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PERSPECTIVE OPEN ACCESS

How can we make sound replication decisions?
Clintin P. Davis-Stobera,b,1,2 ID , Alexandra Sarafoglouc,1 ID , Balazs Aczeld ID , Suyog H. Chandramoulie,f ID ,
Timothy M. Erringtong ID , Sarahanne M. Fieldh ID , Ayelet Fishbachi, Juliana Freirej,k ID , John P. A. Ioannidisl,m,n,o ID ,
Klaus Oberauerp ID , Franco Pestilliq,r,s ID , Susanne Resslr ID , Daniel J. Schadt ID , Judith ter Schureu ID , Katya Tentoriv ID ,
Don van Ravenzwaaijw ID , Joachim Vandekerckhovex,y,z ID , and Odd Erik Gundersenaa ID

Edited by Elke Weber, Princeton University, Princeton, NJ; received March 2, 2024; accepted October 4, 2024

Replication and the reported crises impacting many fields
of research have become a focal point for the sciences.
This has led to reforms in publishing, methodological de-
sign and reporting, and increased numbers of experimen-
tal replications coordinated across many laboratories.
While replication is rightly considered an indispensable
tool of science, financial resources and researchers’ time
are quite limited. In this perspective, we examine different
values and attitudes that scientists can consider when
deciding whether to replicate a finding and how. We offer
a conceptual framework for assessing the usefulness of
various replication tools, such as preregistration.

replication | reproducibility | methodology | reform

The ability to replicate empirical findings, accurately
reproduce a data analysis pipeline, and, more generally,
independently verify a scientific claim is, without question,
a cornerstone of science. The aim of this dialog is not to
debate whether replication is important. Our goal is to
identify arguments and positions that can help us improve
replication decisions, including whether a replication should
be undertaken and how. The time, money, and energy
required for scientific work are limited, and research groups
must be judicious about where they direct their efforts.

The scientific literature, popular press, and social media
are awash in reports of empirical results that do not hold
up when replicated, untrustworthy results due to data
manipulation and fraud, and claims of an eroding trust in
science. The terms “replication crisis,” “credibility crisis,” or
“crisis of confidence” are often used to describe this state of
affairs, which has caused numerous fields to take hard looks
at their empirical literature. These fields include, but are not
limited to, medicine (e.g., ref. 1), psychology (e.g., refs. 2 and
3), economics (e.g., ref. 4), and even computer science (e.g.,
ref. 5). As an example from social psychology, a well-cited,
large-scale replication of 100 original studies revealed that
replication effect sizes were systematically lower than the
original ones and that a successful replication (defined as a
significant P-value in the replication study) was achieved in
well under 50% of cases (6).

Yet, the extent and severity of these problems are
contested. Fanelli (7) argues that a crisis narrative is unwar-
ranted and counterproductive to scientific goals. He points
out that in a properly working scientific field, one would not
expect all reported studies to replicate, especially when one
considers evolving methodology, treatment manipulations,
and changes in populations over time. Consistent with this
view, Shiffrin and colleagues (8) have argued that current

replication issues reflect challenges that may be endemic
to the practice of science, arguing that a good deal of
nonreplicable results, possibly close to the present level,
is necessary for science to progress optimally. However,
other investigators have argued with empirical data and
simulations that innovation and disruption in science has
slowed down (9) despite the unilateral focus on novelty with
little replication; and that discovery without replication may
even have negative value if it leads to misleading waste (10)
and building future work upon wrong foundations (11).

Instead of joining the discussion about the prevalence of
replication issues, we will focus on how scientists can make
sound replication decisions in their respective fields. We do
so by examining replication through the lens of different
scientific values and attitudes. In addition to describing
how these values and attitudes can guide replication de-
cisions, we examine how different replication tools, such as
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hypothesis/model preregistration, large-scale collaboration
efforts, and various journal reforms, can be aligned, or
not aligned, with them. Consistent with the stated goals
of the special feature “Dialogs on the Practice of Science,”
(12) we do not provide rigid recommendations on the
practice of science. We offer differing perspectives and note
that replication challenges are not likely to be solved with
one-size-fits all scientific reform. We hope that our dialog
is useful for guiding future, field-specific discussions and
debates on replication practices.

Epistemic and Nonepistemic Values

Building on the work of McMullin (13), and others (14–16),
we distinguish between epistemic values and nonepistemic
values in science. Epistemic values provide valid reasons
for thinking that a hypothesis or scientific statement is true
or not (13). For example, one could consider the observed
predictive accuracy of a model as an epistemic value (17).
Nonepistemic values, in contrast, can influence scientific
decisions and actions but do not directly relate to the truth
of a hypothesis or scientific statement. Nonepistemic values
can include the ethics of research activities, policies that
could be enacted based on the outcome of a study, and
even personal or religious beliefs.

