
UC Irvine
ICS Technical Reports

Title
The Time-Petri-Net and the Recoverability of Processes

Permalink
https://escholarship.org/uc/item/7rq1j2vz

Author
Merlin, Philip M.

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rq1j2vz
https://escholarship.org
http://www.cdlib.org/

THE TIME-PETRI-NET AND

THE RECOVERABILITY OF

PROCESSES

Philip M» Merlin

.Technical Report #48

May 1974

Notice: This Material
be protected

by Copyright Law
(Title 17 Li.S.C)

Department of Information and Computer Science
University of California, Irvine

This vrork was supported in part by the National Science
Foundation under grant GJ1042 - "The Distributed Computer
System"

ACKNOVJLEDGEHEHT

I v;ould like to expess my sincere thanks to Professor David

J. Farber for his excellent support and guidance*

- 3 -

U INTRODUCTION

In a previous paper [1], the author proposed a model

for the study of the recoverability of processes under the

occurrance of failures* The results of [1] v/ere improved in

[2]. [2] presented an exhaustive study of recoverability

when a failure of type "loss of token" occurs* The general

structure of a process, in order to be recoverable from that

'kind of failures, was given* [2] also shows a way of

designing Petri-nets (PN), and specially, recoverable

Petri-nets.

The processes studied in those papers v/ere

characterized by a lack of knowledge about the execution

times of its parts* No assumption was made about the, times

expended by the events when they occur, or the relation

between these times.

The present paper, elaborates the results of [2], and

analyzes the practical limitations of recoverable processes^

Since in the Petri-net model these limitations are found to

be practically unacceptable, a nev? model (the Time Petri npt

- TPM) is defined. This model is based in the Petri-net

model, but include some knov/ledge about the execution times

of the events. The PN model is found to be a particular

case of the TPN model.

- 4 -

The present paper studies the property of

recoverability of processes under the occurrance of a

failure of type "loss of token" using the TPN model.

Section 4 shows that for any given TM that can be

implemented by a PN, a TPN can be designed so that it

executes the given TM and is recoverable from a given

failure of kind "loss of token". Several practical examples

are explored.

The contents of this work is a natural continuation of

[1] and [2]. This paper assumes that the reader is familiar

with the concepts presented in [1] and [2]. The sam.e

definitions and notations are used.

- 5 -

2. PROPERTIES OF RECOVERABLE TM's

In [2] the. structure of the TMs that can be implemented

as recoverable processes (under loss of tokens) were

studied. In this section, it is shown that these TMs have

certain properties, usually unacceptable in practical

systems. These processes will be divided into different

groups and each group will be studied separately.

Processes of Kind 1:

1

this kind of processes is characterized by the

following property: If Ai + F is a legal state then Ai is

not a legal terminal state.

Processes of Kind 2:

to this group belong all the processes that not belong

to kind 1.

Note that, as in [2], v;e will deal only with processes

that have finite TM. .

; 2. 1 PROPERTIES OF PROCESSES ^ KIND 1.
i '

The recoverable processes of this -kind have the

following properties:

2. 1. 1 THEOREM

If AI + F is a legal state, then there exists a

- 6 -

state A2 + F and a transition:

tj^ = A1 + F -> A2 + F

PROOF : ,

Suppose that such a transition does not exist» In

this case all the transitions exiting from A1 + F are of

type tj^ (see [2])» In [2] (section 3»1«-2»7) it is shown

that, in this case, the process is recoverable only if

A1 is a terminal state. Since we deal in this section

with processes that have no terminal states then the
i .

transition tj^ exist, and therefore the state A2 + F is

legal»

2,1.2 THEOREM

There, exists at least one loop, so that all the

members in the loop include the condition F

PROOF :

From theorem 2,1.1, each state that includes F has

a successor that also includes F, It means that there

exists the transitions:

A1 + F -> A2 + F .,Ai + F,

If there is not a loop, this means that for each i

(i as big as we want) there is not a k smaller than i

such that:

Ai = Ak

But, this means that in the TM there is an infinite

7 -

number of different states. Since in this work we deal

only v/ith finite TM then a loop exists*

2.1.3 THEOREM .

There exists at least one loop, such that all the

states that are members of the loop have the same number

of instances of F*

PROOF : , • • V ;

We define the following notation:

1* [Pi] is the set of all the states in the PN that

include at least one instance of F, S

2» [Mi] is the set of the states in the PN that

belong to directed loops of states of [Pi],

3» [Qi] is the set of all the states in the PN that

satisfy:

(a) Qi is a member of [Mi],

(b) if SI is a member of [Mi], and exists a

path of states of [Pi] from Qi to SI, then

Qi has equal or more instances of F than

Si has.

