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ABSTRACT OF THE DISSERTATION 
 

MICROMAGNETIC MODELING OF THERMAL AND OPTO-MAGNETIC 
EFFECTS IN NANOMAGNETIC MATERIALS 

by 
 

Marco Menarini 
 

Doctor of Philosophy in Electrical Engineering (Photonics) 
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Professor Vitaliy Lomakin, Chair 
 

Magnetic materials are vital components of many existing and future applications, 

ranging from data storage and spin-logic devices, to terahertz sensors and artificial synapses 

from neuromorphing computing. Driven by the need to faster responses and high-density 

storage, the focus of this work is the modeling of thermal and optical excitation of magnetic 

materials by an external laser source. 

Many models focus on the use of fields or current as the primary driving force behind 

the change in magnetization and the models, without taking into account the optical contribution 

of the light, which has been shown to produce changes in magnetizing on a faster timescale 

than the ones observed with the use of either current or field.  

Moreover, granular media, which are at the core of many magnetic materials, are usually 

modelled using simplistic finite difference approach or numerically intensive finite-elements 



xxiii 

approach to model every grain. These approaches lead to either an unrealistic description of the 

media or to an over-sampling of the geometrical nodes of the problem, increasing significantly 

the computational time required to run the simulations. 

This dissertation improves upon the state of the art of micromagnetic modelling by 

introducing a Voronoi tessellation model to simulate realistic granular structures at elevated 

temperature for high anisotropy materials. This approach considers the geometry of the grains 

for computing the far-field contribution. The approach has been proven effective in modeling 

realistic media for heat assisted magnetic recording and perpendicular media in general. The 

model presented also introduces in the dynamics of the magnetizing optical contributions and 

helps describe complex phenomena, such as the ultrafast-demagnetization and the helicity 

dependent optical reversal of magnetic material subjected to an external optical source. 

While the model provides a qualitative interpretation of the experiments, additional data 

is required to evaluate the quantitative contribution of the optical excitation and the correctness 

of the thermal fluctuations. 

This dissertation is structured as follow. In Chapter 1 and 2 introduce key concepts of 

magnetism and the basic micromagnetic model that is used as the basis for the numerical 

simulations. 

Chapter 3 introduces a micromagnetic code based on Voronoi tessellation and the non-

uniform fast Fourier transform (NUFFT) method. The code is capable of efficiently and 

accurately simulating magnetization dynamics in large and structurally complex granular 

systems, such as multilayer granular media used for perpendicular magnetic recording, bit 

patterned media, granular nanowires, and read heads. In these systems the granular 

microstructure and distributions in grain and interface properties play an important role in 



xxiv 

device performance. The presented Voronoi simulator allows comprehensive studies to be 

performed as it accounts for the detailed granular microstructure and distributions that 

characterize true systems. Simulation time is greatly reduced by the NUFFT algorithm and 

implementation on graphics processing units (GPUs). Simulations of conventional magnetic 

recording, heat-assisted magnetization reversal, domain wall dynamics in granular nanowires, 

and particulate tape recording are presented. 

Chapter 4 explores the generation of electromagnetic field signals in the terahertz 

frequency (THz) range using antiferromagnets (AFM). Using micromagnetic model 

simulations, we investigated a potential mechanism for laser-induced THz signals in the AFM 

phase of FeRh/Pt bilayer films. In the simulations, FeRh films are modelled as two Fe-

sublattices coupled via intra-lattice exchange field and subjected to a sub-picosecond thermal 

pulse. Our simulations expose a partial canting between the magnetizations of two Fe-

sublattices, within the first picosecond after the excitation. This short-lived state relaxes 

abruptly into the initial AFM phase, injecting a spin current into the Pt layer via spin pumping, 

which is eventually converted into charge current oscillating at THz frequency. 

Chapters 5 and 6 discuss the phenomenon of all-optical switching of the magnetization 

in magnetic nanostructures. While all-optical switching of the magnetization in magnetic 

nanostructures by femtosecond circularly polarized laser pulses without an external magnetic 

field has been demonstrated in several systems, a theoretical framework that convincingly 

explains the phenomenon is still missing. In Chapter 5 we propose a theory where the 

ferromagnetic macrospin ground state is optically excited by the circularly polarized light to a 

spin reversed state, which is then “Coulomb collapsed” to the magnetization reversed ground 

state. The optical excitation lasts for the duration of the laser pulse and the system relaxes at a 



xxv 

fast rate due to the electron-electron interaction. In Chapter 6, we present a computational model 

based on this theory. We construct a three-state model for the magnetization dynamics, the 

Landau- Lifshitz-Lambda (LLL) model, as an ensemble of such states to account for the 

temperature effects. After the optical excitation lapses, the LLL model reduces to the Landau-

Lifshitz-Bloch (LLB) formulation, allowing to consider the magnetization relaxation dynamics 

at elevated temperatures. We apply the theory to simulate all-optical switching (AOS) in FePt 

films subject to multiple femtosecond circular polarized laser pulses. The simulation results 

demonstrate characteristic AOS features and agree with recent experiments. 

Chapter 7 identifies problems in the performance of the established stochastic model in 

micromagnetics in modeling the thermal fluctuations of longitudinal and transverse 

components of the magnetization at elevated temperature. A correct estimation of the thermal 

fluctuation is paramount to develop multiscale atomistic-micromagnetic models. The chapter 

presents a consistent solution for the diffusion coefficients that satisfy the corresponding 

Fokker-Planck equation and provide the correct equilibrium magnetization at elevated 

temperature. 

Finally, Chapter 8 contains concluding remarks and an outlook on future research. 
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CHAPTER 1 - INTRODUCTION 
 

This chapter presents a brief overview of magnetism. The discussion starts with the 

introduction of the basic concepts of magnetism and the basic concepts that are used later in the 

dissertation to develop the micromagnetic code to study the optical and magnetic interactions in 

complex granular systems and films, including the concepts of magnetism and molecular field that 

are used in the following chapters to develop a micromagnetic model to simulate optical and 

thermal effects on nanomagnetic materials. 

1.1 BASIC CONCEPTS OF MAGNETISM 

It is known from the experiments that a material subjected to a magnetic field H   may 

acquire a magnetic moment μ  . The average magnetic moment per unit volume is defined as 

magnetization and it is denoted by the vector M  . The relationship between the magnetization and 

the applied field may in some cases be described by the relationship: 

 χ=M H  ,  (1.1) 

where χ  is the magnetic susceptibility. If the magnetic moments align in the direction of H  (i.e. 

0χ > ) the material is classified as paramagnetic. If the magnetic moment align in the direction 

opposite of H  (i.e. 0χ <  ), the material is classified as diamagnetic. In many practical cases, it is 

inappropriate to consider the susceptibility χ  as a constant. For high enough fields, the 

relationship between M  and H  approaches a finite saturation value SM   called saturation 

magnetization. 

Some material, however, do not follow the relationship given by Eq. (1.1). The most 

common example are ferromagnets in which a spontaneous magnetization persists 
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macroscopically even in the absence of an applied field 0=H . In this kind of materials, the 

magnetization is not a one valued function of H  and its value is a function of the history of the 

applied field. 

The susceptibility χ  is proportional to the inverse of the temperature, (i.e. 1/ Tχ ∝ ). In 

ferromagnetic materials, the spontaneous magnetization decreases as the temperature is increased 

to a critical value CT  , known as Curie temperature. Above CT , a ferromagnet behaves as a 

paramagnetic material. In 1907, Pierre Weiss theorized that the interaction between magnetic 

molecules, described as a “molecular field”, could act on the magnetization as an external field 

generating a spontaneous magnetization.  

 The magnitude of this field was assumed proportional to the magnetization itself and to a 

material dependent parameter  . Thus, the magnetization could be expressed as: 

 H MM f
T

 
 


+
=


  , (1.2) 

where f  is an odd function of its argument. At high temperature, the value of f  can be replaced 

by the leading term of the Taylor series: 

 ( )CM H M
T

≈ +  , (1.3) 

where C  is the material dependent Curie constant. From Eq. (1.3), it is possible to predict a Curie 

temperature at /M H = ∞ . Equation (1.1),  can then be rewritten, using Eq. (1.3), in the form of 

the Curie-Weiss law that is followed qualitatively by all ferromagnets: 

 
C

M C
H T T

χ = =
−

 , (1.4) 

where CT C=   . 
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It is important to note that the Weiss assumption of a molecular field is sufficient to both 

explain the paramagnetic behavior above the Curie temperature and the temperature dependence 

of the magnetization. In order to explain the field dependence, Weiss assumed the existence of 

several small domains, each one of them magnetized to its saturation value )(SM T , but which 

direction varies domain to domain. The applied field rotates these domains into its own direction, 

and for a large enough field, the overall magnetization would be equal to the saturation value.  

It is important to note that to understand the origin of the molecular field, it is necessary to 

use quantum physics, since in pure classical physics, the electrons do not interact with an applied 

field.  The shortcoming of a pure classical approach can be shown by considering the Bohr-Van 

Leewen theorem as shown by John Hasbrouck Van Vleck [1] that says: “for classical non 

relativistic electron, at any finite temperature, and in all finite applied electrical or magnetic fields, 

the net magnetization of a collections of electrons in thermal equilibrium vanishes identically”. 

To prove the theorem, let us consider a classical system of N electrons. Their behavior is 

described by 3N coordinates, iq  , and their 3N momenta, ip  . If each electron has a charge e . A 

free electron moving with velocity v  creates a current density e=j v  and a magnetic moment: 

 1
2 2

e
c c

= × = ×μ r j r v  , (1.5) 

where c  is the speed of light and r  represent their position is space. Since from Eq. (1.5), the 

magnetic moment of a single electron is a linear function of the v , the total magnetic moment m  

is a linear function of all the electron velocities. Thus, it is possible to define the total magnetic 

moment along the direction z as a function of the form: 

 
3

1 2 3
1

( , , , )
N

z
z i N i

i
m qa q q q

=

…=∑   , (1.6) 
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where the coefficients z
ia  are a function of the position of all the electrons iq  , but not of their 

momenta, and the velocity is defined as the derivative of the position in time (i.e. i iq v= ). The 

canonical equation of a classical motion is: 

 i i
i i

q p
p q
∂ ∂

= = −
∂ ∂

 

   . (1.7) 

The Hamiltonian    for electron and magnetic field is defined as: 

 
3

1 3
1 potential energy

kinetic energy

1 ( , . )
2

N

i i N
i e

e eV q q
m c=

 = − + … 
 

∑ p A




  . (1.8) 

where em  is the mass of the electron, iA  is the magnetic vector potential, and eV  is the potential 

energy due to the interaction of the electrons among themselves and with any other fixed potential. 

Using Eq.(1.8) we can rewrite Eq. (1.6) as: 

 
3

1 2 3
1

( , , , )
N

z
z i N

i i

m qqa q
p=

∂
…

∂
=∑   . (1.9) 

The thermal average of a classical system is obtained using the Maxwell-Boltzmann distribution 

as: 

 
1

1

1

1 3 3

3 3

( )

( )
z N N

z
N N

dp
M

m exp dq dq dq

exp dq dq dqdp

β

β

− … …

− … …
= ∫
∫




 . (1.10) 

Using Eq. (1.9) in Eq. (1.10), we can see that for every electron, each of the components in the 

sum of zm  is proportional to: 

 ( ) ( )exp
0exp

i
i p

idp
p

β
β

β

∞
∞

−∞
−= ∞

∂ −
− =

∂
− =∫


  . (1.11) 

The integral in Eq. (1.11) disappear for all ip , since the Hamiltonian is proportional to 2
ip  for 

large values of ip  . We can see how, for a purely classical system, there is no magnetic moment 
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for any applied field. Thus, in the classical model no interaction between electrons and field is 

possible. Thus, a semi-classical approach is required to explain the origin of magnetism. 

1.2 QUASI-CLASSICAL THEORY OF MAGNETISM 

As seen in the previous paragraph, a pure classical theory of magnetism is not able to explain the 

basic concept of magnetism. Classical electrons, for example, cannot move around the atom orbit 

without radiating energy and collapsing into the center. On the other hand, using a purely quantum 

mechanical approach would only be practically applicable to simple ferromagnetic systems.  

It is usually preferred to use a hybrid approach to magnetism where the results obtained 

from quantum mechanics are applied to the classical theory. To do so, some assumption needs to 

be made: 

1) A semi-classical electron can orbit around the nucleus without collapsing. 

2) The electrons have a quantum spin that only assume discrete values. 

3) The spins are treated as classical vectors and interact between each other and with an 

external field. 

Under these assumptions, we can consider an ensemble of atoms each one with a fixed 

magnetic moment μ . The unit of the magnetic moment is given by the Bohr magneton: 

 200.927 19 erg/G
2B

e

e
m c

µ −= = ×
  , (1.12) 

where   is the Plank constant and em  is the mass of the electron. The magnetic moment 

experienced by each atom is given by: 

 0 BSgµ µ=  , (1.13) 

where  g  is the Landé factor and zS   is the is the projection of the spin along z. One of the 

properties of the quantum spin is that its projection along z, zS ,  can only assume discrete values 
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( , 1, , SS S− …− +  ). If the spins do not interact with each other but only with the applied field 

(paramagnetic materials), it is possible to write the energy of system as: 

 )(E µ = − ⋅μ H  . (1.14) 

If we assume zH H=  , we can write the integral of Eq.(1.10) as a sum over all the possible 

configuration of ZS  : 

 
b

z

z
bg

S S
n

m B B

S

g n H
H

n S n Sz
z Sm n

n S n S

H n H

g ne g n
em

e e

µ β
β

β µ β

µ µ ς
µ

ς

−
−

− −

=− =−

=− =−

= = =
∑ ∑∑

∑ ∑ ∑
 , (1.15) 

where the last form of the equation has been obtained by introducing the geometric series: 

 

1

1 1
1

2

( ) ( 1 )
1

(
)(

1 )

S SS
n

n S

S S S SS
n

n S

S Sn

ς ςς
ς
ς ς ς ςς

ς

− +

=−

+ − − −
−

=−

−
=

− − + −
=

−

−

∑

∑
 . (1.16) 

Substituting the relationship in Eq. (1.16) into (1.15), and using the relationship between 

hyperbolic functions, we obtain the value of the average magnetization along z: 

 ( )0
0 0

2 1 2 1 1
2

c h
2 2 2

ot cothz
z S

S S Sm
S

B
S S S S

ξξ ξ  = = − =


+


 

+
 


 . (1.17) 

The relationship obtained in Eq. (1.17) is the Brillouin function, SB  , and its value is a function of 

both the spin number S   and the reduced field: 

 0
0

H
T
µξ =  . (1.18) 

In the classical limit, we can assume that the momentum align continuously with the field and S  

can assume all possible values (i.e. S →∞  ). This leads to a simplified form of 0 )(SB ξ   known as 

Langevin function 0( )L ξ : 
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 ( ) ( )0 0
0

cot 1hzm L ξ ξ
ξ

= = −  . (1.19) 

The Langevin function and the Brillouin function describes the average magnetization of a 

paramagnetic particle subjected to an external field.  It can be shown that for small values of H  

or elevated values of T  (i.e. 1η  ), the Brillouin and the Langevin function can be expressed as: 

 

3

3

) ( )

( ) ( )

( 1)(
3

3

S
SB

O

S
O

L

η η η

ηη η

+

= +

+
=

 . (1.20) 

Thus, if the field is small enough the magnetization can be described by the first term of 

the Taylor series in Eq. (1.20). In most cases of interests, the magnetization induced by an external 

field does not deviate from the linear behavior even for the largest applied field. We can then 

define a linear susceptibility, as the one defined in Eq. (1.1): 

 
0 0

lim limz b z

H H

Ng C
H H T
M Sµ

χ
→ →

∂ ∂
= = =

∂ ∂
 , (1.21) 

where N  is the number of spins per unit of volume, and the Curie-Weiss constant is given by 

 
2 ( 1) for the Brillouin function

1 for the Langevin fun
( )

ction3
B

B

N gC
k

S Sµ 
= 



+
 . (1.22) 

For very large values of the argument (i.e. 1η  ), the magnetization reaches saturation 

( 1( ) )S LB ∞ = ∞ = . This means that all the spin contains in the volume V  are aligned in the 

direction of the external field. In fact, the presence of a magnetic field only changes the direction 

of the individual spins but not their magnitude. In paramagnetic materials, the Curie-Weiss 

constant is proportional to the spin number of the single atom, thus the effective susceptibility, and 

the field required to reach the saturation magnetization at room temperature is of the order of 

~ 100 T , much larger than the field commonly used in experiments. Normally, any ferromagnetic 

and ferrimagnetic material, undergoes a transition to a paramagnetic state when CT T≥ . However, 
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it is possible for ferro- and ferri-magnetic nanoparticles to form large domains even below the 

Curie temperature while having overall zero magnetization. The effective spin value of each 

nanoparticle is given by the sum of the spin in each atom and can reach values of the order of 

3 4~ 10 10S − . When this happen, the material is said to be in the superparamagnetic state and 

saturation can be obtained for small values of the field.   

1.3 MOLECULAR FIELD  

In practice, we usually are interested in the case where the atoms interact with each other 

and not only with an external magnetic field.  We now consider a simplified case, where the total 

energy of the system is due to both the exchange interaction between the spins iS  and jS ,  and the 

applied field: 

 ij i j B i
ij i

E gJ µ= ⋅ − ⋅−∑ ∑S S S H  , (1.23) 

where ijJ  is the exchange integral. If 0ijJ >  the energy of the system is minimized when the spin 

are parallel (ferromagnetic coupling), and if 0ijJ <  the energy of the system is minimized when 

the spin are anti-parallel (antiferromagnetic coupling). In general, the value of ijJ  can be positive 

or negative for different sites i  and j . The intensity of the exchange integral varies with the 

distance, so we can have different value for the nearest neighbor 001J   and the next-nearest 

neighbors 011J  . If both 001J  and 011J  are greater than zero (Figure 1.3-1a) the material is a 

ferromagnet, if 001 011J J>  with 001 0J <  and the magnetic moment of the atoms is 

compensated, the material is an antiferromagnet (Figure 1.3-1b), if the moment of the atoms is not 

compensated, the material shows a non-zero total magnetization at the equilibrium and it shows 

ferrimagnetic behavior (Figure 1.3-1c). 
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Figure 1-1: Ferromagnetic 0ijJ >  (green line) and antiferromagnetic 0ijJ <  (red lines) coupling for the nearest 

neighbor 001J  (dash-dotted line) and next-nearest neighbor 011J   (dashed line). The figure show the case of (a) 

ferromagnetic lattice with a single type of atoms, (b) antiferromagnetic lattice  where the momentum of the atoms is 
compensated and the total momentum is zero, and (c) ferrimagnetic lattice where the two sublattice momentum (blue 
and grey atoms) has different values that leads to a non-zero magnetization.  

 

In practice, computing the exchange interaction directly  for a finite volume V  in Eq. (1.23) 

is a complex endeavor given the large number of bodies involved in the exchange interaction, and 

so some approximation need to be made. The simplest of these approximations is the molecular 

mean-field approximation. The approximation proceeds in two steps: 

1) A single spin is “tagged”, and its dynamic is treated exactly, while the surrounding 

spins are replaced by their expectation value S . 

2) The self-consistency condition is imposed, such that every spin in the system is 

subjected to the same mean field from the other spins. Thus, the result obtain for a 

single spin is the same obtained for all the other spins in the system. 

In the next sections we derive, using the mean-field approximation, the molecular field 

generated by the exchange interaction for both a ferromagnetic exchange and an antiferromagnetic 

exchange.  
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A  Ferromagnetic molecular field  

We first focus on a ferromagnetic material, where 0ijJ > . The energy of the system can 

then be expressed as: 

 1
2

MFA
i ij i j b

i
ii i

j
E gJ µ⋅ − ⋅ = − ⋅= − ∑ S HS S S H  , (1.24) 

where the mean field approximation of the field A
i
MFH  is given by 

 1MFA
ij j ji

jB B

xJ
g

J
gµ µ

+= +≈∑H S H SH  , (1.25) 

where the last approximation in Eq.(1.25) is obtained by assuming that ijJ  is non zero only for the 

x  nearest neighbors of the spin, and where J  is the average exchange integral between the 

neighbors. Using Eq. (1.25), it is possible to reduce the problem of spin interacting with each other 

to the case discussed in the previous section, i.e. the one of an isolated spin interacting with an 

applied field. Thus, the expected value of the z-component of iS  is given by: 

 0
,

i
z i S

b

HS SB
k T
µ

=


 
 

 . (1.26) 

Applying the self-consistency condition, there is no difference between the spin i  and the 

other spins appearing in the summation in Eq. (1.25). Thus, we can rewrite explicitly: 

 [ ]0
z S E

b

S SB H H
k T
µ 

=  
 

+  , (1.27) 

where the molecular field EH  for a ferromagnet is given by: 

 
2

0

0
E

B

H J SxJ
gµ µ

= = mS  . (1.28) 

where  the exchange integral 0J xJ=  and the magnetic moment 0µ  is given by Eq.(1.13). 

Equation (1.27) shows that a ferromagnet has a finite magnetization even in the absence of an 
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external field due to the presence of the molecular field EH  induced by the spin interaction. At 

high temperature, the magnetization tends to zero, and at low temperature a spontaneous 

magnetization arises. If we consider the transition between these two states, it is possible to obtain 

a relationship between the exchange integral 0J  as a function of the Curie temperature CT , by 

expanding Eq. (1.27) around the transition point. For a finite spin S , the relationship between CT  

and 0J  is given by  

 ( ) 01 / 3b Ck S S JT = + ,  (1.29) 

and for the classical limit (i.e. S →∞ ): 

 0 / 3b Ck T J=  . (1.30) 

B Antiferromagnetic molecular field 

In ferrimagnetic and antiferromagnetic materials, the exchange integral between nearest 

neighbor is negative (i.e. 0 0J < ) and tends to align neighboring spin antiparallel to each other. 

Using Neel approximation, it is possible to split the lattice into two sublattices A and B (Figure 

1.3-2). Each sublattice is treated as in the ferromagnetic case with / 0A BJ > , and the two sublattices 

are coupled locally by the antiferromagnetic exchange coefficient 0ABJ <  , with /AB A BJ J> .  
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Figure 1-2: Ferrimagnetic lattice composed by two atoms A and B (on the left). The system is approximated by two 
sublattices (on the right) each one composed only by either atoms A (red) or the atom B (blue). Each sublattice is 
treated as a ferromagnetic  material with / 0A BJ > , the two lattices are coupled locally with an exchange coefficient 

0ABJ <  .   

