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a b s t r a c t

A very general measure of skewness based on the quantiles is introduced, which includes
several well-known measures as special cases. Sample versions of our measure may be
used as test statistics for testing the hypothesis of symmetry about an unknown value.
We provide large sample theory for such a statistic and discuss the asymptotic relative
efficiencies of this against some competing test statistics for symmetry.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For symmetric unimodal distributions, the three most common measures of central tendency, the mean µ, the median
M , and the modem, coincide. For other distributions, the lack of symmetry is expressed throughmeasures of skewness. The
idea of measuring skewness of a distribution has roots going back at least to Pearson (1895), who suggested the measure
(µ−m)/σ , where σ is the standard deviation of the distribution. Pearson (1895) also used a quantity denoted by β1, which
is the square of the standardized third moment, and Charlier (1906) proposed −6−1β

1/2
1 as a measure of skewness. Today,

the standardized third moment

γ1 = β
1/2
1 = µ3/σ

3,

where µk is the kth central moment which is often referred to as ‘‘the coefficient of skewness’’, although any odd-moment
can be used for the purpose. Other early measures include Bowley’s (1901) coefficient of skewness,

SBowley =
Q0.75 − 2M + Q0.25

Q0.75 − Q0.25
,

where Q0.25 and Q0.75 represent the 25th and 75th percentiles, and the measure

SYule =
µ − M

σ
,

given in Yule (1911).
A generalization of Bowley’s measure of skewness was presented by David and Johnson (1956),

SD&J =
Q1−α − 2M + Qα

Q1−α − Qα

,
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for any α between 0 and 1/2 (see also Hinkley, 1975). Note that Bowley’s measure (or coefficient) of skewness is obtained
by setting α = 0.25. The measure obtained by setting α = 0.1 is often referred to as Kelly’s coefficient of skewness. By
integrating out α, Groeneveld and Meeden (1984) obtained another measure of skewness viz.

SG&M =

 1/2
0 (Q1−α − 2M + Qα)dα 1/2

0 (Q1−α − Qα)dα
=

µ − M
E|X − M|

sample version ofwhichmay be regarded as a robustified version of the sample analogue of SYule (Miao et al., 2006). Bowley’s
as well as the skewness measures SYule, SD&J, SG&M, are bounded by 1 on their absolute values (see, e.g., Groeneveld, 1991),
which may be considered an advantage.

In the current paperwe introduce a very generalmeasure of skewness based on the quantiles, that contains themeasures
by Bowley, Kelly, and David and Johnson as special cases. Also a particular sample version of our measure, when using as
many quantiles as the sample size, leads to the sample version of Groeneveld and Meeden’s measure, and a test statistic
proposed by Miao et al. (2006).

Sample versions of our measure may be used as test statistics for testing the hypothesis of symmetry about an unknown
value.Weprovide results for the asymptotic distribution of such test statistics under the null hypothesis of symmetry, aswell
as under a sequence of converging alternatives of the form F(t +n−1/2γ (t)), where the distribution function F is symmetric
about zero, γ is some smooth function, and n is the sample size. This allows us to make comparisons of the Asymptotic
Relative Efficiencies (AREs) of these competing tests, which we do in Section 3. A numerical example from forestry is given
in Section 4.

2. Main results

Suppose X1, . . . , Xn are independently and identically distributed (i.i.d.) real-valued random variables with cumulative
distribution function (cdf) F . For any 0 < α < 1, the population quantile function is given by

F−1(α) = inf{x : F(x) ≥ α},

and will also be denoted as Qα . The empirical cdf is denoted as Fn, while

F−1
n (α) = inf{x : Fn(x) ≥ α}

will denote the empirical quantile function, for which we will also use the notation Q̂α = F−1
n (α).