Epistemic and nonepistemic values can jointly influence
scientific decisions, in both positive and negative ways (18),
for example, suppose we were carrying out a vaccine effi-
cacy trial, where the vaccine carries the possibility of serious
side effects. The nonepistemic value of mitigating harm to
the larger population of individuals who would be receiving
the vaccine if it were deployed at scale could be considered
when determining the sample size of the trial or the setting
of statistical thresholds for claiming efficacy. The idea would
be to ensure that the study yields definitive results before
the vaccine goes into mass production, thus protecting the
population being vaccinated. Epistemic values, such as the
careful evaluation of the subsequent statistical modeling,
would guide how we determine whether the study was
successful (e.g., refs. 15, 17, and 18). For an example with
decidedly negative consequences, suppose a researcher
allowed the nonepistemic value of increasing one’s fame
or clout to override epistemic values relating to the fair
evaluation of hypotheses after collecting data. This conflict
of values could lead to data fraud and data manipulation.

Two Simple Cognitive Attitudes

Elliott and Willmes (17) have argued that the cognitive
attitudes of scientists play a major role in determining how
values, both epistemic and nonepistemic, are weighed when
making scientific decisions. They define a cognitive attitude
as a scientist’s evaluative response to a claim, hypothesis,
model, or theory (17). For example, a scientist may choose
to outright believe the claim that people can hold seven,
plus or minus two, pieces of information in their short-
term memory at any given time.* Others may consider it
roughly true with caveats. Others may not believe it to be
true per se, but consider it a useful hypothesis to argue
against. Whether, and how, a scientist chooses to replicate

*This is known as Miller’s law (19), please see (20) for a thoughtful review on this topic.

a particular memory study will depend upon their cognitive
attitude regarding this claim.

We present two cognitive attitudes to aid in our replica-
tion discussion that are grossly oversimplified, almost to the
point of caricature, but are useful in drawing out competing
perspectives on replication. These cognitive attitudes center
upon how a scientist evaluates claims within the peer-
reviewed literature and reflect what normative role the
scientist thinks the peer-reviewed literature should serve
and how it should be used.

The first we term the Book of Truths cognitive attitude.
Someone who holds the Book of Truths attitude believes
that claims within the peer-reviewed literature are, or at
least should be, a collection of truths, or facts,† and all efforts
should be directed toward making it so. If an empirical result
fails to replicate, the original claim should be corrected or
retracted. What if all researchers held the Book of Truths
attitude? No effort or expense would be spared on direct
replications and large-scale many-labs collaborative exper-
iments would be the norm. The resulting peer-reviewed
literature would be straightforward to use by nonexperts,
such as policy writers, politicians, and journalists, as most
results could be accepted at face value.

At another extreme, we consider the Book of Conversa-
tions attitude. Someone who holds the Book of Conversa-
tions attitude believes that the peer-reviewed literature is,
or at least should be, nothing more than a method of com-
munication, and an exchange of ideas, among scientists,
i.e., a conversation. Claims are to be considered carefully,
but not necessarily believed to be true, or, at least entirely
true. There is an acknowledgment that results may or may
not replicate; the focus is not on the truth of statements
but rather that the literature is an accurate and detailed
record of what was done. What if all researchers held the
Book of Conversations attitude? It would not be a priority to
directly replicate all empirical phenomena nor would there
be an expectation to do so. Different papers examining the
same empirical phenomenon would likely use different ex-
perimental protocols and designs, leading to a richer, more
diverse “garden” of findings and methods. All else equal, this
could result in a greater rate of discovery, but might come
at a cost of inefficiency when results are inconsistent. More
time and effort would be directed to other research activities
than direct replications under this attitude. It would be diffi-
cult for nonexperts to read and apply the scientific literature,
as assessing the robustness and validity of findings would
require, at the very least, field-specific expertise.

Fig. 1 provides an illustration of the conceptual model
that we used to guide our discussions. Replication decisions
are treated as the outcome of a deliberative process where
epistemic and nonepistemic values are evaluated through
the lens of our two cognitive attitudes. We argue that some
values are better aligned with one cognitive attitude than
the other, which has practical implications for replication
decisions. In our discussions, the confluence of values
and attitudes impacts both the decision to replicate as
well as how to replicate, see Fig. 1. Going a step further,

†In science, it is hardly possible to unequivocally speak of facts or of truths. Likewise,
whether or not an effect exists is not always a binary question, i.e., treatment manipula-
tions rarely produce population effects identically equal to zero, although they may be so
small that they are negligible (21). In practical terms, we will use the terms “highly robust”
and “replicable” when describing results from a Book of Truths perspective.
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COGNITIVE ATTITUDES:
Book of Truths

vs.
Book of Conversat ions

DECISION 1: WHETHER TO
REPLICATE

• Costs -benefi ts analysis

DECISION 2: HOW TO REPLICATE?
• Experimen tal design considera tions

• Usefulness of repl icat ion tools

NON-EPISTEMIC VALUES
• Mitigating harm

• Communication to lay audiences
• Publ ic credibil ity and trust

• Transparency and communicat ion to scien tist s

EPISTEMIC VALUES
• Evidence for theory development

• Evidence for theory testing

Fig. 1. This is an illustration of the conceptual framework we used to guide our discussion. Values, both nonepistemic and epistemic, influence decisions
about replication, which are, in turn, weighed via the cognitive attitudes of the scientist making those decisions.

considering replication decisions in this way allows us to
better understand when different replication tools, such as
registered reports and many-labs experimental designs, will
be effective. It is far beyond the scope of this discussion to
provide a complete accounting of all relevant values, so we
chose to focus on a few salient ones.