 

It is possible to define an effective field for the two sublattices as in the ferromagnetic case: 

 0, 0,A
B

AB
A A

A B A B

J J
H H S S

g gµ µ
+= +  , (1.31) 

 ,, 00 B
B B A

A

BB

B

B B

J J
H H S S

g gµ µ
+= +  , (1.32) 

where 0, / / /A B A B A Bx JJ = , 0,AB AB ABxJ J= ,  Ax  and Bx  are the numbers of nearest neighbors in the 

sublattice A and B, respectively, and ABx  is the number or nearest neighbors in the original lattice.  

The consistency condition is given by solving for the transcendental equations: 

 00,
, , ,

0, 0

0, ,

,

A AA A
A z A S A z B

B
z

A A

A

b

J S J S
S S B H S S

k T
µ

µ µ

  
≈ +    

+
 

 , (1.33) 

  

 00,
, , ,

0, 0

0, ,

,

BB B
B z B S B z A

B B
z

B B

A

b

J S J S
S S B H S S

k T
µ

µ µ

  
≈ +    

+
 

 , (1.34) 
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where 0, / / /A B A B B A Bg Sµ µ=  is the magnetic moment of the atoms in the sublattice A/B  and the two 

g-factors Ag  and Bg  are identical if A BS S= −  at the equilibrium. The molecular field for the 

antiferromagnetic interaction is given by: 

 
2

0, 0,
,

0, 0,

A A AB A B
E A A B

A A

S JJ S S
µ µ

+= m mH  , (1.35) 

 
2

0, 0,
,

0, 0,

B B A B
E B B A

AB

B B

J S J S S
µ µ

+= m mH .  (1.36) 

In the general case, when A BS S≠  it is possible to define a Curie temperature for the 

two sublattices, solving the transcendental Eq.(1.33)-(1.34) close to the transition point: 

 ( )0,
( 1)
3

A A
A A B AA

b

S SS
T

Jg H S
k

µ+
= +   , (1.37) 

 ( )0,
( 1)
3B B B B

B B
B

b

S SS
T

Jg H S
k

µ+
= +   , (1.38) 

where the effective sublattice exchange integrals for the two sublattices are given by: 

 0, 2
B A B

A A A AB AB
A A

SJ x J
S m

J x +
⋅

=
mm

  , (1.39) 

 0, 2
B

B
A B

B AB AB
A A

BJ x J SJ x
S m

⋅
= +

mm
  . (1.40) 

In the absence of an applied field, the relationship between the Curie temperature and the 

effective sublattice exchange is given by: 

 ( )  0,1 / 3
A

Ab C A Ak T S S J= +  , (1.41) 

 ( )  0,1 / 3
B B B Bb Ck T S S J= + . (1.42) 
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CHAPTER 2 -  MICROMAGNETIC MODEL OF MAGNETISM 
 

If the previous chapter, we focused on the interactions between the magnetic moment and 

the field on an atomistic level. By neglecting the atomistic nature of the matter, it is possible to 

approximate the magnetization and the material properties of the material as continuous variable. 

Such classical approach was first introduced by W.F. Brown [2] to study the dynamics of the 

domain walls, and since then it has been routinely used to describe and simulate the magnetic 

phenomena on the mesoscale. 

Part of the classical approach is to replace the spin with a vector and to replace the 

quantum-mechanical interactions in the limit of a continuous material. In this chapter, we first 

introduce the classical energy for a ferromagnetic material with biaxial anisotropy. The effective 

field is then derived by minimizing the free energy of the system. Finally, we introduce the semi-

classical dynamic model, described by Landau-Lifshitz-Bloch model for ferromagnetic and 

ferrimagnetic. This model forms the base of the study of the magnetization dynamics that is used 

in the rest of the dissertation. 

2.1 MICROMAGNETIC FREE ENERGY 

We consider the classical ferromagnetic model with the biaxial anisotropic exchange 

interactions described by the Hamiltonian: 

 ( )0 , , , , , ,
1
2i ij x x i x j y y i y j z i z j

i ij
J S S S S S Sµ η η= − ⋅ − + +∑ ∑H S  , (2.1) 
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where 1x yη η≤ ≤  are the anisotropic coefficients. By introducing the anisotropy coefficients 

, ,1x y x yη η′ = − ,  and only considering the exchange between nearest neighbors it is possible to 

rewrite the Hamiltonian as: 

 ( ) ( )0 , , , ,
. .2 2i i j x i x j

i
x

n n n
i j

n
y x xSJ S S SJµ η η′ ′−= − ⋅ ⋅ + +∑ ∑ ∑SSH S  , (2.2) 

where the second term in Eq. (2.2) is the exchange interactions and the third term represents the 

anisotropy contribution. If we introduce the anisotropic field coefficients 2
, 0/ 2K x xJSH η µ′=  and 

2
, 0/ 2K y yJSH η µ′=  , we can write the mean field approximation of the field for a ferromagnetic 

material as: 

 ( )
2

0
, ,

0
local x y
MFA

K x K y
J H HS
µ

+ − +=H H m m m ,  (2.3) 

or in the case of a ferrimagnetic material, we can write the mean field approximation of the field 

for the two sublattices as: 

 ( )
2

0, 0,
, , , ,

0, 0
,

,
A A

A A A
y

B A BMFA
A local A B K x A x K y

A A
A

JS SJ S
H H

µ µ
= + −+ +H m mH m m ,  (2.4) 

 ( )
2

0, 0,
, , , ,

0, 0
,

,
B B

B A
y

B A BMFA
B l

B
B Aocal K x B x K y

B
B

B

J S J
H

SS
H

µ µ
+ +≈ + −H m mH m m   (2.5) 

The free energy of the system can then be expressed for a continuous ferromagnetic system 

of volume V  as: 

 ( )
2

2 2 20
0 , ,

1
2 2MFA

local
K yx x K xH

S H m VHJ mm dµ
 

⋅ − = +


− −


∫ Hm ,  (2.6) 

or in the case of a ferrimagnetic material, the free energy of the system is given for each sublattice 

by:  
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( )
,

2 22
, , ,0, 0,2

0
0,

,

2 2
A A

MFA
B local

K x A x K AyA AB B

A

y
A A BH

A
A

A

H m H mS J
d

S
J

J
V

S
mµ

  
 ⋅ + ⋅   

+
= − +

 
−


∫ H m mm  , (2.7) 

( )
,

2 22
, , ,0, 0,2

,

,
0

02 2MF
B

A
B loca

B

l

B yB A

B
B B

B

K x B x K yB AB
A BH

H m H mS J
S

J
m dV

S
J

µ
  
 ⋅ + ⋅   

+
= − +

 
−


∫ H m mm  . (2.8) 

The terms MFA
localH

  given in Eq.(2.6)-(2.8) contains all the local components of the energy for 

a ferromagnetic and ferrimagnetic continuous media. Besides the terms discussed so far, there are 

other two terms that play a role in determining the overall magnetization in a continuous material: 

the magnetostatic energy (long range) and the classical exchange (short range). In the next 

subsection we discuss these long- and short-range interactions. 

A  Magnetostatic energy 

The magnetostatic energy is originated from the classical interaction among the dipoles. 

For a continuous media, this interaction is described by the Maxwell equations. In the absence of 

a current, the curl of magnetic field is zero: 

 0∇× =H  . (2.9) 

 The vector H can then be expressed by a scalar potential U , such that U= −∇H . Using 

the potential relationship, it is possible to express the Gaussian’s law for magnetism in CGS units 

as: 

 ( ) 20
0o Uµ
∇⋅ ∀ ∈Ω

∇⋅ = ∇ ⋅ = ⇒ ∇ =  ∀ ∉Ω
+B

r
M

M r
H  . (2.10) 

where Ω  is the region occupied by the magnetic body. Applying the continuity condition at the 

interface of the magnetic body, we find: 

 ( )U U
n n

+ −∂ ∂
− = ⋅ + ⋅ − ⋅ = ⋅

∂ ∂
n M n H n MH n  , (2.11) 
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where U +  is the potential at the interface inside Ω , U −  is the potential outside Ω , and n   is the 

unit normal to the close surface ∂Ω . The potential is assumed to be bounded at infinity, which 

means rU  and 2r U∇  are finite for r →∞ . The condition of the bounded potential means that 

at long distances, the magnetic field can be considered as the one originating from a point dipole. 

The magnetostatic field ( )MSH r  can then obtained by solving for the potential and the 

magnetostatic energy is given by: 

 3( ) (1
2

)MS MS d= ⋅∫M r H r r  . (2.12) 

The magnetostatic energy, together with the exchange energy, is responsible for the 

existence of magnetic domains. The system tends to minimize its energy. If we consider a discrete 

series of macrospins, each with a uniform magnetization iM , the magnetostatic energy can be 

expressed as: 

 
1 1

)1 (
2

N N

MS j i
i j

i j

iM H
= =

≠

= ⋅∑∑ r ,  (2.13) 

where ( )j iH r   is the field acting on iM  and generated by jM . Equation (2.13) shows that the 

energy of the system is reduced when the magnetic moments are antiparallel. However, the 

exchange interaction for ferromagnetic material minimize the energy when neighbor spins are 

parallel to each other’s. The system then only breaks into domains if the total energy of the system 

when two domains are presents is lower than the energy required to have a single domain.  

B  Exchange Energy 

While the magnetostatic energy is a long range effect that is affected by the interactions of 

several hundred unit cells, the exchange interaction  ijJ  is a strong interaction that only affects the 
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nearest neighbors or the next-nearest neighbors. The system minimizes its energy by creating a 

small angle between two nearby spins, instead of creating an abrupt transition. If we consider the 

exchange integral J  to be non-zero only between the nearest neighbors, it is possible to rewrite 

the exchange energy in Eq. (1.23) as:   

 2

.
)co2 s(ex ij

n n
E JS θ= − ∑ ,  (2.14) 

where cos( )ijθ  is the angle between the spin iS  and the spin jS . Below CT , the exchange between 

spins is strong enough to keep the neighbor spins almost parallel. Thus, it is reasonable to assume 

for the angle between two neighbor spin to be small (i.e. ~ 0ijθ ). We can then rewrite the exchange 

energy as: 

2
22 2 2 2

. . . .
2 cons n1

2
t co stij

ex ij i j
n n n n n n

E JS JS JS
θ

θ
 

≈ − = + ≈ + −  
 
−∑ ∑ ∑ mm  . (2.15) 

Considering the condition of continuity of the magnetization inside the magnetic domain, 

it is possible to rewrite the difference between the magnetization of neighbor spin as a continuous 

function: 

 i j ij= ∆ ∇− r mm m  , (2.16) 

where ijr∆  is the distance between the  lattice points i  and j . Substituting Eq. (2.16) in to Eq.(2.15) 

and substituting the sum over all the sites i  with a continuous integral over the magnetic body, it 

is possible to write the exchange energy as  

 ( ) ( ) ( )22 2
ye zx xA m m m dV ∇ ∇ ∇ 

+


= +∫  , (2.17) 

where the exchange constant A  is given by: 

 
2

2

6
nJSA a=  , (2.18) 

where a  is the lattice spacing and n   is a number dependent on the type of lattice. 
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2.2  MICROMAGNETIC EFFECTIVE FIELD 

Let us consider a ferromagnetic body of an arbitrary shape. The total energy of the system 

M   in the mean-field approximation is given by: 

( )2 )( ) (MFA
MFA

M l Se ocal MH x MS A r dV ⋅ ∇ + ⋅ = + + = − +∫ M H M Hm r     . (2.19) 

This expression allows us to determine the energy of the system, if the value of the 

magnetization ( )m r  is known. The problem here is to determine the magnetization ( )m r  that 

minimizes the energy of the system under the constraint 0 0( )H mB µ β =  . The easiest way to do 

so is to introduce a new function   such that: 

 ( )2 2
0 0( , ) (( ))M S effHB m dVλ λ µ β+ −= ∫m   , (2.20) 

where λ  is the Lagrange multiplier. By setting ( , ) 0λ∇ =m  , it is possible to obtain the value of 

the magnetization at the equilibrium:  

( )
2

20

0 0

0 22

2

k syx mHJ dV

A dS

S Aδ λ
δ µ µ

− + +
 

= = + − + ∇ 
 
∂



−





+ ∂

∫

∫

m

m

m

n

m HH m m
M





 , (2.21) 

 ( )0 0S effH mB µ β =  , (2.22) 

where for simplicity we chose , ,K K x K yH H H= = . The total mean field approximation of the field 

acting on the material is given by: 

 MFA
E eff= +H H H  , (2.23) 

 
2

0

0

,E eff ex ms ani
J S
µ

= + + +=H H H Hm H H  , (2.24) 



 

20 
 

where the anisotropy field aniH  and the exchange field exH  are given by: 

 22
ex

S

A
M

= ∇ mH  , (2.25) 

 , ,( )ani K x x K y yH H+=H m m  . (2.26) 

The only condition for the infinitesimal variation in magnetization δm  that satisfies the 

constrains given by Eq. (2.22), is a rotation δθ


 of the vector field m  , that is 

 δ δθ= ×m m


.  (2.27) 

The equilibrium condition given in Eq. (2.21) is valid for any arbitrary elementary rotation 

δm . By multiplying the integral over the surface by δm , it is possible to obtain the boundary 

condition on the surface of the magnetic domain ∂Ω  :  

 00
∂Ω

∂ ∂
× = → =
∂ ∂
m m
n n

m  . (2.28) 

For ferrimagnetic materials, the formulation of the applied field is slightly more 

complicated. The molecular field in each sublattice is given by: 

 , , ,E v E v E v
⊥+=H H H ,                            (2.29) 

 0, 0,
, ,

0, 0,

,v vk
E v v E v k

v v

J J
µ µ

⊥= =H Hm Π



,  (2.30) 

where  , ,v k A B= , and  

 
( )

2
k k v

v
km

× ×
=

 − 
m m

Π
m

 . (2.31) 

The instantaneous equilibrium magnetization for the ferrimagnetic case is given by the 

projection of the field on the direction of the magnetization such that: 

 ,
0 0, 0, 0 ,( )) ,( , eff v

S v v E vm T B H
m

ξ ξ µ β
′ ⋅

  = = +
 

m
H

H
  , (2.32) 
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where , , , ,eff v ex v ms v ani v
′ + + +=H H H H H . The effective field acting on the magnetization for each 

sublattice is given by: 

 , , ,eff v eff v E v
′ ⊥= +HH H  . (2.33) 

2.3 LANDAU-LIFSHITZ-BLOCH EQUATION 

A magnetic material subjected to an external field is subjected to a precessional motion 

described by the Landau-Lifshitz equation [3]: 

 d
dt

γ= ×
m m H   (2.34) 

where 11 -1 -11.760859 10 s Tγ = ×  is the gyromagnetic ratio. For a given applied field, the frequency 

of the precession of the magnetization is given by the Larmor frequency: 

 L Hω γ=  . (2.35) 

 The process described by Eq. (2.32) is a Hamiltonian conservative process.  Due to physical 

defects and the interaction with the environment, the magnetic system is subjected to dissipative 

forces. This effect is modelled with non-linear spin relaxation that aligns the magnetization in the 

direction of the field [4]: 

 ( )2eff eff
d
dt m

γαγ ⊥  = − × × × − Hm m mm H  , (2.36) 

where α⊥  is the transverse damping coefficient and is a function of the temperature T : 

 
0

11
J

α λ
β⊥

 
=  

 
−  , (2.37) 

where 1λ ≤  is the atomistic damping coefficient. 

 At elevated temperature, the length of the magnetization is a function of both the field and 

the instantaneous temperature. To model the longitudinal dynamics of the magnetization, we 
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define the instantaneous equilibrium magnetization, as function of the reduced field 

0 0
MFAµ β=ξ H : 

 0 0 0
0

( ) )(SB ξ
ξ

= 0ξξm  . (2.38) 

Assuming only small deviations from the instantaneous equilibrium (i.e. 0≈m m ), we can 

write the equation of motion for the magnetization as [5]: 

 ( )
0

2

2
0 0( )

1
eff eff

SB
d
dt m

γαγ γα
µ β ξ

⊥
′

⋅ 
 
   = − × × × 

−
− −

m

m H Hmm

m
m m m



 , (2.39) 

where 0( )SB ξ′  is the derivate of the Brillouin function with respect to 0ξ , and α


 is the longitudinal 

damping coefficient and it is a function of the temperature given by: 

 
0

2
J
λα

β
=



 . (2.40) 

The equation given by Eq. (2.39) is known as the Landau-Lifshitz-Bloch equation for 

ferromagnetic materials. If we use the magnetization vector as our frame of reference, we can 

understand  the contribution of the precession, transverse, and longitudinal relaxation as the 

variation in time of the three orthogonal components φ  , θ  , and r  in spherical coordinates (Figure 

2-1a). In ferromagnetic materials for temperature below the Curie temperature, the molecular field 

is much larger than the effective field (i.e. E effH H ). Thus, the only way to reverse the 

magnetization is by precession (Figure 2-1b).   
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Figure 2-1: Magnetization dynamics of single particle immersed in an applied field zH H= .  (a) Shows the 
contribution of the precession (blue arrow), the transverse damping (red arrow), and the longitudinal relaxation (green 
line) on the instantaneous magnetization vector m . (b) Shows the evolution in time of such system.   

 

For ferrimagnetic material, the equation of motion is given by two equations of motion for 

ferromagnets, one for each sublattice, coupled by the intra-lattice exchange given by  Eq. (1.35)-

(1.36): 

( )
0,

2
,

, , ,2
0, 0,(

1

)

v

vvv
v eff v v v v eff v

v S v v

v

md
dt mB

γα
γ γα

µ β ξ
⊥

′

⋅ 
 



−
− −   = − × × ×

m

m H mm m m H

m



,  (2.41) 

where  , 0,2 /v v vJα λ β=


  , ( ), 0,2 1 1/v v vJα λ β⊥ = −    and 0,vJ   for the two sublattices is given by Eq. 

(1.39)-(1.40). The reduced field 0,vξ  for the ferromagnetic sublattice is given by Eq. (2.32), while 

the effective field ,eff vH  is given by Eq. (2.33). 

2.4 STOCHASTIC LANDAU-LIFSHITZ-BLOCH EQUATION 

To describe the magnetization dynamics at elevated temperature it is necessary to consider the 

fluctuations generated by the interactions between the magnetization and the thermal bath. Brown 

suggested to introduce these fluctuations as formal random fields whose properties are defined by 
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the equilibrium solution of the corresponding Fokker-Planck (FP) equation. Chapter 7 covers the 

derivation of a new formulation of the stochastic field based on the rigorous solution of the FP 

equation. Here, we introduce two forms of the stochastic LLB equation commonly used in 

micromagnetics. In both formulations, the random fields are described by a stationary white 

Gaussian noise with zero mean and: 

 ( ) 0 (0) ( ) 2 ( )i i j ijt t D tµ µ
µ µ

ν
νζ ζ ζ δ δ δ= =  , (2.42) 

where ijδ  is the Kronecker delta, ( )tδ  is the Dirac delta function, , ,µ ν = ⊥  define the longitudinal 

and transverse components of the noise, and , , ,i j x y z=  defines the cartesian coordinates of the 

field. The diffusion coefficients Dµ  are obtained by solving the FP equation.  

The first model, defined as LLB-I, was introduced by Garanin [6]. In this formulation, the 

thermal fluctuations are introduced as two multiplicative noise fields ⊥ζ and ζ


 acting on the 

transverse and longitudinal damping component, respectively:   

( )( )
0

2

2 2
LLB-I 0 0( )

1
eff eff

S

d
Bdt m m

γαγ γα
µ β ξ

⊥
⊥′

  
      = − × − × × 


−
−



−



+
 



m
m

m

m
ζ

m Hm m H ζm m



 , (2.43) 

where the diffusion coefficients ,LLB-IDµ  with ,µ = ⊥  are given by: 

 ,LLB-I
b

S

k TD
M Vµ

µγ α
=  . (2.44) 

The second model, defined as LLB-II, was introduced by Evans in 2012 [7]. In this 

formulation, the field acting on the transverse damping component is introduced as a multiplicative 

noise field, ⊥ζ ,  while the second field is introduced as an additive noise field , ζ


 : 

( )( )
0

2

2
0 0 )

1

(eff eff
SB

d
dt m

γαγ γα
µ β ξ

⊥
⊥′

 
 
   = − 

−
− −× × ++×

m

m H m H ζm m m ζ

m
m

 

 , (2.45) 



 

25 
 

where the diffusion coefficients are given by: 

 
( )

,LLB-II ,LLB-II2 ,b b

S S

k T k T
D D

V VM M
α α γ α

γ α
⊥

⊥
⊥

−
= =





 . (2.46) 

The two formulations only noticeably differ for temperature close to CT , and both 

formulations displace the value of the equilibrium magnetization 0( )e S em JB mβ=  in the absence  

of an external magnetic field. In the rest of the dissertation, we consider the LLB-I formulation as 

the stochastic model used in the simulation if not explicitly stated.
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CHAPTER 3 -  MICROMAGNETIC SIMULATOR FOR COMPLEX GRANULAR 

SYSTEMS BASED ON VORONOI TESSELLATION 
 

This chapter presents a micromagnetic Voronoi code that was developed with the primary 

aim of simulating granular systems. The code relies on Voronoi tessellation for the discretized 

representation of the granular structure. Each grain is represented as a single Voronoi cell or a 

vertical stack of several Voronoi cells. Such a representation produces the least number of 

unknowns needed for modeling single domain grains and results in a non-stiff system in the case 

of uncoupled or weakly coupled grains.  

A GPU-based NUFFT algorithm was implemented by my colleague Marko V. Lubarda  to 

reduce the order of operations in the calculation of the magnetostatics field from 2( )O N  to 

( log( ))O N N  , where N  is the number of grains in our model. 

The generality of the code allows sophisticated modeling of complex multilayered granular 

structures, and distributions in material and structural properties of the grains and interfaces. Such 

granular films can be postprocessed to obtain nanowires, BPM, spin valves, read heads, and other 

structures of arbitrary geometry.  

The use of highly efficient methods for computing the exchange fields using a natural 

neighbor approach, a core contribution of the thesis author, and porting the bulk of computations 

to GPUs results in orders of magnitude speedups compared to conventional simulation approaches. 

