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ARTICLE

Social inequalities in climate change-attributed
impacts of Hurricane Harvey
Kevin T. Smiley 1✉, Ilan Noy 2, Michael F. Wehner 3, Dave Frame4, Christopher C. Sampson 5 &

Oliver E. J. Wing5

Climate change is already increasing the severity of extreme weather events such as with

rainfall during hurricanes. But little research to date investigates if, and to what extent, there

are social inequalities in climate change-attributed extreme weather event impacts. Here, we

use climate change attribution science paired with hydrological flood models to estimate

climate change-attributed flood depths and damages during Hurricane Harvey in Harris

County, Texas. Using detailed land-parcel and census tract socio-economic data, we then

describe the socio-spatial characteristics associated with these climate change-induced

impacts. We show that 30 to 50% of the flooded properties would not have flooded without

climate change. Climate change-attributed impacts were particularly felt in Latina/x/o

neighborhoods, and especially so in Latina/x/o neighborhoods that were low-income and

among those located outside of FEMA’s 100-year floodplain. Our focus is thus on climate

justice challenges that not only concern future climate change-induced risks, but are already

affecting vulnerable populations disproportionately now.
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C limate change can increase the intensity of extreme
weather events such as the amount of rainfall associated
with tropical storms and cyclones. Climate change can

therefore worsen the impact of these events and may do so in
unequal ways. Indeed, research has already separately identified
unequal social vulnerabilities in flood risks regardless of climate
change1–4, and increasing flood risks from climate change5–8. But,
not much has been done to connect these two insights. Specifi-
cally, climate change’s precise role in shaping unequal social
impacts now is not yet well-understood6. This is our focus here,
where we combine extreme weather event attribution (to climatic
change) research together with spatial quantitative social
research.

This type of event attribution seeks to determine how the
meteorological and environmental characteristics for specific
extreme weather events that have already occurred were shaped by
anthropogenic changes to the climate5,9–14. As such, it sheds light
on how climate change has affected both the likelihood and the
intensity of these events. A new strand of this work now melds
extreme weather event attribution with hydrological models to
estimate the spatial imprint of these events’ impacts 15,16.

While this growing work on attribution disentangles climate
change’s role in extreme weather hazards, no research to date
analyzes if and to what extent these impacts of the increasing
hazard link to pre-existing social inequalities. Here, we build on
social science work identifying inequalities in disaster impacts
that invokes oft-cited, but little-tested hypotheses about increas-
ingly severe and frequent disasters because of climate change. To
do so, we empirically assess the increased severity of disaster
impacts because of climate change by focusing on the distribution
of these climate change-attributed impacts across different social
groups. To do so, we synthesize data on climate change attribu-
tion, hydrological flood models, hazard maps, and socio-spatial
characteristics of neighborhoods and land parcels in Harris
County, Texas during Hurricane Harvey in 2017.

In this work, we first examine the extent to which flooding of
residential buildings from Hurricane Harvey could be attributed
to climate change16. Then, using multivariable econometric
regression models, we assess what social and demographic factors
are associated with these climate change-induced impacts,
thereby carrying out an original analysis of inequalities in climate
change-attributed impacts of extreme weather events. Our ana-
lysis is based on a census of approximately 1.1 million residential
land parcels located within 795 census tracts (i.e., neighborhoods)
in Harris County, Texas—the largest county of the Houston
metropolitan area that was among the hardest-hit areas by
Hurricane Harvey17–19.

Results
Climate change-induced impacts of Hurricane Harvey. To
determine the relative share of flood impacts during Hurricane
Harvey attributable to climate change, we calculated climate
change-attributed depths and damages using scenarios that
compare the flooding that actually occurred to scenarios of
flooding with less precipitation (i.e., flooding without climate
change). Damages were calculated using depth-damage relation-
ships specific to the building type, as defined in the National
Structural Inventory (NSI) data. The mean damage was calculated
for each structure in our dataset using the nonlinear damage
functions (damage as a function of flood depths) constructed
from National Flood Insurance claims data and the NSI types, as
described in ref. 20.

Previous research examined seven possible scenarios of 7, 8, 13,
19, 20, 24, and 38% of precipitation during the storm that could
be attributed to climate change; see ref. 16 and Methods for

details. We calculate the climate change-attributed portion of
depths and damages by subtracting flooding data from the
scenarios with less precipitation from the baseline flood that
occurred. Here, we present results for the two “best estimates”; a
lower scenario of 20% less precipitation without climate change
(the “best estimate” from ref. 13 and similar to the multigroup
best estimate average of 19% from ref. 9), and a higher one of 38%
less precipitation (the “best small-region estimate” from ref. 10).
Results for the other five scenarios are presented in the
Supplementary Information in Tables S1–S13. Results are shown
for residential parcels.