Theorem 2»1i2 shows that the set [Mi] is not empty* The

set [Qi] is also not empty because the element of [Mi]

with maximal number of instances of F always belongs to

[Qi]*

Suppose that from the set [Qi] we choose an element

- 8 -

with minimal instances of F» If this element is denoted

as Ql, and if it has k instances of F, then there exist:

Q1 = k»F + A

(A is a bag that not includes F)»

If in Ql occur a failure the PN goes to a state,

say SI, given by:

SI = (k - 1)vF + A

In [2] it was shown that if there exist a path from SI

to any state, say S2, then also exists a path from Qlto

S2 + F* This means that after a failure the PM can only

go to states that have less than k instances of F» • _

Since the TM is finite and recoverable, and we deal

with TMs of "kind 1" after the failure there are not

terminal states* This means that the states after the

failure include loops of legal states* This loops do

not include loops that all of its states belong to [Pi],

because otherwise the definition of Ql is contradicted*

On the other hand, if there are not loops of elements of

[Pi] then theorem 2*1.1 implies that the loops include

only states that not include F* But, in [2] it was

shown that if after a failure there exists a path of

transitions then there also exist a correspondent path

of legal transitions. Each state in this second path

have one more instance of F than the correspondent state

- 9 -

in the first path. This neans that exist a loop with

just one instance of F in its states. This loop

corresponds to the loop of states that not include F

which exist after the occurrence of the failure in state

: QU

Q.E.D,

2.2 PROPERTIES OF PROCESSES OF KIND 2 , •

Processes of kind 2 are characterized by the existence

of a legal terminal state A1 corresponding to a legal state

A1 + F.

Usually, part of the conditions of the terminal states

of a process are used to notify the external world that the

process has finished its execution, and the status in which

the process ended.

Suppose first that A1 + F is not a terminal state.' In

this case, when the process is in A1 + F the external world
I

will sense the same conditions as in A1. This means that

the external world will assume that the process is ended in

Alv

On the other side, if A1 + F is also a terminal state

then exist two diferent cases:

1> F is not sensed by the external v/orld*

In this case F is not necessary in the terminal

- 10 -

state,and there is not reason to implement this. state»

2. F is sensed by the external world..^-

In this'case, after a failure in A1 + F, the process

is recoverable since it stay in a legal state (A1)*

But the error is spread to the external world because

the external world senses F in the terminal state, and

F has lost the token.. • ,

2.3 PROPERTIES OF BOTH KIND OF PROCESSES •.-.

The following properties exist in all the processes
I • ' '

with finite TM»

THEOREM :

In a finite TM, if the states A1 = i .F + Q and

A2 = j»F + Q are legal states, and if i<j then there

is not a path from A1 to A2»

PROOF

Exist a k:

k > 0 '

so that:

j = k + i

Suppose that the path from A1 to A2 is implemented by

the successive firing of the bars:

b1,b2,«««, bm

In this case, b1 fires in A1 bringing the system to a

-Il

legal state, say SI. But since

IC(bl) < A1 < A2

then b1 can fire also in A2 bringing the machine to a

legal state S2. S2 is given by:

S2 = k»F + SI

Now, b2 can fire in SI, but in the same way it can

fire in S2-. This procedure can be applied again, so

that when bm fires it brings the system to state:

A2 = j.F + Q

thus it can bring the system to a legal state:

A3 = (j + k).F + Q r (i + 2,k),F + Q

Now, the entire procedure can be applied again to the

states A2 and A3* In this case there exists the legal

state :

Ai| = (i + 3*k) *F + Q

Continuing in the same way, for any positive integer p

v;e can arrive to a legal state:

Ap = (i + (p _ i).k).F + Q

Since all the Ap are different (they have increasing

number of instances of F), the series of states Ap is

infinite. In this case the Tli is infinite*

Q»E.E)»

2.4 DISCUSSIOM

- 12 -

Theorem 2.3 shows that if A1 + F and A1 are legal

states, then there is not a path from A1 to A1 + F. A path

in the reverse direction may exist. This means that there

exists an irreversible degradation in the process.

Since all the recoverable processes are characterized,

by the existence of correspondent states Ai and Ai + F, then

all the recoverable processes have the property of

irreversible degradation. . The Situation is unacceptable

specially in the case of processes without terminal states.

In this case,the process never terminates, but it degrades

in the number of possible states in which it can stay. An

example of this case of recoverable process is shown in

figure 1. In this example, there are paths from the states

FFA, FFB, and FFC. to the states FA, FB, FC, A, B, and C, but

not in the reverse direction. This process will never

term.inate. But, after a degradation it will never return to

the states D, S, FFA, FFB, and FFC.

Theorem 2.1,3 shows that in recoverable processes of

kind 1 •there exists a loop of states always having the same

number of instances of F. Section 2.2 describes the
i

limitations of the processes of kind 2. The two kind |of
processes (kind 1 and kind 2) include all the processes with

finite TM. This means that each recoverable process has at-

least the limitations of one of the kinds.