The resulting simulator is a powerful tool for fast and accurate characterization, design and 

performance studies of granular nanomagnetic systems of a complexity and size not before 

amendable to simulation.  
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The ability to model such structures enables the computationally aided interpretation of 

experimental results involving both small- and large-scale granular systems and devices.  

3.1 GRANULAR SYSTEM MODELING 

Granular magnetic films are the basis for a number of current and emerging 

nanotechnologies including heat assisted magnetic recording (HAMR) [8,9]  magnetic random 

access memories (MRAM) [10] and all optical switching (AOS) [11,12]. The geometry of granular 

systems and distribution of the material parameters from grain to grain can significantly impact 

the performance of granular magnetic devices and affect results of experimental studies. It is of 

interest, therefore, to be able to model and characterize such systems, and investigate their 

performance over a wide range of parameter space, as well as to explore new designs for 

overcoming existing technological challenges in related fields. 

In previous works, granular systems were either modeled using regular finite difference 

(FD) approach or finite elements methods (FEM). These methods have both shortcomings and 

advantages.  

The FD methods: 

• Easy to implement and lower number of unknowns 

• Existing support for FD micromagnetic models like OOMMF [13] 

• Cannot account for irregular microstructures 

• Produce numerical artifacts due to the periodicity of the discretization 

The FEM methods: 

• Accurate discretization of complex structure using tetrahedron or hexahedron 

discretization 
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• Over discretization of the system 

• Difficult to implement 

• Numerically stiff due to the size of the mesh 

The Voronoi modeling tries to combine the advantages of FD methods with the advantages 

of the FEM reducing or eliminating all the shortcomings. 

In the Voronoi model, each grain is represented by a Voronoi cell, which is treated as a 

single domain particle. Using a Voronoi discretization to model granular structures allows 

controlling the distribution of size and shapes commonly observed in a realistic granular structure 

[14]. To generate the tessellation, we follow an iterative process. We first define an area of work 

A, larger than the effective area, and the average diameter of the grain D . Dividing the area of the 

average grain by the working area, we obtain the numbers of seed points. The seed layer is created 

inside the working area using a user-defined distribution of co-planar seed points.  

The coordinates of the seed points are then used to generate the Voronoi tessellation 

(Figure 1.3-1a) using a simple implementation of the Fortune’s algorithm [15]. The Voronoi cells 

can be separated to model the segregation between grains observed in real granular media (Figure 

3.1-1b). The 2D structure is then extruded vertically into one or multiple layers, each on with its 

own physical parameters, to model single films or multilayer structures (Figure 3.1-1c). Each layer 

can also be subdivided in sublayers if necessary, to capture the magnetization dynamics inside the 

grain.    
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Figure 3-1: (a) Voronoi tessellation based on a user-defined distribution of seed points. (b) Segregation of the cells to 
simulate granular structure. (c) Extrusion of the 2D cells into a 3D multilayered structure. The image is reproduced 
with permission from the original paper Ref. [16] 

 

 

 

 

3.2 NUMERICAL IMPLEMENTATION OF THE LLB MODEL  

In the granular model, each Voronoi cell of each layer (or sublayer) is modelled using the 

macrospin approximation (i.e. inside each cell the temperature and the magnetization is 

homogeneous). 
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The continuous LLB equation given in Eq. (2.43), is replaced by a system of 3N  equation, 

where N  is the number of Voronoi cells. Thus, we can write for each cell i  the equation of motion 

for the magnetization as: 

( )




( ), ,
, , ,2 2

,0,

) /
(

( )
)

1 ( o i iii i i
i i i i i i i i

i io ii i

Bd
m

m
Bdt m

γαξ
γ γα

µ β ξ
⊥ ⊥

 ⋅
= − × − × ×  ′

− − +


−


eff eff

m m ζm H m m m H ζ




, 

 (3.1) 

where im  is the normalized magnetization of the cell i , and ,eff iH  is the effective field acting on 

the cell.  The reduced field  0ξ  is defined by the projection of the field in the direction of the 

magnetization: 

 

0, 0i m Jξ β=   , (3.2) 

and the effective exchange integral 0J  is given by: 

 0 0 0 2
effJ

m
J µ

⋅
= +

Hm
  . (3.3) 

Since in the stochastic differential equation given in Eq. (3.1) the fluctuations enter the 

system in a multiplicative way, the solution has to be interpreted and integrated numerically in the 

context of the Stratonovich calculus [17]. Thus, to integrate the LLB equation we can use the Heun 

numerical scheme [18] or by a semi-implicit method where the field does not depends on latest 

time-step. The semi-implicit scheme for the LLB equation is given by: 

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( 1) ( ) ( 1)

, , , ,

2

, ,
2

k k
k k k ki i

i i i i

k k
k k k ki i

i i i i i i

a

h

h b

σ+ +
⊥ ⊥ ⊥

+
= +

+


 × + 

 + × +

ΧΧ

Χ σ ξ ξ

mm m m

m m m


,  (3.4) 
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k k i i
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i i i i

b

h

h a
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+
+

+
+ +

⊥ ⊥ ⊥

+ + +
= +

+


    
× +    

    
    

+ × +    
    
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Χ
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m Χmξ ξm σ m


 , (3.5) 
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where h  is the time-step, { }( 1) ( 1) ( 1) ( 1)
, , ,, ,k k k k

i i x i y i zξ ξ ξ+ + + +=ξ  are i.i.d. Gaussian random variables with 

zero mean and unit variance, and  

 ( ) ( ),
, ,2( ) i

i i eff i i eff
im

γα
γ ⊥= − − ×a m HmHm m  , (3.6) 

 ( ) ,

0, ,

) /
( )

1 ( o i i
i

i i o i

mB
b

B
ξ

γα
µ β ξ
−

=
′

m


 , (3.7) 

 ,
, 2( , ) 2i
i i i i i

im
D

γα⊥
⊥ ⊥= ×σ m ξ m ζ ,  (3.8) 

 ,
, 2( , ) 2i
i i i i i

im
D

γα
σ = ⋅ξ mm ξ

 

 . (3.9) 

The advantage of the semi-implicit method is that reducing the implicitness of the system, 

it is possible to solve analytically the system by direct inversion of linear 3 3× systems at each time 

step for each cell [19]. Thus, the semi-implicit scheme has the same computational complexity of 

the explicit scheme and allows the use of larger time-steps as compared to an explicit scheme. In 

particular, it allows using timesteps of 0.1ps in most cases, whereas the explicit Heun scheme is 

limited to a timestep of 0.01-0.05ps. 

3.3 COMPUTATION OF NON-LOCAL EFFECTIVE FIELD 

The effective field effH  can be subdivided in 3 different parts, depending of the interaction 

of the field with the surrounding magnetization: 

• Local field: the field computed only depends on the local value of the magnetization 

im  in the i-th cell. The local field is composed of the anisotropy field aniH  , the 

applied field H , the thermal field µζ , and, in the case of ferrimagnets, the intra-

lattice exchange EH .  
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• Short range field: the field computed depends not only on the local magnetization 

im , but also on the magnetization of all the cells surrounding cell i . The short-

range field is represented by the exchange field excH .  

• Long range field: the field computed depends on the magnetization of all the cells 

in the media. The long-range field is represented by the magnetostatic field msH . 

The computation of the effective of the local field component is trivial and can be carried 

over by using directly the equation given in Sec. 2.2. The computation of the short- and long- range 

fields require a more accurate analysis and their implementation in the code will be discussed in 

the next sections. 

A  Exchange Field 

The exchange field is a combination of two components: (i) a vertical exchange field, 

1,ex iH , between different layers, and (ii) a lateral exchange field, 2,ex iH  , between cells in the same 

layers. The resulting exchange field is given by: 

 , 1, 2,ex i ex i ex i= +H H H   (3.10) 

The vertical exchange coupling between grains can be defined through the interfacial 

exchange energy density associated with the exchange interaction between mutually interfaced 

Voronoi cells. In this case, the exchange field acting on cell i  is given by: 

 ( ),
interface ,

ex
ij ij

ex i j i
j S i i

J S
M V∈

−= ∑H m m  , (3.11) 

where ijS  is the common area between cells i  and j . For two cells i and j , ex
ijJ   represents the 

interlayer exchange energy density: 
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2 ex

ijex
ijJ

A
δ

=  , (3.12) 

where ex
ijA  denotes the bulk exchange stiffness of the encompassing grain, and δ  is the cell 

thickness.  

 

Figure 3-2: The Voronoi tessellation (solid lines) and its dual the Delaunay triangulation (dashed line) for a granular 
media. The natural neighbors of cell i are shown in the picture as the elements that shares one vertex of the Delaunay 
triangle with i . The shaded area represents the triangular section of the Voronoi cell i  defined by its seed and the 
shared surface area ijS  between i and j  . 

  

To compute the lateral exchange, we define the exchange field acting on cell i  using the 

natural neighbors approach with non-Sibsonian interpolation [20,21]. The Delaunay triangulation 

is constructed as the dual of the Voronoi tessellation. A cell j  is said to be a natural neighbor of 

cell i , if i  and j  share a vertex in the Delaunay triangulation (Figure 3-2). The shared surface 

area between two natural neighbors is defined as ijS   and  ijh   is  the distance between their seeds. 

It is important to point out that the seeds and the centers of mass of the Voronoi cells are not 

generally the same points, unless the Voronoi tessellation is Central Voronoi Tessellation (CVT). 

Given the geometrical relationship between the Voronoi tessellation and the Delaunay 

triangulation, the surfaces and lines connecting the Voronoi cell seeds are perpendicular to each 
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other by construction. For non-segregated cells, we can define the Laplacian of a function  u  for 

the Voronoi element i  as: 

 ( ) ( )2
2

1 1

1 41 i iN N
j iij

i j i ij
j ji i ij ij

u uS
u u

V V h
uu d

h
c

∂Ω
= =

∂
∇ −Γ

−
= = =

∂ ∑ ∑∫ n
 , (3.13) 

where  iN  is the number of natural neighbors for the cell i  , and / (4 )ij ij ij iS hc V=  is the ratio 

between the volume of the vertical extruded triangular section of the Voronoi cell i  sharing an 

edge with the cell j (see shaded area in Figure 3-2), and the total volume of the cell. For a regular 

square grid, Eq. (3.13) becomes the finite-difference formula for the Laplacian of a function. 

 In the case of vector field, like the one used in the exchange field, the Laplacian is 

computed for each Cartesian component: 

 2
2

1
4

iN
j i k

i ijk
j ij

c
h=


∇

 
−

 =  ∑
u

u
u

 , (3.14) 

where , ,k x y z=  indicates the cartesian components. In case of segregated cells, the lateral 

exchange field acting on cell i  can be expressed as: 

 
( )

2,
1

i exN
j iij

ex i ij
j i iV

A
Ms

α
= Φ

−
=∑

mm
H  , (3.15) 

where /ij ij ij ijS hα φ=  is the non-Sibsonian interpolator between the two neighboring segregated 

elements, and , /ij ij seg ijS Sφ = , and , /i i seg iV VΦ =  represent the surface and volume-degree of 

segregation. The area of the contact surface between cell i  and j , and the volume of the cell i  

following the segregation process are defined by ,ij segS  and ,i segV , respectively. 

In many practical applications, the distribution of grains can be represented by a central 

Voronoi tessellation (CVT) with a Gaussian or Poisson distribution of the grain size [22-25]. In 

this case, the distance between natural neighbors is approximately equal to the distance between 
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their centroids. Our simulations did not show any significant difference in the evaluation of the 

exchange field when using the centroid distance or the seed distance in the evaluation of the 

exchange. 

Numerically, the computation of the exchange field at each cell is accomplished by 

generating a matrix of geometrical and material coefficients during the preprocessing stage, and 

by performing sparse matrix-vector products at every linear iteration of the time-evolution solver. 

 

Figure 3-3: Voronoi tessellation obtained for a set of 250 seeds. The tessellation is obtained for (a) a random set of 
seeds and (b) a centralized Voronoi tessellation. 

 

To validate the implementation of the exchange field given by Eq. (3.15), I studied the 

solution of the boundary value problem, 2 ( )u f x∇ =  in ( ) ( )0,1 0,1Ω = × , with ( ) ( )u x g x=  on ∂Ω   

for a randomly distributed set of seeds (Figure 3-3a) and for a CVT tessellation (Figure 3-3b). Two 

tests were considered: 

1) 2 0u∇ =  in Ω , with g x y= +  on ∂Ω  (patch test), 

2) 2 4u∇ =  in Ω , with 2 2g x y= +  on ∂Ω  (patch test). 

The numerical solution for the set of the internal grains is in agreement with the analytical 

solution not only for the CVT, but also for a random distribution of seeds, as shown in Table 3-I. 
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Table 3-I: Numerical test for the Laplacian in ( ) ( )0,1 0,1Ω = × , for a random distribution of seeds (RNG) and for 

a centralized Voronoi tessellation (CVT). The error in the 2L  and L∞  norm is evaluated between the analytical 
solution u   and the numerical solution hu   for all the internal grains. 

 ( , )f x y   ( , )u x y   
2

h

L
u u−   ` h

L
u u ∞−   

RNG CVT  RNG CVT 

I 0 x y+  1312 62 0. −×   1416 41 0. −×    1212 18 0. −×   1312 74 0. −×   

II 4 2 2x y+  1411 95 0. −×   1514 44 0. −×    1212 37 0. −×   1312 41 0. −×   
 

To test the effect of the segregation on the exchange field, we consider a scalar function 

)( , ) sin( )sin(u x yx y π π=  in ( ) ( )0,1 0,1Ω = ×  for the random (RNG) and centralized (CVT) 

tessellation in Figure 1-1, assuming 1ex
SA M =  and a constant segregation coefficient ijφ  for all 

neighbor pairs. While the behavior of the exchange field is qualitatively similar for different 

chosen values of the segregation, it can be seen that for a segregation factor 0.95ijφ = , the 

difference in strength between the segregated and unsegregated field reaches value of up to 10%. 

Under the assumption of a constant ijφ  , for both the RNG tessellation and the CVT tessellation, 

the reduction in strength has been found to be proportional to 1/ ijφ . 
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Figure 3-4: Numerical Laplacian of )( , ) sin( sin()u x yx y π π=  in ( ) ( )0,1 0,1Ω = ×  for different values of the 

segregation coefficient ijφ  using a random distribution of the seeds.  
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Figure 3-5: Numerical Laplacian of )( , ) sin( sin()u x yx y π π=  in ( ) ( )0,1 0,1Ω = ×  for different values of the 

segregation coefficient ijφ  using a centralized Voronoi tessellation..  

B  Magnetostatic Field 

Conventionally, the evaluation of the magnetostatic field is the most intensive component 

of computation. For a granular structure, the magnetostatic field is evaluated in two phases: (i) the 

magnetostatic field is computed in the dipole approximation, and (ii) the result is corrected by the 

exact tensorial contribution for the near field. 

The point-dipole approximation assumes the magnetic dipole moment iμ  of each Voronoi 

cell to be concentrated at its centroid and the shape of each individual cell is neglected: 
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where r  is the distance between the centroid of cell i  and j . Equation (3.16) is written as a 

convolution between the summation kernel, representing the magnetostatic field due to a single 

point with unit magnitude, and the dipole moment iμ  . 

 To reduce the number of operations from 2( )O N  to ( log( ))O N N  in performing the 

convolution, a non-uniform fast Fourier transform (NUFFT) is implemented [26]. In this approach 

the non-uniformly distributed dipoles are projected onto a regular grid of points. The FFTs are 

used for computing the spatial convolutions on this uniform grid to obtain the magnetostatic fields 

at the same grid points. The results are further corrected by computing the near-fields directly 

(without projections) through the point-dipole approximation summations going only over a small 

number of points surrounding each point. 

 The dipolar approximation alone is only sufficiently accurate when the source and observer 

Voronoi cells are sufficiently separated from each other. In general, it is necessary to introduce a 

correction for the near field. To estimate the near-field correction for cell i , a list of near-field 

cells j  within a critical radius critR  is created during the preprocessing. The critical radius is chosen 

such that for distances greater than critR , the dipolar approximation is accurate. The correction 

magnetization tensor ijN  is calculated for each pair ( ),i j  in the near-field list as: 
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where the integration is carried over the surface of the cells i  and j .  The singularity of the inner 

integral in Eq. (3.17) is removed by using: 

 

( )0 0
lim lim

j j

j
SS S S S

i j

RI
dS d

P R
SdS′

∂ −→ →

′ = ∇ ⋅ ′ +


= − ∫ ∫ ∫P
rr  

 , (3.18) 

where P  is the projection of the distance R  on the plane of the surface [27]. Equation (3.18) 

trades the singular surface integral with a non-singular line integral, which can be calculated either 

numerically or analytically. After the singular inner integral is calculated, the remaining outer 

integral is calculated numerically by a quadrature rule. The resulting tensors ijN  are stored in the 

form of a sparse matrix, and the magnetostatic field acting on cell i  due to the interaction with all 

the other cells is given as: 

 
crit

ms dip
i ij j i

i j R
N

− ≤

+= ∑H M H  . (3.19) 

The distance critR  is chosen to ensure accuracy of the result above a prescribed threshold. 

To demonstrate the effect of critR  on the accuracy and computational time, we consider a square 

surface, 300 nm in length, composed of 1200 grains with an average grain diameter of 7.1 nm. The 

average saturation magnetization is 3600 emu/cmSM =  with a standard deviation of 3emu0 /cm2 . 

The accuracy is evaluated by estimating the normalized mean square error (NMSE) between the 
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exact tensorial field obtained considering all 2N  cell interactions (i.e. critR →∞  ), defined as  iY , 

and the approximated field for different values of critR , defined as iY : 

 




( )


2

2

2

1
2

1

crit

N

i ii i
iL

R N
i iL

i

=

=

−−
= =

∑

∑

Y YY Y

Y Y
  . (3.20) 

The error decreases exponentially fast for small values of critR  , and asymptotically 

2NMSE ) /( 1crit critR R∝  (Figure 3-6a). The results show that the error drops below 0.1% when we 

include in the tensorial correction not only the nearest-neighbor (nn) but also the next-nearest-

neighbor (nnn) interaction, which is accurate enough for many practical purposes. For critR  of the 

order of the cell diameter (i.e. only nn interaction), the time required to compute the tensorial and 

dipolar component of the magnetostatic field are of the same order, whereas for large critR  the 

computation is dominated by the evaluation of the tensorial correction (Figure 3-6b). This is 

consistent with the fact that the tensorial computational cost scales quadratically with the number 

of surrounding cells. For ~ 20 nmcritR , the time required to compute the tensorial correction is 

one order of magnitude larger than the time required to compute the dipolar field. Taking into 

account the NMSE and the computational time, the optimal critR  appears to be the value for which 

only the nn and the nnn are accounted in the tensorial approximation. 
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Figure 3-6: Evaluation of the magnetostatic field for a slab of m300 3nm 00 n× with a 3 nm thickness. In (a) is 

shown the NMSE between the semi-analytical solution and the NUFFT approximation at different critR  . In (b) is 
shown the time required to compute the magnetostatic field (solid line), with the contribution of the dipolar field 

computed using NUFFT (dashed line), and the analytical tensor (dotted line), for different critR . 

3.4  MODELING OF THE LASER HEATING  

When a laser is shined on the surface of a ferromagnetic material, the material is heated up 

due to the absorption of photons by the ferromagnetic material. The heating effect of the laser is 

incorporated in the model by solving a coupled two temperature model (2TM), where the electron 

and photons are represented by two bath with electron temperature eT  and phonon temperature 

phT , in quasi-equilibrium, coupled via the electron-photon constant e phG − . The laser power is 

coupled with the electron bath, and the energy of the system is dissipated through diffusion in the 

electron bath. At the boundary, we implement a non-uniform boundary condition to take in account 

the energy dissipated outside of the system: 

 ( ) on   e
e bc e amb

TK Th T∂
= ∂Ω

∂
−

n
 , (3.21) 

where eK  is the thermal conductivity of the electron lattice, ambT  is the ambient temperature, and 

bch  is the heat flux at the boundary. The magnetization dynamics and the thermal fluctuations are 
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coupled to the electron temperature of the system (i.e. ( )eT T t=  ). Thus, the electron temperature 

obtained by solving the 2TM, is used as input parameter in the LLB equation. 

 The thermal evolution of the electron and the phonon bath is governed by the equation: 

 ( )) ( , )( ) ( ,e
e e e e ph e e ph e ph

T TC T K T T TG T S t
t −

∂  = ∇ ∇ − − + ∂
r  , (3.22) 

 ( )e
ph

ph e pph h

T
GC T

t
T−

∂
= −

∂
 , (3.23) 

where eC  and phC  denote the specific heat of the electron and the lattice, and e phG −  is the coupling 

constant determining the energy exchange between the electron and the lattice system. For a sub-

picosecond laser pulse, the value of the specific heat coefficient for the phonon bath phC   and the 

value of the coupling constant e phG −  can be assumed to be constant. The heat coefficient for the 

lattice and the thermal conductivity depend on the temperature [28-30]: 

 ( )e e e eC T Tγ=  , (3.24) 

 0( , ) e
e e ph e

ph

K TK T
T

T =  , (3.25) 

where eγ  and 0eK  are material dependent constants, which are functions of the Fermi energy and 

the density of states. The optical source exciting the system is ( , ) ( , ) /S t I t δ=r r , where ( , )I tr  is 

the laser intensity absorbed by the material and δ  is the optical penetration. The laser intensity 

( , )I tr   is modeled as a Gaussian pulse [31]: 
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where { , , }x y z=r  is the position vector, pulseτ  is the duration of the pulse, 0F  is the peak fluence 

of the laser, and 0w  is the radius of the laser spot.  

