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Abstract
Purpose Accurate and rapid needle localization on 3D magnetic resonance imaging (MRI) is critical for MRI-guided per-
cutaneous interventions. The current workflow requires manual needle localization on 3D MRI, which is time-consuming
and cumbersome. Automatic methods using 2D deep learning networks for needle segmentation require manual image plane
localization, while 3D networks are challenged by the need for sufficient training datasets. This work aimed to develop an
automatic deep learning-based pipeline for accurate and rapid 3D needle localization on in vivo intra-procedural 3D MRI
using a limited training dataset.
Methods The proposed automatic pipeline adopted Shifted Window (Swin) Transformers and employed a coarse-to-fine
segmentation strategy: (1) initial 3D needle feature segmentation with 3D Swin UNEt TRansfomer (UNETR); (2) generation
of a 2D reformatted image containing the needle feature; (3) fine 2D needle feature segmentation with 2D Swin Transformer
and calculation of 3D needle tip position and axis orientation. Pre-training and data augmentation were performed to improve
network training. The pipeline was evaluated via cross-validation with 49 in vivo intra-procedural 3D MR images from
preclinical pig experiments. The needle tip and axis localization errors were compared with human intra-reader variation
using the Wilcoxon signed rank test, with p < 0.05 considered significant.
Results The average end-to-end computational time for the pipeline was 6 s per 3D volume. The median Dice scores of the
3D Swin UNETR and 2D Swin Transformer in the pipeline were 0.80 and 0.93, respectively. The median 3D needle tip and
axis localization errors were 1.48 mm (1.09 pixels) and 0.98°, respectively. Needle tip localization errors were significantly
smaller than human intra-reader variation (median 1.70 mm; p < 0.01).
Conclusion The proposed automatic pipeline achieved rapid pixel-level 3D needle localization on intra-procedural 3D MRI
without requiring a large 3D training dataset and has the potential to assist MRI-guided percutaneous interventions.

Keywords Interventional MRI · Device tracking · Transformer networks · Deep learning · Image segmentation · Needle
feature

Introduction

Image-guided percutaneous interventions play key roles in
cancer diagnosis and treatment with their minimally invasive
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characteristics [1, 2]. Currently, most percutaneous interven-
tions are guided by ultrasound (US) or computed tomography
(CT) [3, 4].However,USandCTsuffer from insufficient soft-
tissue contrast and poor visibility of several important classes
of tumors [5, 6]. In comparison, magnetic resonance imaging
(MRI) provides excellent soft-tissue contrast and can be the
only modality for visualizing tumors that are not visible on
CT or US, which makes it an emerging imaging modality for
guiding percutaneous interventions in various applications
including needle-based targeted biopsy and focal ablation in
the liver or other abdominal organs [7–11].

Despite the advantages of MRI-guided interventions,
accurate and rapid 3D localization of the interventional
needle in intra-procedural MR images remains a major
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challenge [12, 13]. The interventional needle can be visu-
alized on MR images based on the passive signal void
feature caused by needle-induced susceptibility effects [14].
In current workflows, 3D needle localization is performed
manually; interventional radiologists locate the needle by
marking the needle entry point and tip on the intra-procedural
3D MR images [15]. However, manual needle localization
requires expert knowledge and is time-consuming, which
leads to cumbersome workflows, prolonged procedure time,
and potential variability [16, 17]. The lack of timely feedback
regarding needle and target locations also hinders the possi-
bility of real-time MRI-guided interventions under human
operation or with robotic assistance [18, 19].

2D deep learning networks for automatic 2D needle seg-
mentation and localization have shown promising results
[20–22]. However, 2D needle localization methods com-
monly require the initial manual localization of a 2D image
plane that contains the needle feature [23]. Moreover, the
2D needle localization results do not immediately provide
the essential 3D relative positions of the needle and the tar-
get needed for guiding needle insertion. On the other hand,
training 3D deep learning networks for needle segmentation
on MR images typically requires large 3D training datasets
[24], which may not be available for specific MRI-guided
procedures or at specific facilities. Studies of applying 3D
deep learning networks for needle segmentation on CT and
US images have similarly demonstrated the data-demanding
nature of these networks [25, 26]. The potentially limited
sizes of intra-procedural 3D MR image datasets and the
variabilities in the needle feature’s location and grayscale
appearance in in vivo 3DMRI may lead to insufficient train-
ing of the 3D deep learning network and result in inaccurate
3D needle feature segmentation and localization.