- 13 -

i)

Figure 1: A Recoverable TH

- 14 -

From the analysis in this section, v;e can conclude that

the recoverable processes represented by the model described

in [1] and in [2] have a very constrained structure* Thi

limitations to the structure are usually unacceptable in

real systems*

But in the examples presented in [1] this limitations

has been removed by postulating the existence of the

function T (T is defined in [1])* Function T is ,in certain

way, related to the knowledge of some restrictions in the

execution times of the different parts of the system* This

fact indicates that some knov/ledge about the times in the

system can remove the "bad properties" or "strong

limitations" that exist in recoverable processes*

In the following section, the concept of time is

introduced into the Petri-net model of processes*

Recoverability of processes is studied using this improved

model*

s

- 15 -

3v THE TIKE-PETRI-NET (TPN) ; • •

3. 1 DEFINITIONS

3*1.1 a TPN is defined by a Petri-net (as defined in [2]

section 2*2) in which for each bar bi is given, a

tuple [t*i ; t^'^i]. For all i there exists:

1. t«i; t**i real numbers

2. t"i'> 0; t»«i >0

3* t»i < t»''i

3*1*2 the firing algorithm, in a TPN is defined -as

follov/ing:

1. if the conditions IC(bi) holds for a period

of time equal or greater than t'^i then bi

can fire (with the firing algorithm defined

in [2])*

2* If the conditions IC(bi) hold for a period

of time equal to t**i then bi fires *

3*1*3 T"^ is defined as . the minimal time that the

conditions of the bag A hold tokens* I

3*1*4 T**^ is defined as the maximal time that the

conditions of the bag A hold tokens*

3*1*5 T«j^(S) is defined as the minimal time that the TPN

has to stay at state S so that bar b can fire*

- 16 -

3»1.6 (S) is defined as the maximal time that the
b

system can stay in state S before b fires»

3,lv7 T*(S) is defined as the minim.al time that the TPN

will stay in state S when it arrive to this state»

3,li,8 T**(S) is defined as the maximal time^ that the TPN

• can stay in state Si.

3.2 PROPERTIES OF THE TPN

3,2,. 1 A TPN is a PN if for all i:

t'i =0

and t^^i = infinite

In this case, a bar can fire at any time that its

input conditions hold. This is the definition of

the firing algorithm for a PN ([2] section 2,2).,

3.2.2 If SI is a legal state in a TPN and in its

corresponding PN, and if b1 can fire from S1 in the

TPN, it also can fire from SI in the PN,

• This property exists because the firing algorithm in

a TPN includes the conditions of the firing

algorithm in the PN.. I
i

3.2.3 The opposite of 3,2,2 is not always true. Figure

2(a) shows an example of a PN. If A is a legal

state then bl or b2 can fire. Figure 2(b)' shows a

- 17 -

TPN built on the previous PN. In this case, if A

holds a token then bl has to fire before 5» But b2

can fire only after 6. This means that in this case

bl will always fire before b2» In this case, b2

never firesv

3.2.4 Applying successibly the property 3»2.2, each

sequence of legal states that exist in the TPN also

exists in the corresponding PN»

3.2.5 Suppose that IC(bl) < Si and IC(b2) < Si, and Si is

a legal state. In a PM, bl or b2 can fire in Si»

But if. there exists:

t«^^ (Si) >

then bl never fires in Si. In state Si, b2 will

alv;ays fire before bl, and the TPN will leave state

Si before bl can fire. (The example of figure ,2

shows this situation).

3.2.6 From definitions 3.1.1 and 3»1.5 there exists:

t*^jL(Sj) < t»bi

for any i and j.

3.2.7 From definitions 3.1.1 and 3.1,6 there exists:

t»*bi^^j^ < t«"bi
for any i and j.

- 18 -

(D

•fi)V /

{yj ref^

Figure 2: (a) a PN; (b) a TPN of the previous PN

- 19 -

3.2»8 Suppose that b1 ,b2,,bp is the set of all the

bars that satisfy:

IC(bi) < Sj

then t«*(Sj) is given by:

= min(t'"'j^^ (Sj); ^5•^ ^

(3»2.8v1)

because the first bar that arrive to its maximal

waiting time (t**) has to fire»

Replacing 3»2.7 in 3»2»8.1:

t"«(Sj) j< min(f^bl; f^bS .t*»bp)

(3»2v8.2) .

(3*2»8,2) gives an upper bound ta the value of the

maximal time that the TPN can be in state Sj» This

upper bound is not the minimal, but it is easy to

compute since the values t**bi are given in the

definition of the TPNw The exact value of t^*(Sj)

is given by (3»2»8»1), but in several practical

cases the values are dificult to compute.

3,2.9 Q(B) is defined as the set:

Q(B) = ,[Q1; Q2;Qp] 1

each element of the set is an ordered, finite or

infinite,sequence of bags.