We now quote a result on the so-called Bahadur representation of quantiles:

Lemma 1 (Ghosh, 1971). Let 0 < α < 1. Suppose F is differentiable at Qα with F ′(Qα) > 0. Then

Q̂α − Qα =
α − Fn(Qα)

F ′(Qα)
+ op(n−1/2). (1)

For an integer r ≥ 2, let α1, . . . , α2r−1 be a finite sequence of real numbers such that

0 < α1 < α2 < · · · < αr = 1/2 < αr+1 < · · · < α2r−1 < 1

and 1 − αi = α2r−i, i = 1, . . . , r . Set fj = F ′(Qαj), j = 1, . . . , 2r − 1. The representation in (1) and the multivariate
central limit theorem imply that n1/2(Q̂α1 −Qα1 , . . . , Q̂α2r−1 −Qα2r−1) is asymptotically normal with a zero mean vector and
covariances covij = αi(1 − αj)/(fifj) for i ≤ j, and covij = covji for i > j.

We now define our general measure of skewness,

Sr =

r−1
j=1


(Qα2r−j − Qαr ) − (Qαr − Qαj)


r−1
j=1


(Qα2r−j − Qαr ) + (Qαr − Qαj)

 =

2r−1
j=1

cjQαj

2r−1
j=1

djQαj

,

where ci = −2(r − 1) if i = r and 1 otherwise, and di = −1 if i < r , 0 if i = r , and 1 if i > r . We will call the numerator
and denominator Ar =

2r−1
j=1 cjQαj , and Br =

2r−1
j=1 djQαj respectively, and denote the sample analogue of Sr by Ŝr,n.

Theorem 1. Suppose F is differentiable at Qαj , j = 1, . . . , 2r − 1. If fj > 0 for all j, then

√
n(Ŝr,n − Sr)

d
→ N(0, τ 2),

where

τ 2
=

B2
r τ

2
1 − 2ArBrτ12 + A2

r τ
2
2

B4
r
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and

τ 2
1 =

2r−1
i=1

2r−1
j=1

cicjαmin{i,j}(1 − αmax{i,j})

fifj
,

τ12 =

2r−1
i=1

2r−1
j=1

cidjαmin{i,j}(1 − αmax{i,j})

fifj
,

τ 2
2 =

2r−1
i=1

2r−1
j=1

didjαmin{i,j}(1 − αmax{i,j})

fifj
.

Proof. Let Âr,n and B̂r,n be the sample analogues of Ar and Br , respectively. Then

√
n(Ŝr,n − Sr) =

√
n ·

Br(Âr,n − Ar) − Ar(B̂r,n − Br)

B̂r,nBr
. (2)

By Lemma 1,

Âr,n − Ar = Ȳ + op(n−1/2),

where Ȳ is the mean value of

Yi =

2r−1
j=1

cj(αj − I(Xi ≤ Qαj))

fj
, i = 1, . . . , n, (3)

and

B̂r,n − Br = Z̄ + op(n−1/2),

where Z̄ is the mean value of

Zi =

2r−1
j=1

dj(αj − I(Xi ≤ Qαj))

fj
, i = 1, . . . , n.

By themultivariate central limit theorem, n1/2Ȳ and n1/2Z̄ are jointly asymptotically normal withmean zero and covariance
matrix

τ 2
1 τ12

τ12 τ 2
2


.

By Slutsky’s theorem, the same is true for n1/2(Âr,n − Ar) and n1/2(B̂r,n − Br), which implies that

√
n(Br(Âr,n − Ar) − Ar(B̂r,n − Br))

d
→ N(0, τ 2). (4)

The conclusion of the theorem follows from (2), (4), and the Slutsky’s theorem by noting that B̂r,n tends in probability to Br
as n → ∞. �

We consider now the null hypothesis of symmetry about an unknown point of symmetry. Under the assumption that the
distribution function F is symmetric about some unknown value µ, i.e. F(t − µ) = 1 − F(−(t − µ)) for all t , we see that
Theorem 1 simplifies to

√
n(Ŝr,n − Sr)

d
→ N(0, B−2

r τ 2
1 ).