Nonepistemic Values Relating to Replication

Mitigating Harm. Returning to our previous example, con-
sider the development of a new vaccine that is to be
deployed to billions of people. Different labs from across the
world have identified several promising vaccine candidates.
As with any vaccine, there will be questions of efficacy
as well as—potentially harmful—side effects, which will
depend upon the nature of the disease and individual health
factors (age, preexisting conditions, etc.). Suppose that initial
trials for a candidate vaccine appear to be quite promising,
showing an immune response with minimal harm. Under
emergency statutes, these initial trials follow an adaptive
design (22, 23) based on relatively small samples (usually
of healthy volunteers). After these initial trials, crucial ques-
tions about candidate vaccine safety and efficacy remain.

This example nicely illustrates the nonepistemic value
of mitigating harm. How should we consider replications
of the empirical clinical trials? Obtaining consistent, accu-
rate results in these empirical replications would be the
highest priority. If the results are inconsistent, or inaccu-
rate, the attribution of serious adverse events could be
misinformed, leading to real harms for many individuals
and eventually an unfavorable benefit–risk ratio. When
adjudicating among multiple candidate vaccines, unreliable
estimates (e.g., about efficacy and/or harms) could cause an

inferior vaccine to be mass-produced. Further, conflicting
reports in the scientific literature could erode trust in the
population intended to receive the vaccine, complicating
deployment and uptake. For these very reasons, a Book
of Truths attitude would be well-aligned for a scientist to
have in this case. The planned replication studies need to
provide a definitive result, at the level of a fact, if that is at all
possible, and the literature itself needs to reflect this clarity.

For this example, ensuring accurate results would require
considerable investments of money and time. Depending
upon the efficacy of the drug and/or diversity of the target
population, it may require studying many participants or
patients, from different demographics and possibly differ-
ent cultural backgrounds, to achieve the required accuracy
and certainty that benefits far outweigh the harms. If the
potential harm is serious and/or common enough, then it is
worthwhile to spend the resources.

Effective replication tools in this regard are large-scale
replications, which coordinate efforts across multiple sites.
In the medical field, randomized controlled trial data can
be collected in large, multicenter collaborations that are
essentially direct replications per center (many labs). More
recently, such collaborations are put in place to study
more than one research question in platform trials (e.g.,
RECOVERY in COVID-19, and STAMPEDE in prostate cancer).
The goal of the participating centers is not necessarily to
refute or contextualize the results from a different center,
but to increase the precision of the estimates such that
valid conclusions can be drawn. Apart from these top–down
collaborations, bottom–up collaborations have increased
in popularity where multiple randomized controlled tri-
als are designed separately but similarly (close to exact
replications) and can be jointly analyzed in a prospective

PNAS 2025 Vol. 122 No. 5 e2401236121 https://doi.org/10.1073/pnas.2401236121 3 of 10



meta-analysis (24–26). Top–down collaborations are usually
funded in advance, and therefore limited to a certain sample
size. Bottom–up collaborations have decentralized funding
and can easily inspire new research teams with new funding
to join the effort. These replications mitigate harm by
increasing the sample size and precision of the estimates,
usually with the goal of reaching a conclusion earlier (to
impact patient care as early as possible), or to not let
the sacrifice of the patients in the trial go to waste in an
inconclusive result.‡

Communication to Lay Audiences. There is undeniable value
in expanding access to discoveries (27), promoting educa-
tion (28–30), and engaging the general public in research
activities (31). This brings forth the challenge of effectively
communicating science to nonexperts. The scientific litera-
ture is read by a wide range of people, including politicians,
policymakers, journalists, and concerned individuals with a
personal stake in the science, such as health concerns.

Scientific findings are often communicated as definitive
and exacting when, in reality, science is uncertain, iterative,
and messy. The misunderstanding of scientific concepts and
empirical results is, unfortunately, quite common, especially
when involving inherently probabilistic information (32–34).
This can negatively influence laypeople’s attitudes and real-
life decisions, such as those related to vaccination (35).
We can think about the cause of misunderstanding as a
mismatch between cognitive attitudes. It is problematic
if a lay audience member, say a journalist, reports on a
published study assuming a Book of Truths attitude when,
in fact, the available evidence is mixed and the original
authors themselves viewed the study more from a Book
of Conversations attitude. This mismatch might lead the
journalist to overclaim a study’s result when the intent
of the study was not to be a definitive statement on the
phenomenon in question, but, rather, an exploration of
different experimental manipulations that contributes to
the scientific conversation on the topic. As such, failures
to replicate can be perceived as undermining the role of
science as a reliable producer of knowledge instead of
appreciating that replication is a mechanism of understand-
ing uncertainty and scientific progress (36). It should be
noted, nevertheless, that the problem often originates from
scientists, their institutions, and their public communication
channels that overhype results and circulate press releases
that make extreme claims (37–40).