Qi is given by:

- 20 - - • r - '

Qi = [Qi''; Qi^; ;QiJ ;»»]

Each element of Qi is a legal state in the TPN that

satisfies:

B .< QiJ

Each' Qi represents a possible sequence in the TPN*

In Qi the bag B holds tokens, and there are not

transitions in the sequence such that if bar bk

fires in Qi-^ then:

B </ Qi^ - ic'(bk) (3*2.9-1)

This means that in Qi, there is not a transition

such that during its execution B does not hold

tokens.

The sequences Qi are chosen so that they are of

maximal length. Thus if Qi and Qj are members of

Q(B) then :

Qi </ Qj

The set Q(B) includes all the possible sequences

that satisfy the previous constraints.

Using this definition, the maximal time that B

can hold tokens satisfies:

t«*B < max(t«« (Q 1)̂+t»" (Q 1^)+. . ;t'« (Q2^)+. . ;'t** (Qp ^) +. .)

(3*2.9.2)

Note that f '^B may be infinite if one of the Qi have

- 21 -

an infinite number of elements. This happens if

there exists a loop of states such that all of them
include B and in the loop there are not transitions
that satisfy (3»2.9.1).

- 22 -

RECOVERABILITY OF TPM AFTER A LOSS ^ TOKEN
"l . -

» •

In this section vie show how processes that are n^

recoverable in the PN model can be transformed into .

recoverable processes using the TPN model.

Suppose that a process, that is n^ recoverable after

the loss of a token in F, is given by its TM. Our goal is

to build a TPN so that its possible states and transitions

are equal to those in the given TM. If the TM is
implemented by a PN, then [2] shows that the process is. not

recoverable if exist either:

1. loops of illegal states, or

2.. terminal illegal states...

[2] shows that for each loop of illegal states there

exists a correspondent loop of legal states that include the

condition F, In [2], it is also shown that the designer can

choose an implementation such that if there exists a legal

transition:

t, = A1 + F -> A2 + F
k

and A1 is not a legal state then there does not exist the

transition:

"^t = A1 -> A2
p

when the PN arrives to A1 after a failure. Therefore one of

the transitions of the legal loop can be implemented so that

- 23 -

there is not a ,correspondent loop of illegal states.

Suppose that the given TM is implemented by a PN such

that there are not loops of illegal states. In this

structure, after the occurrence of a failure, the process

will,terminate in an illegal state.

In order to transform the process to a recoverable one,

for each illegal terminal node Ai we have to implement a bar

bi that fires in Ai. This bar has to execute a transition

from Ai to a legal state in the TM, say Si* This means

that: -

1. IC(bi) < Ai, and

2. IC(bi) includes all the instances in Ai that are not

in Si* ' •

On the other hand, bi is •not allowed to fire in any

legal state* This means that bi does not affect the

execution when there is not failure, so that the TM is

normally executed. In order to disable the firing of bi

during normal execution, t*i has to satisfy:

t*i > t«^IC(bi)

Note that if there exists loops such that the states in

the loop include IC(bi), then the implementation has to be

such that t«*IC(bi) is not infinite. The following example

shov;s this situation.

- 2H -

^. 1 EXAMPLE

Figure 3 shows a TM that has to be implemented such

that it is recoverable in the case that a loss of token

occurs in the condition 5* One possible implementation is

the PN shown in figure Figure. 5 shows the ETM

corresponding to this implementation-. The num.ber in each

arc denotes the bar that implements the corresponding

transition* In this implementation there exists two

problems:

1* a loop of the illegal states 24 and 25-. This loop

can be broken if bar 4 is not allowed to fire in 24*

But bar 4 has to fire in 245, 234, 244, and. 245*

Instead of bar • 4 we will implement four different

bars: •

1* IC(b4'') = 45

2. IC(b4^) =43

3. 10(54^) = 44

4* 10(54^^) = 46

These four bars implement the same transitions

that bar 4 implements, but they can not fire in

state 24,

2* The state 26 is illegal and terminal. But, t**26 is

infinite because of the loop between the states 246

-•25 -

Figure 3: A Token Machine (TM)

" 26 -

Figure 4: A PN for the TM of figure 3

- 27 -

Figure 5: The ETM for the PN of figure 4

- 28 -

and 256 connected by the transitions executed by the

bars 4 and 5»

But after the transition from 246 to 256 is

4executed by 4 instead of bar 4, also this problem

is solved* . In this case, bar 4^ removes the token

from 6 and places a new token. This means that the

maximal existence time of 26 (^^"26) is broken

.4
when bar 4 fires.

Figure 6 shows the new implementation of the TM, after

bar 4 v/as split into four different bars. Figure 7 shows

the ETH for the PN of figure 6. This ETM shows that there

is only one illegal terminal state, the state 26. This

means that we have to implement a bar that fires in 26. The

input conditions of this bar are one of the three following

possibilities :

1. IC(7) = 2

2. IC(7) =6 '

3. IC(7) = 26

In our example we choose the last possibility. 'This means

that IC(7) =26.