The asymptotic distribution of Ŝr,n under close alternatives is studied next. As in Antille and Kersting (1977) and Ekström
and Jammalamadaka (2007), we consider close alternatives of the formGn(t) = F(t+n−1/2γ (t)). The function t+n−1/2γ (t)
is assumed to be a monotonically increasing function of t for large n. We remark that a result of Wang (2008) deals with the
special case where r = 2 and γ (t) = γn(t) = −ηt/(1 + n−1/2η) if t > 0, and 0 otherwise.

Theorem 2. Assume, without loss of generality, that F is symmetric about 0, that the density function f is twice continuously
differentiable and strictly positive on the whole real line, and that the function γ is continuously differentiable. Let

Wi =
γ (Xi)f ′(Xi)

f (Xi)
+ γ ′(Xi),
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and assume that EH0W
2
1 and EH0γ

2(X1) are finite, and that limt→±∞ γ (t)f (t) = limt→±∞ γ 2(t)f ′(t) = 0. Then, under HA,n,

n1/2Ŝr,n
d

→ N

B−1
r EH0Y1W1, B−2

r τ 2
1


,

where Y1 is defined in (3).

Proof. By Le Cam’s third lemma (see, e.g., van der Vaart, 1998), we can obtain the limiting distribution of n1/2Ŝr,n underHA,n,
once we have the joint limit distribution of Ln =

n
i=1 log(G

′
n(Xi)/F ′(Xi)) and n1/2Ŝr,n under H0. We begin with Ln. Let

Vi =
f

Xi + n−1/2γ (Xi)


− f (Xi) + n−1/2γ ′(Xi)f


Xi + n−1/2γ (Xi)


f (Xi)

.

If we write log(1 + x) = x − x2/2 + x2R(x), then R(x) → 0 as x → 0, and

Ln =

n
i=1

log


1 + n−1/2γ ′(Xi)


f

Xi + n−1/2γ (Xi)


f (Xi)



=

n
i=1

log(1 + Vi)

=

n
i=1

Vi −
1
2

n
i=1

V 2
i +

n
i=1

V 2
i R(Vi).

By Taylor expansions,
n

i=1

Vi =
1

n1/2

n
i=1

γ (Xi)f ′(Xi)

f (Xi)
+

1
2n

n
i=1

γ 2(Xi)f ′′(Xi)

f (Xi)
+

1
2n

n
i=1

γ 2(Xi)

f ′′(Xi + n−1/2ρiγ (Xi)) − f ′′(Xi)


f (Xi)

+
1

n1/2

n
i=1

γ ′(Xi) +
1
n

n
i=1

γ (Xi)γ
′(Xi)f ′(Xi)

f (Xi)

+
1
n

n
i=1

γ (Xi)γ
′(Xi)


f ′(Xi + n−1/2ηiγ (Xi)) − f ′(Xi)


f (Xi)

, (5)

where all ρi and ηi are between 0 and 1. Consider the third term on the right. For each δ∗ > 0 there exist a closed interval
[a1, a2] and an integer N > 0 such that PH0(X1 ∈ Br,n) ≥ 1 − δ∗/2 for all n > N , where Br,n = {t : a1 ≤ t ≤ a2 and a1 ≤

t + n−1/2γ (t) ≤ a2}. By our assumptions, f ′′ is uniformly continuous in [a1, a2]. Hence, for each ε > 0 there exists a δ > 0
such that for all t and t + n−1/2ρiγ (t) in [a1, a2] with |n−1/2ρiγ (t)| ≤ δ, we have |f ′′(t + n−1/2ρiγ (t)) − f ′′(t)| ≤ ε. Thus,
for all n large enough,

PH0


max
1≤i≤n

f ′′(Xi + n−1/2ρiγ (Xi)) − f ′′(Xi)
 ≥ ε


≤ PH0


max
1≤i≤n

f ′′(Xi + n−1/2ρiγ (Xi)) − f ′′(Xi)
 ≥ ε and Xi ∈ Br,n


+ PH0(X1 ∉ Br,n)

