UC Irvine
ICS Technical Reports

Title
The Time-Petri-Net and the Recoverability of Processes

Permalink
https://escholarship.org/uc/item/7rglj2vZ4

Author
Merlin, Philip M.

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7rq1j2vz
https://escholarship.org
http://www.cdlib.org/

THE TIME-PETRI-NET AND
THE RECOVERABILITY OF
PROCESSES

. Philip M. Merlin _
Notice: This Materia)
may be protected

by_'Copyrighi“ Law
(Title 17 U.s.c)

,Technical.Report #48

" May 1974

“

Department of Information and>Computer Science
University of California, Irvine

This work was supported in part by the National Science
. Foundation under grant GJ1042 - "The Distributed Computer
Systen*

ACKNOWLEDGEMENT

I would like to expess my sincere thanks to Professor David

J. Farber for his excellent support and guidance.

1s INTRODUCTION

In a preViouS paper [1], the author proposed a model
for the study of the recoverability of processes -under the

occurrance of failures. The results of [1] were improved in

[2]. [2] presented an exhaustive study of recoverability

when a failure of type "loss of_token" occurs. The géneral

structure of a process, in order to be recoverable from thatr

'kind of failures, was given. [2] also shows a way of |

designing .Petri-nets (PN), and specially, recoverable
Petri-nets.,

The processes studied in those papers vere

‘characterized by a lack of knowledge about the execution

times of its parts. No assumption was made abéut the times -
expended by the events when they occur, or the relétion
between these times. -
Thé preseﬁt paper, elaborates the results_of {27, and
analyzes thé practical limitations of recoverable processes-:
Since in the Petri-net model these limitations are found to
be practically unacceptable;‘avnew modei (the Time Petri net -
- TPN) 1is defined. This mpdel is based in the Petri-net
mbdel, but include some knoﬁledge aboutnthe execution times
df the events. The PN modgl is found to be a particular.

case of the TPN model.

Thé presenf baper studiés the property _of
recoVerability of brocesses under the occurrance of' a
failure of type "loss cf token" |using .the TPN model.
Section 4 shows that for any given TM that can be
implemented by a PN; a TPN can be desigﬁed so that it
executes the given TH and is fecoverable from a given
failure of kind "loss of tokén“. Several practiéal examples
are explored. | .

The contents of this wdrk is a natural continuationlof
[1] and [2]" This paper assumes that the reader is familiar
with the concepts presented in [1] and [2]. The same

definitions and notations are used.

2. PROPERTIES OF RECOVERABLE TM's

In [2] the structure of the TMs that can be implemented
as recoverable processes (under 1loss of tokens) were
studied. In this section, it is shown that these TMs have

certain 'propenties, usually unécceptable in practical

systems., These processes will be divided into different

groups and each group will be studied separately.

Processes of Kind 1:

. . . |
this kind of ©processes 1is characterized by the

following property: If A1 + F is a legél state then Al is

not a legal terminal state.

Processes of Kind 2:

to this group belong all the processés that not belong-

to kind 1.
Note that, as in [2], we will deal only with processes

that have finite TM. s

2.1 PROPERTIES OF PROCESSES OF KIND .1i.

’

" The recoverable proceéses of thié ‘kind have the

following properties:

2+1.1 _THEQREHM

If Al + F is a 1legal state, then there exists a

~

state AZ +‘F and a transition:’
b, = A1+ F ->VA2 + F
PROOF : -‘ _ S
Suppose.that such a tfansition does.npt exist. In
this case all the transitions exiting from A1 + F are of
type t; (see [2])s 1In [2] (section 3.1.2.7) it is shown
that, in this case, the process is recoverable only if
A1 is a termihal‘state. Since we'deal'invthis sectiénl
| withi'processes thét ~havé-.no terminal states then the-

transition t, exist, and therefore the state A2 + F is

legal;

2+ 1.2 THEOREHM |
There exists at least one loop, so phat'all the
members in tﬁe loop include the condition F | |
PROGE - _ i
From theorem 2.1.1, each stéte that includes F has
a successor that also includes F.._It means:that there
exists tﬁe transitionsf | |
A1 4 F o> B2 # F >rasenn wiBl + Fureesnns
If there is not a loop, this means that for each~i

(i as big as ‘we want) there is not a k smaller than i

- such that:

. Ai = Ak

But, this means'that in the TM there is an infinite

.humber of differeht states, Since in this work we'deal

only with finite TM then a loop exists.

2.1.3 THEOREM
There exists at least one loop, suoh that all the =

states that are members of the loop have the same number

of 1nstances of F1A
PROOF :

AWe deflne the f‘ollow1nc notatlon.