As shown before, t"7 has to satisfy:

t«7 > t«''26

The next step is to compute ^*26, or at least an upper

- 29 -

Figure 6i A Pi^J for the TM of figure 3

- 30 -

Figure 7: The ETM for the PN of figure 6

- .31 - .

bound of ^"26. In the next steps we will follow the

procedure described in 3.2-9-

The possible sequences of states that include 26, and

that satisfy the constraints explained in 3-2.9 are:

Q1 = [236; 246; 266]

Q2 = [256; 246; 266]

From 3-2-8:

1. t«*(236) < t^«2 '

2. t««(246) ^ min(t«*3 ; t»''4^)

3- t''«(266) ^ t*«6

4, t®«(256) < t**5

and using (3-2-9-2) there exists that: •

t«»26 < max(t««2+min(t«»3;t«''4^)+t'»6 ; t*'̂ 5+rain(t* ^3 ;t» »4^)+t''̂ 6)

Thus, if:

t'̂ T > max(t««2+min(t*"3;t»''4^)+t«''6 ; f^S+min (^ '̂3 ;t»*4^)+t»»6)

(4-1-1)

then:

t*7 > f'^*26

And if:

0C(7) = Si

where Si is one of the legal states then the process is.

recoverable. In our example we choose:

0C(7) = '1

Figure 8 shows the TPN that implements the recoverable

- 32 -

process of the given TM. We assune that the values of t»«2,

f--5 and either t-«3 or are finite, and that t«7
IS chosen so that (i|vr. 1) is satisfied> The TPN of figure 8

inplements the TM of figure 3 and it is recoverable in case
of a loss of token in condition 5. After a failure, the
system will arrive to state 26. After the process 'is in

state 26 for a time equal to t»7, then bar 7 will fire and
the TPN v;ill return to legal state 1. .

- 3-3 -

Figure 8: A recoverable TPN for the TM of figure 3

- -34 -

5^ RECQVERABILITY A COMMUMICATION PROTOCOL

t-

The study of the communication protocols in this paper

is motivated by practical reasons. During the last years,

many com.puter netVi/orks have been designed and implemented^

Since the probability of failures in the communication links

is relatively high, the im.plementation of recoverable

protocols processes is of considerable importance.

The presentation in this section is based, in part, on

the study presented in [4] and on the -examples given in [1].

The new model, the TPN, is used. The examples presented

here are a simplified m.odel of the IMP-IMP protocols used in

the ARPANET. The study of these protocols are presented by

the two following examples.

5' 1 EXAMPLE 1

In this section the protocol of figure 9 is studied.

This protocol is presented in [1]. We suppose that a

possible failure is the loss of the m.essage M. This means

that a token in M can disappear. The dotted line from E to

A represent the preparation of a new message by the sender.

The dotted line from D to B represents the receiving

process.

In order to sim.plify the example we suppose that the

35

Figure 9: A PN of a protocol process

- 36 -

dotted line between E and A is activated before the line

between D and B. This means that the receiver is ready to

receive before the sender is ready to send» This assumption

only simplifies the explanations and it does not reduce the

generality of the example.

The ETM of the PN of figure 9 is given in figure 10.

The ETM shows that exist only one illegal state, WB, and

this state is also terminal. Section 4 shows that in order

to transform such a process to recoverable, there has to be

a bar that fires in state WB, If this bar is called 7, then

there exists the following possibilities:

1. IC(7) = WB

2. IC(7) = B

3. IC(7)' = W

In the first possibility, bar 7 is dependent- in both

the sender and the receiver. In real systems this structure

is difficult to implement because of the physical distance

betv/een sender and receiver. In our example, vie choose the

third possibility. In this case bar 7 is dependent only in

the state of the sender. In case of a failure, the sender

will send again a transmition of the lost message. This

means that:

IC(7) = W '

and:

- 37 -

/

Figure 10: ETM for the PN of figure 9

- 38 -

^ OC(7) = MW

so that in case of a failure the system will return to state

WHB.

On the other hand, bar 7 has -to fire only if a failure

have been occurred» In other words:

t«7 > t«»H .

From figures 9 and 10 it is possible to show that:

t*«V/ = t^^'B + t«»3 .+ t*"4

Thus, t*7 has to satisfy:

t"7 > t«-^2 + t««3 + t««4 (5»U1)

The recoverable TPN and its corresponding ETM are shovm in

figures 11 and 12 respectively* This TPN is recoverable

from failures of type "loss of token" in F. Note that if

(5*1*1) is not satisfied then the ETM is infinite and the

process is not recoverable* In many practical systems the

t'-^T, that satisfies (5*1*1), can be very large* In these

cases, the protocol of the next example can be used*

5*2 EXAMPLE 2

Suppose that each message carry a sequence number. If

these numbers are from the set of integers [1,2,..*,n] then

the messages are sended secuentially in the order:

1; 2;-* * .n ; 1; 2; * * .n ; 1; 2* * ♦ * * * .» . »

) In the PN that represents this protocol there exist

- 39 -

Figure 11: Recoverable TPN for the TM of figure 9

- no -

\

Figure 12: ETM for the TPH of figure 11

- 41 -

different conditions Mi ; (i = 1,2,»»»n). Each- Mi

correspond to the message carrying the sequence number i*

In the sam'e way, for each i (i = l,2,..»n) there exists

the conditions:

Ai = ready to send message i

Bi = ready to receive message i ,

Ki = acknowledge to message i is sended

Wi = v/aiting for acknowledge to message i

Ei = acknowledge to message i was received

Ci = message i v;as received .