For a sub-picosecond laser pulse, the temperature only depends on the properties of the 

material and, at most, on the initial magnetization of the system in the case of magnetic circular 

dichroism. Thus, it is possible to pre-compute the temperature dynamics as a function of space and 

time and use the result in solving the LLB equation. The diffusion term in Eq. (3.22) can be 

expressed as: 
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 Using Eq. (3.27) in Eq. (3.22) and discretizing the film into a regular square grid, it is 

possible to express the 2TM in a differential form: 
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, ,( )ph i

i i e i ph i

T
H C T T

t
∂

= −
∂

 , (3.29) 

where 2
0 / ( )i e eKα γ= ∆  , ,/ ( )i e ph e e iH TG γ−=  , and , ,/i e e i ph iC T Tγ= , with ∆  as the discretization 

length. The source iS  is defined by the average intensity acting on the volume iV . For a 2D grid, 

the finite difference scheme defined by Eq. (3.28)-(3.29) can be solved efficiently by using an 

alternating-direction-implicit (ADI) method, where the finite difference is split into two, (i) one 

taking the x-direction implicitly, and (ii) one taking the y-direction implicitly [32].  
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3.5 SIMULATIONS 

This section presents numerical results demonstrating the performance and use of the 

Voronoi simulator. It includes two simulation examples illustrating the use of the simulator for 

modeling granular magnetic systems. The first example is a simulation of perpendicular heat 

assisted magnetic recording (HAMR), where each grain of the recording medium is modeled as a 

single domain Voronoi cell, and the temperature profile of the laser has been precomputed during 

preprocessing. The second example is a simulation of domain wall motion in a nanowire with 

strong intergranular exchange coupling. 

A  HAMR 

Magnetic recording simulations in which the recording media is realistically and accurately 

modeled are invaluable for the analysis of signal quality and SNR versus areal density 

characteristics. Information gained from such analysis indicates the best way to optimize the 

recording system and the recording process for maximum storage capacity and reliability. As an 

example of the functionality of the simulator, we present recording simulations and analysis 

involving a single layer granular strip of FePt with a cross track width of 200 nm and length ranging 

from 1 mµ  to 12 mµ  . The average grain diameter in the models is 7.1 nm and the thickness is 

12 nm.  The strip consists of  ~ 500.000  grains. The material parameters are given by 

3600 emu/cmSM = , kOe(0) 90KH = , 6(0) 2.2 10 erg/cmexA −= ×  with the easy axis along the z-

axis and 0.1λ = . The anisotropy field and the exchange constant are functions of the temperature. 

For FePt, their dependency is given by 0.1( ) (0) ( )K K eH T H m T=  and 1.76( ) (0 ( ))ex ex emA TT A= , 

where ( )em T  is the equilibrium magnetization [33].  
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Figure 3-7: Results for the HAMR simulations. (a) Gaussian temperature profile induced by the laser. (b) Bit pattern 
recording for a 12 mµ  strip and zoom-in showing the action of the write field. (c) Readback signal obtained from 
the recording (black line) and periodic fitting (red line). (d) Signal (black line) and noise (red curve) power as a 
function of the linear density. 

 

The strip is subjected to an homogeneous applied field ~ 10 kOe  with a switching period 

of 2 ns  (i.e. 1 ns   bit length), and a rise time of  0.2 nsτ = . While the laser heating is introduced 

by considering a Gaussian temperature profile that moves down-track at a speed of nm/ns20v =  

(Figure 3-7a). Figure 3-7b shows the pattern recorded at the linear density of 1270 kfci .  The 

signal amplitude due to the finite size of the strip, the presence of thermal noise and the distribution 

of size and magnetic properties between grains, shows small periodic behavior that is expected in 

the ideal case (Figure 3-7c). The power spectrum was captured by first interpolating the 

magnetization pattern produced in the granular strip onto a square grid and then convolution the 

magnetization with the read sensitivity potential obtained for a modeled shielded red head. 

Comparing the signal statistics for strips of increasing length (Table 3-II), shows that the SNR 
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converges. The convergence is due to the increased amount of transitions being included in the 

statistics. 

Table 3-II: Signal statistics of an HAMR simulation with a linear density of 1270 kfci for granular strips of different 
length. 

 1 µm 3 µm 6 µm 9 µm 12 µm 

Signal power 2.77×107 3.05×108 1.15×109 2.55×109 4.70×109 

Noise power 5.29×106 2.50×107 9.26×107 1.92×108 3.72×108 

SNR 7.18 dB 10.86 dB 10.93 dB 11.22 dB 11.02 dB 

Jitter 3.05 nm 1.91 nm 1.88 nm 1.90 nm 1.83 nm 

 

B  Domain Wall Motion 

Significant research effort has been devoted to fabrication and characterization of magnetic 

nanowires (NWs) for potential use in magnetic memory and logic devices. Materials fluctuations, 

defects, and edge roughness are known to affect domain wall (DW) propagation speed, DW 

pinning and depinning properties, and reproducibility, all which bear on the performance reliability 

of future DW-based applications[34,35]. Typical structures envisioned for such applications 

consist of strongly exchange coupled grains. Using the computational framework developed in this 

chapter it is possible to simulate domain wall motion across such structures.  

Let us consider a magnetic granular film of m300 300nm nm n3× × . The left side of the film 

is initially magnetized “up”, while the right side of the film is initially magnetized “down”. The 

system is let relax, until a domain wall is created. Two cases are considered: (i) the domain wall 

displacement in a granular structure with a homogeneous distribution of the anisotropy field (i.e. 

kOe12KH = ), and (ii) the domain wall displacement in a granular structure where 3% of the grains 
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are pinned by an anisotropy of kOe50KH = . In both cases the system is assumed to be at a constant 

temperature 0 K30T =  for the duration of the simulation. 

An external field zH  is applied along the negative z-direction. In the homogeneous case, 

the domain wall propagated freely along in the x-direction (Figure 3-8a), whereas when a 

distribution of the anisotropy is introduced, the domain wall shows significant deformation in the 

magnetic structure (Figure 3-8b). For a given applied field zH  the displacement is almost linear in 

the two cases (Figure 3-8c) and we can define an average velocity of the domain wall steadyv . The 

average velocity for a given external field is proportional to the average anisotropy field kH  [36], 

and it is given by the creep-scaling law: 

 0.5
0 expsteady

b

vv
k T

Hα − 
=  −

 
 , (3.30) 

where α  is the creep scaling factor. The velocity of the DW in the homogeneous and in the pinned 

cases for 0 K30T = is fitted using Eq. (3.30) to obtain the dependence of α  versus KH  (Figure 

3-8d). If we define 1α  as the creep scaling factor in the homogeneous case, the results show that 

( )1 2

5/8
~ /K KH Hα , where 

1
e1 kO2KH =  is the anisotropy field in the homogenous case and 

2KH  is 

the average value of the anisotropy field in the pinned case.  This result is consistent with the 

experimental results [37] 
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Figure 3-8: Results for the DWD. (a) Domain wall motion in a granular structure with homogeneous anisotropy after 

4ps  when and external field zH  is applied. (b) Domain wall motion in a granular structure where 3% of the grains 

are pinned with 50 kOeKH = . (c) Displacement of the domain wall as a function of time for the homogeneous 

(circles) and pinned (crosses) case. (d) Dependence of the domain wall speed steadyv  as a function of the applied field. 

The results are fitted using the creep-law for different values of 1α .   
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CHAPTER 4 -  MICROMAGNETIC SIMULATION OF THZ SIGNALS IN 

ANTIFERROMAGNETIC FERH BY SUB-PICOSECOND THERMAL PULSES 
 

This chapter presented a simulation framework for the study of THz electromagnetic 

field signals induced in antiferromagnetic (AFM) FeRh/Pt bilayer by sub-picosecond thermal 

pulses. Our model is based on the ferrimagnetic LLB model introduced in Chapter 2 and 

coupled with a 2TM and the simulational work has been carried out using the Voronoi simulator 

introduced in Chapter 3. 

The FeRh film has been modeled as two identical sublattices 1m and 2m  , initially in 

the AFM state (i.e. 1 2= −m m  ),  coupled via an intra-lattice exchange field. The simulations 

showed how, due to the metamagnetic phase transition at the transition temperature MT   of this 

intra-lattice exchange with the temperature [38] and the break of symmetry between the 

sublattices produced by an external bias field, it is possible to induce a purely thermal THz spin 

current in the Pt due to ultrafast spin-pumping. 

A similar effect was observed in a bi-axial antiferromagnetic NiO/Pt bi-layers when a 

canting angle 12θ  between the magnetization of the two sublattices was generated in the 

direction of the hard axes with the aid of a polarized current p [39]. In our case, the FM intra-

lattice exchange field ,vk E v
⊥=H H  during the thermal excitation is at the origin of the angle 

between the sublattices 12θ  . The intra-lattice exchange field acts then, as a THz field pulse when 

MT T≤   to bring the material back to its original configuration. 



 

52 
 

4.1 MODELING FERH/PT BYLAYER 

Structurally-ordered FeRh (bcc crystal symmetry) are well known for exhibiting a first-

order phase transition from antiferromagnetic (AFM) to ferromagnetic (FM) upon heating, and 

vice-versa upon cooling [40,41]. The magnetic phase transition in FeRh consists of three 

important stages: (i) nucleation, (ii) growth and (iii) coalescence of magnetic domains. During 

a heating event, most of the phase transition is characterized by coexistence of FM domains in 

a matrix of AFM domains. As the temperatures increases, densities of these domains change 

relatively until exchange interaction builds up between the FM domains to form large single 

domain. The magnetization across the transition temperature, MT , is a continuous function of 

temperature yielding a transition that is relatively broad and it is about 10 K in the sample. This 

first order magnetic phase transition is related to the exchange constant 0,vkJ  between the sub-

lattices, and it is hysterical in temperature (Figure 4-1). 

 

Figure 4-1: Energy contribution form the inter-lattice exchange interaction 011 vkJ J=  (red dashed line) and the 

intra-lattice exchange 011 vJ J=  (yellow dotted line). The contribution of the four-spin interaction QD  can be 

included in the intra- and inter- lattice exchange. The results are reproduced from Ref. [38]. 
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Figure 4-2: A schematic of the laser-induced spin currents at the FeRh/Pt interface. The FeRh is modeled by 

magnetic sublattices, 1 2= −m m  , initially in an AFM state and oriented along the direction of 

0H=H x  . An 

ultrafast thermal pulse heats the FeRh above 
2MT   and the intra-lattice exchange becomes FM. When the 

temperature drops below
2MT  , an spin-current 

21, , ,S x S x S xJJ J +=   is induced at the FeRh/Pt interface due to 

spin-pumping. ,S xJ   is converted into a charge current ,C yJ  by the ISHE. A voltage signal VISHE is generated 

at the output by ,C yJ . The purple arrows in the Pt layer indicate electron motion bent by the spin-orbit interaction. 

 

 

In order to obtain a control over the magnetic phase transition using ultrafast heating 

with fs-laser pulses, we investigated the generation of a thermally induced THz signal from 

FeRh/Pt bilayers (Figure 4-2). The magnetization in the FeRh sublattice is computed using the 

micromagnetic simulator. The net spin current at the interface with the Pt layer is computed 

from the magnetization dynamics as:  
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π
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= =
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J m

  , (4.1) 

where ,v im  is the magnetization vector of the sublattice v  for the -thi  cell,   is the Planck 

constant, and effg↑↓  is the real part of the effective spin-mixed conductance, assumed for 
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simplicity equal in both sublattices [42]. The symbol [ ]x
⋅  denotes the component x  of spin 

current parallel to the applied field and to the FeRh/Pt interface.  The injected spin current ,S xJ  

flowing in the z-direction, is converted into a charge current ,C yJ  inside the Pt via inverse spin 

Hall effect (ISHE) [43]: 

 , ,
2

C y ISHE S x
e JJ θ  = × 

 
z σ



 , (4.2) 

where ISHEθ  is the spin Hall angle at the interface, which determines the spin-charge conversion, 

and ~σ H  is the spin polarization vector. In the absence of the bias field H  the spin polarization 

vector is zero and no spin current is observed in the Pt. 

 The magnetization dynamics of the FeRh film is model using the ferri-LLB equation 

given by Eq. (2.41). The effective field is obtained from the atomistic Hamiltonian is: 
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where 001J  is the exchange energy interaction between nearest neighbors, 011J  is the exchange 

energy interaction between next nearest neighbors, and ijklD  are the four spin exchange that 

plays a role in stabilizing the AFM domains. For simplicity, in the rest of the formulation the 

contribution of the 4-spins interaction has been neglected. The effective field and the molecular 

field are then equivalent to the ones introduced in Eq.(2.32)-(2.33) .The intra-lattice exchange 

can be rewritten as: 

 0,
,
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v v

J
m mµ

⊥  ⋅
= =  
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−
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where 10, 00vkJ qxJ=  is the micromagnetic exchange between sublattices, and 001J  is the 

nearest neighbors exchange integral for FeRh, 6x =  is the number of nearest neighbors, and 

0.5q =  is the density of elements for the sublattice v . For FeRh, the exchange integral 001J  is 

a function of the temperature [38,44], and its value has a transition from AFM to FM while 

heated above
2

00 K4MT = and from FM to AFM when cooled below 
1

50 K3MT = . This 

transition is responsible for the change in sign of vkH  during the magnetization dynamics.  

4.2 SIMULATION OF THZ SIGNAL 

Let us consider a FeRh film of m300 300nm nm n3× × . The system is discretized into 

regular cubic cells with a length nm3L = . The system is initially in the AFM phase at a 

temperature 0 K30T =  so that the magnetization of the two identical sublattices are antiparallel 

and directed along the x axis (i.e. 1, 2,x xm m= − ). A bias field Oe5 k=H  is applied along the x 

direction. At time 0t =  the film is subjected to a thermal excitation, modeling the laser with a 

duration of 50 fspulseτ = . The pulse is modeled as a homogeneous power source along the xy 

plane, such that the absorbed intensity is given by: 

 
2
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2
( ) exp 2.77 pulse

pulse

I t I
t τ
τ

  −
    

=


−


 , (4.5) 

where 0I  is the effective peak power absorbed by the material.  The saturation magnetization 

in the two sublattice 0 0
, / 2S v SM M=  is obtained from the saturation magnetization of FeRh in 

the FM state 0
SM  . The parameters used in the simulations are given in Table 4-I. 
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Table 4-I: Magnetic and thermal properties for the FeRh film obtained from Ref. [38] 
Symbol Value Unit Description 
λ  0.05  Atomistic damping 

0
,S vM  540  3emu/cm  Saturation magnetization 

(0)KH  9  kOe  Anisotropy field 

0, (0)vkJ  1411.2 0−×−  erg  Intra-lattice exchange energy 

(0)exA  
74 10−×  erg/cm  Exchange constant 

1MT  400  K  Transition temperature (AFM-FM) 

2MT  350  K  Transition temperature (FM-AFM) 

CT  700  K  Curie Temperature 

eγ   
33.5 10−×   -1 -2J mol K   Electron heat capacity constant 

lC   
14.54 10×   -1 -1J mol K   Phonon specific heat capacity 

e phG −   
121 05 10. ×   -1 -1 1J mol K s−   Electron-photon coupling 

 

 Below the transition temperature 
1MT , the intra-lattice exchange scales with the 

saturation magnetization as 1.93
0, ( ) ~ ( )vk eT mJ T . Above 

2MT , a crossover behavior occurs, and 

the exchange integral becomes positive. The transition from the AFM/FM state is gradual with 

a slope of 10 K
MT∆ = . 
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Figure 4-3: Results for the spin-current induced in FeRh. (a) Temperature dynamics induced by the laser. The 

horizontal dashed lines indicate the transition points 
1MT  and 

2MT . The vertical dashed line indicates the time 

of transition from the FM to the AFM exchange. (b) Precession induced on the magnetization components 1,zm  

and 2,zm . (c) Dynamics of the intra-lattice exchange induced on 1m  (black line) and on 2m  (grey line). (d) 
Renormalized value of the spin-current generate by the sublattice 1 into the Pt layer. 

 

 The thermal pulse given in Eq.(4.5) excites the film above 
2MT  within ~ 10 fs and the 

intra-lattice exchange initially in the AFM state ( 0, ( ) 0vk TJ < ) is in the FM state ( 0, ( ) 0vk TJ < ) 

(Figure 4-3a). The magnetization of the sublattices are subjected to a longitudinal ultrafast 

demagnetization due to the rapid change in temperature. After eT  reaches its peak, the electron 

system starts to cooldown and within ~ 2 ps  the electron bath reaches the equilibrium 

temperature 
1e ph MT T T= < . During the cooldown, the magnetization vector in the two 

sublattices are subjected to a small re-magnetization. The random fluctuations introduce small 
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deviations from the equilibrium on the yz plane. Since the sublattices are no longer anti-parallel, 

the intra-lattice exchange field is proportional to: 

 12~ (1 cos( ))vk θ−H  , (4.6) 

where 12θ  is the local angle between the two sublattices. Since the intra-lattice exchange is 

positive during the cooldown, the magnetization 1m  and 2m  starts to align decreasing the value 

of 12θ  (Figure 4-3b). When the temperature is reduced below the transition point 
1MT , as the 

electron system cools down, the intra-lattice exchange energy decreases rapidly and return in 

the AFM state. The intra-lattice exchange field at the transition point acts on the two sublattices 

like a THz field pulse with ~ 1THzvkf  and with an amplitude ~ 50 kOevkH in the x-direction 

(Figure 4-3c). The intra-lattice exchange generates a spin-current 
1,S xJ  and 

2 ,S xJ  in the two 

sublattices (Figure 4-3d). The net spin current induced on Pt is given by the sum of the spin 

currents in the sublattices.  

 

Figure 4-4: Renormalized net spin-current injected into the Pt layer by spin pumping for H 5 kOe=   (dotted grey 
line), H 5 kOe= −  (dashed grey line), and H 0 kOe=  (solid black line). The results are shown for (a) FeRh, 

and for (b) a hypothetical AFM magnetic material that doesn’t show a phase transition below CT .  
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 In the absence of an applied field, the net spin current induced in Pt is zero. The 

presences of an external bias field in the direction of the magnetization is enough to break the 

symmetry between the two sublattices and generate a net non-zero spin current that is at the 

origin of the THz signal (Figure 4-4a). If the material does not present a phase transition below 

CT  (pure AFM), the net spin current is approximately zero even in the presence of a symmetry 

breaking field (Figure 4-4b). 

4.3 SUMMARY 

In this chapter, we presented a modified version of the LLB model for ferrimagnets to 

simulate the behavior of a material that shows a first-order phase transition from AFM to FM 

upon heating. The framework has been used to simulate the generation of a THz signal in a 

FeRh/Pt bilayer induced by a thermal pulse.  

The results show that the intra-lattice exchange between the two sublattices generates a 

spin-current in the two sub-lattices. The net spin-current generated in zero, unless an external 

source breaks the symmetry between the two lattices. This symmetry breaking effect is 

produced in the model by an external bias field in the direction of the magnetization.   
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CHAPTER 5 -  A PHENOMENOLOGICAL THEORY OF THE OPTICAL 

MAGNETIZATION REVERSAL 
 

Increasing the magnetization reversal speed and the speed of domain wall motion has 

been a subject of interests in magnetic memory devices. In general, logics bits are obtained by 

selectively setting the magnetization vector of individual domains in a particular direction to 

represent binary strings of 0s and 1s. The fastest and most efficient of these systems available 

commercially involves precessional switching driven by a magnetic field. In these devices an 

external field pB  is applied as a write pulse over a time period τ . The magnetization vector 

precesses around the field until pB τ  reaches a certain value at which the switching occurs. 

However, for pulse of the duration on the order of 1 psτ ≈ , the switching occurs randomly over 

a wide range of magnetic fields [45] due to the non-uniform magnetization dynamics. This non-

uniform excitation put a limit to how fast the magnetization reversal can be driven by using an 

external applied field. 

A faster alternative to magnetic induced reversal was first demonstrated experimentally 

by Stanciu et al. [46] in ferrimagnetic GdFeCo using sub-picosecond circular polarized laser 

pulses. The reversal in such a material was attributed to a combination of two phenomena: (i) a 

helicity dependent difference in absorption by the media depending on the polarization of the 

light and the direction of the magnetization, due to a magnetic circular dichroism (MCD), (ii) a 

transient ferromagnetic exchange above the compensation temperature between the  two 

antiferromagnetically coupled sublattices[47,48]. The combination of the two effect can give 

rise to reversal by both linear and circular polarizations. 
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Similar optical reversal has been observed in ferromagnetic CoPt multilayer films and 

granular FePt when excited by multiple sub-picosecond circular polarized pulses [24,49]. Due 

to the nature of these materials, and the lack of two antiferromagnetically coupled sublattices, 

the mechanism used to explain the magnetization reversal in ferrimagnetic material is not able 

to explain the optically induced reversal in ferromagnets.  

This chapter presents a model of the physical process of the magnetization driven by an 

optical excitation and electronic demagnetization. The model can be used to describe the 

phenomenon of helicity-dependent all-optical magnetic switching (HD-AOS) and helicity-

dependent domain wall displacement (HD-DWD) observed in ferromagnetic FePt and CoPt 

films and granular media subjected to a series of sub-picosecond laser pulse. Other models have 

tried to explain HD-AOS  in ferromagnets using MCD, varying the fluency absorbed in the two 

temperature model based on the direction of the magnetization [50,51], or assuming the 

existence of a strong optically induced magnetic field produced by the interaction of the 

magnetic material with the light via the inverse Faraday effect (IFE).  

The MCD studies showed that assuming a difference in absorption between the 

magnetization of the order of  3 5%MCD∆ = −   it is possible to simulate a partial reversal in FePt 

or CoPt. These values of MCD∆  overestimate those observed in experiments, where the 

difference in absorption has been shown to be of the order of 1% [52-54]. In out simulations 

we find that for the difference of the order of 1% the effect of the thermal fluctuations is enough 

to counter the effect of the magnetic circular dichroism. 

The existence of the IFE has been demonstrated in experiments [55-57]. The IFE is a 

special case of the angular momentum transfer mechanism from photon to electron spin, 



 

63 
 

confined to the second order of the oscillating electric field. The effective magnetic field that 

IFE is expected to produce bases on theoretical results and the duration of the field through the 

ultrafast laser pulse are inadequate to explain the AOS experiments. In particular, it has been 

shown that to produce a consistent switching the duration of the induced IFE field has to be 2-

5 times longer than the laser pulse that generates it and the magnetic field strength has to be 

extremely strong [50]. 

In our model, the optical excitation rises naturally from the equation of motion of the 

magnetization, instead of being introduced through an artificial field or difference in absorption.  

5.1  HELICITY-DEPENDENT OPTICAL EXCITATION 

A ferromagnetic material with an out-of-plane uniaxial anisotropy has two possible 

stable state for the magnetization. The magnetization is defined to be “up” if the magnetization 

vector in the direction of the positive z-axis, and “down” if the magnetization vector is in the 

direction of the negative z-axis.  