≤ PH0


max
1≤i≤n

|γ (Xi)| ≥ n1/2δ and Xi ∈ Br,n


+ PH0(X1 ∉ Br,n) ≤ δ∗, (6)

where the last inequality follows from the fact that γ is a bounded function on


Br,n. The third term on the right-hand side
of (5) is bounded by

max
1≤i≤n

f ′′(Xi + n−1/2ρiγ (Xi)) − f ′′(Xi)
 1

2n

n
j=1

γ 2(Xj)

f (Xj)
.

Thus it is op(1)OP(1), and converges in probability to zero. Similarly, the last term on the right-hand side of (5) tends to zero
in probability. Thus, under H0 we have

n
i=1

Vi =
1

n1/2

n
i=1

γ (Xi)f ′(Xi)

f (Xi)
+

1
n1/2

n
i=1

γ ′(Xi) +
1
2
EH0

γ 2(X1)f ′′(X1)

f (X1)
+ EH0

γ (X1)γ
′(X1)f ′(X1)

f (X1)
+ op(1),

and, by similar arguments as above,
n

i=1

V 2
i = EH0


γ (X1)f ′(X1)

f (X1)

2

+ EH0


γ ′(X1)

2
+ 2EH0

γ (X1)γ
′(X1)f ′(X1)

f (X1)
+ op(1).
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By arguments similar to those in (6), we see that max1≤i≤n |Vi| converges in probability to zero. By the definition of the
function R, the sequence max1≤i≤n |R(Vi)| converges in probability to zero as well. Combining these results, we obtain that

Ln =
1

n1/2

n
i=1

γ (Xi)f ′(Xi)

f (Xi)
+

1
n1/2

n
i=1

γ ′(Xi) +
1
2
EH0

γ 2(X1)f ′′(X1)

f (X1)

−
1
2
EH0


γ (X1)f ′(X1)

f (X1)

2

−
1
2
EH0


γ ′(X1)

2
+ op(1)

=
1

n1/2

n
i=1

Wi −
1
2
EH0W

2
1 + op(1), (7)

where the last equality follows by integration by parts. By another integration by parts we see that EH0W1 = 0.
By the proof of Theorem 1, n1/2Ŝ = n1/2B−1

r Ȳ + op(1) under H0. Thus, under H0, n1/2Ŝr,n and Ln are jointly asymptotically
normal,

N


0
−2−1EH0W

2
1


,


B−2
r τ 2

1 B−1
r EH0Y1W1

B−1
r EH0Y1W1 EH0W

2
1


,

and under HA,n, Le Cam’s third lemma implies that

n1/2Ŝr,n
d

→ N

B−1
r EH0Y1W1, B−2

r τ 2
1


. �

In Theorems 1 and 2, a fixed number, 2r − 1, of sample quantiles have been used to define the statistic Ŝr,n. Next we
consider a case where this number is allowed to increase with the sample size. That is, we will consider the case where
2r − 1 = n, so that we have as many sample quantiles defining the statistic Ŝr,n as observations in the sample. Assume, for
simplicity, that n = 2r − 1 is an odd number, and set αi = i/(n + 1), i = 1, . . . , n. Then Q̂αi = X(i) for each i, where X(i) is
the ith order statistic of the sample, and our statistic can be written in the following form,

Ŝrn,n =
X̄ − M̂

D̂n
, (8)

where rn = (n + 1)/2, M̂ is the sample median, and D̂n = n−1n
j=1 |Xj − M̂|.