Di = prepare for receiving next message

These conditions correspond to the conditions A, B, K, W, E,

C, and D of the PN in the previous example.

For simplicity, in the present example, we assume that

n=2 (the same approach is applyable in the general case).

Figure 13 shows the PN for this case. This PW is similar to

two instances of the PN shown in figure 9* ihe only

cjif'fepence is in the dotted lines, ihe dotted lines

represent the sender and the receiver processes. In this

case, these processes are responsible of the correct

sequencing of the.messages»

Figure l4 shov;s the corresponding ETM for the case that

a failure can occur in Ml or M2, assuming initial state

A1B1, Also here, v/e suppose that the receiver is ready to

- H2 -

Figure 13: PN_of a protocol process

- 43 -

I

receive before the sender is ready to send» This assuption

again simplifies the analysis of this example, but it does

not reduce its generality*

The ETM of figure 14 is similar to two instances of the

ETM shown in figure 10. In order to convert the PN of

figure 13 to recoverable; the approach is similar to that

described in the previous example* In this case, two bars

are added, bars 17 and 27* In the same way as in ' the

previous example, there exists:

1. IC(17) = W1 .

2. 0C(17) = WlMl

3. 1*^17 > t«»'12 + t«''13 + t**l4 (5*2*1)

4. IC(27) = W2

5* OC(27) = W2M2

6* T''27 > t''«22 + t»"23 + t«*24 (5*2*2)

This TPN is shovm in figure 15 and it is recoverable*

But, what happens if (5*2.1) or (5*2.2) are not

satisfied?. In this case, bar 17 or bar 27 can fire before

it is sure that the TPN is in an illegal state. This means

that the bars 17 or .27 can fire also in legal states, jIn
order to simplify the following explanations, for the case

that (5*2.1) or (5.2*2) are not satisfied we assum.e that:

t''«12 + t**13,+ t«''l4 > t«17 > t««12 + t*»-13 (5*2.3)

- 44 -

A i 6

w/ Ml

i z<;

m 0

Figure 14: ETM for the PM of figure 13

_

Figure 15: Recoverable TPK for the PN of figure 13

- 46 -

t««22 + t««23 + t'-«24 > t«27 > t''«22 + t««23 (5.2»4)

The same approach is applicable for the general case in

v/hich (5» 2* 1) and (5»2»2) are not satisfied.

The TM for the TPN described in figure 15, for the case

that (5»2.3) and (5.2.4) are satisfied, it is shown in

figure' 16. This TM is infinite since the number of

instances of Ml and M2 grows infinitely. In this situation

it can occur that the execution never returns to "normal

execution". By "normal execution" we mean the legal states

of figure l4. At this point, we can'look at the problem in

the following way:

"when bar 17 fires in states W1K1D1 or V/1K1B1, or when

bar 27 fires in states V/2K2D2 or W2K2B2, they

introduce a pseudo failure of type generation of extra

token"

When bar 17 fires, an extra token is added to Ml, and when

bar 27 fires, an extra token is added to M2. The states

after the occurrance of the "pseudo failure" are called

pseudo illegal states. The transitions betv;een these states

are called pseudo illegal transitions.

At this point, we want to insure that, after the

occurrance of a pseudo failure, the execution will always

return to the legal states. The solution of this problem is

\:(nKibh

sj/i KtDi

S\ Vi Hi
&i H-i

hi Mi

Hi hi RI

Kt])i ki

eiVl Hi ^ZKi sT^

Al 6| Ml

6 i Ml

CefTi Ui/Z. To

JUFti/iTc

Figure 16: TM for the case that (5.2»3) and (5»2,4) are t-j
r€

satisfied

- 48 -

the same as in the case that a real failure of type

generation of an illegal token" has occurred-*

In order to solve in general this kind of problem, it

is necessary. to exhaustively analyze the problem of

"recoverability under the generation of an illegal token",

in a similar way as was done in [2] for the case of "loss of

token". But, several particular cases can be easily solved

•Without such an analysis.

Next, the solution of our example is given. At this

point, vie can not formally determine if our solution is the

only possible solution. But, the solution presented here

appear to be appliable in many practical cases.

Suppose that a "cut-set" of pseudo illegal arcs • is

chosen in the TM of figure 16. Since the cut-set include

only pseudo illegal states it divides the TM into two parts:

1* _1 includes all the, legal states and part of the

pseudo illegal states,

2» ^a.rLt 2 includes only all the pseudo illegal states

that are not included in part 1.

