, https://doi .org /10 .1016 /j .cpc .2013 .07.022, arXiv:1303 .0905.
[6] C.W. Johnson, W.E. Ormand, K.S. McElvain, H. Shan, BIGSTICK: a flexible

configuration-interaction shell-model code, arXiv:1801.08432, 2018, https://
github .com /cwjsdsu /BigstickPublick/.

[7] N. Shimizu, Nuclear shell-model code for massive parallel computation,
“KSHELL”, arXiv:1310 .5431, 2013.

[8] N. Shimizu, T. Mizusaki, Y. Utsuno, Y. Tsunoda, Comput. Phys. Commun. 244
(2019) 372–384, https://doi .org /10 .1016 /j .cpc .2019 .06 .011, arXiv:1902 .02064.

[9] P. Sternberg, E.G. Ng, C. Yang, P. Maris, J.P. Vary, M. Sosonkina, H.V. Le, in:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC08, IEEE,
2008, pp. 1–12.

[10] P. Maris, M. Sosonkina, J.P. Vary, E. Ng, C. Yang, Proc. Comput. Sci. 1 (1) (2010)
97–106, https://doi .org /10 .1016 /j .procs .2010 .04 .012, iCCS 2010.

[11] H.M. Aktulga, C. Yang, E.G. Ng, P. Maris, J.P. Vary, Concurr. Comput. 26 (16)
(2014) 2631–2651, https://doi .org /10 .1002 /cpe .3129.

[12] B. Cook, P.J. Fasano, P. Maris, C. Yang, D. Oryspayev, in: S. Bhalachandra, C.
Daley, V. Melesse Vergara (Eds.), Accelerator Programming Using Directives,
WACCPD 2021, Springer International Publishing, 2022, pp. 112–132, arXiv:
2110 .10765.

[13] P. Maris, C. Yang, D. Oryspayev, B. Cook, J. Comput. Sci. 59 (2022) 101554,
https://doi .org /10 .1016 /j .jocs .2021.101554, arXiv:2109 .00485.

[14] M. Shao, H.M. Aktulga, C. Yang, E.G. Ng, P. Maris, J.P. Vary, Comput. Phys. Com-
mun. 222 (2018) 1–13, https://doi .org /10 .1016 /j .cpc .2017.09 .004.

[15] A.V. Knyazev, SIAM J. Sci. Comput. 23 (2) (2001) 517–541, https://doi .org /10 .
1137 /S1064827500366124.

https://doi.org/10.1016/j.ppnp.2012.10.003
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibBA55D1A9EA7CFB9F3A72D4E0D6A3C489s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibECEDED28B80930A7E6A90E9A6E2F50FCs1
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.cpc.2013.07.022
https://github.com/cwjsdsu/BigstickPublick/
https://github.com/cwjsdsu/BigstickPublick/
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib062F28234D218155B77FF205C4013BCBs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib062F28234D218155B77FF205C4013BCBs1
https://doi.org/10.1016/j.cpc.2019.06.011
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibD1F28AB13B28C8F9AFEA9AFC2F7C3704s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibD1F28AB13B28C8F9AFEA9AFC2F7C3704s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibD1F28AB13B28C8F9AFEA9AFC2F7C3704s1
https://doi.org/10.1016/j.procs.2010.04.012
https://doi.org/10.1002/cpe.3129
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibDF9C60F88BC5C431A48313745B74B3A7s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibDF9C60F88BC5C431A48313745B74B3A7s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibDF9C60F88BC5C431A48313745B74B3A7s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibDF9C60F88BC5C431A48313745B74B3A7s1
https://doi.org/10.1016/j.jocs.2021.101554
https://doi.org/10.1016/j.cpc.2017.09.004
https://doi.org/10.1137/S1064827500366124
https://doi.org/10.1137/S1064827500366124

A. Alperen, H.M. Aktulga, P. Maris et al. Computer Physics Communications 292 (2023) 108888
[16] U. Hetmaniuk, R. Lehoucq, J. Comput. Phys. 218 (2006) 324–332.
[17] J.A. Duersch, M. Shao, C. Yang, M. Gu, SIAM J. Sci. Comput. 40 (5) (2018)

C655–C676.
[18] G.H. Golub, R. Underwood, in: J.R. Rice (Ed.), Mathematical Software III, 1977,

pp. 361–377.
[19] Y. Saad, Math. Comput. 42 (1984) 567–588, https://doi .org /10 .1090 /S0025 -

5718 -1984 -0736453 -8, https://www.ams .org /journals /mcom /1984 -42 -166 /
S0025 -5718 -1984 -0736453 -8/.