Let µ,M and σ 2 denote respectively the mean, median and variance of the distribution F . Let D = E|X1 − M|,

ν2
= σ 2

+
1

4f 2(M)
−

D
f (M)

,

and

Ui = (Xi − µ) −
1/2 − I(Xi ≤ M)

f (M)
, i = 1, . . . , n. (9)

Theorem 3. Assume that σ 2 < ∞ and that the assumptions of Theorem 2 are valid. Then, under HA,n,

n1/2Ŝrn,n
d

→ N

D−1EH0U1W1,D−2ν2 ,

where Ŝrn,n is defined as in (8).

Proof. Again, with the help of Le Cam’s third lemma, we will obtain the limit distribution of n1/2Ŝrn,n under HA,n, once the
joint limit distribution of Ln =

n
i=1 log(G

′
n(Xi)/F ′(Xi)) and n1/2Ŝrn,n under H0 is known.

By Lemma 1, under H0,

X̄ − M̂ = (X̄ − µ) − (M̂ − M) = Ū + op(n−1/2),

where Ū is themean value of U1, . . . ,Un. By the central limit theorem, n1/2Ū is, underH0, asymptotically normal withmean
zero and variance ν2, and by Slutsky’s theorem, the same is true for n1/2(X̄ − M̂). The statistic D̂n converges in probability
to D as n → ∞ (Mira, 1999). Thus, under H0, n1/2Ŝrn,n = n1/2D−1Ū + op(1). Under H0, this result combined with (7) imply
that n1/2Ŝrn,n and Ln are jointly asymptotically normal,

N


0
−2−1EH0W

2
1


,


D−2ν2 D−1EH0U1W1

D−1EH0U1W1 EH0W
2
1


,
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and under HA,n, Le Cam’s third lemma implies that

n1/2Ŝrn,n
d

→ N

D−1EH0U1W1,D−2ν2 . �

Remark 1. The statistic (8), Ŝrn,n, is the sample analogue of Groeneveld and Meeden’s (1984) measure of skewness, and is
essentially the test statistic proposed by Miao et al. (2006), i.e., their statistic is obtained by multiplying the right-hand side
of (8) by (2/π)1/2. Miao et al. show, under general conditions, that

n1/2T̂n = n1/2


X̄ − M̂

D̂n
−

µ − M
D


tends to a normal distribution with mean zero and variance

1
D2


σ 2

+
1

4f 2(M)
−

D
f (M)

+
(µ − M)2(σ 2

+ (µ − M)2)

D2
− (µ − M)2

−
2(µ − M)

D


σ 2

− 2EX2
1 I(X1 ≤ M) + 2µEX1I(X1 ≤ M) − MD


+

(µ − M)2

Df (M)


.

Under the null hypothesis when F is symmetric, then the asymptotic distribution of n1/2T̂n is normal with mean zero and
variance given by D−2ν2.

Remark 2. Consider the measure of skewness defined as SYule = (µ − M)/σ . The sample version of this measure, ŜYule,n =

(X̄ − M̂)/s, where s is the sample standard deviation, is discussed in Gastwirth (1971), and in the case µ = M , Cabilio and
Masaro (1996) showed that n1/2ŜYule,n is asymptotically normal with mean zero and variance σ−2ν2. Under HA,n, and the
assumptions of Theorem 3, it is easily seen that

n1/2ŜYule,n
d

→ N

σ−1EH0U1W1, σ

−2ν2 .
Remark 3. Consider the standardized third moment γ1 = µ3/σ

3, where µk is the kth central moment. The sample version
of this measure is γ̂1,n = m3/s3, where mk is the sample kth central moment. If F is symmetric and µ6 < ∞, then γ1 = 0
is zero and n1/2γ̂1,n is asymptotically normal with mean zero and variance σ−6(µ6 − 6σ 2µ4 + 9σ 6) (see, e.g., Gupta (1967)
for more details). If µ6 < ∞ and the assumptions of Theorem 2 are valid, then it can be shown under HA,n that

n1/2γ̂1,n
d

→ N

σ−3(EH0X

3
1W1 − 3EH0X

2
1 EH0X1W1), σ

−6(µ6 − 6σ 2µ4 + 9σ 6)

.