Our analysis shows that 9.7 percent of residential parcels
(~106,000 parcels) had buildings that flooded during Hurricane
Harvey. For all seven climate change-attribution scenarios we
consider, almost every flooded building (>99%) experienced at
least some flooding attributed to climate change. These depths
varied: the median increased flood depths attributed to climate
change was 22 cm in the (20%) lower climate change-attribution
scenario, and 27 cm in the (38%) higher scenario.

These climate change-attributed flood depths often made the
difference between flooding a building and not flooding the same
building at all. In the higher scenario (38% of precipitation is
attributable to climate change), 49.4% of the buildings that were
flooded would have been flooded anyway, but 50.6% flooded only
because of climate change; i.e., they would not have been flooded
during the hurricane had there been no anthropogenic climate
change to generate increased rainfall. Since Harris County is
large, this corresponds to an estimated 53,616 parcels that would
not have been flooded without climate change. Figure 1 shows a
map of areas that experienced flood impacts only because of
climate change in the 38% scenario. For the lower “best estimate”
(20%), the comparable figure is almost a third—i.e., 31.9% of the
flooded houses would not have flooded without climate change.
Even in the most conservative scenario we test—only 7% of the
precipitation is associated with climate change—12.8% of the
flooded residential buildings would not have flooded at all
without climate change.

We also calculate the property damages wrought by these
climate change-attributed flood depths using the information on
buildings from the National Structure Inventory and depth-damage
functions outlined in ref. 20 (see Methods). Our modeled estimate
of the baseline flood damage to residential properties, including
flooding both attributed and not attributed to climate change, is US
$ 6.41 billion in Harris County. We estimate the climate change-
attributed portion of these damages to be approximately $2.39
billion (37.2%) of total damages in the lower scenario or $3.7 billion
(57.8%) in the higher climate change scenario.

Analysis of climate change-attributed impacts. Given the size-
able impacts of climate change on residential flooding from
Hurricane Harvey, we next conduct regression analyses assessing
what social and demographic characteristics of neighborhoods
and land parcels are associated with these climate change-
attributed impacts. We analyze neighborhood-level variables
including the racial composition and median income of the
census tracts, and including potentially noteworthy moderating
(interacting) relationships between racial composition and
income. We also examine parcel-level variables including the
parcel’s appraised value, whether it is a single-family residential
home, a mobile home, or a multifamily home, the year the resi-
dential structure was built, and whether the parcel has a building
located in FEMA’s 100-year floodplain. In these regressions,
statistically significant relationships and effect size calculations
can be interpreted to identify disproportionate impacts for a
social or demographic group.
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Our first set of regressions assesses how these characteristics
relate to two dependent variables attributed to climate change1:
flood depths (in cm for buildings where flooding was >20 cm);
and ref. 2 flood damages (the estimated amount of damage to
residential buildings in U.S. dollars). The multivariable regres-
sions use a Tobit specification, as a Tobit regression is appropriate
for a left-censored variable where there are a large number of 0
cases (because many parcels did not have climate change-
attributed flood depths). Table 1 shows these results for the 20
and 38% scenarios.

We identify six primary findings from these analyses that hold
across the different scenarios for both depths and damages. First,
parcels in neighborhoods with more Latina/x/o residents had
higher climate change-attributed impacts. Figure 2 uses descrip-
tive statistics where we multiply the number of parcels in three
categories (i.e., not flooded, flooded because of climate change,
would have flooded even without climate change) with the
proportion of different racial groups in each neighborhood to
provide a schematic to illustrate the racial disparities in flood
depths for the 38% scenario. Figure 3 uses descriptive statistics (in
the same manner as Fig. 2) to show these disparities for damages,
with the per capita damages for a Latina/x/o person from climate
change-attributed flooding estimated at ~$1,035. Although this
estimate is only narrowly higher than that for whites ($828), it
should be noted that home values are higher in white
neighborhoods, and therefore this disparity per unit of home
value is greater21–23.

Second, parcels in neighborhoods with higher incomes had
higher climate change-attributed impacts. Third, in neighbor-
hoods with more Latina/x/o residents, the impact of income is
reversed. In these neighborhoods, a greater impact was observed
in the lower-income neighborhoods. This finding clarifies the
previous two: While greater neighborhood incomes are linked to
more climate change-induced impacts, the opposite is the case in
Latina/x/a neighborhoods. Fourth, multifamily residential parcels
(compared to single-family parcels) experienced less flood
impacts associated with climate change. Fifth, location in FEMA’s
100-year floodplain was linked to greater climate change-
attributed impacts. Sixth, older residential structures tended to
have greater flood impacts.