Replication can help address some of these issues. In the
short term, it enables a prompt and comprehensive exam-
ination of new findings, thereby enhancing their reliability,
and minimizing the risk of errors (41). In this context, priori-
tizing the replication of results that are immediately relevant
to the public, for example, due to urgent requests or the
influence it will have on policies, especially if these results
are highly “surprising,” could be crucial, given their potential
to impact a large number of individuals. To consider a con-
crete example, one may wonder whether a quicker disproof
of the fraudulent claim regarding a causal link between
vaccines and autism may have alleviated vaccine hesitancy
and the conspiracy theories that fueled it for decades. More

‡Generally speaking, waste due to researcher’s lost time and effort needlessly replicating
a finding could be another type of harm to mitigate.

generally, the negative consequences of public policy built
upon poor, or grossly incomplete, research also relates to
the nonepistemic value of mitigating harm. Replicability
might also contribute to clarifying the conditions under
which an effect holds (42), thereby better informing the
actions of institutions responsible for translating scientific
findings into practical regulations.

Communicating the nuances of replications to nonexpert
audiences could be improved by the implementation of
new reporting practices within peer-reviewed journals. For
example, in addition to the summary of results directly
usable by the general public, the level of support for
the author’s conclusions based on their data could be
reported, with an emphasis on contextualizing this strength
of evidence with prior studies, preferably in a systematic
review (10). One could also provide more detailed limitation
sections in the paper and include this information in the
abstract. This is particularly relevant for studies that will
inform decisions that have the potential to impact a large
number of individuals, such as policy decisions (e.g., refs. 43
and 44). Also, linking replications to the original research (45)
could help audiences to understand whether the results are
disputed, and this, in the long run, may help educate on the
overall progress of science. Improving the science literacy
of lay audiences is an ambitious task but could enable more
informed individual and collective decision-making (46, 47).

Could the scientific publication system accommodate
both a “Book of Conversations” and a “Book of Truths”
attitude? This could be accomplished by an explicit, clearly
visible distinction between publications that serve the goal
to communicate new findings and ideas to other scientists,
and publications that are intended to report a finding
or conclusion that is more firmly established and ready
for public consumption. For instance, Lewandowsky and
Oberauer (48) proposed that original studies are published
as “provisional” before having been replicated, with an
invitation to other researchers to replicate it. After success-
ful replication, the report is promoted to archival status,
including the replicators as coauthors. After a failure to
replicate, the publication is withdrawn and replaced by a
public record of the replication failure. These records aim to
reduce potential public interest and simultaneously enable
reuse, for instance, by later meta-analyses. Although, as we
later discuss in this dialog, it can be a highly nontrivial task
to define what constitutes a successful (or failed) replication
attempt. A version of this proposal is implemented by the
Journal of Artificial Intelligence Research (45), where instead
of replacing original studies that are not reproduced by a
record of replication failure, articles that are reproduced
receive a badge that states this explicitly. Also, reports
describing the replications are published alongside the
original articles, whether they replicated or not, to better
contextualize the effects being investigated and allow for
data reuse (45). Such a differentiated publication system
would make the different levels of evidence for published
findings more transparent for lay audiences and could help
communicate to the public how science works.

Public Credibility and Trust. Public credibility and trust is
a value worth considering when making replication deci-
sions. Acting responsibly as researchers—which involves,

4 of 10 https://doi.org/10.1073/pnas.2401236121 pnas.org



among other things, conducting original research with trans-
parency, honesty, and accountability—plays a crucial role in
the public’s perception of our credibility as a community. It
follows, then, that decisions regarding replications, should
be made responsibly, with an eye to continuing to earn (or,
for some areas, to earn back, in the wake of replication
concerns, see refs. 6, 49, and 50) and maintain the public’s
trust. Increasing public credibility naturally aligns with a
Book of Truths attitude, with its focus on establishing
repeatable findings, which helps establish public trust. A
person holding the Book of Conversations attitude is less
concerned with what the public finds credible, as the litera-
ture is viewed primarily as a conversation among scientists
themselves (insiders). This can become problematic if the
knowledge gained from studies is not clearly conveyed to
the appropriate audiences.

One useful tool that can help improve public credibil-
ity is the registered replication report format (51). When
replication studies are conducted as a registered report,
the plans for the study, including sampling and analysis
strategies, are registered and peer-reviewed before the
study is conducted. Although the registered replication
report format does not guarantee this, it can improve the
likelihood that a replication study will be methodologically
sound, and that researcher degrees of freedom and bias will
be limited. When coupled with prospective meta-analysis
designs, this can yield more accurate estimates of effect
sizes, which can help combat the “winner’s curse,” where
initial studies report inflated effect sizes, only to have those
effect size estimates dramatically lowered upon replication
(52). More consistent, accurate effect size estimates can help
build credibility and trust with the public.

Transparency andCommunication to Scientists. Transparency
and communication with other scientists is a nonepistemic
value that aligns with both of our cognitive attitudes, but
for different reasons. From a Book of Truths perspective,
transparency enables direct replication by providing scien-
tists with all necessary experimental details. From a Book of
Conversations attitude, transparency and communication
to other scientists is the primary role of the peer-reviewed
literature.