For the task of 3D needle segmentation, which requires
delineating a relatively small object in a large field-of-
view (FOV), convolutional neural network (CNN)-based 3D
neural networks may be suboptimal since the convolution
operations lack the ability to efficiently capture global infor-
mation [27, 28]. To better model the long-range information
in largeFOVs, researchers have developed transformer-based
networks that adopt the self-attention mechanism to cap-
ture global interactions between contexts [29]. The Shifted
Window (Swin) Transformer introduced by Liu et al. demon-
strated excellent results with its hierarchical architecture,
which enables the model to capture both local and global
information [30]. In the context of 3D medical image seg-
mentation, Hatamizadeh et al. further introduced the 3D
Swin UNEt TRansformer (UNETR) [31] which utilized a
U-shaped network structure with a Swin Transformer-based
encoder and CNN-based decoder. Researchers demonstrated
the efficacy of Swin UNETR in 3D medical image segmen-
tation in the BraTS 2021 segmentation challenge, where it
outperformed UNet and nnU-Net [31].

In this work, our objective was to develop an automatic
pipeline for rapid and accurate 3D needle localization on 3D
MRI by taking advantage of transformer networks. To over-
come the restriction of limited 3D datasets for training, we
combined the 3D Swin UNETR and 2D Swin Transformer
for coarse-to-fine segmentation and adopted pre-training and
data augmentation strategies. The proposed pipeline was
evaluated using in vivo 3D MR images acquired during
MRI-guided liver interventions in preclinical pig models and
compared with manual localization of the 3D needle feature.

Methods

MRI-guided interventional experiments

In an animal research committee-approved study, we per-
formed MRI-guided targeted needle placement in the livers
of seven healthy female pigs on a 3 T scanner (MAGNETOM
Prisma, Siemens, Erlangen, Germany). These experiments
were designed and performed by an experienced interven-
tional radiologist (over 20 years of experience) based on
step-and-shoot workflows that mimic clinical image-guided
procedures at our institution [32–36].

The workflow of the experiments is shown in Fig. 1. In the
planning stage, preoperative 3D T1-weighted (T1w) gradient
echo (GRE) Dixon MR images were acquired to localize the
target and initialize the needle entry point and trajectory. In
the insertion and confirmation stage, manual needle localiza-
tion was performed by marking the needle entry point and
needle tip on the 3D T1w GRE images in a graphical envi-
ronment (3D Slicer) [37]. The patient table was moved out
from the scanner for the interventional radiologist to insert
and adjust the needle based on the 3D relative position of the
needle tip and the target determined fromMRI. This process
was repeated until the needle tip reached the target.

Intra-procedural MRI datasets

Intra-procedural 3D T1w GRE Dixon MR images contain-
ing the needle feature and 2D real-time golden-angle (GA)
ordered radial GRE images with the image plane aligned
with the needle axis were collected during experiments with
parameters shown in Table 1. In each experiment, 7 3D T1w
GRE images were acquired as confirmation images between
needle adjustment steps, with the needle inserted at differ-
ent depths and angles. Based on the needle location in the
3D confirmation images, 2D real-time GA ordered radial
GRE images were acquired on manually located 2D oblique
axial and sagittal planes aligned with the needle axis. In
each experiment, 70 2D image frameswith different insertion
depths and angles were selected from the multiple real-time
scans to form the 2D radial GRE dataset. Under the guidance
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Fig. 1 Manual needle localizationworkflow for preclinicalMRI-guided
percutaneous interventions. a Planning: Acquire preoperative MR
images to localize targets and initialize needle entry point and trajectory.
b Insertion and Confirmation: Insert the needle and adjust the needle

trajectory based on intermediate confirmation scans until the needle tip
reaches the target. Note that needle adjustment/insertion was performed
with the subject table moved out of the MRI scanner bore