[20] Y. Zhou, J.R. Chelikowsky, Y. Saad, J. Comput. Phys. 274 (2014) 770–782, https://
doi .org /10 .1016 /j .jcp .2014 .06 .056, http://www.sciencedirect .com /science /
article /pii /S0021999114004744.

[21] D.M. Wood, A. Zunger, J. Phys. A, Math. Gen. 18 (9) (1985) 1343, https://doi .
org /10 .1088 /0305 -4470 /18 /9 /018.

[22] Z. Jia, G.W. Stewart, Math. Comput. 70 (2001) 637–647.
[23] P. Pulay, Chem. Phys. Lett. 73 (1980) 393–398.
[24] Y. Saad, SIAM J. Numer. Anal. 17 (5) (1980) 687–706, http://www.jstor.org /

stable /2156670.
[25] R.C. Li, L. Zhang, Numer. Math. 131 (2015) 83–113, https://doi .org /10 .1007 /

s00211 -014 -0681 -6.
[26] R.G. Grimes, J.G. Lewis, H.D. Simon, SIAM J. Matrix Anal. Appl. 15 (1) (1994)

228–272, https://doi .org /10 .1137 /S0895479888151111.
[27] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide, Society for Indus-

trial and Applied Mathematics, 1998, https://epubs .siam .org /doi /abs /10 .1137 /1.
9780898719628.

[28] G.W. Stewart, SIAM J. Matrix Anal. Appl. 23 (3) (2002) 601–614, https://doi .org /
10 .1137 /S0895479800371529.

[29] Y. Zhou, Y. Saad, Numer. Algorithms 47 (2008) 341–359, https://doi .org /10 .
1007 /s11075 -008 -9192 -9.

[30] A.V. Knyazev, K. Neymeyr, SIAM J. Matrix Anal. Appl. 31 (2) (2009) 621–628,
https://doi .org /10 .1137 /080727567.

[31] K. Neymeyr, SIAM J. Numer. Anal. 50 (6) (2012) 3188–3207, https://doi .org /10 .
1137 /11084488X.

[32] M. Argentati, A. Knyazev, K. Neymeyr, E. Ovtchinnikov, M. Zhou, Found. Com-
put. Math. 17 (2017) 713–727.

[33] T. Manteuffel, Math. Comput. 34 (1980) 473–497.
[34] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood

Cliffs, 1980.
[35] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University

Press, 1996.
[36] J.L.M.V. Dorsselaer, M.E. Hoschstenbach, H.A.V. der Vorst, SIAM J. Matrix Anal.

Appl. 22 (3) (2000) 837–852.
[37] Y. Zhou, Y. Saad, M.L. Tiago, J.R. Chelikowsky, Phys. Rev. E 74 (2006) 066704.
[38] R. Li, Y. Zhou, Linear Algebra Appl. 435 (2011) 480–493.
[39] A.M. Shirokov, I.J. Shin, Y. Kim, M. Sosonkina, P. Maris, J.P. Vary, Phys. Lett.

B 761 (2016) 87–91, https://doi .org /10 .1016 /j .physletb .2016 .08 .006, arXiv:1605 .
00413.

[40] C.C. Paige, M.A. Saunders, SIAM J. Numer. Anal. 12 (4) (1975) 617–629, https://
doi .org /10 .1137 /0712047.

[41] Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised edition,
Classics in Applied Mathematics, vol. 66, SIAM, Philadelphia, 2011.

[42] H.M. Aktulga, A. Buluç, S. Williams, C. Yang, in: 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2014, IEEE, 2014,
pp. 1213–1222.

[43] NERSC, NERSC Cori Systems, https://docs .nersc .gov /systems /cori. (Accessed June
2021).

[44] R. Li, Y. Xi, E. Vecharynski, C. Yang, Y. Saad, SIAM J. Sci. Comput. 38 (4) (2016)
A2512–A2534, https://doi .org /10 .1137 /15M1054493.