Providing transparency and accurately communicating
all relevant aspects of a study is integral for replication
efforts, even more so when real benefits and harms are
at stake. The Reproducibility Project: Cancer Biology (53–
55) demonstrated major difficulties in replicating preclinical
research. A contributing factor to this was that methods
were insufficiently documented for the majority of studies,
and they simply could not be completed. Additionally,
reanalyses in the biomedical sciences have shown failed out-
come reproducibility (i.e., the original results could not be
confirmed by rerunning the original analysis scripts on the
original data) and occasionally major differences between
published and reanalyzed results for pivotal commercial
trials (56), likely due to insufficient transparency in analysis
plans and methods.

There are two main components of replication to con-
sider here. The first is to be able to recreate the study itself
and successfully rerun all the analyses. This requires not

only an adequate, detailed description of the methods, but
also the sharing of the raw data and of the specific code used
in any and all reported analyses. The second component is
to be able to use the presented information on methods,
including all the processes undertaken and the analyses
conducted, in order to design one or more new studies
that use the same methods, processes, and analytical
pathways. Regardless, the ability to meaningfully perform
exact, similar, or diverse replications depends on the ability
to understand what happened in the original study.

Notions of transparency and reproducibility can lie on a
continuum. Within the field of computational science, Peng
(57) describes a “reproducibility spectrum” where, at one
end, the publication contains no code at all, and at the
other, everything is provided to fully reproduce the results,
which includes all of the code, data, linked executables and
dependencies, etc. The reproducibility study type can be
distinguished based on which documentation it relies on,
such as the article describing the original study, code, and
data, while the degree to which the study is reproduced can
be characterized by whether the result obtained is exactly
the same, different but leads to the same conclusions, or if
an alternative analysis leads to the same conclusion (58). All
else equal, the more data and code that are available and
easy to use, the better for reproducibility purposes (59).
Data and code sharing is also indispensable for evaluating
new models under alternative specifications.

Yet, making results fully reproducible§ is not without
costs. Within the field of computer science, making compu-
tational experiments available can be as easy as creating a
Docker container (60) (i.e., an executable package, including
the code, system tools, dependencies, and settings neces-
sary to run the experiment), but producing quality software
that is open-source, fully documented, and can be reused
and extended is a time-consuming and costly endeavor. It is
not only time-consuming to produce code, the hours spent
maintaining it and answering questions regarding docu-
mentation can prevent the scientists from working on new
research. Costs in the form of money could also be huge.
Studying the emergent behaviors of large language models
(61) requires access to the largest models, which currently
are the commercial ones and cost more than 100 million
United States dollars to train. It is worth mentioning that
these commercial models are neither open nor transparent.

In light of these potential costs, one perspective that
scientists can take is that “natural selection” will determine
which results are important enough to warrant the addi-
tional costs required for full reproducibility. Using computer
science as an example, if a computational method is shown
to be effective, naturally, improved versions of the code
will be developed and released, typically by other labs. On
the flip side, requiring this effort for the initial publication
may hinder scientific progress, in particular, for the long tail
of scientists with limited resources. The idea is to require
transparency in what was done, but not necessarily full
reproducibility. This perspective aligns well with a Book
of Conversations attitude, as the literature is viewed as a
transparent exchange of promising ideas among scientists,

§We are referring to computational reproducibility, where rerunning the same code on
the same data, as in the original study, yields identical results.
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with the understanding that not all research results are
expected to be fully reproducible at face value.

Moving the computer science literature in a direction
where all computational products are available and fully
reproducible would require considerable time and effort.
Consider, for example, the Association for Computing Ma-
chinery Special Interest Group on Management of Data Con-
ference Reproducibility Evaluation effort in which authors of
accepted papers were invited to submit their computational
experiments for evaluation of whether all results (e.g.,
figures, tables) in the paper could be easily reproduced
from the code and data that were made available. Over
the past 15 y of this program, only around 25 to 30% of
the authors submitted their experiments for evaluation. In
contrast, by lowering the bar and requesting authors to
just make their code and data available, over 65% of the
accepted papers made their artifacts available at Very Large
Data Bases Endowment 2021 (62). A similar effort at the
NeurIPS conference increased code sharing from below 50%
to nearly 75% in one year (63). Making the code available,
though, might not be enough, as a study found that less than
50% of code was executable even after communicating with
the original authors (64).

Regardless of how we view these reform policies, there
are now many tools, platforms, and repositories that can
help in methodological documentation and transparency.
For example, in the biological and biomedical sciences,
decades of commitment have led to major advances in re-
producibility practices. This commitment has spurred a mul-
tifaceted effort to improve methods and infrastructure and
encompass reporting guidelines (e.g., refs. 65–67), or highly
standardized and specialized data repositories (e.g., ref. 68).

Epistemic Values Relating to Replication

Evidence for TheoryDevelopment. Theory development is the
endeavor by scientists to find explanations for empirical
phenomena—empirical regularities that can be observed
repeatedly across time and situations. By “explanation,” we
usually mean some set of theoretical assumptions that, if
true, render the phenomena in question substantially more
likely than if they were not true. To be worth explaining,
a phenomenon must not only be stable over time—as
demonstrable by direct replication under nearly identical
conditions—but also general across many situations (69),
and robust across several different methods for observing
it (70). For example, theories of memory aim to explain the
shape of the forgetting curve (71) because it is observed
across many kinds of memory contents, types of memory
tests, and person populations. A theorist aiming to find an
explanation for a phenomenon needs to know as much as
possible about its scope of generality because a candidate
explanation needs a corresponding scope. It follows that,
to advance theory development, empirical research needs
to prioritize establishing the generality of an empirical
regularity through conceptual replication as much as es-
tablishing its robustness through direct replication (69, 72).