Table 1 MRI datasets and imaging parameters

3D T1w Cartesian GRE dataset 2D radial GRE dataset

TR/TE (ms) 3.91/1.23 [OP], 2.46 [IP] 3.8/1.72; 5.08/3; 6.3/2.85

FOV 237 × 346 × 180 mm3 300 × 300 mm2

Number of slices 120 1

In-plane resolution 1.35 × 1.35 mm2 1.56 × 1.56 mm2

In-plane matrix size 176 × 256 192 × 192

Slice thickness 1.5 mm 5 mm

Flip angle 9° 9°

Parallel imaging
factor

4 N/A

Acquisition time 13 s (breath held) 100 ms (breathing)

Size of dataset 49 3D volumes for cross-validation (7 3D volumes from
each experiment)

490 2D images for cross-validation (70 2D images from
each experiment)

TR repetition time, TE echo time, OP out of phase, IP, in phase, FOV field-of-view, N /A not applicable

and supervision of the interventional radiologist, a trained
researcher manually annotated the needle feature on the 2D
radial GRE images and 3D T1w GRE images to serve as
reference segmentation masks. The 3D needle tip and axis
references were annotated on the 3D T1w GRE images by
marking the 3D coordinates of the needle tip and entry point.
The 3D needle tip and axis annotation process were per-
formed twice with a washout period of twoweeks in between
to assess the human intra-reader variation.

Automatic 3D needle localization pipeline

We proposed a pipeline (Fig. 2) that takes 3DGRE images as
input and localizes the needle feature tip and axis in 3D space
via a fully automatic process. There were three main steps
in the pipeline. Step 1: the 3D Swin UNETR was applied to

the 3D GRE input images and generated the initial 3D nee-
dle feature segmentation. The 3D segmentation output was
post-processedby a false-positive removalmodulewhich cal-
culated the volume of each segmentation object and removed
the small ones, as the needle segmentation object had the
largest volume compared to the false positives caused by
other regions of susceptibility or signal void in the body.
Note that false positives connected to the needle segmenta-
tion object cannot be removed by this false-positive removal
module. Step 2: we performed oblique axial image plane
realignment along the main axis of the 3D segmentation out-
put to generate a 2D reformatted image that contains the
needle feature. Step 3: the 2D Swin Transformer network
was applied to the 2D reformatted image to generate a 2D
needle feature segmentation.We localized the 2D needle axis
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Fig. 2 Diagram of the proposed pipeline. Input: 3D T1w GRE Dixon
water images. Step 1: Apply the 3D Swin UNETR for initial 3D needle
feature segmentation. Step 2: 2D oblique axial image plane realign-
ment. Step 3: Apply the 2D Swin Transformer on the reformatted 2D

image and localize the needle tip and axis in 2D. Output: Convert the
2D coordinates of the needle tip and axis back to 3D space for 3D
visualization

with orthogonal distance regression (ODR) [38]. The inter-
section of the 2D needle axis and the 2D segmentation mask
was identified as the 2D needle feature tip and entry point
[20]. We then converted the 2D coordinates of the needle tip
and entry point into 3D based on the 2D reformatted image
plane position.

To evaluate the necessity of the 2D Swin Transformer net-
work,we compared the performance of the proposed pipeline
with the pipelinewithout the 2D network (step 1 only), which
identified the main axis of the 3D segmentation mask as the
needle axis, and the intersection of the main axis and the
surface of the 3D needle feature segmentation mask as the
needle feature tip.

Deep learning networks for needle feature
segmentation

We adopted the 3D Swin UNETR [31] (Fig. 3) with pre-
trained weights generated by self-supervised learning tasks
on publicly available unlabeled CT images of various human
body organs without interventional needles [39] and fine-
tuned the model using the intra-procedural 3D MR images.
We pre-trained the 2D Swin Transformer [40] (Fig. 4) using
2D radial GRE images and then fine-tuned the network using
the 2D reformatted images generated by step 2 in the pipeline.
Fifteen-fold data augmentation was performed for the train-
ing process. To demonstrate the advantages of the 2D and 3D
Transformer networks compared with the UNet, we trained

2D UNet and 3D UNet with the same dataset and cross-
validation strategy for comparison. The hyperparameters and
data augmentation details are shown in Table 2.