In addition to these primary findings, other results were less
consistent. For climate change-attributed damages but not
climate change-attributed depths, we found evidence of a
curvilinear (convex) effect for the appraised value of the parcel,
but effect sizes were relatively small. We also found that mobile
homes experienced less flood depths but this was not statistically
significant for flood damages. Finally, we did not find statistically
significant relationships for census tracts with a high proportion
of non-Latina/x/o blacks or non-Latina/x/o of other races,
including for moderating relationships with income.

Analysis of flooding only because of climate change impacts. In
the second set of regression analyses, we ask what social and
demographic characteristics are linked to parcels that would not
have flooded without climate change by transforming our flood
depths and flood damages variables into binary outcomes that
denote whether a parcel’s buildings would not have flooded or did
not flood at all. Parcels that would have flooded even without
climate change-attributed precipitation are excluded, meaning
that we conceptualize the sample as all parcels that would not
have had flooded buildings if not for climate change, and then
distinguish between those that did or did not flood in the climate
change scenarios we examine. Table 2 shows the results of these
binary logistic regression analyses.

Findings from these logistic analyses largely mirror those from
the Tobit models on climate change-attributed flood depths and
damages, thereby providing robust support for the overall
findings. Most central to this study’s focus on climate justice,
we find that Latina/x/o neighborhoods, especially low-income
Latina/x/o neighborhoods, had greater odds of flooding (com-
pared to other types of neighborhoods) only because of the added
climate change-induced precipitation. This finding held for both
depths and damages across each of the climate change-attribution
scenarios, although the interaction effect for Latina/x/o and
median income is slightly smaller in models for the 38% scenario
(where p values are 0.064 for Model 2 and 0.07 for Model 4).
Figure 4 graphs these findings with predicted probabilities by
estimating the percentage of climate change-only flooded proper-
ties at different population shares of Latina/x/o residents and
median income. As an example, the estimates show that for a

Fig. 1 Map of climate change-attributed flooding (38% scenario). Each hexagonal bin symbolizes the number of residential buildings that would not have
flooded without the added impact of climate change in Harris County, Texas during Hurricane Harvey.
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high Latina/x/o population share, low-income (90%, $25,000
median income) neighborhood, we would estimate that ~9% of
parcels in the 38% scenario (and 6% in the 20% scenario) would
not have flooded if not for climate change.

Four additional findings are also similar to the Tobit regression
findings. First, a parcel’s location in a higher-income neighbor-
hood is associated with higher odds of that parcel flooding only
because of climate change. While this finding suggests greater

hazard exposure for residents living in neighborhoods that are
more economically well-off, it is also in juxtaposition to the
opposite effect for income found in Latina/x/o neighborhoods.
Second, multifamily residential parcels (compared to single-
family parcels) had lower odds of crossing the flooding threshold
of 20 cm because of climate change-induced impacts. Third,
parcels located inside the FEMA 100-year floodplain had greater
odds of climate change-attributed flooding. Fourth, older

Table 1 Tobit regression of climate change-attributed depths for Hurricane Harvey in Harris County, Texas.

(1) (2) (3) (4)

Depths: 20%
scenario

Depths: 38%
scenario

Damages: 20% scenario Damages: 38% scenario

Mobile homes (ref. single-family homes) −0.146* (0.067) −0.244* (0.104) −13974.716 (8660.438) −22485.544 (12907.822)
Multifamily residences (ref. single-
family homes)

−0.286*** (0.037) −0.455*** (0.060) −27291.861*** (3751.408) −41537.089*** (5786.324)

Appraised value (in 10,000s) 0.000* (0.000) 0.000** (0.000) 78.956*** (13.389) 118.819*** (19.783)
Appraised value (in 10,000s)*Appraised
value (in 10,000 s)

−0.000 (0.000) −0.000 (0.000) −0.008*** (0.002) −0.012*** (0.003)

FEMA 100-year floodplain 0.300*** (0.027) 0.484*** (0.044) 39172.316*** (4115.806) 59673.766*** (6242.381)
Year built −0.004*** (0.001) −0.006*** (0.001) −486.906*** (69.003) −731.664*** (106.573)
Prop. Latina/x/o 0.838*** (0.192) 1.341*** (0.312) 96245.978*** (22228.551) 146089.445*** (33922.639)
Prop. Black −0.492 (0.277) −0.798 (0.446) −55625.818 (32584.418) −83405.492 (49818.786)
Prop. other race −0.172 (0.515) −0.285 (0.828) −25886.556 (59985.583) −41412.489 (91617.440)
Median income (in 10,000s) 0.043* (0.018) 0.068* (0.030) 4558.075* (2006.640) 6843.985* (3075.339)
Prop. Black*median income (in 10,000s) 0.061 (0.067) 0.098 (0.108) 8795.172 (7973.184) 12926.780 (12139.877)
Prop. Latina/x/o*median income (in
10,000s)

−0.113* (0.049) −0.180* (0.079) −11922.360* (5478.747) −17647.823* (8414.736)