The epistemic concerns that relate to the development
of theory derive in large part from those associated with
the underlying phenomena—a theoretical framework is not
made better if it explains phenomena that are fragile to

variations in the experimental design or study sample. From
this perspective, a Book of Truths attitude more naturally
aligns here as a theory is difficult to develop if one does not
know for certain what phenomena to explain. Publication
bias presents a major threat to establishing phenomena
and its boundary conditions. The occurrence of publication
bias may affect theory development in two ways: first in the
establishment of explananda, and second, in the testing of
new predictions against the empirical literature. If a theory
predicts a phenomenon not usually considered in a given
context, and experiments so far have failed to detect that
phenomenon, but publication of these null results have
been suppressed, then false theories may remain in the
literature unchallenged; it may even be buttressed when
false positive results occur later. Replication tools intended
to limit or eliminate publication bias naturally align here,
such as registered replication reports (51).

However, Feest (73) challenges the usefulness of direct
and conceptual replications by arguing that they offer very
limited information about the nature of an effect to be ex-
plained. She argues that for research paradigms that are of
limited “conceptual scope,” that is, the causal relationships
between the independent and dependent variables are not
well understood, it becomes nearly impossible to know what
variables to hold constant (for a direct replication) or system-
atically manipulate (for a conceptual replication)—see also
refs. 74 and 75. The crux of the problem is that if we carry out
a replication of either kind and observe the “same” effect,
we have no idea whether it truly is the same effect being
observed or whether it is something completely different.
We often do not know which experimental variables are
core to the effect and which are auxiliary. In other words, the
effect of an independent variable on a dependent variable is
often confounded by interactions with background factors,
either held constant in the replication study or varied in ways
not accounted for by the researchers, leading to aggregation
fallacies (e.g., ref. 76). Feest illustrates her points with the
“Mozart effect”—a result first reported by Rauscher at al. (77)
whereby listening to a Mozart sonata temporarily improved
participants’ scores on a spatial reasoning test. A consider-
able amount of subsequent empirical work identified that:
i) this temporary improvement was much smaller than
originally identified (78) and ii) the effect was attributable
to the arousal in mood one may experience when listening
to upbeat music, but the stimulus need not be musical at
all. Both the sonata, specifically, and the music itself, more
generally, played an auxiliary role to the effect.¶

Feest (73) proposes to solve this problem by considering
experiments designed to evaluate effects not as replications
per se, but as systematic “explorations” of the variable
space. This perspective better aligns with a Book of Con-
versations attitude as the focus shifts from establishing the
“truth” of an effect via direct replication to building out a
series of results that systematically inform us about the
behavior of various dependent and independent variables,
a notion echoed by ref. 80. One could debate whether
this is conceptual replication in a different guise, but the
intent and subsequent interpretation are perhaps different
(for thoughtful discussions, see also refs. 81–86). While

¶Delineating between core and auxiliary features has analogous challenges in statistical
modeling, see Navarro (79) for a discussion.
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compatible with multiple values and attitudes, metastudies
(87), which systematically randomize the values of multiple
independent variables when designing experiments, are
particularly well-suited here. Modeling frameworks that
help delineate the logical structure of replication experi-
ments would also be beneficial (88).

Evidence for Theory Testing. We need to ask which study
promises a larger gain of information for our research
question when prioritizing between two empirical studies
that have about the same cost. If the aim is to establish a
phenomenon, we should ask how much information we gain
by corroborating or debunking the hypothesis that it is real.
On the other hand, if the aim is to test a theory, we should
instead gauge the information gained from a study of the
credibility of the theory. The two aims can lead to different
evaluations. For establishing a phenomenon, the choice is
between a direct replication of a first study supporting the
hypothesis, or a conceptual replication assessing its gener-
ality across some dimensions. For theory testing, the choices
are different. A good theory predicts not only a single
phenomenon but several phenomena, and therefore offers
multiple avenues for testing the theory. After researchers
have run a first study yielding support for one prediction of
the theory of interest, a second study testing another predic-
tion of the theory often promises a larger information gain
than a direct or a conceptual replication of the first study
(72). However, see Davis-Stober and Regenwetter (89) and
Heck (90) for an argument regarding the inherent challenges
of interpreting evidence aggregated across studies that each
test different predictions of a theory.

Theories are typically grounded in multiple sources of
evidence and are intended to account for various phe-
nomena. Therefore, the direct replication of a single ex-
periment, even if successful, does not necessarily offer
strong support for the overall theory. Converging evidence
obtained through different methodologies, and sometimes
by different research teams (i.e., triangulation), may be
more informative, especially when considering different
predictions of the theory. Specifically, if diverse pieces of
evidence confirm various predictions of the theory, the
theory is strongly supported. The more diverse these pieces
of evidence are—either with regard to their content or the
methodology that has produced them—the stronger the
support for the theory when they converge. Even unsuccess-
ful replications can be informative because they might con-
tribute to a better understanding of the theory. However,
one should worry that allegiance and publication biases may
generate a literature of reported scientific findings that all
seem to support a theory, but the entire literature may be
spurious. Even the most squarely refuted findings continue
sometimes to be heavily cited, often without attention paid
to the refutations or with excuses from the supporters of
the theory who are unwilling to let go (91, 92).