3. Pitman asymptotic relative efficiency

The Pitman asymptotic relative efficiency (ARE) of a test relative to another test is defined to be the limit of the inverse
ratio of sample sizes required to obtain the same limiting power at a sequence of alternatives converging to the hypothesis.
The limiting power should be a value between the limiting test size, α, and the maximum power, 1. If the limiting power of
a test at a sequence of alternatives is α, then its ARE with respect to any other test with the same test size and with limiting
power greater than α, is zero. On the other hand, if the limiting power of a test at a sequence of alternatives converges to a
number in the open interval (α, 1), then a measure of rate of convergence, called efficacy, can be computed. Under certain
standard regularity assumptions (see, for example, Rao, 1973, p. 469), which include a condition about the nature of the
alternative, asymptotic normal distribution of the test statistic under the sequence of alternatives, etc., this efficacy is given
by

efficacy =
µ2

∗

σ 2
∗

.

Here µ∗ and σ 2
∗
are the mean and variance of the limiting normal distribution under the sequence of alternatives when the

test statistic has been normalized to have a limiting standard normal distribution under the hypothesis. In such a situation,
the ARE of one test with respect to another is simply the ratio of their efficacies.

The efficacy of the test statistic n1/2Ŝr,n from Theorem 2 is
EH0Y1W1

2
τ 2
1

,

and the efficacy of the test statistic n1/2Ŝrn,n from Theorem 3 is
EH0U1W1

2
ν2

.
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Table 1
Best choice of quantiles for various distributions.

Distribution θ r α1, . . . , αr−1 Max efficacy

t1 (Cauchy) 1 2 0.250 0.101
t1 (Cauchy) 1 3 0.215, 0.329 0.113
t1 (Cauchy) 1 4 0.196, 0.290, 0.361 0.118
t2 2 2 0.167 0.150
t2 2 3 0.128, 0.251 0.170
t2 2 4 0.109, 0.204, 0.288 0.178
EP (Laplace) 1 2 0.102 0.162
EP (Laplace) 1 3 0.067, 0.200 0.195
EP (Laplace) 1 4 0.050, 0.150, 0.250 0.210
EP (normal) 2 2 0.053 0.250
EP (normal) 2 3 0.026, 0.108 0.292
EP (normal) 2 4 0.017, 0.065, 0.140 0.308
Logistic 2 0.085 0.212
Logistic 3 0.051, 0.158 0.248
Logistic 4 0.036, 0.108, 0.193 0.261

Also, it should be noted that the test statistic n1/2ŜYule,n has the same efficacy as n1/2Ŝrn,n. The efficacy of n1/2γ̂1,n from
Remark 3 is

EH0X
3
1W1 − 3EH0X

2
1 EH0X1W1

2
µ6 − 6σ 2µ4 + 9σ 6

.

Computations of efficacy will be made in the case where γ (t) = t, t ≥ 0, and 0 elsewhere. In this case, B−1
r EH0Y1W1 =

D−1EH0U1W1 = −1/2, EH0X
3
1W1 = −(3/2)EH0 |X1|

3, and EH0X1W1 = −(1/2)EH0 |X1|.
We will consider distributions F with the following densities,

t distribution : fθ (x) =
Γ


θ+1
2


(θπ)1/2Γ


θ
2

 1 +
x2

θ

−
θ+1
2

,

Exponential power (EP) distribution : fθ (x) =
e−|x|θ

2Γ (1 + θ−1)
,

Logistic distribution : f (x) =
e−x

(1 + e−x)2
.

The double exponential distribution, also known as the Laplace distribution, is obtained by setting θ = 1 in the EP
distribution, and the normal distributionwithmean zero and variance 1/2 is obtained by setting θ = 2 in the EP distribution.
The t distribution with θ = 1 degree of freedom is also known as the standard Cauchy distribution.