Prop. other race*median income (in
10,000s)

−0.092 (0.080) −0.147 (0.130) −9267.221 (8833.474) −13570.820 (13470.497)

Constant 6.402*** (1.100) 10.166*** (1.783) 841824.157***

(134170.769)
1263358.957***

(207126.315)
Observations 1108198 1108198 1108198 1108198

Standard errors in parentheses.
Standard errors clustered within census tracts.
Statistical tests are two-sided.
*p < 0.05, **p < 0.01, ***p < 0.001

Fig. 2 Percent of properties associated with each racial and ethnic group (38% scenario). Estimated percentages for residential properties in Harris
County, Texas during Hurricane Harvey. Note: Group A included 1,002,026 parcels, group B 53,616 parcels, and group C 52,439 parcels.
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residences had higher odds of flooding only because of climate
change.

Analysis inside and outside of floodplains. In the third set of
analyses, we ask how social inequalities in climate change-
attributed impacts are linked to the location in FEMA-delineated
100-year floodplains. Location in this Special Hazard Flood Area
(SFHA) is the primary indicator of flood risk in the United States.
For instance, any property within the 100-year flood zone is
required to purchase flood insurance through the National Flood
Insurance Program (NFIP) in order to be eligible for a mortgage
from a federal agency24. Properties outside the SFHA, in contrast,
are not required to purchase the NFIP coverage. Nevertheless,
many homeowners within the SFHA still do not have flood
insurance25–27. These uninsured may be undertaking other stra-
tegies to mitigate damage from flooding. More broadly, at the

very least these within the SFHA are made aware that their
residence is significantly exposed to flood risk. By contrast, resi-
dents outside of the SFHA are not similarly warned, and may
therefore perceive a lower (or even nonexistent) risk in their
outside-the-SFHA locations, even if the risk they face may also be
significant27,28.

Our descriptive analyses show large impacts outside of the 100-
year floodplains: 76.1% of flooded parcels are located outside of
the SFHA floodplains, an impact totaling $4.9 billion in damages.
The climate change-attributed portion of damages is higher
outside of the floodplains (38.5% of damages in the lower
scenario and 59.5% in the higher scenario) than inside of the
floodplains (33.2% of damages in the lower scenario and 52.2% in
the higher scenario). Coupling these climate change-attributed
impacts with SFHA floodplain location, we estimate that between
29 and 45% of all damages from Harvey (totaling $1.9 to $2.9

Fig. 3 Estimated per capita property damage from flooding by racial composition (38% scenario). Estimated per capita damages for residential
properties in Harris County, TX during Hurricane Harvey.

Table 2 Logistic regression of climate change-attributed depths for Hurricane Harvey in Harris County, Texas.

(1) (2) (3) (4)

Depths: 20%
Scenario

Depths: 38%
Scenario

Damages: 20%
Scenario

Damages: 38%
Scenario

Mobile homes (ref. single-family homes) 0.678 (0.222) 0.701 (0.252) 0.673 (0.221) 0.704 (0.254)
Multifamily residences (ref. single-
family homes)

0.289*** (0.046) 0.283*** (0.041) 0.319*** (0.049) 0.310*** (0.043)

Appraised value (in 10,000s) 1.001 (0.001) 1.001 (0.001) 1.001** (0.001) 1.001** (0.001)
Appraised value (in 10,000s)*Appraised value
(in 10,000s)

1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

FEMA 100-year floodplain 3.267*** (0.384) 3.553*** (0.437) 3.262*** (0.384) 3.546*** (0.436)
Year built 0.984*** (0.002) 0.984*** (0.002) 0.984*** (0.002) 0.984*** (0.002)
Prop. Latina/x/o 21.542*** (13.672) 22.893*** (15.104) 20.782*** (13.154) 22.090*** (14.551)
Prop. Black 0.109 (0.126) 0.141 (0.174) 0.110 (0.126) 0.141 (0.173)
Prop. other race 0.362 (0.646) 0.610 (1.189) 0.333 (0.590) 0.563 (1.094)
Median income (in 10,000s) 1.160** (0.056) 1.170** (0.064) 1.153** (0.056) 1.163** (0.064)
Prop. Black*median income (in 10,000s) 1.569 (0.424) 1.458 (0.431) 1.569 (0.423) 1.461 (0.432)
Prop. Latina/x/o*median income (in 10,000s) 0.675* (0.116) 0.712 (0.131) 0.681* (0.117) 0.717 (0.132)
Prop. Other race*median income (in 10,000s) 0.811 (0.180) 0.769 (0.191) 0.822 (0.182) 0.778 (0.194)
Observations 1036024 1055759 1035536 1055313

Exponentiated coefficients; Standard errors in parentheses.
Standard errors clustered within census tracts.
Statistical tests are two-sided.
*p < 0.05, **p < 0.01, ***p < 0.001
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billion in our model) occurred because of climate change and
outside of the floodplain.