Evaluationmetrics

To evaluate the needle feature segmentation performance of
the 3D Swin UNETR and 2D Swin Transformer, 3D and 2D
Dice scores (0–1) of the output segmentations before post-
processing were calculated. For 3D needle feature tip and
axis localization evaluation, the Euclidean distance between
the predicted needle tip and reference needle tip (εti p) in mm
and the angle between the predicted needle axis and needle
axis reference (α) in degrees were calculated in 3D space.We
performed seven-fold cross-validation using a total of 49 3D
volumes (7 fromeach experiment), where each fold consisted
of one experiment’s images (7 3D volumes) as the validation
set while the training set consisted of images collected from
the six remaining experiments (42 3D volumes).

Statistical analysis

We compared differences in the performance (Dice score)
of the Swin Transformer-based networks and UNet-based
networks, as well as 3D needle localization accuracy (tip
and axis error) with and without the 2D Swin Transformer
network. For experiments with more than two sets of data
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Fig. 3 Overview of the 3D Swin UNETR architecture. The Swin
UNETR processed 3D MR images as inputs and generated distinct
patches from the input data to establish windows of various sizes for

self-attention calculation. The Swin transformer’s encoded feature rep-
resentations were then transmitted to a CNN decoder through skip
connections at various resolutions. W:256, H:256, D:128

samples, the Kruskal–Wallis test was applied first; if the dif-
ferences were significant across the sets, comparisons were
then conducted between pairs of samples using theWilcoxon
signed rank test. Multiple comparisons were accounted for
by using Bonferroni correction. A p < 0.05 was considered
significant.

Results

3D and 2D needle feature segmentation

To assess the benefits of pre-training and data augmentation,
we performed an ablation study of different training strate-
gies, and the results are summarized in Supplementary Table
S1. The average inference time on one NVIDIA RTXA6000
GPU card (48 GB GPU memory) was 2.14 s per 3D vol-
ume for 3D Swin UNETR and 2.67 s per 3D volume for 3D
UNet. Representative 3D needle feature segmentation results
from 3D Swin UNETR and 3D UNet are shown in Fig. 5.
The performance of 3D UNet and 3D Swin UNETR were
similar in some cases, while more over-segmentation and
under-segmentation were observed in 3D UNet segmenta-
tion results. The median [interquartile range (IQR)] of Dice
scores was 0.80 [0.11] for 3D Swin UNETR and 0.76 [0.10]
for 3D UNet (p � 0.0073).

For 2D needle feature segmentation on 2D reformatted
images, representative outputs of 2D Swin Transformer and

2D UNet are shown in Fig. 6. The average inference time on
the same GPU was 0.011 s per 2D image for the 2D Swin
Transformer and 0.016 s per 2D image for the 2D UNet. The
median [IQR] of Dice scores was 0.93 [0.04] for 2D Swin
Transformer and 0.90 [0.14] for 2D UNet (p � 0.0110).

These results (Fig. 7) show statistically significant dif-
ferences between the performance of 3D Swin UNETR and
3D UNet for 3D needle segmentation, and between the per-
formance of 2D Swin Transformer and 2D UNet for 2D
needle segmentation. These results provide evidence that
the Swin Transformer-based networks outperform the UNet-
based networks in 3D and 2D needle feature segmentation
for our application with a limited training dataset.