In Table 1, for each given r , we choose the αi’s which maximize the efficacy. From this table as well as heuristically, it
appears that the efficacy increases when more quantiles are brought into play, but a reasonably practical approach may
be to use r = 3 with 2 quantiles from either tail. It can also be observed that in thin-tailed distributions like the normal,
one should use much smaller-order quantiles e.g. the 5th and 95th percentiles with r = 2, whereas in fat-tailed models
like the Cauchy, Bowley’s choice of the 25th and 75th seems optimal. Thus Bowley’s is a better choice than Kelly’s for heavy
tailed distributionswhereas the reverse is true for thin-tailed distributions like the normal. In general there is no universally
optimal choice of these quantiles for all distributions. For instance we have verified that with r = 3, by choosing α1 = 1/6
and α2 = 2/6 we can do uniformly better than Bowley’s test and by choosing α1 = 1/10 and α2 = 2/10 we can beat Kelly’s
test for all the distributions checked.

However if one were to build a reasonably robust test of symmetry with r = 3 which does better over a wide range of
distributions, an overall compromise seems to be to take α1 = 0.1 and α2 = 0.2 i.e. compare the 10th, 20th, 80th, and 90th
percentiles to the median, getting the test:

Ŝ∗

3,n =
Q0.90 + Q0.80 − 4M + Q0.20 + Q0.10

(Q0.90 − Q0.10) + (Q0.80 − Q0.20)
.

Such a test as Table 2 indicates, will do just as well or better than Kelly’s in all the cases and falls short of Bowley’s only in
the case of one distribution viz. the Cauchy. Even further improvements over the Bowley’s and Kelly’s coefficients can be
demonstrated if we use Ŝr,n with a larger r but we omit such comparisons.

In Antille and Kersting (1977), the following four test statistics for symmetry were considered,

ŜA&K1,n =


1≤i≤n


I(Xi − X̄ ≤ 0) −

1
2


,
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Table 2
AREs of Ŝ∗

3,n relative to Bowley’s and Kelly’s coefficients.

Distribution θ Bowley Kelly
Efficacy ARE Efficacy ARE

t1 (Cauchy) 1 0.101 0.70 0.051 1.38
t2 2 0.129 1.27 0.129 1.27
EP (Laplace) 1 0.120 1.56 0.162 1.16
EP (normal) 2 0.136 1.73 0.233 1.01
Logistic 0.136 1.67 0.211 1.08

Table 3
Efficacies of the test statistics.

Distribution θ Efficacy
Ŝ∗

3,n Ŝrn,n γ̂1,n ŜA&K1,n ŜA&K2,n ŜA&K3,n ŜA&K4,0,n

t1 (Cauchy) 1 0.071 0.123 0.056
t2 2 0.164 0.171 0.096
EP (Laplace) 1 0.188 0.250 0.112 0.250 0.188 0.188 0.125
EP (normal) 2 0.236 0.279 0.239 0.279 0.289 0.201 0.143
Logistic 0.227 0.275 0.238 0.275 0.216 0.196 0.134

ŜA&K2,n =


1≤i≤j≤n


I(Xi + Xj ≤ 2X̄) −

1
2


,

ŜA&K3,n =


1≤i≤j≤n


I(Xi + Xj ≤ 2M̂) −

1
2


,

ŜA&K4,ε,n =


1+[εn]≤i≤[εn]


I(Di − Dn−i+2 ≤ 0) −

1
2


,

where Di = X(i) − X(i−1), i = 1, . . . , n. In their paper, asymptotic distributions under symmetry is given, and asymptotic
distributions under alternatives of the formGn(t) = F(t+n−1/2γ (t)), where F is symmetric about 0, are also given. Based on
their results, the efficacy of each test may be computed. In Ekström and Jammalamadaka (2007), a modification of ŜA&K4,ε,n
is suggested, and unlike Antille and Kersting’s test, the modified test is asymptotically distribution-free. The efficacy of the
modified test coincides with that for ŜA&K4,ε,n.