In the HD-AOS experiments, a magnetic material initially in a random magnetic state 

(i.e. demagnetized film or equal numbers of grains in the up/down state) is excited by a ~ 100 fs  

pulsed laser source and subsequently imaged via the Faraday rotation. The repetition rate of the 

laser is of the order of ~ 1 kHz  giving enough time for the material to relax back to room 

temperature (no thermal accumulation). Figure 5.1-1a shows that in the presence of a circular 

polarized light a net magnetization (white and dark domains) is attained, while no net 

magnetization is observed with linear polarization. In particular, σ+  polarization leads to a net 

magnetization in the “up” state and σ−  to a net magnetization in the “down” state. Figure 5.1-1b 
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shows that the generation of the domain is a function of the fluency of the laser. The nucleation 

of a domain is only observed for fluencies higher that a threshold value 1F . Increasing the 

fluence above 2F  only thermal demagnetization is observed. This behavior leads to the 

characteristic ring pattern observed in HD-AOS experiments where the center of the media is 

demagnetized (higher fluency), and the optical reversal is only observed in a small range of 

fluencies 1 2F F F≤ ≤  . 

 

 

Figure 5-1: Magneto-optical response in zero field of a 15-nm FePt granular film sample starting from the 

demagnetized state. (A) laser scans for σ+  , σ−  , and linear polarized light (π ). (B) images of the magnetic 

domain written by keeping the laser at a fixed position of the sample  for σ+  (black domains) and σ−  (white 
domains) at different laser powers. Reproduced from the original work in Ref. [24]. 

 

Recent experiments have shown that the HD-AOS reversal in ferromagnets is the 

product of two effects [58]: 



 

65 
 

1) A domain nucleation that is skewed in the direction preferred by the circular 

polarization.  

2) An ultrafast expansion of the domains favored by the circular polarization due to 

helicity-dependent domain wall displacement. 

The helicity dependent domain wall displacement has been observed for fluencies below 

the one required to observe nucleation [52,59]. In these experiments, the center of the laser 

beam (i.e. the peak fluency) is focused between two domains. The system is then subjected to 

a series of N pulses and the displacement of the domain wall is measured (Figure 5.1-2a). The 

center of the laser represents the hottest region in the sample. For linearly polarized light, the 

domain wall tries to move toward the hottest region due to thermal displacement. When a 

circular polarized source is present, the domain wall moves from the hottest region expanding 

the domain based on the light helicity (i.e. σ+  would expand the “up” domain, and σ−  would 

expand the “down” domain). If the fluence is too low, 0F F<  , no significant domain wall 

displacement is observed.  

For a given peak fluency of the laser, the displacement is then a function of the light 

helicity. Figure 5.1-2b shows the displacement as a function of the helicity. The maximum 

displacement happens for the circular polarized light (i.e. σ+  and σ−  ) and zero for the linear 

polarized light. We argue that HD-DWD results from the balance of 3 contribution: 

1) Domain wall pinning: the optical/thermal energy must overcome the energy barrier 

to move the domain wall. 

2) Light helicity: the helicity defines the speed and the direction of the displacement 

and tends to move the domain wall toward the colder region. 
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3) Temperature gradient induced by the laser heating: the temperature gradient 

counters the effect of the light helicity trying to move the domain wall toward the 

hottest region. 

 

Figure 5-2: (a) Magneto-optical images of HD-DWD in CoPt for a ~ 40 fs  laser pulse with circular polarization 

σ+  , σ−  , and for linear polarization (π ). The star indicates the center of the beam spot and N is the number of 
laser pulses. (b) Normalized domain wall displacement induced as a function of the percentage of light helicity. 
Reproduced from the original work in Ref. [59] 
 

The balance between the thermal gradient and degree of helicity determines the maximum 

displacement of the domain wall. Decreasing the degree of helicity from the circular polarized 

to linear polarized light would displace gradually the domain wall toward the center of the laser. 

 

5.2 THREE LEVEL LAMBDA SYSTEM 

Our aim is to build a model (i) of the physical process of the magnetization reversal, 

which is driven by an optical excitation and electronic demagnetization, (ii) to which the 

thermal effects such as laser heating may be added, and (iii) ready for numerical simulations. 
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In this section, we concentrate on the first step. The model contains three key states: two 

ferromagnetic ground states separated by uniaxial anisotropy and an optically excited state. 

We describe the basic optical process as the circularly polarized laser pulse exciting the 

initial ferromagnetic ground state to an excited state with energy above the anisotropy potential 

barrier between the two ground states and a sufficient amount of spin reversal to bias the state 

against reverting back to the original magnetic ground state. The excited state decays by the 

spin-conserved electron-electron interaction fast electron processes to the low-energy excited 

states in the anisotropy energy valley of the reversed magnetization ground state. The decay to 

the final ground state is dominated by interactions between phonons and magnons. The optical 

excitation leg is reasoned to be supported by the extant experiments and theories and the fast 

decay leg supported by the electronic causes of the demagnetization process, both of which are 

incorporated in this section. 

In a ferromagnet, the proximate energy above the two ground states and around the 

optically excited state are the charge and spin states, the latter including the magnons in the 

Heisenberg model or the spin-flip excitations in the Stoner model [60,61]. This scenario is 

equivalent to rendering the skeleton three states to an open system. Thus, the Λ   system may 

be treated by the quantum dynamics of a standard three-level system [62], governed by coherent 

and incoherent optical excitations with the upper level subject to a fast dissipation to the reversal 

state. The continua around these three states are represented by three probability distributions 

of the three states to provide the fluctuation effects of the magnetic sector and of the optical 

sector. The equations of motion with fluctuations are equivalent to the modified Bloch 

equations for the two-level system [63,64]. 



 

68 
 

The three key basis states of all the spins of the system, shown in Figure 5.2-1, are 1 ,

2 , the two macrospin ferromagnetic ground states in a uniaxial anisotropy system and 3  an 

optically excited state. State 2  is chosen to be the initial magnetization state that can be excited 

by a right-handed (σ+  ) circularly polarized light to an excited state 3  of reversed 

magnetization, which decays without change in magnetization direction into the reversal state 

1  .  

  

Figure 5-3: Schematic representation of the three-level system. The labels 1g↑ =   and 2g↓ =   denotes 

the magnetization-up and the magnetization down in the ground state, respectively. 3e↑ =   denotes the 

magnetization-up excited state. The optical transition from the 2  to 3   is driven by the σ+   light. The relaxation 

from 3  to 1   is a fast-non-spin flip process, which is a non-radiative Coulomb interaction induced decay. The 

fourth state e↓   is present to indicate a possible pathway for the σ−  light. 

Because the Λ system is open, subject to control and dissipation, we represent its mixed 

state by a density operator ρ̂ . We find it useful to transform the matrix elements to the defined 

Bloch vectors for pairs of states, in particular, the magnetization vector m  between the 
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magnetization states  1  and 2  , the polarization p  between the optically connected states  2  

and 3 , and, similarly, polarization d  of the fast decaying channel between states 3  and 1  : 
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where the three transverse components are contained in 

 x ym m im± = ±  , (5.2) 

and, similarly, for p±   and d± . The unit trace of the density matrix constrains the choice of the 

longitudinal component to two components 

 11 22 33zm ρ ρ ρ= − −  , (5.3) 

 11 22 33zp ρ ρ ρ= − − +  , (5.4) 

which we refer to, respectively, as magnetization and optical polarization for the convenience 

of computation and their correct limiting case behavior. When state 3    is vacant, 1zp = −   , 

then the upper left 2 × 2 submatrix represents the spin sector with the off-diagonal terms as 

leakage, and similarly for the optical sector for the lower submatrix at the initial magnetization 

state when 1zm = −   , and for the decay sector of states 1 and 3 when z zm p= − . 

The density operator is a Hermitian operator subject to two restrictions: (i) it is positive 

(easily tested by its eigenvalues be 0λ ≥ ); (ii) its trace is ( )ˆTr 1ρ = . It follows that  

( )2ˆTr 1ρ ≤  , where the equality holds if and only if the state is pure. In a two-state system, the 

Bloch vector is confined to a sphere with its surface defined by 2ˆTr( ) 1ρ =   for pure states. 

However, in systems with more than two states, the corresponding hypersphere does not present 
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a dividing hypersurface for valid representation of states. The issue is discussed in Appendix 

A. The second issue is that the mapping between the density matrix elements and the 

polarizations (optical and magnetic) is not a one-to-one mapping [65]. An obvious example is 

the two dimensional submatrices, where spin 1/2 rotation has a period of 4π  and not 2π [66], 

arising from the phase terms in the non-diagonal elements. Because the three key states are 

macrospin states, we may consider the mapping one-to-one, neglecting the subtle quantum 

features such as the spin 1/2 case, whence the complete rotation of the macro-spin polarization 

vector is 2π . 

We model the dynamics of the magnetization as that of the Λ  system of three most 

probable or average states. The continua surround the respective macrospin states and they are 

treated as an environment that makes the dynamics of an open system. Therefore, the macrospin 

equations of motion contains coherent driving terms, incoherent pumping terms, and dissipative 

terms. A formal method to include the dissipation terms in the Markovian approximation is by 

expressing the master equation of the reduced density matrix of the macrospin state, known as 

the Lindblad equation[67], in terms of both the unitary Hamiltonian and the Lindblad operators 

ˆ
kL , 

 

3
† †

1

ˆ 1ˆ ˆ ˆ ˆˆ ˆ[ , ] { , }
2k k k k

k

d i L L L L
dt
ρ ρ ρ ρ

=

 = − + − 
 

∑  . (5.5) 

The first term on the right drives the unitary dynamics by the Hamiltonian     in units 

of frequency, reduced in the rotating wave approximation of the optical frequency between state 

1   and 3 , to the matrix representation in the basis set of the LLL model, 
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 

23

2

0

0

2

z

z

z

i

i

B B

B B

B

σ

σ

+

+

−

+

 
 
 
 = Ω
 
 
 
 

−Ω ∆

− −  . (5.6) 

Here, effγ=B H  , where γ  is the gyromagnetic ratio assumed to be the same for the 

excited and ground states and effH  is the effective magnetic field including the contribution 

from the applied, anisotropic, magnetostatic, and mean-field approximation of the 

micromagnetic exchange defined in Chapter 2. The optical excitation is introduced via the Rabi 

frequency of the σ+   light,  σ+
Ω  defined by: 

 232 E
σ

µ
+

+

Ω =


,  (5.7) 

where    is the Plank constant,  E+  is the amplitude of  electric field related to the σ+  light , 

and 23µ   is the electron transition dipole moment between state 2  and 3  . In addition, 23∆    

in Eq.(5.6)  is the detuning of the light frequency from the resonance frequency between states 

2  and 3 . The second term in the right-hand side of Eq. (5.5) is composed of the dissipative 

energy terms given in terms of the Lindblad operators ˆ
kL . Details of the construction of these 

operators and equations are given in Appendix B. 

When the density matrix is converted to the eight components of the polarizations and 

magnetizations, we obtain a system of equations that describes the magnetization dynamic of 

the magnetic system excited by a circular polarized light source: 

 2( ) 1(1 )
2y z y z xx z y

d m B m B pB d
dt

m σ+
= + − Ω− +  , (5.8) 
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 2( ) 1(1 )
2z x x z yy x z

d m m m pB d
dt

B B σ+
+ − Ω= − −  , (5.9) 

 ( )2 ) (1z x y y x l zB Bd m mm
dt

pΓ= − + +  , (5.10) 

 )(1z x d z
d p p
dt

p= Γ +Ω −  . (5.11) 

 23 (2 1 )
2

( )y y x xx z z x y t
d p p p B B
dt

m d d pσ+= − − +
Ω

+ −∆ + + Γ  , (5.12) 

 23 ( )y x x x y y yt
d p p B p
d

Bd d
t

= − Γ− −∆  , (5.13) 

 23 ((
2

) )2 1
x z x y yy x x xt

d d m B p B p d
dt

B d σ+
= − + −∆ Ω − −Γ  , (5.14) 

 23
1) ( )
2

(2y z x y x x y y t y
d m B p B p d
dt

d B d σ+
= − Ω +−∆ − −Γ−  . (5.15) 

The magnetic relaxation is left out of the equation to focus on the optical excitation. The 

damping component can be re-inserted by means of the Lindblad operators in the magnetization 

sector or using the phenomenological damping of the LLB equation. The longitudinal decay 

rate lΓ , is taken to be equal to the Coulomb collapse rate dΓ   of the channel d  described in 

Appendix B, while the transverse decay rate tΓ   is a function of the pure dephasing rate *Γ  : 

 *

2
d

t
Γ

Γ = +Γ  . (5.16) 

In the optical excitation from state 2 to 3 , the localized orbital of an electron in the 

macrospin state goes from d (or f )  to p (or d), respectively, with an angular momentum 

decrease of one    by the σ+  photon traveling against the spin axis via the optical dipolar 

interaction. The optical process by itself does not flip the electron spin. The switch is caused by 

the spin-orbit coupling of the optically involved states to spin-flip states [68,69]. The total 

angular momentum conservation may be broken by other causes in experiment [70] and in 
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theory [69]. In the case of HD-AOS, this can be achieved  using polarized light, as shown in 

experiment [71], and can be explained in theory [72] by time-reversal symmetry breaking of 

the ferromagnetic material. The driving mechanism of the laser pulse is modeled by a coherent 

drive σ+
Ω  between states 2  and 3 , which is proportional to the optical electric field. 

The relaxation process largely preserves the spin direction through the non-radiative 

Coulomb collapse, which is much faster than spin relaxation. Since the single electron 

conserves its spin direction in the electron-electron scattering process, the system favors the 

decay from 3   to 1   over the decay from 3   to 2 . The electron relaxation process also plays 

a strong role in the sub-picosecond demagnetization under fast optical excitation, as found in a 

variety of fast optics experiments [73]. The loss of the MOKE contrast of the remnant 

magnetization saturating at high excitation densities was associated with an instantaneous 

“Stoner gap collapse” in the same paper. This fast relaxation is explained by an electron 

scattering theory [74] and computations using the density functional theory [75], which includes 

the electron-electron interaction in the spin polarized configuration. 

5.3 FOUR LEVEL LAMBDA SYSTEM 

In the previous section we have developed a model to describe the optical excitation of 

a magnetic media due to the interaction with the circular polarized light using a three level Λ  

system. The model can be expanded to take into account all forms of polarization including 

linear and elliptical light. The system can be described by a two Λ  system in which the two 

optically excited states are not optically connected. The pathway for the σ−  optical excitation 

is built by symmetry.  
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Figure 5-4: Schematic representation of the four-level system. The labels  1g↑ =    and  2g↓ =    denotes 

the magnetization-up and the magnetization down in the ground state, respectively. While 3e↑ =  and 

4e↓ =   denotes  the magnetization-up and magnetization-down excited states, respectively. The optical 

transition from 2  to 3  is driven by the σ+  and the optical transition from 1   to 4  is driven by the σ−  . The 

relaxation from 2  to 3  and from 4  to 2   are fast-non-spin flip processes, which is a non-radiative Coulomb 

interaction induced decay. The states 4  and 3  are assumed to be decoupled. 

 

The four key basis states are shown in Figure 5.3-1. As before, 1  and 2  are the 

macrospin ground states, while 3  and 4  are the excited states. It is useful to transform the 

matrix elements to the defined Bloch vectors for pairs of states. We introduce the polarization 

q  between the states 1  and 4  ,  the polarization b  for the fast decay channel between the states 

4  and 1 , and the polarization r  between the excited states 3  and 4 . Using this 

nomenclature, we can write the density matrix for the two Λ  system as: 
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 ( )
1

ˆ 1
2

1

z z

z z

z

z

m q m d q
m m p p b
d p p r
q b r q

ρ

− + −

+ + −

− − −

+ + +

 
 
 =
 
 
 − 

+
− +

+
 . (5.17) 

The unit trace of the density matrix constrains the choice of the longitudinal component to three, 

 22 33 4411ˆ ˆ ˆ ˆzm ρ ρ ρ ρ−= − +  , (5.18) 

 22 33 4411ˆ ˆ ˆ ˆzp ρ ρ ρ ρ− − + −=  , (5.19) 

 22 33 4411ˆ ˆ ˆ ˆzq ρ ρ ρ ρ+= + −  , (5.20) 

which, we refer to, respectively, as magnetization and optical polarizations for the convenience 

of computation and their correct limiting case behavior. The Hamiltonian   used in Eq. (5.5) 

is given by: 

 

23

14

0
2

01 2
2

0 0
2

0 0
2

z

z

z

z

iB

B

B

B

B

B

i

i

i

σ

σ

σ

σ

−

+

+

−

−

+

Ω 
 
 

Ω 
 
 =

Ω 
∆ − 

 
Ω ∆ +  

−

− −
   (5.21) 

where 41∆   is the detuning of the light frequency from the resonance frequency between states 

4   and  1 , and the optical excitation induced by the σ−  light is introduced via the Rabi 

frequency σ−
Ω : 

 412 E
σ

µ
−

−

Ω =


  (5.22) 



 

76 
 

where E−  is the amplitude of  electric field related to the σ−  light, and 41 32µ µ=  is the electron 

transition dipole moment between state 4  and 1 . 

  For simplicity and symmetry, the decay rate from the channel 3 1→  and from the 

channel 4 2→  are assumed to be identical so that we can assume 
41 32l l lΓ = Γ = Γ . Using a 

similar reasoning for the pure dephasing, we can obtain t t tσ σ+ −
Γ = Γ = Γ .  

When the density matrix is converted into fifteen components of the polarizations and 

magnetizations, we obtain a system of equation that describes the magnetization dynamic of 

the magnetic system excited by an elliptical polarized light source: 

 ( )(2 1)
2

( )y z y z z x
x

z y
dm B m B q p d
dt

m B σ σ+ −
+ − Ω= − + +Ω  , (5.23) 

 ( )(2 1)
2

( )z x x z z y
y

x z

dm
m m q p d

dt
B B B σ σ+ −+= − − +− Ω Ω  , (5.24) 

 )2( ) (z
x y y x l z z

d Bm B mm
d

p
t

q= − +Γ+  , (5.25) 

 )(1z
x d zpdp p

dt σ+
Ω Γ= − +  , (5.26) 

 )(1z
x d z

dq q q
dt σ−

Γ− + −Ω=  , (5.27) 

 23 (2 1 )
2

( )y y x x
x

z z x y t
dp p p m d d p
dt

B Bσ+
Ω

+= − − +∆ + + Γ−  , (5.28) 

 32 ( )y
x x x y y t y

dp
p d d

d
B B p

t
= − Γ−∆ −  , (5.29) 

 41
1 (2 1 )
2

( )x
z xz x yy y x t

d Bq q q
t

Bm b b q
d σ−

= − + − +∆ Ω + − Γ− ,  (5.30) 

 41 ( )y
x x x y y t y

d
q B b B b

q
d

q
t
= + −∆ Γ−   (5.31) 
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 23 (( ) )
2

2
2

x
z xy x x y x t xy

d BB dd m r B p p d
dt

σ σ+ −= − −
Ω Ω

∆ − −Γ+ −  , (5.32) 

 23 ) ( )
2

( 2
2

y
z x y y x x y y t y

d
B

d
B d m r B p p d

dt
σ σ+ −= − −

Ω Ω
∆ − + Γ− − ,  (5.33) 

 41(
2

2 )
2

( )x
z x x y yy x tx x

d BB b
t

q q bb m r B
d

σ σ− += + −
Ω Ω

∆ − −Γ+ −  , (5.34) 

 41(2 ) ( )
22

y
x y y x y xz x y t

d
B b q

b
m r B B

dt
q bσ σ− += − + − − + +

Ω Ω
∆ −Γ ,  (5.35) 

 ( )2 1 2
2 2

x
y x x l x

d
t
r Bz

d
r b rbσ σ+ −+ +

Ω Ω
= − +∆ + ∆ Γ  , (5.36) 

 ( )2 1 2
2 2

y
y yy l y

d
t
r

B
d

z r rb bσ σ+ −
Ω Ω

= + +− − +∆ + ∆ Γ  . (5.37) 

It can be shown that if 0σ+
Ω ≠  and 0σ−

Ω = , the system of Eq.(5.23)-(5.36) reduces 

to the model derived in Eq. (5.8)-(5.15) since the channels q , and b  are excited only if 0σ−
Ω ≠ , 

and the channel r  is excited when both 0σ+
Ω ≠  and 0σ −Ω ≠ . An estimate of the amplitude 

of the magnetic field E+  and E−  for all polarization is given in Appendix C. 

5.4 THE INCOHERENT REGIME 

Let us consider the case in which magnetic system is excited by a σ+  light source. The 

population is assumed to be initially in state 2  (i.e. ˆ 1ρ =   or 1zp = − , and 1zm = −  ). Let us 

assume that the excitation provided by the laser is at the resonant frequency (i.e. 23 0∆ = ) and 

no external field is applied (i.e. 0=B  ). For simplicity, we choose the pure dephasing 
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* / 2lΓ = Γ   such that l tΓ = Γ = Γ .  Under these condition it is possible to rewrite the 

magnetization dynamic for the system as a function of the population zp  and zm  as: 

 ( )1z
l z

dm p
dt

= +Γ  , (5.38) 

 
2 2 2

2 2
2 2

2 2
z z

z z
d p dp p
dt dt

mλω ω
 Ω Ω

+ + +Γ

−= − 


 . (5.39) 

The equation for the zp  given in Eq. (5.38) can be seen as the equation of a damped 

harmonic oscillator in which 2 2ω = Ω +Γ  is the natural frequency and /λ ω= Γ  is the 

damping ratio, where the right hand side represent the force acting on the oscillator. The optical 

excitation induces oscillations of the population between state 2  and state 3 . In the absence 

of a decay (i.e. 0Γ = ),  the population fluctuates between the ground state 2  and the excited 

state 3  without any change in the overall magnetization. When 0Γ ≠ , a fraction of the 

population leaks from state 3  to state 1  emptying the population in state 2 , inducing the 

magnetization reversal (Figure 5.4-1).  
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Figure 5-5: The optical excitation induces an harmonic oscillation with frequency ω  between state 2  and 3 . 

After every oscillation, a fraction of the population leaks from state 3  to state 1  due to the presence of the 

damping λ  . 
 