3D needle localization

The range of needle insertion depth was 1.94–12.26 cm,
which is comparable to the skin-to-target length observed
in clinical MRI-guided interventions in human subjects
(approximately 2–18 cm) [41, 42]. The range of nee-
dle insertion angle (angle between the needle and axial
plane) was −87.64° to 2.23°. The end-to-end computa-
tional time of 3D needle localization was about 6 s per
3D volume for the proposed pipeline and about 4 s for the
pipeline without the 2D network. Figure 8 shows exam-
ple outputs of the pipeline. Volume-rendered displays of
the pipeline outputs are shown in Supplementary Video
S1.
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Fig. 4 Overview of the 2D Swin Transformer architecture. a The archi-
tecture, input 2D MR image, and output 2D segmentation mask of the
2D Swin Transformer. b Two successive Swin Transformer Blocks. W-
MSA and SW-MSA are multi-head self-attention modules with regular
and shifted window configurations, respectively

Figure 9 shows the 3D needle localization results of the
proposed pipeline and pipeline without the 2D network (step
1 only) compared with human intra-reader variation as mea-
sured by εti p and α. The εti p of the proposed pipeline had
a median of 1.48 mm (1.09 pixels) and was smaller than
the pipeline without the 2D network (median of 1.94 mm;
p � 0.0003, Wilcoxon signed rank test) and human intra-
reader variation (median of 1.70 mm; p � 0.0085, Wilcoxon
signed rank test). There were no significant differences (p
� 0.5043, Kruskal–Wallis test) in α between the proposed
pipeline (median of 0.98°), the pipeline without the 2D net-
work (median of 0.95°), and human intra-reader variation
(median of 1.01°).

Discussion

In this study, we developed a coarse-to-fine automatic deep
learning-based pipeline for 3D needle localization on intra-
procedural 3D MR images. We used datasets obtained from
in vivo MRI-guided interventions in pig livers. The anatom-
ical similarity between pig and human livers is crucial for
ensuring that the needle localization pipeline’s development
and testing are relevant for future translation to clinical appli-
cations in human patients. The proposed pipeline achieved
accurate 3D needle localization with a median needle tip
localization error of 1.48 mm (1.09 pixels) and a median
needle axis localization error of 0.98°. This level of accu-
racy is sufficient for interventions in the liver (e.g., biopsy
or ablation) since clinically relevant lesions typically have a
diameter of at least 5–10 mm [41, 43]. With an end-to-end
computational time of about 6 s, the proposed pipeline shows
the potential to accelerate the current step-and-shoot MRI-
guided needle intervention workflow, which involves manual
3D needle localization steps that each take several minutes.

Table 2 Parameters for 3D (3D Swin UNETR and 3D UNet) and 2D neural networks (2D Swin Transformer and 2D UNet)

3D UNet 3D Swin UNETR 2D UNet 2D Swin Transformer

Loss function Dice loss Dice loss

Learning rate 0.001 Pre-training: 0.001
Fine-tuning: 0.00001

Optimizer Adam Adam

Batch size 4 8

Number of epochs 200 Pre-training: 200
Fine-tuning: 100

Trainable weights 4,808,917 62,186,708 1,625,161 48,962,404

Training time ~ 4 h ~ 5 h ~ 1 h ~ 2 h

Inference time 2.67 s 2.14 s 0.016 s 0.011 s

Data augmentation 15 fold: random rotation, flipping, translation, zooming, additive Gaussian noise

All networks were implemented using Keras and PyTorch
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Fig. 5 Examples of 3D needle
feature segmentation outputs
before applying the false-positive
removal module. 3D needle
feature segmentation references
(yellow) and neural network
predictions of 3D needle feature
segmentation (blue) generated by
3D Swin UNETR and 3D UNet
are shown. a The two networks
achieved similar Dice scores.
b 3D UNet resulted in
under-segmentation, while 3D
Swin UNETR achieved better
performance. c 3D UNet resulted
in over-segmentation, while 3D
Swin UNETR achieved better
performance

Fig. 6 Examples of 2D needle
feature segmentation. The input
2D reformatted image, 2D needle
feature segmentation references
(yellow), and neural network
predictions of 2D needle feature
segmentation (blue) generated by
2D Swin Transformer and 2D
UNet are shown. a The two
networks achieved similar Dice
scores. b 2D UNet resulted in
under-segmentation and
over-segmentation, while 2D
Swin Transformer achieved
better performance. c 2D UNet
resulted in over-segmentation,
while 2D Swin Transformer
achieved better performance

For 2D and 3D needle feature segmentation, we adopted
2D Swin Transformer and 3D Swin UNETR, respectively.
The statistical analyses showed that 3D Swin UNETR and
2D Swin Transformer outperformed the 3D UNet and 2D
UNet, which was consistent with the findings of other studies
that compared Swin Transformer and UNet-based networks
for biomedical image segmentation tasks [39, 44, 45]. These

results demonstrated the advantage of the Swin Transform-
ers in capturing global information when segmenting a small
object (i.e., the needle) in a large FOVwith complex anatom-
ical structures.