The aim of testing a theory has implications for the
role of preregistration. Oberauer and Lewandowsky (72)
distinguish between preregistration of hypotheses and of
analysis plans, which serve different aims. Preregistration
of hypotheses is advocated as a means to distinguish
between a priori predictions and post hoc interpretations
of findings. When a study aims to test a strong theory

that unambiguously predicts a particular outcome, then
the theory itself already serves the role of preregistering
the hypotheses. In the best case, the theory is a formal
model that we can run to compute the predictions for a
study. With strong theories, the preregistration document
merely serves to document the hypotheses that follow from
the theories. When the theory to be tested is weak, so
that what it predicts depends strongly on rather arbitrary
auxiliary assumptions, then preregistration can serve to
make the auxiliary assumptions explicit. Preregistering such
assumptions, however, does not make them less arbitrary.
Therefore, in the case of weak theories, empirical confir-
mation of preregistered hypotheses does not provide more
support for the theory than confirmation of an alternative,
not preregistered hypothesis that could be derived from
the theory with different, equally arbitrary auxiliary as-
sumptions. Hence, preregistration of hypotheses is a good
opportunity to make theoretical assumptions explicit, but
it adds nothing to the conclusions we can draw from the
results of a study for the theories we aim to test by it (72).

A second aspect of preregistration is to commit to an
analysis plan before seeing the data. This serves to reign
in problematic research practices such as p-hacking, where
many analysis paths are tested but only those that show
support for a theory, or are otherwise desirable for the
researchers, are reported in a paper (93). Usually, showing
an effect is more informative, and more publishable, than
not showing it, and therefore, p-hacking is likely to artificially
inflate the size of reported effects. Preregistration of an
analysis path may help to reduce researchers’ freedom to
report cherry-picked results from a large number of analysis
paths. Evidence that this is effective comes from a study of
published effect sizes in psychology (94), which showed that
studies with preregistration had considerably smaller effect
sizes than studies without preregistration.

For the aim of theory testing, preregistration is probably
most effective in the form of a registered report: Study
design and method, hypotheses to be tested, and analysis
plan are not only registered publicly but submitted for
peer review. After passing review, the publication outlet
commits to publishing the study regardless of whether the
outcome supports or challenges the theory. This provides
an opportunity for proponents and opponents of the tested
theory to agree on reasonable auxiliary assumptions for
deriving predictions, on a diagnostic design, and adequate
analysis methods. Such a negotiation reduces not only
the freedom of the research team to choose the auxiliary
assumptions and analytical paths that suit their goals but
also the freedom of their opponents to dismiss the evidence.
In some areas of medicine, such as clinical trials, there
are already many thousands of protocols that have been
published upfront in peer-reviewed journals and there are
also large numbers of detailed statistical analysis plans that
are published upfront before a trial is run (95–98). Yet, even
with detailed prespecified analysis plans, deviations are very
common (99).

When Is a Replication Successful?

Our discussion has largely focused on decisions regarding
the design, motivation, and communication of replication
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studies. We have not yet considered how to decide if a given
replication is successful. To engage with this question, at
even a superficial level, we require a definition of replication
success. Given two studies, each of which have obtained
their own data and are intended to answer the same
question, a successful replication is defined as follows by
the Committee on Reproducibility and Replicability in Science
from the National Academies of Science, Engineering and
Medicine.

• Two studies may be considered to have replicated if they
obtain consistent results given the level of uncertainty
inherent in the system under study (100).

Determining whether a pair of studies produced “con-
sistent results” can depend upon the application of statis-
tical methodology. Many researchers have argued that an
overreliance on null hypothesis significance testing (NHST)
has contributed to replication problems across many dis-
ciplines (e.g., refs. 101–103). One of the biggest criticisms
of using NHST for defining replication success is that it
dichotomizes results—success or failure—in ways that lead
to biased reporting and fallacious reasoning. For example,
an effect may be present in a population, but, due to natural
sampling variability, some replications may be statistically
significant by NHST [typically according to an arbitrary
threshold of evidence (104)], while others are not. This leads
to a published literature with upwardly biased effect size
estimates when editorial decisions are based on achieving
statistical significance (e.g., ref. 21).# See refs. 101, and
105–108 for additional examples and discussions of how
dichotomous reasoning using NHST can lead to fallacious
decision-making, especially within a replication context.

The development and interpretation of statistical meth-
ods for assessing replication is an active area of research,
with many promising avenues (21, 109–112). A full account-
ing of modern approaches is beyond the scope of our
discussion, but some guiding principles include 1) taking an
estimation perspective, i.e., prioritizing interval estimates,
and considering evidence in a continuous fashion (21),
2) leveraging Bayesian decision-making (109–111), and 3)
moving beyond goodness-of-fit indices (112). There are also
recent methods designed to estimate and characterize het-
erogeneous treatment effects (113). We do want to highlight
that determining whether a study replicates depends just as
much on scientific considerations (e.g., quality of the design,
strength of the theory in question) as it does statistical ones,
see (114, 115) for discussions.