[45] R. Li, Y. Xi, L. Erlandson, Y. Saad, SIAM J. Sci. Comput. 41 (4) (2019) C393–C415,
https://doi .org /10 .1137 /18M1170935.
15

http://refhub.elsevier.com/S0010-4655(23)00233-3/bibBBCEAA806C4D96B01B238F3ACFD8E7E3s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibC26BEEF27D90D9517609767CD383FBBBs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibC26BEEF27D90D9517609767CD383FBBBs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib4120E5D73DC7C19ADA90B4E09313D7A7s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib4120E5D73DC7C19ADA90B4E09313D7A7s1
https://doi.org/10.1090/S0025-5718-1984-0736453-8
https://doi.org/10.1090/S0025-5718-1984-0736453-8
https://www.ams.org/journals/mcom/1984-42-166/S0025-5718-1984-0736453-8/
https://www.ams.org/journals/mcom/1984-42-166/S0025-5718-1984-0736453-8/
https://doi.org/10.1016/j.jcp.2014.06.056
https://doi.org/10.1016/j.jcp.2014.06.056
http://www.sciencedirect.com/science/article/pii/S0021999114004744
http://www.sciencedirect.com/science/article/pii/S0021999114004744
https://doi.org/10.1088/0305-4470/18/9/018
https://doi.org/10.1088/0305-4470/18/9/018
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibA6907ACF5B337A322193F19B6698C867s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib97360EDA0F1B2FD5847664A0AFA77D21s1
http://www.jstor.org/stable/2156670
http://www.jstor.org/stable/2156670
https://doi.org/10.1007/s00211-014-0681-6
https://doi.org/10.1007/s00211-014-0681-6
https://doi.org/10.1137/S0895479888151111
https://epubs.siam.org/doi/abs/10.1137/1.9780898719628
https://epubs.siam.org/doi/abs/10.1137/1.9780898719628
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1007/s11075-008-9192-9
https://doi.org/10.1007/s11075-008-9192-9
https://doi.org/10.1137/080727567
https://doi.org/10.1137/11084488X
https://doi.org/10.1137/11084488X
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib6B561EE22CDEFCE4CE4B7C14FC525A10s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib6B561EE22CDEFCE4CE4B7C14FC525A10s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibAB63B2E3E26D84AEC66792EA069A8184s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibDFC9FAA576E312F2B4F63A9FFF5FB329s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bibDFC9FAA576E312F2B4F63A9FFF5FB329s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib7CFD377F523FC80DCDA8B6CAB13C40ACs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib7CFD377F523FC80DCDA8B6CAB13C40ACs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib595994260058BACA320964873A357124s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib595994260058BACA320964873A357124s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib12B612472A4DCC6C13BE2024E5BECCB4s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib4722F315BD08168D07C2B4FD6231C6EDs1
https://doi.org/10.1016/j.physletb.2016.08.006
https://doi.org/10.1137/0712047
https://doi.org/10.1137/0712047
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib8011CDD40FC89DFE121C7BFAFFD300B6s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib8011CDD40FC89DFE121C7BFAFFD300B6s1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib89FD213AA49AD43F0E4C636C6703FB4Cs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib89FD213AA49AD43F0E4C636C6703FB4Cs1
http://refhub.elsevier.com/S0010-4655(23)00233-3/bib89FD213AA49AD43F0E4C636C6703FB4Cs1
https://docs.nersc.gov/systems/cori
https://doi.org/10.1137/15M1054493
https://doi.org/10.1137/18M1170935

	Hybrid eigensolvers for nuclear configuration interaction calculations
	1 Introduction
	2 Numerical algorithms
	2.1 Lanczos algorithm
	2.2 Block Lanczos
	2.3 LOBPCG
	2.4 Chebyshev filtering
	2.5 RMM-DIIS
	2.6 Comparison summary
	2.7 Hybrid algorithms

	3 Numerical examples
	3.1 Test problems
	3.2 The performance of single method solvers

	4 Performance of hybrid algorithms
	4.1 Switching to RMM-DIIS
	4.2 Optimal implementation

	5 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