We compared the performance of the proposed pipeline
and the pipeline without the 2D network. Under- or over-
segmentation of the 3D Swin UNETR still existed due to
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Fig. 7 Needle feature segmentation Dice scores from cross-validation
(49 sets of 3DMRI). aViolin plots of the Dice scores for 3D needle fea-
ture segmentation using 3D UNet and 3D Swin UNETR. bViolin plots
of the Dice scores for 2D needle feature segmentation using 2D UNet

and 2D Swin Transformer. The numbers shown on the violin plots are
the medians of the Dice scores. In the pair-wise comparisons, p-values
of the Wilcoxon signed rank test are shown on the connecting lines. *
indicates p < 0.05

Fig. 8 Example outputs from the proposed 3D needle localization
pipeline. a Shallow insertion depth around 20 mm. b Moderate inser-
tion depth around 60 mm. c Deeper insertion depth around 90 mm. 3D
needle feature segmentation: 3D needle feature segmentation shown
with the 2D reformatted image plane in 3D Slicer. 2D needle feature

segmentation: 2D needle feature segmentation shown on the 2D refor-
matted image. 3D needle localization results: Predicted (blue) and
reference (yellow) needle tip and axis in 3D space. The needle tip error
(εti p ; mm) and needle axis error (α; deg) are reported for each example
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Fig. 9 Automatic 3D needle localization results from cross-validation
(49 sets of 3D MRI). a Violin plots of needle tip localization error
(εti p) and b violin plots of needle axis localization error (α) of the pro-
posed pipeline, pipeline without 2D network, and human intra-reader

variation. The numbers shown on the violin plots are the medians of the
results. In the pair-wise comparisons, p-values of the Wilcoxon signed
rank test are shown on the connecting lines. * indicates p < 0.05

the limitation of the size of the 3D MRI training dataset.
The under- or over-segmentation usually appeared near the
needle tip and entry points and therefore had little effect on
the needle axis localization but could lead to large needle
tip localization errors in the pipeline without a 2D network.
Therefore, combining the 2D network in the pipeline was
necessary to compensate for the under- or over-segmentation
result of the 3D Swin UNETR. In the future, the 2D network
might become unnecessary if the 3D network achieves the
required accuracy for guiding interventions with additional
training data.

There were limitations to this study. Firstly, due to the lim-
ited size of the intra-procedural 3DMRI dataset, the training
of the networks was affected, and all the results reported here
were from cross-validation experiments. In the future, more
interventional experimentswill be conducted to acquiremore
data. The additional data will expand the training dataset and
enable independent testing for a more comprehensive assess-
ment of the pipeline’s performance. Secondly, the reference
of the needle tip and axis was annotated by one observer
with awashout period of twoweeks to assess the human intra-
reader variation. Futurework can considermultiple observers
and use majority voting for needle tip localization reference
creation. Thirdly, inline deployment and prospective demon-
stration of the proposed pipeline in the context of a procedure
was not yet achieved. Future work will focus on integrat-
ing and testing the proposed pipeline in in vivo MRI-guided
interventions.

Conclusion

In this work, we developed a deep learning-based pipeline for
automatic 3D needle localization on intra-procedural 3DMR

images. The pipeline had a coarse-to-fine structure where it
adopted 3D Swin UNETR for initial segmentation of the 3D
needle feature and 2D Swin Transformer for fine segmenta-
tion of the needle feature in the 2D reformatted image plane.
The proposed pipeline achieved rapid and accurate 3Dneedle
localization within the range of expert human performance
and thus has potential to improve MRI-guided percutaneous
interventions.

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s11548-024-03077-3.
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