We find evidence for social inequalities in climate change-
attributed impacts outside of the floodplain, but less so inside the
floodplain. We re-analyzed the Tobit and binary logistic
regression models in the two previous sections to account for a
moderating relationship between floodplain location and census
tract-level racial composition and median income variables; results
are found in the Supplementary Information in Tables S9–S13.
Among parcels outside of the floodplains, the econometric models
show that climate change-attributed flooding is more likely in census
tracts with more Latina/x/o residents. Previous findings relating to
income, proportion Latina/x/o, and the moderating effect between
these two variables hold in these models. In Fig. 5, we estimate (using
descriptive statistics in a similar approach to that of Fig. 2) that ~52%

of all parcels outside of the floodplain flooded because of climate
change are estimated to be Latina/x/o households compared to 38%
inside of the floodplain.

Taken together, these findings suggest that there are more
pronounced inequalities in climate change-attributed impacts in
flooding outside of FEMA’s 100-year SFHA floodplains. Flood-
plain location is a key policy tool used to attempt to compel the
uptake of flood insurance and other flood mitigation measures.
This is important, as the insured homeowners, or those that were
forewarned, are more likely to have the resources to pay for
reconstruction and recovery. As such, a house located outside the
floodplain is less likely to have access to recovery funding and is
less likely to recover well29–32. Thus, the racial inequalities we
find in the damage can be further exacerbated during the disaster
recovery process.

Fig. 4 Predicted probabilities of parcel flooding only because of climate change. Predicted probabilities calculated for binary logistic regression results in
Table 2 at levels of percent Latina/x/o, for Hurricane Harvey in Harris County, TX.

Fig. 5 Percent of Latina/x/o parcels flooded because of climate change inside and outside of floodplains (38% scenario). Estimated percentages for
residential properties in Harris County, Texas during Hurricane Harvey.
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Discussion
Drawing on flood impacts from Hurricane Harvey in Harris
County, Texas, our analysis finds strong evidence for climate
change-attributed flooding: we estimate that 30 to 50% of prop-
erties in Harris County would not have flooded if not for the
increased rainfall due to climate change. Importantly, we also find
evidence for social inequalities in this climate change-attributed
flooding. Most notably, parcels in Latina/x/o neighborhoods
disproportionately experienced these higher levels of flooding.
Within Latina/x/o neighborhoods, parcels located in low-income
neighborhoods were even more likely to experience these impacts,
and, among parcels located outside of the FEMA floodplain,
Latina/x/o neighborhoods were also more likely to experience
impacts. All of these suggest that low-income Latina/x/o neigh-
borhoods were more likely to be exposed to climate change-
attributed flooding in Hurricane Harvey, at the same time that
residents in Latina/x/o neighborhoods were also less likely to be
forewarned of the flood risk to which they may be exposed, as
they were less likely to be located in the SFHA floodplains. Being
warned could have compelled the uptake of flood insurance or
alternatively to adapt to this risk using other mitigation strategies.
These findings are partly in contrast to our findings for neigh-
borhood median income which show that more economically
well-off neighborhoods experienced greater impacts. These pat-
terns were evident across all the climate change scenarios we
examined and for the various damage measures we tracked: for
flood depths, for flood damages, and for whether the flooding
would have occurred without climate change-attributed an
increase in flood depths.

Our findings offer a window not only into the climate justice
challenges that cities and towns may face in the future because of
climate change, but the challenges these communities already
confront right now. The world has warmed by more than 1 °C
already33. The common frame of analyzing how climate change
might have inequitable social impacts in the future is important
but incomplete. We believe an equally important line of inquiry
should focus on how climate change is already having unequal
social impacts now. Already, this theme is emergent in research
on topics like climate migration34–36. We believe that social sci-
ence analysis of climate change-attribution impacts of extreme
weather events can further substantiate the major (and inequi-
table) impacts climate change is having in our world today.

The specific climate justice challenges are animated by resi-
dential segregation (by race and income) in the United States and
along other lines of social differentiation around the world. Our
findings suggest that this socio-spatial inequality is linked to the
increasing impacts of climate change. Following this, one
important implication of our work is that climate change could
exacerbate social inequalities in the wake of extreme weather
events, if hard-hit areas are majority-minority areas, and espe-
cially if they are low-income or otherwise socially or economically
vulnerable. Hurricane Harvey is exactly such a case.