1s [Pl] is the set of all the states in the PN thatﬂf

1nclude at - least one 1nstance of F,

-2, -[Ml] is the set of the’ states in the PN that

belong to dlrected loops of states of [Pl],

3. [Qi] is the set of all the states in the PN that"

satisfy:

(a) Qi is a member of [Ml]
(b) if S1 is a member of [Ml],_and exists a
o path of states of [Pi] from Qi to S1, then
.Ql has equal_or more-lnstances of F -than

_ 4 Si has. t,

Theofeml2.1;2 shows that the set tMi] is,hot emptf.‘tThe
set [Qi]-is dlso not empty because the element of [Mi]
with maximal humber of instahces of F aiways belongs to

Suppose that from the set [Qi] we choose an element

with.miﬁimal instaﬁces of F. If this element is denoted
.as Q1, and if it has k inStances-of\F, ﬁhen there exiét:.
Q1=kr+A
‘(A is a bag that not 1ncludes F).
If in Q1 occur a fallure the Pﬁ.goés to a.staﬁe;
.say'S1, given by: | » e | . |
| ST = (k - 1).F + A

In [2] it was shown that iflthere exist a path from S1 - -

‘'to any state, say SZ,,ﬁhén.also exists a path from Q1;ﬁQ
VSZ + F. This ﬁeans-that after a failure the PM can 6niyv
éo to states that have ;§§§'than k instances of F. {;f;ﬂ
Siﬁcewthé TM is finite and recoverablé, and we deal‘
with TMs of "kind 1% af‘ter"A the failure vther"é afe l;lotll
:terminal states. This méané that the states after the -
failure 1nclude loops of legal states; -This loops 60~
not 1nclude loops that all of 1ts states belong to [P1];
.because otherw1seAthe definition of Q1 is contradicted.
‘On the other hand, if there>are.n6tbloqps of elements of
[Pi] then theorem 2. 1.1 implies_that the loops include
only states that ’not inelude Fo But, in [2] it was
shown that 1f after a failure there ex1sts a path of
tran31tlons then there also exist aicorrespondent path.'
of legal tran51t10ns. .Each state in thls second path

have one nmore instance of F than the'correspondent state

in the first path. This means that exist é loop Qith
just one instance ' of F‘-in its states. This 1loop
correspondé to the loop of states that not include F
which exist after the oqcurrahcé of the failure in state
Q1. .
| Q.E.D. .

2.2 PROPERTIES OF PROCESSES OF KIND 2 <

Processes of kindAZ are éharacterized by the existénce :
of a legal termiﬁal state A1 corresponding to a legal stéEe
A1 + Fs | |

Usuélly,.part of the conditions of the terminal stafes
of a‘process are used to notify the external world that the
process héé finished its executiqn, and the'status in_whiéh
the brocess ended- |

Suppose first that A1 + F isinot a terminal sﬁatei' in
this>case, when the pfocess is in A1 + F the exte%nal world
will sense’thelsame conditions as.in A1, - This means that
the external world will assume that the process is endéd iﬁ
A1l. |

On the other side, if A1 + F is also a terminal state
then exist two diferent cases: | |

Ts Fis nbt sensed by the.eX£ernal'w§rld‘

In this case F is not necessary. in the terminal

.Sﬁate,and there-is'nbt reascn to iﬁplement this. state.
2. F is sensed by the‘exténnal worlda.- | |
¢ In this”case, after a faiiune in A1 + F, the process
is recoverablé since it stay in a»legai State (A1).
But the error is'spréad to‘tﬁe external world because
the extérnal world senses F in the terminal_stéte, and

F has lost the token.: - o - oo

2.3~ PROPERTIES OF BOTH KIND OF PROCESSES -

/

The following properties exist in all the processes.

2

with finite TM.

' THEOREM :

-In a finite TM,'if the states A1 =<i;F>¥ Q.ané‘
A2 = j+F .-+ Q are legal states, and if i<J tHen there
is not a path from A1 to Aés .
PROOF | |

Exist a ke

s0 thatil

=k +i o
Supposé that the pathAfrom Af to A2 is implemented by :
the successive firing of the bars: | o
| ' b1,b2,san0ss ;..,bm'

In this case, b1 fires in A1 bringing the system to a

legal state, say S1. But since
IC(b1) < A1 < A2
then b1 can flre also in A2 bringing the machine to a
legal state S2. 82 is glven by: i —
- S2 = ksF + S1
Now, b2 can fire in 81, Sut in the same way it can

fire'in'SZ» This procedure can be applied agaln, sSo

that when bm flres it brlngs the system to state:

A2 = j.F + Q T

thus it can bring the system to a legal state:
A3 - (jv+ kK)+.F + Q = (i + 2.k).F + Q
. Now, the entire procedure can/be applled again to the
states A2 and A3* In this case there ex1sts:the legal
state. '
A4 = (i + 3.k)F + Q-
Continuing in the same way, for any pasitive iateger p'
' we can arrive to a legal statet
AP = (i + (p = 1).K).F + Q
Since all the Ap are dlfferent (they have 1ncrea81ng
number of instances of F), the series of states Ap is

infinite. | In this case the ™ is infinite.