When the damping ratio 1λ   (i.e. Ω Γ  ), the polarization population zp  behaves 

as an overdamped oscillator (Figure 5.4-2c) and magnetization reversal is characterized by a 

combination of a coherent magnon excitation, oscillating with frequency ω , and an incoherent 

magnon excitation driven by the decay rate  (Figure 5.4-2a).  
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Figure 5-6: Dynamics of the magnetization and polarization population. The results are shown for (a, c) the 
coherent regime, Ω Γ , and (b, d) the incoherent regime, Ω Γ .   

 

When the damping ratio 1λ   (i.e. Ω Γ  ), the polarization population zp  behaves 

as an overdamped oscillator (Figure 5.4-2d) and no coherent magnon excitation is observed 

during the magnetization reversal (Figure 5.4-2b).This behavior can be explained with the rapid 

quenching of the rotation of the off-diagonal components in the density matrix given by Eq. 

(5.1) or by Eq. (5.17) by the decoherence Γ .  When this happens, the contribution of the second 

derivative in Eq. (5.38) can neglected, and the magnetization reversal can expressed as an 

incoherent process driven by the effective pumping 2~ /G Ω Γ .  

In many practical case, the decay rate lΓ  and the dephasing *Γ  are much larger than 

both the Rabi frequency σ±
Ω  and applied field B (i.e. ,l t σ±

Γ ≥ Γ Ω B  ). In this case, the 

system is said to be in the incoherent regime.  



 

81 
 

In ferromagnetic materials, such as FePt and CoPt, the decay rate is estimate to be of 

the order of f0.6 .0 s1d = −Γ , based on the lifetime of the photoexcited electron in Fe [76]. The 

peak optical power used in the HD-AOS experiments is of the order of 20.01 0. W m04 T /cP = −

, that leads to an electric field inside of the material on the order of 8 8 m1 310 10 V/E × ×= − . If 

we assume a dipolar transition moment on the order on 12 34 1eÅµ µ= =  , we obtain a Rabi 

frequency for the purely circular polarized light on the order of -10.02 0.04 fsσ±
Ω ≈ − . These 

values are consistent with those obtained from ab-initio computation [77]. It is then reasonable 

to assume for this kind of material that the optical transition happens in the incoherent regime. 

Under the assumption of (i) incoherent regime and (ii) negligible detuning (i.e. 

34 12, σ±
∆ ∆ Ω ) it is possible to rewrite the magnetization dynamics equations produced by the 

optical excitation only as a function of the two polarization population zp  , zq  , and the 

magnetization vector m . This allows us to obtain a system of 5N equation, slightly increasing 

the memory requirement of the system without increasing significantly the complexity of the 

problem.  

If we ignore interactions between the magnetic field B  and the off-diagonal 

components of the density matrix, we can use the operator method [78] to remove the explicit 

dependence of the coherence and write the magnetization dynamics as: 

 
( ), ,) ( )2(

2
t t

y z y z z x
x

z y
dm B m B q p m
d

G

t

G
m B σ σ+ −

=
+

+ +− −  , (5.40) 

 
( ), ,( () )2

2
y

z x x z x y
t t

z z

d Gm
B m

G
B q p m

d
B

t
m σ σ+ −+

− −= + −  , (5.41) 
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 ( )2( )z
x y x zy z lm Bd pm B m

d
q

t
+ += Γ−  , (5.42) 

 ( ) ( ), ,1
2 2
l lz

inc z z z

G Gdp p p m
dt

σ σ+ +
 

= − Γ + −+


+


 , (5.43) 

 ( ) ( ), ,1
2 2
l lz

inc z z z

G Gdq p q m
dt

σ σ− −
 

= Γ + −−


+


 , (5.44) 

where ( )/inc l t l tΓ Γ Γ= Γ +Γ  and the effective  longitudinal pumping , pmlG σ  and the effective 

transverse pumping ,tG σ±
 are given by: 

 
( )

2 2

, ,,
2l t

t tl

G Gσ σ
σ σ

± ±

±±

Ω Ω
=

Γ
=

+Γ Γ
 . (5.45) 

5.5 ANALYSIS OF THE OPTICAL EXCITATION 

The system of equations given by Eq.(5.39)-(5.43) form the basis of the opto-magnetic 

model. The focus of this section is to estimate the efficiency of the optical excitation, and the 

error introduced by the incoherent regime approximation.  

We consider the effect of a continuous optical excitation (i.e. 0( ) 0t tΩ = Ω ∀ ≥  ) on an 

isotropic particle, when an external field zB  is applied. Assuming a constant value of the decay 

rate, it is useful to express the results as a function of the normalized time t′  : 

 lt t′ = Γ  . (5.46) 

In a similar fashion, we introduced the normalized optical and magnetic components: 

 
, , , ,

/

/

/ , , / ,

/ , / , ,
z z l l t t l

l l l t t l inc inc l

B B

G G G G
σ σ

σ σ σ σ

± ±

± ± ± ±

′ Γ Ω′ = Ω Γ Γ′ = Γ Γ

′ Γ ′ Γ Γ =

=

= = ′ Γ Γ
 . (5.47) 
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Using the normalized unit, it is possible to define the reversal rate 1/t revtγ = ′  as the 

inverse of the reversal time revt′ . The reversal time is chosen as the time at which the magnetic 

particle can be considered in the final state for the different polarization of the light: 

 
+

-

for  
( ) for  

0.

0.75
0.75

01 for   
z revm t

σ
σ
π

+
−


′ =

 ±
 . (5.48) 

 

The linear polarization π  is obtained when 0σ σ+ =
Ω = Ω ≠ . In this case, the 

contribution of the two optical excitation are compensated, leading to the same population in 

the two ground states 11 22ρ ρ=  (i.e. 0zm =  and z zp q= −  ). Thus, for linear polarized light, the 

optical excitation generates an ultrafast optical that can be explained by a Stoner excitation 

process [79] . 

The error introduced by the incoherent regime approximation is defined as a function 

of the reversal rate: 

 ,0 ,1

,0

Error rev rev

rev

γ γ
γ

=
−  , (5.49) 

  

where ,0revγ  is the reversal rate obtained solving the exact model, and ,1revγ  is the reversal rate 

obtained solving the incoherent approximation. In this analysis we considered two cases of 

interest: 

1) The case where the magnetization is parallel to the direction of propagation of the 

light. 
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2) The case where the magnetization is at an angle θ  with the direction of propagation 

of the light. 

The first case serves as a testbed of the magnetization reversal induced by an elliptical 

polarized source. The second is used to study the optical damping effect introduced by the 

exchange of momentum between the light and media. The analysis is focused on the realistic 

range of values for the optical excitation. Given the range fluency used in the HD-AOS 

experiments and the decay rate for FePt and CoPt, we focus our analysis to the range of optical 

excitation 0.01 1σ ±≤ Ω ≤  and for a transverse decay rate 1/ 2 1t≤ Γ ≤ .  

A  Magnetization parallel to the light propagation direction 

We first consider the case where the magnetization and the field are parallel to the 

direction of light propagation, assumed in the z-direction: 

+

-

for  
( ) for  

1 for   

1
0 1zm

σ
σ
π

−
+


=

±
 . (5.50) 

Given the initial condition for the magnetization, the only channels that are activated in 

the model are the populations zm  , zp    and  zq , and the coherence channels xp  and xq . The 

incoherent regime can be written as: 

 ( )z
z z

dm q p
dt

=
′

+  , (5.51) 

 ( ) ( ), ,1
2 2
l lz

inc z z z

G Gdp p p m
dt

σ σ+ +
′ ′ 

= − Γ′ + − ′ 
+ +


 , (5.52) 

 ( ) ( ), ,1
2 2
l lz

inc z z z

G Gdq q q m
dt

σ σ− −
′ ′ 

= Γ′ + −
′

−


+


 . (5.53) 
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In the case l tΓ = Γ , the incoherent decay rate is 1/ 2incΓ′ =   and the system of Eq. (5.50)

-(5.52) has a simple analytical solution for the magnetization of a purely circular polarized 

source: 

 
( )/2

, 1 2
2

( ) 1 2
1 2

G

t
t

G
z

te G e
m t e

G

σ

σ
σ

σ
σ

±

± ±

±

±

− ′ ′ − ′
− ′ ′′ ± ≈ ±=

′

−

−
   . (5.54) 

The last approximation is obtained under the assumption of , 1lG σ±
 , valid in the 

incoherent regime. When the initial magnetization is parallel to the direction of the light 

propagation, the magnetization is reversed through a purely longitudinal magnetization 

reversal, where the speed of the reversal is defined by the effective optical pumping. Since the 

field zB  only affects the precessional motion of the magnetization, in the absence of a 

longitudinal damping, the magnetization dynamics is unaffected by the presence of the field. 

Thus, the magnetization dynamics is a function of only the Raby frequency and dephasing. 
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Figure 5-7: Magnetization dynamics induced by a σ+  (red lines), σ−  (green lines), and π  (blue lines) polarized 

light source, for the two Λ  model (solid lines) and the incoherent regime approximation (dashed lines).The results 
are shown for (a) 0.1Ω′ = ,  (b) 0.5Ω′ = , (c) 0.8Ω′ =  , and (d) 1.0Ω′ = . The transverse decay rate is 

1/ 2tΓ′ = .  

 

For values of 0.1Ω′ < ,  the difference in the magnetization reversal between the full 

model and the incoherent regime approximation are negligible (Figure 5.5-1). Small difference 

starts to appear for values of ~ 0.5Ω′  (Figure 5.5-1). For 0.8σ±
Ω′ ≥ , the coherent excitation 

cannot be neglected anymore, and the incoherent excitation approximation in not able to 

describe correctly the dynamics of the system (Figure 5.5-1c,d). 

For a given longitudinal decay rate lΓ ,  the reversal rate revγ   is proportional to the 

σ±
Ω  and inversely proportional to tΓ  (Figure 5.5-2a,b). Remembering the definition of σ±

Ω  

given in Eq. (5.7), it is logical to assume that stronger absorption would lead to larger Ω  and a 
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faster reversal, since the magnitude of the electric field is proportional to the square root of the 

optical intensity absorbed by the media 0~ Iσ±
Ω . However, a stronger absorption in metals 

also means higher temperature and higher decay rate tΓ . The higher temperature introduces an 

addition source of decoherence in the system through thermal fluctuations, reducing the 

effectiveness of the optical pumping and introducing a secondary demagnetization when the 

optical excitation is removed that counter the contribution of the optical excitation.  

 

Figure 5-8: Reversal rate as a function of the Rabi frequency and the transverse decay rate for (a) the two Λ  
model and (b) the incoherent regime approximation. (c) Shows the error introduced by the incoherent regime 
approximation 

In the absence of pure decoherence (i.e. 1/ 2tΓ′ = ), the incoherent regime 

approximation leads to accurate results for 0.3σ±
Ω′ ≤  (Figure 5.5-2c). The introduction of 

decoherence can extend the range of validity of the approximation. The result is expected since 
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any source of decoherence, being the dephasing, the detuning, or the temperature fluctuation, 

would rapidly quench any coherent oscillation of the coherence channel. 

B  Magnetization at angle θ   with respect to the light propagation 

If the initial magnetization is non-parallel to the direction of the light propagation, the 

system is subject to a precession effect due to the presence of the external field zB   and to a 

damping effect due to the momentum exchange between the photons and the spins. In the 

incoherent regime approximation, we neglect the effect of the field on the coherence channels 

p± , d±  , b±  , and r± . This assumption is valid for an applied field on the order of several Tesla 

( z lB Γ  ), which is usually the case in experiments. 

In the absence of an external field, the incoherent approximation has a simple analytical 

solution for the purely circular polarization light σ±  when t lΓ = Γ  and , ,l tG G Gσ σ σ± ± ±
= =  . 

Considering an initial magnetization ( ) ( ){ }csin ,0, osσ θ θ
±
=m  , the solution for the 

magnetization is given by: 

 ( )( ), 1 1 cos e G t
zm σ
σ θ ±

±

− ′ ′≈ ± +  , (5.55) 

 ( ) /2
, esin G

x
tm σ

σ θ ±

±

− ′ ′=  . (5.56) 

Solving numerically for θ  it is possible to cast the result as a function of the polar angle 

σθ ±
 in time. It is possible to define the optical pumping induced by the optical excitation as: 
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±
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Using the analytical solution for the magnetization given by Eq. (5.54)-(5.55) in Eq. 

(5.56) we can obtain the optical damping related angle σθ ±
 induced by the circular polarized 

light (Figure 5.5-3). For a σ+  light, if the magnetization is 0zm <  (i.e. / 2θ π≤ ), the optical 

excitation acts as an anti-damping, pushing the magnetization in plane; if the magnetization is 

0zm > (i.e. / 2θ π> ), the optical excitation acts as an effective damping pushing the 

magnetization in the final direction of the magnetization. 

 

Figure 5-9: Dynamics of the optical damping σθ ±
 for an initial polar angle of / 4θ π=  (red line), / 2θ π=  

(green line), and 3 / 4θ π=  (blue line). The black dashed line represents the point at which the magnetization is 

reversed, if the initial magnetization is 0zm <  for σ+  or 0zm >  for σ− .  
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The damping/anti-damping effect explains the displacement of the domain wall. Let us 

consider a magnetic film with out-of-plane anisotropy. An optical excitation σ+ , tends to 

increase the magnetization with 0zm >  aligning in the direction of the easy axis (optical 

damping). At the same time, the optical excitation tries pushing the magnetization with 0zm <   

reducing their overall magnetization (optical anti-damping). The overall contribution of the 

damping/anti-damping effect expands the domain “up” and contracts the domain “down”, 

resulting in an effecting optical displacement of the domain wall (Figure 5.5-4). 

 

Figure 5-10: Domain wall displacement induced by a circularly polarized excitation σ+  . 

 

As in the case win which the magnetization is parallel to the direction of propagation of 

the light, the reversal rate revγ   is proportional to the σ±
Ω  and inversely proportional to tΓ . In 

the absence of an external applied field, the error introduced by the incoherent regime 

approximation when the magnetization is at an angle θ  with respect to the direction of the light 
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propagation is the same observed for the magnetization parallel to the light propagation (Figure 

5.5-5a). The presence of the precessional effect driven by the external field zB , does not modify 

the accuracy of the incoherent regime approximation (Figure 5.5-5).  

 

Figure 5-11: Error introduced by the Incoherent regime approximation for an initial angle of the magnetization 

/ 4θ π=   (a) as a function of tΓ′  and σ±
Ω′  for 0zB′ = , and (b) as a function of zB′  and σ±

Ω′  for 1/ 2tΓ′ =
. 

 

The results show that in the range of optical excitation and applied fields realistically 

used in the HD-AOS and in the HD-DWD, it is possible to describe correctly the magnetization 

dynamics using the incoherent regime approximation. 
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CHAPTER 6 -  MODELLING OF OPTICAL PHENOMENA IN 

FERROMAGNETIC THIN FILM 
 

In this chapter, we present an analysis of the optical excitation of ferromagnetic thin 

film excited by elliptical polarized laser source. We first introduce the equation of motion for 

ferromagnetic material augmented by the relaxation coefficients and the thermal fluctuations 

acting on the magnetization sector. The model is then used to study the opto-magnetic excitation 

induced by a series of sub-picosecond laser pulses on a thin FePt film. 

6.1 LANDAU-LIFSHITZ-LAMBDA MODEL 

Using the incoherent regime approximation derived in the previous chapter, it is 

possible to derive a system of equation that combines the optical excitation with the 

magnetization dynamics driven by the effective field effH  and the molecular field EH . Given 

the different timescale of the optical excitation and the magnetic relaxation, it is possible to 

introduce the damping in the two Λ  system by adding the longitudinal and perpendicular 

damping to the equation as a phenomenological effect. The thermal fluctuations are assumed to 

interact only with the coupled ground state 1  and 2 , leading to the same thermal fluctuation 

derived for the LLB model. The magnetization dynamics can then be described as: 
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/
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

+
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 .  (6.5) 

The model for the magnetization dynamics described by the incoherent approximation 

of the two Λ  system and augmented by the Bloch dissipative terms given by Eq. (6.1)-(6.5) is 

called Landau-Lifshitz-Lambda (LLL) model. When the system is not excited by a circular 

polarized laser and after enough time has passed to observe a complete relaxation of the 

polarization and fast decay channels (i.e. 1zp = −  and 1zq = ) , it is easy to show that the LLL 

formulation reduced to the classical LLB formulation [5]. The speed of the relaxation from the 

excited state to the ground state is governed by the decay rate, which was assumed to be 

rad/fs0.6d =Γ . The choice of the decay rate is dictated by experimental observations. A higher 

value of dΓ , up to 1 rad/fs , has not shown any significant difference in the numerical 

simulations. Smaller values of dΓ  would lead to accumulation of spins in the 3  state and a 

delayed re-magnetization that has not been observed experimentally. 

In the simulations, the decay rate is assumed to be constant during the entire duration of 

the optical excitation, while the effective pumping coefficients are assumed to be a function of 
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the instantaneous optical intensity absorbed by the laser (i.e. 0~ ( ) /I t IG  where 0I  is the peak 

absorbed intensity). 

6.2 MODELING OF FEPT FILMS 

To test the LLL model for a realistic case, we consider a continuous FePt film excited 

by a series of 100 helicity polarized sub-picosecond laser pulses ( 50 fspulseτ = )  with a repetition 

rate of ~ 1 kHz . 

The laser is modelled as combination of an optical source through the Rabi frequency, 

and a thermal pulse modeled through the 2TM described in Sec.3.4. Both the optical and the 

thermal source acting on the -thi cell is modeled by the laser intensity absorbed inside the 

material: 

 
2 2

1, 2, 1, 2, 0 2
0

2
( , , , ) ( , 7) e 2. 7xp pulsei i

i i i i i i i
pulse

tx yI z z t z z I
w

τ
τ

  
− −     

−+
=


r  ,  (6.6) 

where 0 00.94 / pulseI F τ=  is the peak Intensity of the laser, { },i i ix y=r  is the position of the 

center of mass of the -thi cell on the xy-plane, and i  is the average intensity absorbed by the 

cell: 

 1, 2,
1, 2,

1( ) exp e, xpi i
i i i

i i

z zRz z
V d

δ
δ δ

    
−    

    

−
= − −  . (6.7) 

Here, R  is the reflectivity of the material, δ  is the optical penetration length, 1,iz  and 

2,iz   are the top and bottom vertical coordinates of the cell, and the height of the cell is given 

by 2, 1,i i id z z= − . The z-axis is oriented in the direction of the light propagation (i.e. 1, 2,i iz z≤ ), 
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where the origin 0z =  is set at the interface between the laser and the film (Figure 6-1a). The 

position of the center of mass ir  is given with respect to the center of the laser pulse, where the 

absorbed optical intensity I  is at its maximum (Figure 6-1b).  

 

Figure 6-1: Modeling of the thermo-optical pulse. (a) Vertical discretization of the elements excited by an optical 
pulse. (b) Spatial profile of the absorbed laser intensity and (c) temperature dynamics induced at the center of an 

FePt film for a peak intensity of 
2

0 TW0 8 m. /cI =  and an average absorbed intensity 6%= . 
 

 

The temperature dynamics induced by the absorbed laser intensity I  is precomputed at 

the beginning of the simulation (Figure 6-1c) using the 2TM introduced in Sec.3.4 and the 

thermal parameters used in computing the temperature dynamics are given by fitting the 

experimental results given in Ref. [33] with the thermal properties of typical non-noble 

transition metals thin films [80,81]. The thermal parameters used in the simulations are given 

in Table 6-I. 
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Table 6-I: Thermal parameters used in the simulations of FePt. 
Parameter Value Unit Description 

eγ  750   -3 2Jm K−   Atomistic damping coefficient 

phC  62.6 10×   -3Jm K  Specific heat of the lattice 

e-phG  1711 10×   -3 -1Wm K  Coupling constant between baths 

0eK  73  -1 -1Wm K  Thermal conductivity at ambT  

pulseτ  50   fs  Curie Temperature 

δ  24.5   nm   Optical penetration length 
n  3.2   -1fs  Index of refraction 
k  2.6   -1fs  Extinction index 

ambT   300   K   Room temperature 

 

After the laser excitation is removed, the electron bath reaches the equilibrium with the 

phonon bath in few picoseconds. This fast-thermal relaxation is followed by a secondary one 

that is dominated by the conduction in the phonon bath, that brings the system down to room 

temperature in ~ 50 ns∆ . Given the magnetic relaxation time for FePt at room temperature 

and the repetition rate of the laser, it is reasonable to assume that the system has time to relax 

completely and that no accumulation of heat is present between pulses. Thus, the temperature 

profile precomputed at the beginning of the simulation is used as an input for the LLL model 

for all pulses. 

For temperatures 1 0.8 CT T≤ , no significant changes in the magnetization are observed 

for an FePt in the microsecond timescale. For the largest value of the peak intensity 0I  used in 

the current work, the blocking temperature 1T  is reached at the center of the laser beam after 

~ 1 ns . After each pulse, the dynamics of the magnetization is let to evolve for 2 ns  to account 

for the relaxation of the system. The system is then forced to relax to room temperature to 

eliminate any thermal accumulation effect, and the next pulse is applied.  
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A  Helicity Dependent All Optical Switching 

Let us consider a continuous square m1.2 1m .2µ µ×  FePt film and 6 nm  thickness. 

The film is initially saturated along the negative z direction. A laser with a beam radius of 

0 5 m2.w µ= is focused at the center of the film. The laser has a peak fluence of 

2
0 m45 J/cmF = .  The peak fluence 0F  is chosen such that the temperature at the center of the 

beam is above CT  when the electron bath relaxes to the value of the phonon bath. This 

guarantees that any magnetization changes induced by the optical excitation are negated by the 

thermal demagnetization during cooldown. Thus, at the center of the beam, only thermal 

demagnetization is observed. 

Table 6-II: Magnetic parameters used in simulation of FePt film.  