In our example the cut-set of arcs [al , a2] in figure

l6 is chosen.

If bars are added so that:

1. there exists a path from each pseudo illegal state in

part 1, to a legal state.

_ 49 -

2» the additional bars can not fire in legal states,

3* the arcs of the cut-set (a 1 and a2 in the example)

will never be executed,

then the process is recoverable under the occurrance of a

pseudo failure. If the conditions above are satisfied,

after the occurrance of a pseudp failure the execution will

always return to a legal state.

In order to satisfy these conditions, the bars 18 and

28 are added to the TPM of figure 15, such that:

1C(18) = B1M2

0C(18) = B1

IC(28) = B2H1

0C(28) = B2 .

The new TPN is shov-zn in figure 17 and the correspondent

TM in figure 18. Figure 18 shov/s that conditions 1 and 2

are satisfied. Condition 2 is satisfied because neither

IC(.18) nor 10(28) (B1M2 or B2M1) are included in any of the

legal states. In order to satisfy condition 3, v;e have to

insure that arcs a1 and a2 (figure 18) vjill never be

executed. This means that in state V/2M2B2M1 bar 28 v^ill

fire before bar 22 can fire, and that in state VJ1M1B1M2 bar

18 will fire before bar 12 can fire. In other v;ords, using

property 3»2.5:

IB 1M2) < (5.2.5)

- 50

(i)

'4—it

Figure 17' A new TPN

5/
wiKi Di M

of/ i<i b ciD/ Ml

^'62 Ml

nT- 91M/

W1 tl

«a-Ki J)i

i&i Mz

K'/ Ml 61 Mi

Figure l8: TM for the ETM of figure 17

\i Ml
T

•^2. for iHi

. ^tCt Mz

lA/F'iVire

bj Mi

cp{^T>Ui;^> i"»

^i/fiaji rs

- 52 -

t''«2g(V/2M2B2M 1) < t»22(^^2M2B2M 1) (5>2>6)

But since Ml < IC(12), and the token in Ml is placed

v;hen the process enter the state V/1M1B1M2 then:

t«-|2(WlM IB 1M2) = t'''12 (5.2»7)

Note that in this case t''12 is the minimal time that can

elapse between a token is being placed in Ml until this

token is removed * This time can be interpreted as the

minim.al propagation time of the message 1^1 U.

In the same way there exists:

t»22(^^2M2B2M1) = t«22 (5»2,8)

and ^22 can be interpreted as the minimal propagation time

of the message M2<

From figure 17 and 18 it is possible to show that:

t»«^g(WlMlBlM2) = f^^lS - t«ll - t«26 (5*2»9)

and t««25(W2M2B2M 1) = t«''28 - t«21 - t»l6 (5.2«10)

Replacing (5.2.7) and (5.2.9) in (5.2.5) the result is:

f^lb - t« 11 - t''26 < f-'lB (5.2.11)

and replacing, (5.2.8) and (5.2.10) in (5.2.6) the result is:

t*«28 - t"21 - t*l6 < t«22 (5.2,12)

The TM of the TPN of figure 17, with the constraints

given by (5.2*3), (5.2*4), (5.2. il), and (5*2*12) is shown

- 53

in figure 19» This TM includes all (and only) the states,

legal and pseudo illegal, that are included în v;hat we

called "part 1" of the TM of figure l6. But, this is not

the only way to look at the problem* The pseudo illegal

states of part 1 are allowed to hold tokens, just as the

legal states* This means that these pseudo illegal 'states

can be also' considered as legal states* Thus, all the

states of figure 19 can be considered legal* These tV70 ways

of interpretation are equally convenient.

The TPN of figure 17, v/ith the constraints (5*2*3),

(5*2.4), (5.2*11) and (5.2.12) was designed so that it is

recoverable under failures of kind "loss of tokens" in Ml or

M2. The ,ETM of figure 20 shows this property*

The process, as given by the TM of figure 19 or the TPN

of figure 17 (and the constrains in the execution times),

has interesting properties, as follov;ing: •

1* The messages are received in the same order that

they are sent. This property is shown directly from

figure 19* ^ States VJ2H2B2M1 and V/1M1B1M2 are the

only states in which two messages are simultaneously

in the link* But, in W2M2B2M1 the message "Ml ,was

sent first (note that the only processor of V/2M2B2M1

is A2B2M1), and in this • case Ml is received first

(the only successor of W2M2B2M1 is W2M2B2)* In the

-54-

Hi6iI

I

\ w^C/S2
EcfO/M

HiJ

HI

Wl/^l62M/

Ml

^-^1Hl

H'BiMl

^••K'biM-l

Figure19:TMfortheTPMoffigure17

\x/:i Cl

Figure 20: ETM for the TPN of figure 17

- 56 -

sane way, when the process is in W1M1B1M2 the
nessa^e was sent «rst anh it will he receive.
first. This limitation in the order of the messaftes
aan be removed, m part, if the sepuenoe number of
each message is chosen from more than two
possibilities [4],