In many instances, inequalities persist after the damage has
been incurred, during the process of recovery37. The recovery of
lower-income and/or minority communities is often slower and
less complete or successful. Previous research has shown, for
instance, that lower-income households are less likely to be
insured, or receive lower compensation from their insurer, ceteris
paribus26,28,32. Indeed, insurance is often essential for a fast
recovery38. More than this, the binary nature of risk determina-
tion (i.e., location in a 100-year floodplain—or not) in U.S. flood
policy would suggest that location outside of the 100-year
floodplain would be linked to lower perceived risk6,32 and would
experience a more difficult recovery. Indeed, Billings et al39. find
that for the aftermath of Hurricane Harvey. Our finding that
among land parcels outside of the floodplains Latina/x/o

neighborhoods disproportionately experienced climate change-
induced impacts suggests that these differentials in risk deter-
mination, risk messaging/signaling, and the plausible likelihood
of having flood insurance could all further amplify inequalities
during the disaster recovery process.

Parallel to this, an additional thread to examine is how
neighborhood economic characteristics like median income relate
to climate change-induced impacts. Higher-income areas are
often closer to water bodies as these are perceived as desirable
amenities40,41. In Harris County, our findings can be partly
interpreted through this lens, as proximity to water bodies can
pattern on affluence in some areas (such as along recreational
trails on the city’s many bayous) but have the opposite effect in
others (such as with low-income Latina/x/o neighborhoods near
the Houston Ship Channel which hosts a large number of pet-
rochemical facilities)40–42. Thus, increasing attention must be
paid not only to both climate change mitigation and adaptation to
lessen these impacts but also to upending the root social
inequalities that sustain socio-spatial differentiation in the
first place.

If and to what extent social inequalities in climate change-
attributed impacts may hold across places and across other types
of extreme weather events, however, is a critical question for
future research43. Our study is of a single extreme weather event
in a single location, and we are agnostic as to the external validity
of our findings. Is our work generalizable to other hazards, such
as primarily riverine flooding or wildfires, or to other locations?
The only way to answer this question is with more such studies,
of more hazards, in more locations. This single-event and single
location characteristic of our work can also be perceived as an
advantage, as it provides a specific causal link between green-
house gas emissions and very specific harms. Indeed, we identify
harms to specific residential properties. As noted in a recent
analysis of the role of event attribution and the law, “one critical
question for courts…is to what extent observational evidence of
local impacts…can be used to support claims of injury in the
absence of an attribution study of a matching geographic and
temporal scope showing that the observed impact was caused by
anthropogenic influence on climate change” (ref. 44, p. 235). Our
study provides exactly this missing link, in as much as it “sup-
ports claims of injury” for specific properties, after a specific
event. As such, our study does not only document the inequalities
associated with climate change impacts. In the methodology we
developed, it also provides a tool that can assist in redressing
these inequalities by assigning clearer chains of causality, and
consequently, liability.

Notwithstanding this local relevance of our findings, under-
standing the climate change justice challenges for other places
and other hazards is essential not only for building the climate
justice-focused multidisciplinary research synthesis outlined here
but also for documenting and attenuating the inequalities in cli-
mate change-attributed impacts in marginalized communities
worldwide.

Methods
Data. The empirical analysis we undertake in this study is based on combining
information from geospatial data from five different sources. Geospatial data were
analyzed in ArcGISPro 2.9.2 and QGIS 3.16.

First, data on climate change-attributed flooding comes from Wehner and
Sampson’s (2021) climate change-attribution hydrodynamic models16. To
determine the effect of climate change on this baseline flood, seven scenarios of the
percentage increase in precipitation based on peer-reviewed research were used to
calculate the spatial extent of flooding: 7% (the lowest precipitation change-
attribution level as set by the Clausius–Clapeyron scaling as noted by ref. 10); 8%
(the lower bound of ref. 12); 13% (the lower bound of ref. 13); 19% (the likely lower
bound of the small region of ref. 10 and the upper bound of ref. 12); 20% (best
estimate by ref. 13); 24% (best estimate of the large region by ref. 10), and 38% (the
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best estimate of the small region by ref. 10 and near the upper bound of the estimate
by ref. 13).

In short, these flood maps estimate the counterfactual flood impacts from
Hurricane Harvey if the identified climate change-attributed rainfall (as a percent
of total rainfall) did not occur. Each of these climate change-attribution studies
used different modeling techniques to model how climate change increased
precipitation but all align in tracing how the storm’s rainfall differed from historical
averages due to biophysical changes; especially the increased moisture content of
the air and increased temperature of the Gulf of Mexico at the time of the storm.
The full hydrological model used to construct the data built on these scenarios we
utilize here is described in refs. 20,45.