Parameter Value Unit Description Source 
λ  0.01   Atomistic damping coefficient Ref. [33] 

0µ  3.24   
Bµ  Magnetic moment for FePt Ref. [51] 

0
exA  

62.2 10−×   emu/cm  Exchange constant at 0 KT =   Ref. [33] 
0
KH  20   kOe  Anisotropy field at 0 KT =  Ref. [33] 

CT  700   K  Curie Temperature Ref. [51] 

S  3 / 2    Effective spin number Ref.[82] 

lΓ  0.6   -1fs  Optical longitudinal decay rate Ref.[76] 

tΓ  0.6   -1fs  Optical transverse decay rate Ref.[76] 

eµ  0.7   eÅ  Transition dipole moment  

 

The system is discretized over identical strongly coupled cubic cells of length 6 nm∆ =

. Hence, the three-dimensional system is reduced to a two-dimensional (2D) problem. Since the 

effective thickness of the film nm6d =  is much smaller than the optical penetration length 



 

98 
 

24.5 nmδ = , the average intensity i  absorbed by each cell can be obtained by using the 

transmission line model for a film on a substrate [83]. Let us consider the thin film deposited 

on a dielectric substrate and in contact with air (Figure 6-2a).  The optical power absorbed can 

be obtained by modeling the film as a shunt impedance in a transmission line model with 

impedance given by the surface impedance  

 
( )

0

0i 1S d
ZZ

k ε
=

−
 , (6.8) 

where 0 120Z π= Ω  is the impedance of free space 0 photon/2k π λ=  is the wavenumber with 

photon nm800λ =  is the wavelength of the photons, and in kε = −  is the complex refractive 

index. By solving for the transmission line model in Figure 6-2b, it is possible to estimate the 

fraction of optical power absorbed in the thin film as: 

 ( )
2

1 1 10 in 0
in 1

n 0

cos 1i S
S

Z V Z ZV Z Z Z
Z Z Z

ϕ − − −−
= = + = +

+
  , (6.9) 

where inZ  is the input impedance and V  is the voltage the entrance of the transmission line, 

and ϕ  is the phase of SZ . Assuming an index of refraction 1 3n =  for the dielectric substrate, 

the average intensity absorbed into the film is 6%i =  . 
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Figure 6-2: Schematic view of the thin film deposited on a dielectric substrate: (a) Geometry and (b) equivalent 
transmission line circuit. 
  
 

The magnetic parameters used in the simulations are summarized in Table 6-II. The 

exchange constant ( )exA T  and the anisotropy field coefficient ( )KH T  scale with the 

temperature as 0 1.76( ) ( )ex ex eT A m TA =  and 0 0.1( ) ( )K K eT H m TH = , respectively.  

Let us considered the case of purely circularly polarized light σ+  (i.e. 0σ+
Ω = Ω  and 

0σ−
Ω = ) and of a purely linearly polarized light π   (i.e. 0 2/σ σ−+

Ω = Ω=Ω ).  After several 

pulses, it is possible to distinguish three different regions inside the film (Figure 6-3): region 

(1) where no change of magnetization is observed, region (2) where an effective magnetization 

reversal is observed only for the σ+  polarization, and region (3) where the material is 

completely demagnetized. The observed optical reversal is cumulative effect that happens over 

the course of a set of sub-picosecond optical excitations, and its efficiency is a function of the 

local peak intensity ( )2
0 0p /( ) exI r rI w −=  . We define the local peak intensity absorbed at 
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the boundary between region (1) and region (2) as 1I  , and the local intensity absorbed at the 

boundary between region (2) and region (3) as 2I . 

In region (1), 1( )I r I≤ , the intensity of the light, is below the threshold required to 

nucleate a domain or to displace the domain nucleated in a neighbor region within the duration 

of the pulse. 

In region (3), 2( )I r I≥ ,  and the electron bath relaxes to the value of the phonon bath at 

a temperature close or above CT . Since the secondary thermal relaxation of the phonon is order 

of magnitude slower than the electronic relaxation, the system is subjected to an extended 

thermal demagnetization that negates the effect of the optical contribution.  

 

Figure 6-3: Effect of the laser beam on a saturated film in the “down” direction. On the left side the laser pulse is 

linearly polarized (π  ), on the right side it is circularly polarized σ+ .  
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In region (2), 1 2( )I I r I≤ ≤ , and different behavior can be observed for the σ+  and π  

polarized light.  To study the behavior of the optical excitation in this region, let up define two 

parameters: 

•  ( ( ))n I↑ r  is the probability of nucleating a domain with magnetization up during 

a single pulse with local optical intensity ( )I r  . 

• ( ( ))n I↓ r  is the probability of nucleating a domain with magnetization down 

during a single pulse with local optical intensity ( )I r  . 

For the π light, random nucleation is present in observed at the interface between region (2) 

and region (3). The equal contribution of σ+  and σ−  leads to an optically driven 

demagnetization of the film as discussed in Sec. 5.5A. Thus, the probability of nucleating a 

domain in the up or down direction is identical in this region ( n n↑ ↓= ). 

For the σ+  light, the contribution of σ+ near the interface between region (2) and (3) 

leads to an optically induced reduction of the saturation magnetization ( )SM T
↓

 for domains in 

the “down” direction, and an increment of the saturation magnetization ( )SM T
↑

 for domains 

in the “up” direction with respect to the expected saturation magnetization in the absence of 

optical excitation ( )SM T , as discussed in Sec. 5.5. During the cool down, the difference is 

magnetization between the two domains leads to different stability against the thermally 

induced reversal during cooldown.  

Hence, the domain “up” nucleated during the previous pulses ( S SM M
↑
> ) are made 

more stable by the optical excitation with respect to the domains with magnetization down (
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S SM M
↓
< ), leading to a higher probability to nucleate domain “up” (i.e. n n↑ ↓> ) after each 

pulse, leading to an effective magnetization reversal [49].  

 Moreover, in continuous films, the σ+  optical excitation is able to produce a helicity-

dependent reversal towards the down state [58]. This secondary mechanism increases the 

dimension of the “up” states domains and merges them together, creating a continuous 

switching ring after several pulses at the interface between region (1) and (2). The presence of 

this switching ring is consistent with what is observed in the experimental work on FePt and 

CoPt of Refs. [11,49,52]. 

 

Figure 6-4: Optical magnetization reversal induced by σ+  light after 2,15, and 100 pulses. The plots show the 
average magnetization as a function of the distance r  from the center of the beam. The black dotted lines delimit 
the region of the optical reversal ring.  
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Figure 6-5: Average magnetization inside the optical reversal ring as a function of the number of pulses. 
 

 

The magnetization inside the optical reversal ring, region (2), follows a rapid 

demagnetization in the first few pulses, followed by a slow re-magnetization in the up state. 

The domain up generated at the interface between region (3) and region (2) are slowly pushed 

outward by an optically induced domain expansion over several hundred pulses (Figure 6-4). 

The net magnetization inside the ring increases linearly with the number of pulses until a plateau 

is reached, and the optical excitation is balanced by the effect of the thermal demagnetization 

(Figure 6-5).  These simulation shows the same behavior observed experimentally in multilayer 

Pt/Co/Pt through indirect measure of the anomalous Hall voltage [58].   
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B  Helicity Dependent Domain Wall Displacement 

Let us consider a long FePt strip m1 0.2 m 2.µ µ×  FePt film and 6 nm  thickness. A 

domain wall is created at the center of the strip (Figure 6-6). The strip is divided into an up 

domain on the right side of the strip and a down domain on the left side of the strip.  A laser 

with a beam radius of 0 0 m4w µ= is focused at the center of the strip. The laser has a peak 

fluence in the range 2
0 40 44 mJ/cmF = − .  These peak fluences are chosen to ensure 

1 0 2I II<  , so that no nucleation is observed inside the strip. Given the large beam radius and 

the relatively low fluence, the temperature gradient between the center of the strip and the edge 

at the equilibrium is of the order of ~ 0.2 KT∆ . 

 

 

Figure 6-6: Initial setup for the HD-DWD simulation. A domain wall is generated at the center of the strip. The 
white star indicated the center of the laser beam spot and the temperature profile along the x direction is given in 
the plot. 
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Figure 6-7: Domain wall displacement in nm as a function of the number of pulses for different peak fluence. 
 

The temperature gradient moves the domain wall toward the center of the beam (hot 

spot) whereas the optical excitation σ+ increases the dimension of the up domain by pushing 

the domain wall via the ultrafast optical damping/anti-damping described in Sec. 5.5B. The 

balance between the thermal and the optical effect on the domain wall, determined the 

elementary displacement induced by the optical excitation after each pulse (Figure 6-7). The 

results show that the average displacement per pulse is a linear function of the local peak 

intensity ( )I r . Hence, for a Gaussian pulse, the speed of the domain wall displacement, DWDv , 

is expected to be maximum during the first pulses when the peak intensity at the domain wall 

is maximum and decreases linearly with ( )I r ,  finally stopping when 1( )I r I≤ . This behavior 
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is qualitatively consistent with the experimental observation on CoPt thin films carried over by 

Medapalli and Quessab  [52,59]. 
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CHAPTER 7 -  EVALUATION OF THE THERMAL FLUCTUATIONS IN THE 

LANDAU-LIFSHITZ-BLOCH MODEL  
 

Understanding the magnetization dynamics at high temperature is important for our 

fundamental understanding of nanomagnetism and for a set of applications, such as heat assisted 

magnetic recording technologies (HAMR) [84-86] and ultrafast optical processes 

[24,52,58,59]. Numerically modeling such systems is complicated because the material 

properties change significantly at elevated temperatures, especially at temperatures near or 

above the Curie temperature. 

Atomistic spin models have been used to provide parameterization of thermal 

properties, such as the equilibrium magnetization  ( )em T  , anisotropy, and susceptibility [87]. 

The atomistic models, however, are not fit to simulate large-scale systems, such as those of 

common interest in magnetic recording and opto-magnetic simulations. To solve this problem, 

several micromagnetic models have been proposed that use a macrospin to represent the 

behavior of an ensemble of atoms. The field acting on this magnetization vector is obtained 

from the atomistic Hamiltonian via the mean field approximation as shown in Chapter 1. In 

micromagnetic models, the average magnetization of the system at a certain temperature is 

described by the equilibrium magnetization obtained from the atomistic model. Additionally, 

elevated temperatures result in thermal noise. The introduction of stochastic fluctuations that 

correctly model the behavior of this noise is of practical importance to study the magnetization 

behavior, such as reversal time, signal to noise ratio, and jitter in HAMR. 
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Several stochastics forms have been proposed to introduce the thermal fluctuations in 

the LLB model [6,7,88]. These models have several limitations when applied to thin films and 

granular media, because they either:  

• Overestimate the strength of the thermal fluctuations, leading to a value of the 

magnetization at equilibrium for the macrospin different than the one expected 

from the atomistic model [7].  

• Neglect to introduce the thermal fluctuation on the magnetization length, 

ignoring the thermal effect when the thermal energy is comparable to the 

molecular field (i.e. ~ CT T ) [88].  

Overestimating the strength of the fluctuation might leads to the wrong estimation of 

the SNR in numerical model, in particular for small granular structures, making these models 

unable to correctly describe the noise effect HAMR simulations. Moreover, the shift from the 

equilibrium magnetization make these stochastic models unfit to be used in multiscale modeling 

frameworks. 

Neglecting the thermal fluctuation on the direction of the magnetization length, allow 

to preserve the value of the equilibrium magnetization at elevated temperature, making these 

kinds of models more suited to multiscale modeling. However, ignoring the contribution of the 

thermal fluctuations even above the curie temperature CT , leads to an incorrect thermal 

demagnetization dynamics when the material is subjected to an ultrafast thermal pulse [33]. 

In this chapter, we introduce an alternative form for the stochastic LLB and LLL model 

which is consistent with the solution of the Fokker-Planck (FP) equation and it is consistent at 

low temperature with the fluctuations obtained using the Fluctuation-Dissipation Theorem 
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(FDT). The main feature of this stochastic model is the ability to preserving the magnitude of 

the equilibrium magnetization without ignoring the stochastic contribution of the longitudinal 

component, allowing the model to correctly describe the thermal magnetization dynamic 

induced by an ultrafast laser pulse. 

The model is based on the formalism introduced by Garcia-Palacios [17] and Garanin 

[6]. The model is validated against other existing formulation of the stochastic LLB by 

considering the distribution of the magnetization at equilibrium for a single macrospin particle. 

7.1 THE LLB-LANGEVIN EQUATION 

The starting point of our derivation is the LLB equation introduced in Sec 2.3. We 

construct the Langevin form by introducing the stochastic fluctuations in the orthogonal 

components of Eq.(2.39) an additive term to the field, including precession, longitudinal 

relaxation, and transverse relaxation components. This leads to three orthogonal multiplicative 

noises. The Langevin form of the magnetization dynamics can be written as: 

3 3 3
(0) (0) (1) (1) (2) (2)

1 1 1
( , ) ( ) ( , ) ( )( , ) ( , ) ( )i

i ik k ik k ik k
k k k

dm B t L t B t L tA B tt L t
dt = = =

= + + +∑ ∑ ∑m m m m  , (7.1) 

( )
0

2
0 0

) /
(

1 (
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J m m
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βγ γα γα
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× × 
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 − ×  


 = − −


m m H
m H







 , (7.2) 

( )(0) (1) (2) 2
2 2

1

k

ik ijk j ik i k ik ik i k
j

B m B m B m mm m
m m
γα γαγ δ⊥

=

= = = −∑   , (7.3) 

where { }, ,x y zm m m=m with , ,i x y z= , ijk  is the Levi-Civita symbol defining the totally 

antisymmetric unit tensor, and ikδ   is the delta function. The “Langevin” sources ( )v
kL   are 

modelled as Wiener stochastic processes and are assumed to be (i) Gaussian with zero mean, 
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(ii) stationary, (iii) and such that ( ) ( )v
kL t  and ( ) ( )v

kL t τ+   are correlated only for a time intervalτ

that is much shorter than the time required to observe an appreciable change in the 

magnetization ( i.e. we assume that the collision time between spins is much shorter than the 

micromagnetic relaxation time). Under these assumptions the Langevin sources can be written 

as: 

 ( ) ( ) ( )( ) 0, ( ) ( ) )2 (l
v v v

k k v klL t L t L s D t sδ δ= −=  , (7.4) 

Where vD  with 0,1, 2v =  are the diffusion coefficients to be determined by solving the 

associated FP equation at equilibrium. 

7.2 THE FOKKER-PLANCK EQUATION 

The time evolution of the transitional probability density function ( , )f m t  governing the 

magnetization can be obtained by solving the Fokker-Planck equation associated to the LLB-

Langevin equation, Eq. (7.1). Since the noise enters in the system in a multiplicative way, the 

correct Langevin equation has to be solved using the Stratonovich calculus interpretation to 

obtain the correct thermal equilibrium properties [17]. Using the Stratonovich calculus it is 

possible to write the FP equation in the form of a continuity equation for the probability density 

f : 

 
( )2

( ) ( ) ( )

0

v
jkv v v

i v ik ik jk
i v k j ki j j

Bf B fB B
t m m

A D
m=

   ∂∂  
 −

∂ ∂= − −    ∂ ∂ ∂ ∂      
∑ ∑ ∑ ∑ ∑  . (7.5) 

The derivate of the functions ( ) /v
jk jB m∂ ∂  can be expressed explicitly as: 

 
(1) (1) (2)3 3 3 3

2 2
1 , 1 1 1

0 2 2jk jk jk
jik k k

j j i j jj j j

B B B
m m

m m mm m
γα γαγ ⊥

= = = =

∂ ∂ ∂
= = = −

∂ ∂
=

∂∑ ∑ ∑ ∑  . (7.6) 
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The noise-induced drift coefficient ( ) ( ) /v v
ik jk j

k j
B B m∂ ∂∑ ∑  in the FP equation can be 

written, using the result in Eq. (7.6) as: 

 
(0) (2) (1)3 3 3 3 3 3

(0) (2) (1)
2

1 1 1 1 1 1

2
0jk jk jk

ik ik ik i
k j k j k jj j j

B B B
B B B m

m m mm
γα

= = = = = =

=
∂ ∂ ∂

∂ ∂ ∂
= =∑ ∑ ∑ ∑ ∑ ∑   . (7.7) 

 Using Eq.(7.7) in Eq.(7.5) it is possible to rewrite the FP equation in an explicit form: 
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 , (7.8) 

where the last term in the equation is due to the noise-drift component acting on the 

magnetization length. The FP equation should be solved in the stationary case (i.e. / 0f t∂ ∂ =  ) 

to obtain the value of the diffusion coefficients. The solution of Eq.(7.8) in the stationary state 

diverges from the Boltzmann distribution due to the presence of the noise-drift component. This 

difference is negligible at low temperature and becomes significant for temperature close to CT . 

The solution can instead be found in the form of a Poisson-like distribution: 

 
( )0

2 2
0 0

( )( ) exp exp
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b b
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f f m f
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 ⋅ 
 =   

=
 

−

−

m Hmm   , (7.9) 

where ( )M m  is the micromagnetic free energy of the system defined in Eq.(2.19), and 0f  is a 

scaling factor. The solution of the FP equation associated to the LLB-Langevin is not unique, 

but the physical quantities obtained by averaging over different realizations are the same if the 

choice of the diffusion coefficients solve the FP equation, as shown for the Landau-Lifshitz 
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equation in Ref. [17]. Under the assumption of uncorrelated fluctuations, we can choose to set 

0 0D =  in Eq.(7.8) and set the following condition for the fluctuating strength at the 

equilibrium: 

 0eff =×m H  , (7.10) 

 
2 2 2 2
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D
m m

γ α γα⊥ ⊥   × × = × ×  m m H m m H .  (7.12) 

The diffusion coefficient can then be found in the form: 

 1 20 0
b b

S S

k T k TD D
M V M V

η
γα γα⊥

= =


,  (7.13) 

where the diffusion coefficient 2D  has been found by noticing 0E× =×m m H  for any m , and 

the η  coefficient at the equilibrium is a function of the temperature: 

 0 0 0

0 0 0

( ) /
( )

1 S

SB
m J

J m J
B mβη
β β′=
− 

 

 . (7.14) 

Below CT , the value of the instantaneous magnetization at the equilibrium is well 

defined and 0η = , whereas above CT , the solution can be obtained by expanding the Brillouin 

function in Taylor series around 0, leading to: 

 0

0

1 (/ 3
/ 3 ( )

) C

C

J T C S T
J C S T
βη

β
− −

= ≈




 , (7.15) 

where ( ) / (3 3)C S S S= + , with S  being the effective spin number for the ferromagnetic 

material, and where the approximation in Eq. (7.15) has been obtained under the assumption 

eE ffH H  . The diffusion coefficient 1D  can then be rewritten as: 
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 . (7.16) 

The diffusion coefficient shows that below CT  the effect of the fluctuation on the 

longitudinal component of the magnetization is negligible. The micromagnetic magnetization 

is obtained by averaging over random dissipative processes where the spin exchange interaction 

is the dominant force of the system. When the temperature rises above the CT , the contribution 

of the thermal fluctuation and the contribution of the spin-exchange interaction are comparable 

and a fluctuation has to be included on the direction of the magnetization. Since the vector 

length cannot assume negative values, the distribution of the magnetization for an isotropic 

ferromagnetic particle cannot be represented by a symmetric Boltzmann distribution. This kind 

of non-Boltzmann distribution is common in physics to describe the distribution of a vector 

length in the presence of an external fluctuation source, e.g. the wind speed in many wind power 

generation models. 

To understand this behavior we can consider the magnetization length for a small 

particle as the sum of a discrete population of N contained inside the elementary volume V  . 

For simplicity we consider the spin to be able to assume only states 1zS = ± . The magnetization 

length can then be expressed as: 

 
1

1 N

i
i

m S
N =

= ∑  . (7.17) 

At low temperature (i.e. CT T ) the spin tends to locally align in the same direction 

inside V . When the temperature is close to the Curie point (i.e. CT T≥ ), the number of spin 
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up and spin down are almost the same, providing a value of the equilibrium magnetization close 

to zero and a wider standard deviation. Since the magnetization length is a positive number, the 

spin flipping cannot produce a negative magnetization length creating an asymmetric Poisson-

like distribution as expected from Eq. (7.9). It has to be noticed that this deviation from the 

Boltzmann distribution is a proportional to the size of the single domain particle, since the 

diffusion coefficient is proportional to 1
2 ~D V − . For larger magnetic particle, (i.e. N →∞ )  the 

contribution of the thermal fluctuation on the longitudinal component of the magnetization 

becomes negligible at all temperature. It is important to note, however, that in various 

applications, e.g. HAMR, the dimension of the grains is of the order of  [86,89], and a correct 

assessment of the noise in this range is important for providing quantitative and qualitative 

information on the contribution of the noise. Moreover, the intensity of the longitudinal noise 

can influence the intensity of the optical source necessary to describe the optical reversal in 

ferromagnetic and ferrimagnetic media [49,90]. 

   

7.3 FLUCTUATION-DISSIPATION THEOREM 

In the previous section, we obtained the diffusion coefficients for the thermal fluctuation 

by solving the FP equation associated with the Langevin form of the LLB equation. Using that 

approach we deal with a complete non-linear problem resulting from multiplicative noise in 

term of the probability distribution f . The absence of fluctuations at low temperature obtained 

in Eq.(7.16) may seems counter-intuitive. One would expect that the result we obtained be 

equivalent to the one obtained using the fluctuation dissipation theorem (FDT). 
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The FDT is a linear-response theory, valid for small deviation from the equilibrium. 