Discussion

Our two cognitive attitudes, Book of Truths and Book of
Conversations, are extreme points on a continuum that are
useful for examining how researchers evaluate claims and
interpret replication results. They are not intended to per-
fectly describe any single researcher, nor are they intended
to represent ideals that should be adopted. If a researcher’s
intention is to provide a robust and accurate answer for
some empirical question, which may underlie a policy or

#Registered reports can be a useful tool for combating this particular problem.

action, we would say that they hold a Book of Truths attitude
in that situation. Holding this attitude can be problematic
when the underlying effects to be replicated are contingent
upon unobserved heterogeneity (76), hidden moderators
(42), fundamental measurement challenges (116, 117), or
other issues relating to generalizability (85, 118). These
issues may be the norm for some fields,|| and such repli-
cations are better evaluated from a Book of Conversations
attitude—where the results are intended to inform other
scientists and improve developing theory—but should not
be taken as definitive and/or suitable for forming the basis
of policy or action and should not be communicated as such
to other scientists or lay audiences.

Returning to the central aim of our discussion, we say
that a replication decision is sound if there is alignment
between the replication decision and the researcher’s values
and cognitive attitude. For example, the decision to perform
two or more randomized trials with preregistered protocols
and carefully prespecified statistical analysis plans that aim
for the assessment of the benefits and harms of a new
vaccine via direct replications is well aligned with the value of
mitigating harm and a Book of Truths attitude. Conversely,
employing a metastudy design, with many treatment manip-
ulations to explore potential confoundings, is well-aligned
with a Book of Conversations attitude. To be clear, there
are many ways for values, attitudes, and decisions to be
aligned (or not). We are not offering a definitive statement
on the topic. There is considerable room for differing views
and argumentation. Our framework provides researchers
a structured way to answer the question: “why was this
replication carried out the way it was?”

To this end, we recommend that researchers answer
the following four questions when writing up the results
of a replication study for publication (Table 1): 1) What
nonepistemic values are related to, or impacted by, this repli-
cation?; 2) What epistemic values should be considered when
evaluating evidence resulting from the replication?; 3) What
cognitive attitudes do I hold about the replication?; and 4) Is
therealignmentbetweenmy replicationdecisionsandmyvalues
and attitude? Table 1 provides specific instances of these
questions. This could take the form of a short paragraph in
the write-up when describing methods and design.

Our discussions and conceptual model, see Fig. 1, build
upon previous work examining replication practices (119–
123) by making a clear distinction between epistemic and
nonepistemic values. This is useful as these values can
sometimes interact with one another. A nonepistemic value
like transparency can directly impact epistemic values relat-
ing to empirical evidence, e.g., a scientist may be far more
skeptical of a claim if important experimental details have
not been reported in sufficient detail. We also extend prior
work by considering how these values interact with the cog-
nitive attitudes of scientists, that is, how scientists evaluate
claims and what functions they think the peer-reviewed
literature should serve. Taken together, these factors play
a role in the efficacy of replication tools, including journal
reform measures such as reproducibility audits, registered
reports, or the awarding of preregistration badges. The

||For example, see ref. 118, and the many commentaries, for a recent discussion of
generalizability concerns as they pertain to the behavioral sciences.
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Table 1. Four types of questions to answer when deciding whether and how to replicate
Question types Some specific questions Examples

What nonepistemic values are related to, or
impacted by, this replication?

Is there a larger harm we are trying to mitigate
for a population? How will broader audiences
use the results from the replication?

The nonepistemic value of harm mitigation and
accurate lay audience communication are
important when considering a health treatment
replication.

What epistemic values should be considered
when evaluating evidence resulting from the
replication?

Will the replication results be used to develop or
test a theory?

The epistemic value of theory development is
important when establishing robust
phenomena, and can prompt researchers to
utilize replication tools designed to eliminate
publication bias, such as registered replication
reports.

What cognitive attitudes do I hold about the
replication?

Is the aim to establish a highly robust and
replicable result (Book of Truths) or not (Book
of Conversations)? How do I consider the claims
of the original study?

The perspective of The Book of Conversations
aligns well with conceptual replication studies,
which aim to study the behavior of various
independent and dependent variables.

Is there alignment between my replication
decisions and my values and attitudes?

How does my experimental design connect to
my values? Is this consistent with my cognitive
attitude on the replication?

Multiple similar studies done by different teams
(e.g., multiple clinical trials) can be useful for
establishing a definitive result to mitigate harm,
such as in evaluating a new vaccine.

dialog titled “The Misalignment of Incentives in Academic
Publishing and Implications for Journal Reform,” published
in this Special Feature, offers ideas for future-oriented
journal reforms that align with the goals of science. Simi-
larly, the perspective “Automating the Practice of Science—
Opportunities, Challenges, and Implications” discusses how
automated scientific practices may accelerate science and
enhance transparency and reproducibility.

Data, Materials, and Software Availability. There are no data
underlying this work.
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