Second, building data is sourced from the National Structure Inventory (NSI) of
the U.S. Army Corps of Engineers, and represents every structure in Harris County
as a point. The NSI was constructed by combining information from many datasets
—including Census data, Microsoft building footprints, CoreLogic parcels, and
ESRI business layers—to produce the most accurate possible inventory for
assessing natural hazard risk45. The data includes information on occupancy type,
first-floor elevation (including foundation type and whether the structure was built
before or after the area was mapped as part of the 100-year floodplain), and the
replacement value in order to link them to depth-damage functions and assess their
flood vulnerability. We only include structures flooded above a 20 cm threshold; as
very shallow flood depths are unlikely to cause much damage from surface water or
pluvial flooding. Since it is composed of proprietary data, this dataset is not
publicly available. Further details can be found in refs. 20,46. Our damage estimates
are somewhat lower than another recent study: we estimate residential damages at
$6.42 billion compared to $11.1 billion in ref. 47. We attribute these differences
primarily to our calculation of building damages using replacement value instead of
market value (as the latter also includes the value of the land), as well as possible
differences in the depth-damage functions we use, in the modeling of riverine
networks, and in the study’s spatial domain. Further, we believe our use of
replacement value instead of market value as a depth-damage function is justified
for a few reasons. First, replacement value directly estimates impacts on residential
structures and contents from flooding. This differs from approaches using a market
value which includes the land value that has characteristics (such as neighborhood
desirability or how the land use of the building affects the value of the land) that are
not easily measured. While economic models exist that could describe the damage
as a function of market value such as hedonic property value modeling for cost-
benefit analyses relating to environmental impacts48, our use of depth-damage
functions is favored because of the closer focus on the replacement value of
estimated damages. Second, there are large disparities in market value based on the
racial composition of neighborhoods21,22 meaning that a depth-damage function
for market value could undercount damages in minority and/or low-income
neighborhoods. Still, future research might consider other approaches such as
hedonic models that take into account market value because the present approach
with replacement value does not measure the land value of the parcel or how the
land value of the parcel may be affected by damages to the buildings in the parcel.

Third, parcel-level data is obtained from the 2016 Harris County Appraisal
District (HCAD) database. Harris County is the central county of the Houston
metropolitan area. These data include more than 1.4 million parcels and are
updated annually. Our study focuses only on the 1.1 million parcels which include
residential property. We do not focus on commercial buildings as they are more
variable in their structural vulnerabilities and their financial value, making the
modeling of damage considerably more difficult. Building data is merged with the
parcel data using a spatial join in GIS software. Among residential parcels that had
flooded buildings, 7.7% (8822 parcels) had multiple buildings flooded. In these
cases, the depths of flooded buildings were averaged, and the damages were
summed for the whole parcel.

Fourth, census tract-level data is from the five-year pooled estimates from the
2012–2016 American Community Survey (ACS). The pooled 5-year estimates are
used to improve the reliability of the survey. Census tracts are units commonly
used in socio-economic geospatial research to denote neighborhoods and have
~4000 residents. We obtain social and demographic data from the ACS on 798
census tracts. Three census tracts had missing values on median income, but these
three tracts have only 11 parcels between them; these parcels are dropped from the
study sample.

Fifth, data on FEMA-delineated floodplains is obtained for the 100-year
floodplain from 2017. This area signifies places that would experience flood
inundation in a flood event that has a 1% chance of occurring in a given year. Data
were obtained from the Urban Data Platform of Rice University’s Kinder Institute
for Urban Research49.

Measurements and calculations. The flood maps generated with the first dataset
were intersected with data on the residential buildings in Harris County from the
second dataset. Climate change-attributed depths and damages are calculated using
the baseline flood scenarios described above. For each scenario, both the flooding
depth and damages are subtracted from the baseline (the actual flooding that
occurred) to determine the amount of flooding (in terms of depth or damages) that
could be attributed to climate change. Each scenario produces two variables from
these calculations: attributable flood depths (with depths below 20 cm set to 0; see
above) and damages to every building.

The second set of variables is then generated indicating if the parcel’s buildings
did or did not flood during Hurricane Harvey because of climate change. If a parcel
had $0 flood damage or depths below 20 cm in a given counterfactual scenario but
had flood damages or depths in the baseline (actual) scenario, then the parcel was
assigned a value of 1 to denote that it flooded only because of the presence of
climate change-attributed precipitation. Cases that did not flood at all were coded
as 0, and cases that would have flooded regardless of climate change-attributed
flood depths or damages are assigned as “anyway flooded” and are excluded from
the analysis that focuses only on parcels that would not have flooded without
climate change.

Census tract-level variables include racial composition and median income.
Racial composition is measured by three variables: (1) proportion Hispanic or
Latino (termed here as Latina/x/o; see ref. 50), (2) proportion non-Latina/x/o black,
and (3) proportion non-Latina/x/o, non-black, and non-white (i.e., American
Indian or Alaska Native, Asian, two or more races, or another race). The
proportion of non-Latina/x/o white is the reference group with which we compare
the other ethnic/racial composition measures.