Generally speaking, the noise in the LLB equation is multiplicative. However, at low 

temperatures and for small fluctuations of the magnetization mδ  near the equilibrium 

magnetization (i.e. 0m mδ    ), we can linearize the equation converting the multiplicative 

noise into an additive noise variable. The linearized system of equation can then be written in 

the absence of thermal fluctuations as: 

 
3

1

N
i

ij j
j

d L mx
dt =

=∑  , (7.18) 

where ,31,i N= …  are the degrees of freedom of the system, N  is the number of particles in 

the system, i ix mδ=  is the deviation of the subsystem i  from the equilibrium, and ijL  are the 

components of the linearize matrix L . Following the formulation in Ref. [91,92], the general 

linearized Langevin equation of motion is written as:  
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N
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ij j i
j

Xdx
d

f
t

γ
=

= − +∑  , (7.19) 

where  ijγ  are the kinetic coefficients, if  represent random forces responsible for the 

spontaneous fluctuation, and iX  are thermodynamically conjugate variables related to the 

entropy   of the magnetic system by: 

 i
i

X
x
∂

= −
∂


 , (7.20) 

and for a close system is an external medium, Eq.(7.20) can be written as: 
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where the free energy of the system ( )M x  in function of the term ix , and i ij jj
h B x=∑   

defines the field variation due to the small fluctuations of the magnetization. The statistical 

properties of the random forces if  in Eq. (7.19) can be obtained by using the Onsager principle: 

 ( )( ) 0 (0) ( ) ( )i i ij j jif tft tf γ γ δ= = +   (7.22) 

where ( )ij ij jiσ γ γ+=  . The kinetic coefficients can be obtaining by setting Eq.(7.18) equal to 

Eq. (7.19)  in the absence of fluctuations: 

 ij
ij

S ij

L
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µν
µν

µνγ
β

=   (7.23) 

where , 1 ,, Ni j = …  and , , ,x y zµ ν = . To evaluate the kinetic coefficients, let us consider an 

initial magnetization 0{0,0, }i m=m , and we introduce a small fluctuation of the magnetization 

(i.e. , , , 0, ,i x i y i zm m m mδ δ δ   ) . The components of the field matrix ijB  are given by: 
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and 0ijBµν =   for µ ν≠  . Similarly, we can obtain the elements of the linearized matrix ijL  as: 
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 0xz yz zx zy
ij ij ij ijL L L L= = = =  , (7.31) 

where 0 0 hδξ µ β=   is the fluctuation of the reduced magnetization induced by the small changes 

in the magnetization. Using the relationship 0 0/ ( )SBmδ δξ ξ′=  in Eq. XX we can show that 

0zz
ijL = . The symmetrized kinetic coefficient ijσ  is given by: 

 02xx yy zzb

s

k T
M V
α γσ σ σ⊥= = =  . (7.32) 

Hence, the longitudinal fluctuation in our system is zero. And the random forces are 

given by: 

 ( for( ) 0 ( ) 0  )i i j i jf t f t f s= ≠=  , (7.33) 

 ( ) ( ) ( ) ( ))( ( )yxx y
x x y yf ft st f s t s t sfσ δ σ δ− −= = ,  (7.34) 

 0( ) ( )z zf t f s =  . (7.35) 

 This result is equivalent to the stochastic fluctuations solving the FDT agrees to the 

result obtained by solving the FP equation below the Curie point. 

7.4 MODEL COMPARISON 

Let us define the stochastic LLB formulation derived in this chapter as LLB-III. The 

current formulation has similarities and differences with respect to the stochastic LLB-I and 

LLB-II introduced in Sec.2.4.  
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Compared to the LLB-I formulation [11], the LLB-III only differs in the value of the 

longitudinal diffusion coefficient by a factor η . For 1η =  , the two formulation leads to the 

same diffusion coefficient (i.e. 1 ,LLB ID D −=


 and 2 ,LLB ID D⊥ −= ). In general, 1η <   for LLB-

III. The greater longitudinal fluctuations introduced in the LLB-I may lead to underestimation 

of the mean value of the magnetization as compared to the equilibrium magnetization ( )em T  .  

In the LLB-II, the noise is introduced via a multiplicative noise acting on the transverse 

damping component, and an additive noise. The use of an additive and multiplicative stochastic 

fields leads to overestimate the value of the equilibrium magnetization obtained numerically 

with respect to the input equilibrium magnetization ( )em T . This overestimation can be 

understood by considering that a strong additive noise in multidimensional systems with 

nonlinearities can generate a random shift far from the deterministic attractor, referred to as a 

“phantom attractor” [93]. Increasing the volume of the single domain particle reduces the 

intensity of this additive noise thus removing the effect of the phantom attractor. However, for 

various applications the particles can be small, and one needs to be able to model their behavior.  

To study the behavior of the LLB-III compared to the LLB-I and LLB-II model, we 

considered the magnetization distribution around the equilibrium for (i) an isotropic single-

domain particle and (ii) and anisotropic particle with uniaxial anisotropy along the z-direction. 

The considered particles has Curie Temperature 00K7CT =  ( 0 3 b CJ k T= ), saturation 

magnetization 30 emu/cm500SM = ,  and magnetic moment of 0 5 Bµ µ= . Since we are interested 

in the equilibrium, we use the atomistic damping coefficient of its the critical value. For the 

integration scheme we used a time-step of 1 fst∆ = .  
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The magnetization of the system is initially set equal to the equilibrium magnetization 

obtained from the atomistic model for an ideal SC lattice material [94] and the system is 

equilibrated for 1ns. The magnetization distribution is obtained from the equilibrated system by 

sampling the distribution over 10ns. 

A  Isotropic Particle 

We first consider the case of an isotropic particle (i.e. 0KH =  ). In the absence of an 

isotropic component there is no energy barrier in the direction transverse to the magnetization. 

Thus, the distribution of the magnetization with respect to the polar angle θ  is uniform for all 

3 models. 

 

Figure 7-1: Distribution with respect to the polar angle θ  for an isotropic particle  ( nm5L = ) for the LLB-I 
(red lines), LLB-II (green lines), and LLB-III (blue lines) models. The results are given at different temperatures 
for  (a) 0 K60T = , (b) 0 K65T = , (c) 0 K68T = , and (d)  5 K69T = . 
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Since below CT  the LLB-III model does not have any fluctuations along the longitudinal 

direction of the magnetization, the average length of the magnetization for CT T≤  is preserved 

(Figure 7-2a). For temperature close to CT , due to the presence of a longitudinal fluctuation 

component, the LLB-I model underestimate the value of the equilibrium magnetization, 

whereas the LLB-II overestimate it (Figure 7-2b). The overestimation of em  close to CT  can be 

explained by the presence of a “phantom” aggregator when the strength of the longitudinal 

fluctuation is comparable with the strength of the molecular field. For CT T> , this effect leads 

to large mean magnetization magnitude values (around 10% of the saturation value) for the 

LLB-II model, which are significantly higher than the values obtained using either the LLB-I 

and LLB-II.  

 

Figure 7-2: (a) Magnetization length versus temperature.(b) Magnetization length for the range of temperature 

near CT . The results are presented for particle of different sizes: nm5L =  (circles), nm10L =  (crosses), and 
nm20L =  (squares). The results are presented for the LLB-I (red lines), the LLB-II (green lines), and the LLB-

III (blue lines) models. 
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The displacement from the expected equilibrium magnetization  em   is a function of the 

particle volume. Increasing the diameter of the particle, reduces the diffusion coefficient in all 

3 models, and for particles with size of the order of nm20L = , the difference between the 

models becomes negligible. Above CT , the LLB-I and LLB-III model shows qualitatively the 

same Poisson-like distribution of the magnetization, whereas the LLB-II model follow a 

Boltzmann distribution for the magnetization length (Figure 7-3). 

 

Figure 7-3: Distribution of the magnetization for an isotropic particle above 00 K7CT = . The results are shown 
for  (a) small ( nm5L = ), and (b) large ( nm20L = ) magnetic particles.  

B  Anisotropic Particle 

We consider a particle with a uniaxial anisotropy field along the z-axis given by 

1.0 TKH = . Due to the presence of the uniaxial anisotropy, an energy barrier is introduced in 

the direction transverse to the magnetization. The probability distribution along θ  shows two 

peaks around 0θ =   and θ π=   at low temperature (Figure 7-4a) due to the presence of the 

uniaxial anisotropy that gives the magnetization a preferential direction along the axis z. The 

two peaks decrease with the temperature (Figure 7-4b,c), and the distribution becomes identical 
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to the isotropic case for temperature close to CT   (Fig. 4d). For CT T>  , the mean magnetization 

and the probability density of the magnetization length becomes identical to the isotropic case 

and they are not shown. 

 

Figure 7-4:  Distribution with respect to the polar angle θ  for an anisotropic particle  ( nm5L = ) for the LLB-
I (red lines), LLB-II (green lines), and LLB-III (blue lines) models. The results are given at different temperatures 
for  (a) 0 K60T = , (b) 0 K65T = , (c) 0 K68T = , and (d)  5 K69T = . 

7.5 SUMMARY 

We introduced a new formulation for the stochastic LLB equation,  LLB-III, and I tested 

the model with respect to the equilibrium magnetization and the distribution of the 

magnetization along θ  for particles of different sizes. The results have been compared with the 

existing formulations used in micromagnetics.  

The LLB-III formulation differs from the previous model for its treatment of the thermal 

fluctuations in the direction of the magnetization. Similarly to the stochastic self-consistent 
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Bloch (SCB) model for the magnetization dynamics [88,95],  the LLB-III model has a vanishing 

longitudinal fluctuations for cT T< , similar to stochastic model. However, the SCB diverges 

from the LLB-III, where the strength of the longitudinal fluctuation is a function of ( ) ~T Tη . 

An important property of the LLB-III model is that it recovers the expected mean value 

of the magnetization at the equilibrium for small and large magnetic particles. The distribution 

of the magnetization length is a Poisson-like distribution rather than the classical Boltzmann 

distribution as typically assumed for such systems. The preservation of the equilibrium 

magnetization makes the presented model appealing for HAMR [96] and multiscale atomistic-

micromagnetic modeling [87]. 
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CHAPTER 8 - CONCLUSIONS AND OUTLOOK 
 

This work introduced a micromagnetic simulator to study the magnetization dynamics 

of mesoscopic ferri- and ferro-magnetic system subjected to optical and thermal excitation via 

ultrafast laser pulses. 

 The simulator was used to efficiently simulate large granular structures and thin films. 

To showcase the potential of the code, we studied the THz signal induced in a thin FeRh/Pt 

bilayer by a sub- picosecond thermal pulse. The numerical results suggest that the first-order 

phase transition from an antiferromagnetic to a ferromagnetic exchange inside the FePt induced 

by the rapid change in temperature is at the origin of the signal.  

To describe the optical interaction of an elliptical polarized light source with the 

magnetic system, we developed a theoretical framework based on a double Λ  system, called 

Landau-Lifshitz-Lambda model (LLL). In this model, the optical excitation emerges naturally 

from the equation of motion, instead of being introduced as an external effective field or via the 

coupled two temperature model. This makes the model a good candidate to describe the 

magnetization dynamics and switching in a wide range of magnetic materials subjected to any 

linear, circular, or elliptical polarized optical excitations. 

The LLL model was used to study the helicity-dependent all optical switching and the 

helicity-dependent domain wall displacement observed experimentally in FePt and CoPt thin 

films. The simulations show that the optical excitation introduced in the LLL is able to induce 

a magnetization reversal in these kinds of material and to reproduce the characteristic features 

observed in the experiments, such as a switching ring and the optical displacement of a domain 

wall. The efficiency of the optical excitation is determined by the interplay of three effects: (i) 
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the ultra-fast demagnetization induced by a thermal laser pulse, (ii) the effective pumping 

introduced by the interaction between photons and spins, and (iii) the thermal relaxation taking 

place after the optical source has been removed. 

The last chapter introduced a new stochastic form of the LLL equation, which is 

consistent with the solution of the Fokker-Planck equation associated to the Langevin form of 

the equation of motion for the magnetization. This new form was shown to be able to preserve 

the equilibrium value of the magnetization for magnetic particle of any size without neglecting 

the contribution of longitudinal fluctuations near the Curie point, making this new stochastic 

form  appealing to multiscale atomistic/micromagnetic models or to study the signal statistics 

in high density recording system  at elevated temperature. 

 In conclusion, the results outlined in this dissertation expand the range of knowledge on 

the interaction between light and magnetic system in the meso-scale.  Understanding the 

physical origin of these optical induced excitation is paramount for the development of new 

magnetic sensors and logic devices. The introduced LLL reproduce qualitatively the results 

observed experimentally in ferromagnetic material. The work can be extended to accurately 

evaluate the optical parameters used in the equation through first principle computation or 

experiments. A natural extension of the work presented in this dissertation, is to derive the LLL 

equation for a two sublattice system to be able to study the optical excitation in ferrimagnetic 

material with strong spin-orbit coupling, such as GdFeCo and FeRh.
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APPENDICES 

APPENDIX A: VECTOR REPRESENTATION OF THE DENSITY OPERATOR FOR 
THE 𝜦𝜦 SYSTEM 

We consider the mathematical structure that leads to the decomposition of the density 

matrix into the components in Sec. IIA. Its difference from the standard decompositions as 

generalized Bloch vectors [65,98] and the physical consequences is detailed. The density matrix 

in Eq. (5.1) can be rewritten in terms of the linear combination of nine Hermitian operators, 

212 12 23 13 12 23 13 3
1 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
2

x x x
x y z

y y z z
x y x zm m p d m Ip pρ  + + + + + + + = Σ Σ Σ Σ Σ Σ Σ  . (A.1) 

The matrix representations of the Hermitian operators associated with the polarization 

components , , , , ,x y x y x ym p p d dm  are, respectively, 

 

12 12 23

23 13 13

ˆ ˆ ˆ

ˆ

0 1 0 0 0 0 0 0
1 0 0 , 0 0 , 0 0 1
0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0
0 0 , 0 0 0 , 0 0 0
0 0

ˆ ˆ

0 1 0 0 0

y x

y x y

x

i
i

i
i

i i

−     
     = = =     
     



Σ

    
     
     = = =     
    −

Σ

−

Σ

Σ Σ



Σ

    

 , (A.2) 

which are the same of the generators in the group SU(3) [99]. Our diagonal matrices associated 

with the coefficients , ,1z zm p  are 

 12 23 23
ˆˆ 0

1 0 0 0 0 0 1 0 0
0 1 0 , 0 1 , 0 0 0
0 0 0 0 1 0 0

ˆ

0 1

z z xI
     
     = − = − =     
     

Σ



Σ

   

,  (A.3) 

These nine operators are the Pauli operators and a unit operator of the spin 1 2  

subspaces and may be regarded as a linearly independent set of basis states in a vector group. 
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The diagonal elements are not orthogonal but may be rendered so, for example, as the standard 

SU(3) generators [100]. 

We note that due to our definition for the vectors m  and p , in the case of full 

demagnetization, 0=m  , and no polarization 0=p , an incoherent state 131/ 2 ˆˆ Iρ = ⋅  is observed 

in the subspace of states 1 and 3. This effect is in a contrast with the case of the standard 

generalized Bloch operators whose zero values lead to the no-coherence state of the density 

matrix with diagonal elements 1/ 3 . Thus, if we also call these polarization vectors “the 

generalized Bloch operators”, it extends the meaning from the usual usage. 

Our chosen generalized Bloch operators are under the restrictions of a Hermitian matrix 

representing a density matrix given by: 

1) The unit trace condition ) 1( ˆTr ρ = , which is satisfied by the form of the diagonal 

elements in Eq. (A.3) involving only the longitudinal components ,z zm p . 

2) The condition of a positive matrix leads to 

 1, 1, 0z z z zm pp m≥ − ≥ − + ≤   (A.4) 

The inequality of 2 ) 1( ˆTr ρ ≤  derived from the unit trace condition yields, 

 2 2 2 2z z z zpm p d m p m+ + + + + ≤   (A.5) 

where 2 2,m p  are the squared magnitudes of the polarization vectors ,m p , and 2d  is the 

squared magnitude of the truncated vector )( , ,0x yd d . 

In the two-state system, the unit trace and positive requirements of the density matrix 

yields the same restriction as 2 ) 1( ˆTr ρ ≤  for the Block vectors within a unit sphere with the pure 

states on the surface. Such a coincidence does not occur in systems with more than two states 
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since 2 ) 1( ˆTr ρ ≤  is a weaker condition than ) 1( ˆTr ρ = . This is seen in Fig. A-1, where the 

triangular domain inside the three lines given by Eq. (A.4) in the ,z zm p  plane when all the 

transverse (i.e., x, y) components of the polarization vectors are zero. The states on the triangle 

border are pure states and those inside are mixed states. The ellipse domain in the same ,z zm p  

plane given by Eq.(A.5) contains but does not coincide with the triangular domain of legitimate 

states. This is similar to the sectional diagrams in the standard generalized Bloch vectors on p. 

86 of Ref. [101], the difference being only the skewed basis of our density matrix. The relevant 

feature of the triangle in our case is that the three vertices , ) ( 1, 1), ( 1,1), (1, 1)( z zpm = − − − −  

correspond respectively to the initial magnetization state 2, the optically excited state 3 and the 

reversed magnetization state 1. The counterclockwise motion along the rims of the triangle is a 

possible dynamical path.  

 

Figure A-1: The polarization cross-section ( ),z zm p    in the eight dimension polarization space. The ellipse 
centered at  ( 1/ 3,1/ 3)−    with the major axis in the ( 1, 1)− +    direction and the minor axis along ( 1, 1)+ +    

contains inside the region of  
2ˆTr( ) 1ρ ≤  . The valid density matrices are in the shaded region bound by the 

triangle with the vertices at the three pure states important to the optical processes, viz., the initial magnetization 
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state 2  at  ( 1, 1)− −   , the optically excited state 3   at  ( 1, 1)− +    and the final magnetization reversal state 

1   at ( 1, 1)+ −   . 
 

APPENDIX B: EQUATIONS OF MOTION 

The equation of motion of the density matrix Eq. (5) is based on the formulation of the 

Lindblad operators [67] as the generators of the semigroup that is not time reversible. The 

evolution operators of the three state Hamiltonian form a unitary group SU(3) that is time 

reversible. The dissipation terms would drive the system only in the forward time direction and 

hence, the formulation is to utilize the semigroup of transformations which reflects the time 

direction for dissipative effects. The generators of the transformations are called the Lindblad 

operators. Explicit formulation of similar operators in N-state systems, especially N 2=  , are 

given in Ref. [102] and are clearly explained in Ref. [103]. These generators simulate the 

dissipative and dephasing effects, which may be derived from the quantum dynamics of the 

quantum system plus its environment defined as a quantum system. When the environment 

system is traced out of the evolution operators, the rate results are given in terms the Kraus 

operators [104], which are modeled by the Lindblad operators. We model the equation of 

motion of the Λ  system, as the dynamics of the open system by the formalism of Lindblad 

[67]. The relaxation from state 3 to state 1 with similar magnetization directions is powered by 

the electron-electron interaction, whose rate dΓ  is modeled by the Lindblad operator for 

dissipation, known as the longitudinal relaxation rate, 

 
0 0

ˆ  0 0 0
0 0 0

d

d

L
L

 
 

=  
 
 

 , (B.1) 
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where dΓ  leads to the fast relaxation in the decay sector 3 1→ . The longitudinal 

relaxation rate is obtained by substituting ˆ
kL   into the last term of Eq.(5.5). The longitudinal 

relaxation from state 3 back to 2 involves spin-orbit interactions and is much weaker than the 

fast 3 1→   decay, and its contribution is neglected in the model. 

While the longitudinal relaxation effect also produces a decoherence effect, i.e., the 

dissipation of the off-diagonal density matrix elements (the transverse polarization 

components), there is also a physical source of pure decoherence, known as dephasing. In the 

magnetization dynamics, the phase between the two magnetization states is randomized to a 

certain extent by the distributions of the two states, caused by the spin waves or Stoner-type 

low energy collective spin excitations [60,61]. The distributions of the three energies create the 

phase dissipation with the corresponding Lindblad operators, 

 3

*

2
*

1

1

2

*
3

0 0 00 0 0 0
ˆ ˆ ˆ0 0 0 , 0 0 , 0 0 0

0 0 0 0 0

0

0 0 0

L
L L L L

L

    
    

= = =     
    

          

 . (B.2) 

These operators cause changes only in the off-diagonal density matrix elements, i.e., the 

transverse optical polarization and magnetization operators, from Eq.(5.5): 

 { }
* *

12 133
† † *

*
21 23

31 32

*

1 *

0
1ˆ ˆ ˆ ˆ ,ˆ ˆ 0
2

0

d

o

d

m

k k k k m
k

o

L L L L
ρ ρ

ρ ρ ρ ρ
ρ ρ=

 Γ Γ





Γ

−  ⇒ − Γ Γ 
 Γ




 




∑  , (B.3) 

where the dephasing rates in the dissipation, optical, and magnetization channels are, 

respectively, 
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*

3 1

2

* * *

* *

*
3

1 2

*

*
o

d

m

Γ = Γ Γ

Γ = Γ +

Γ = Γ +Γ

+

Γ  . (B.4) 

For the uniaxial magnetic anisotropy, the two magnetization states are equivalent and 

so, * *
1 2Γ = Γ . This leads to the use of * * *

d oΓ = Γ = Γ  in Eqs.(5.8)-(5.15). The magnetic sector *
mΓ  

is omitted in the short time optical excitation phase.  

APPENDIX C: ELLIPTICAL POLARIZED LIGHT 

Any polarization can be seen as a combination of two waves: one left circularly 

polarized σ+ , and one right circularly polarized σ− . Using the Jones vector, we can write any 

polarization as a combination of the two waves: 

 
1 1

2 2
E EE

i i

−+    
+   

 −
=

 
 . (C.1) 

The final polarization of the light E   is given by the relative contribution of the 

amplitude of the electric field produced by the contribution of component of the electric field 

produced by the left circularly polarized wave E+  and the contribution of the electric field 

produced by the right circularly polarized wave E− . In particular, if 

• 0E− =  and 0E+ ≠  : the light is left circularly polarized (σ+  ); 

•  0E+ =  and 0E− ≠  : the light is right circularly polarized (σ+ ); 

• 0E E+ −= ≠  : the light is linearly polarized (π  ), 

• E E− +≠ and , 0E E+ − ≠   the light is elliptically polarized. 
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If we assume an ideal σ+  polarized is placed in front of the incident elliptical polarized 

light, we can define the relative contribution of left and right circular polarized light using 

Malus’s law. Given a laser intensity 0I  , the relative intensity of left circular polarized light is 

given by: 

 0I I fσ σ+ +
=  , (C.2) 

 ( )0 01I fI I fσ σ σ− + −
−= =  , (C.3) 

where  fσ+
 is the fraction of light with σ+  polarization and 1f fσ σ− +

= −  is the fraction of light 

with σ−  polarization. Using the relationship given in Eq. (C.2)-(C.3), it is possible to relate the 

amplitude of the electric field of the left circular polarization E+   and the amplitude of the 

electric field of the right circular polarization E−  to the quarter wave plate angle used to generate 

the elliptical polarization as: 

 0 )( () 2E Z I tt f
n σ+

+ =  , (C.4) 

 02( ) ( )ZE t
n

t I fσ−

− =  , (C.5) 

where ( )I t  is the instantaneous intensity of the optical pulse absorbed inside of the material, 

0 120Z π≈ Ω  is the impedance of free space, and n  is the refractive index inside the media. 

Using the electric field so obtained it is possible to estimate the instantaneous Rabi frequency 

generated inside the material by the two waves σ±   as: 

 14/232( ) ( )Et tµ ±
±Ω =



 . (C.6) 
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