2. Unequalities (5.2»n) and {<=: o
(5.2» 12) can be rewritten

as:

< t.22 e t»2, e t.,6 (5.2.,,,,

(5.2. Ha) shows that the maximal time that takes to
receive an illegal message (t»M8) has to be smaller
than the minimal time it takes to prepare 'a new
message (t"26), to send it (tMl) and to

' '' sna to receive it
Csee figure 171 •7K The same relation'exist in

(5^2»12a)»

•AS Shown before, t^.',2 represents the minimal
propagation time of the message Ml. in a certain

y, t 18 represent the maximal propagation time of
since in practice Ml and M2 propagate in

the same channel then (t.v,8 - t",2, denotes the
variance m the propagation time of the messages.
But, from (5.2.11a):

- 57 -

t-18 - t«12 < t«11 t=^26 . (5.2. lib)

ihus, the rninimal preparation time of a message
(t«26) plus the minimal sending time (t»n) has to
be greater than the variance of the propagation
time. This means that in a recoverable process of
this kind a higher uncertainty in the propagation
time leads to the reduction of the frequency of the
messages. The same conclusion can be derived from

(5.2.12a).

- 58 -

6. C^CLJUSIOHS

SUMMARY

and this paper are very closely connected each
to each other. Since these three papers fors, an alnost
indivisible unit this conclusions are related to the entire
set, and not only to this .paper»

in these papers the problem of recoverability of
processes have been modeled and formally defined using
elements of the Petri-net. The particular case of failures
of type noss of tokens" has been exhaustively explored. A
way of designing processes that are recoverable from -this
kind of failures was given. This vay of designing is based
on the properties of recoverable THs and on a procedure for
designing a PN that implements a given TH. This last
procedure can be useful not only for the design of
recoverable processes, but in general for designing Pirs
With properties that are better reflected in the TM than In
the PN" itself.

In the case that no assuptlons have been made about the
execution times of the different parts of the PH, the
recoverable processes under a failure of type "loss of
token are very limitated in their possible structure.
These limitations are usually unacceptable In practical'

- 59 -

(real) processes» Because fv,ause of these limitations, some
knov/ledge about the executinnexecution times was introduced in th-
™ and a nan .odel, the TPK. „as defined. Fon anv elven
.H, that haa a cornespondent PH, a TPN can he designed so
that it executes the ^:iven TM and •; t-fexven in and it is recoverable from a
given failure of type "loss of token".

Buu, in this recoverable TPN it is necessar-ir f-
necessary to acceptconstraints in the execution tines of its parts. if these

ocnstraints can not he accepted, the. can he partiall.
relaxed by introducing a "pseudo r -i

& <=» pseudo failure" of type
generation of token" in t-i-. •IS case, the recovery from the'

-pseudo failure" has to be insured.
The approach used in these papers for the study "of

failures of type "lossype loss of tokens" can be applied in order to
explore other types of failures.

Other authors CC3i in section r.p, have uritten about
the inportanoe of "the prohlen of including sone neasure of
service tines at the nodules". fi„ce the TPM includes this
easure of service tine, this node! can he useful not only

in the exploration of recoverability but in a
iity, but in order to model

and explore other properties of processes. '
The approach presented in this c^Pt or

tnis set of papers does not
differentiate between the hardt-prpnardvvare components and the
software parts of the processes Thoprocesses. The -approach is uniform

s

mea

- 60 -

and in praotioe each part can be Implemented by any-kind of
elements.

6.2 SUGC-ESTIOM.S FOR FURTHER EXPLORATTOM

This work points out several areas needing further
research-. Among these areas are:

1. the formal analysis of recoverability under the
occurrance'of other kind of failures. Among these,
"generation of illegal tokens",etc.

2. The further research of the TPN model.

0, The formal analysis of other properties of

processes,such as:

(a) "fail-soft",

(b) "fail-tolerant",

(c) "best-effort"

4. The research of the transfer of failnres^ among
processes in an hierarchical structure.

- 61 -

iiE£ERENCES

«e.Xin, p.K. He=ove.aWUty of Ppooossea.

r Bepo.t pepapf.e„. of Xnfoo.a«on anaComputer- Science; University of CalrTo •
^ "y Of California, Irvine,92664; February 1974^

[2J Merlin. p m • « „study on Reooverability of
Processes. Technical Heport mT, Department of
nformation and Computer Science; University of
^^•^or'nis . liPvinp nf -LLvxne, 925o4; April 197/t»

C3] Larson. ic^r
Cornputation Graohs- noro .urapns. Department of

nformation and . Computer Science- [fn • ' •
ouience. University of

California, Irvine, California, 92664; 1974.

«°del Analysis of Computer
ommunications Protocols; computer science

Department; UCLA; Los Anyeles, California, 1974