The median income is measured as the median income of households in the
census tract in the previous 12 months and is measured in 2016 inflation-adjusted
U.S. dollars. The median income is divided by 10,000 to improve the
interpretability of regression coefficients. Additionally, to test for potential
intersections between race and class, we employ moderating effects with interaction
terms between median income and each of the three racial composition variables.

We use four parcel-level variables. First, the appraised value is the full value of
the parcel including the parcel’s building, land, agricultural value, and any value of
extra features. This variable is also divided by 10,000 to improve the interpretability
of regression coefficients. In the estimated econometric models, a squared term for
appraised value is included as some previous research indicates evidence for a
nonlinear (concave) wealth effect (wealth here is proxied by the appraised value of
the parcel). Second, a categorical variable denoting whether the parcel is a single-
family residential parcel (the reference category), a mobile home, or a multifamily
parcel. Multifamily residential parcels include apartment-style condominiums,
two-family homes, three-family homes, and multifamily homes. Third, we measure
the year the structure was built. In a small number of cases where there are two or
more residential structures in a parcel, we assign this value as the earliest built
structure in the parcel. Fourth, we measure floodplain location with a binary
variable denoting if a building in the parcel is located in the FEMA 100-year
floodplain by conducting an intersect in GIS software between the FEMA 100-year
floodplain and all buildings in Harris County, Texas.

Analytical and estimation strategy. We first present descriptive statistics about
depths and damages relating to climate change-attributed flooding during Hurri-
cane Harvey. All findings are presented at the parcel-level. Analyses were con-
ducted in Stata 16.1.

We next estimate the following equation:

Y scn
ic ¼ αþ β1Xc þ β2Vic þ εi ð1Þ

With Y scn
i denoting either the depth of flooding attributed to climate change in

parcel i and in census tract c, or the amount of damage attributed to climate change
from this flooding (calculated using the damage functions described above). Each
one of these is estimated for each climate change scenario (scn: from 7 to 38% less
precipitation without climate change). Xc is the vector of variables denoting the
composition of the census tract in which the parcel is located (the ethnic
composition variables and the median income. Vic is a vector of measures
associated with each specific parcel (the appraised value of the parcel, and whether
it is a single-family home, mobile home, or multifamily home). In some
specifications, we also interact with some of the Xc and Vic variables. The β
coefficients denote the association of these measures with the climate change
attributable impact on these properties.

Since both dependent variables (attributable depth and damage) are censored on
the left at zero, we estimate these with a Tobit regression model (the results are
reported in the Article and Supplementary Information). The error term (εi) is
assumed to be independently and identically distributed, but there still could be
collinearities among parcels within a census tract. We, therefore, cluster the standard
errors at the census tract (c) level to account for any unmeasured similarity that
these within-tract parcels may have compared to parcels elsewhere in the county.

In addition to these Tobit regression models as specified in Eq. 1, we also
estimated a binary logistic regression model predicting whether the parcel flooded
because of climate change (or would have otherwise not been flooded).

FLscni ¼ eαþβ1Xcþβ2Viþεi

1þ eαþβ1Xcþβ2Viþεi
ð2Þ

In this case, the dependent variable (FLscni ) is a binary indicator (=1) noting
that the property had a flood depth of >20 cm and had also less than that for the
scenario (scn) being assessed. Parcels that always had flood depth <20 cm in both the
scenario being assessed and the actual flood are the default category (=0). Parcels
that had depths >20 cm in both scenarios are excluded from this analysis to focus
only on parcels that would not have flooded in the no climate change scenarios.

We use similarly clustered standard errors at census tracts as in the Tobit
regression model (Eq. 1). The odds ratios estimated from the logit estimation are

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31056-2

8 NATURE COMMUNICATIONS |         (2022) 13:3418 | https://doi.org/10.1038/s41467-022-31056-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


presented in the tables of results. In estimating Eq. 2, the sample is smaller than
Eq. 1 since properties that would have anyway been flooded, even without the
additional precipitation attributed to climate change, are excluded. As such, the
sample includes 793 to 795 census tracts as in some scenarios a few census tracts no
longer had any valid observations (i.e., all parcels had flood depths/damages even
with the reduced modeled precipitation).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study on flood area and volume are available at:
https://portal.nersc.gov/cascade/Harvey/. Data on flood depths and damages at the
building level are available from Fathom but restrictions apply to the availability of these
data, which were used under license for the current study, and so are not publicly
available. The data were available for non-commercial academic research upon
reasonable request from Fathom. Data on parcels are available from the Harris County
Appraisal District: https://hcad.org/. Data on neighborhood socio-demographics are
available from the National Historical Geographic Information Systems: https://www.
nhgis.org/. Data on FEMA floodplain location are available from the Kinder Institute for
Urban Research at Rice University: https://www.kinderudp.org/#/datasetCatalog/
5je3glm092ky.
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