Remark 4. Under the alternative, n1/2ŜA&K4,ε,n is asymptotically normal with mean µ4,ε and variance σ 2
4,ε , and µ4,ε and

σ 2
4,ε possess limits as ε → 0, µ4 and σ 2

4 , respectively, but it is not known whether n1/2ŜA&K4,0,n is asymptotically normal
with mean µ4 and variance σ 2

4 . However, based on the claim of Antille and Kersting that it is, we compute the efficacy of
n1/2ŜA&K4,0,n as µ2

4/σ
2
4 .

Table 3 provides the efficacies of Ŝ∗

3,n against Antille and Kersting’s four tests, Ŝrn,n given in Eq. (8), and the classical
coefficient of skewness γ̂1,n. It is interesting to note that the proposed Ŝ∗

3,n, although based on just 5 quantiles and easier
to compute, compares reasonably well with all these other tests which use all the observations/quantiles or gaps between
them.

4. A practical example from forestry

Weconsider two data sets taken fromMatérn (1981, Table 2.1), consisting of the diameters at breast height inmillimeters
from year 1912 and year 1951 for n = 115 Norway spruce trees from the Forest Research Institute of Sweden’s sample
plot number 238 at Finnerödja. As seen in Fig. 1, the data from 1912 show only a slight skewness, while a more distinct
(negative) skewness is visible in the data from 1951. Assume that the data (from 1912 or 1951) are taken from some
distribution F , and that we want to use the test statistic Ŝr,n for testing the hypothesis of symmetry, i.e. that F(x − µ) =

1 − F(−(x − µ)) for all x. If F is symmetric and τ̂1,n is a consistent estimator of τ1, then Theorem 1 implies that
n1/2Ŝr,nB̂r,nτ̂

−1
1,n is approximately N(0, 1) for large n, and approximate p-values of the test can be computed. In what follows

we use Kraft et al.’s (1985) symmetrized kernel density estimator for estimating the density values fj, j = 1, . . . , 2r − 1, in
the definition of τ1. The kernel density estimation is performed using the R function ‘‘density’’ (R Development Core Team,
2011) with a Gaussian kernel. (Another possibility for computing approximate p-values is to use bootstrap; see e.g. Thomas,
2009 and Zheng and Gastwirth, 2010.) For both data sets, the values of Ŝ∗

3,n and Bowley’s and Kelly’s coefficients are given in
Table 4. Corresponding p-values are also given. As expected, all p-values are far from a significance level of 0.05 for the data
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Fig. 1. Normal probability plots and histograms of n = 115 diameters at breast height from year 1912 and year 1951.

Table 4
Values of three coefficients of skewness, and corresponding p-values,
computed from the two sets of diameter data.

Year Bowley Kelly Ŝ∗

3,n

Value p-value Value p-value Value p-value

1912 0.000 1.00 −0.104 0.34 −0.067 0.52
1951 0.030 0.83 −0.285 0.02 −0.224 0.04

from 1912. For the data from 1951, Bowley’s coefficient fails to reject the hypothesis of symmetry, with a corresponding
p-value as large as 0.83, whereas the tests based on Kelly’s coefficient and Ŝ∗

3,n do reject the null hypothesis, which
corresponds well with the visual inspection of Fig. 1. The failure of Bowley’s coefficient in detecting the obvious skewness
in the 1951 data in particular, illustrates the danger of relying on a test based only on one quantile from each tail, like the
Bowley’s and Kelly’s.

5. Summary

In the current article we propose a very general class of distribution-free tests of symmetry that encompass most known
measures based on quantiles. We provide large sample theory for such statistics and compare their asymptotic relative
efficiencies against some competing test statistics for symmetry. In particular we suggest using a simple test Ŝ∗

3,n which uses
5 quantiles and fares well against all the other known tests of symmetry for a wide variety of distributions. Computer code
in R for implementing this test, is available from the authors.
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