Q.E.D.

2.4 DISCUSSION

P

Theorem 2.3 shows that if A1 + F and A1 are legal
states, then there is not é'path from A1 to A1 + F. A path
in the reverse direction may exist. This means that thére.

exists an jirreversible degradation in the process.

Since all the Eecoverable processes are characterized.
by the existence of correspondent states Ai and Ai + F, tﬁén
.all the recoverabié processes have the propérty“xdf
irreversible .degraéaﬁigns « The bsituation is ‘unacceptabiei
specially in the case of.préceséeé without tetminal sﬁatesg

In this case,the process never terminates, but it degrades

in the number of possible states in which it cah stay. An

exanple of this case of recoverable process is shown in.
figure 1. 1In this example, there are paths from the sfates
FFA, FFB, and FFC to the states FA, FB, FC, A, B, and C, but
not in the reverse direction. This ’procesé will never
terﬁinate‘ Bug, after a degradation it will never return to
the states D, S, FFA, FFB, and FFC. -
Theorem 2.1.3 shows that in recoverable proceéses‘of
kind 1-there exists.a loop of states always having the same
number of instances of F. Section 2.2 describes the
limitations of the processes of kind 2. The two kindﬁof_
processes (kind 1 and kind é)-include all the procesées with
'finite'TMW This means that éach recoverable process has a;-

least the limitations of one of the kinds.

Figure 1: A Recoverable TH

From the aﬁalysis in this sectioh, we can conclude that-
the recoverable processes reérésented by the model described
in [1] and in [2] have a very constrained structure. This
limitations to the structure are usually unacceptable in
real systems. | |

But iﬁ the examples presented in [1] this limifaﬁioaé
has been reméved by postulating the existence of the
function T (T is defined in [1]). Function T is ,in certain
way, related to the knowledge of some restrictions in the
execution times of the different parts of the systems This
fact indicates that some knowledge about the times in thg
system can remove the “"bad properties® or V"str?ng
limitations“ that e%iét in recoverable processes.

In the. following section, the concept' of time ié-
introduced = into the Petri-net model of pfdéessesv
Recoverability of processes is studied using this impfoved

nodel.

S~

3-

3.1

THE TIME-PETRI-NET (TPN)

DEFINITIONS

3+1.1 a TPN is defined by a Petri-net (as defined in [2]

section 2.2) in which for eaéh bar bi is given. a
tuple [t*i ; t**i]. For all i there exists: |

T+ t#i; t=+i real numbers

2. t=i') 0; ta=i > 0

3. t=i < t¥=i

3+ 1+ 2 the ,firiﬁg algorithm in a TPN is defined -as

following:

1. if the conditions IC(bi) holds for a peribdA
of time equal or greater thanlt*i then bi
can fire (with the firing algorithm defined
in [2])» 4

2. If the conditions IC(bi) hold for a period -

of time equal to t=*i then bi fires.

351.3 T*A' is defined as .the minimal time that the

conditions of the bag A hecld tokens.

, b
3.1.4 T==, is defined as the maximal time that the

3

conditions of the bag A held tokense
1.5 T*b(s) is defined as the minimal time that the TPN

has to stay at state S so that bar b can fire.

3

[V V)

v 242

- 16 -

T=% (S) is defined as the maximal time that the

system can stay in state S before b fires.
tx(S) is defined as the minimal time that the TPN

will stay in state S when it arrive to this state.

; T+=(S) is defined as the maximal time that the TPN

-can stay in state S.

PROPERTIES OF THE TPN

A TPN is a PN if for all i:
t=i = 0

and t**i = infinite

In this case, a bar can fire at any time that its

input conditions hold. This 1is the definition of.

the firing algorithm for a PN ([2] section 2.2)-«
If S1 is a legal state in a TPN and in . its
corresponding PN, and if b1 can fire from S1 in the

TPN, it also can fire from S1 in the PN.

" This property exists because the firing algorithm in

-2&3

a TPN includes the conditions of the firing

algorithm in the PN. .

The opposite of 3.2.2 is not always true. Figure

2(a) shows an exanple of a PN. If A is a legal

state then b1l or b2 can fire. Figure 2(b) shows a

(W8]

2. 4

T?N built on the previous PN. 'In this casé, it A

holds a token then b1 has to fire before 5. But b2
can fire only after 6. This means that in this case
b1 will always fire before b2, In this case, b2

never_fires‘

Applying successibly the property 3.2:2, each

. sequence of legal states that exist in the TPN also

3+2+5

3.2+6

exists in the corresponding PN.

Suppose that IC(b1) < Si and IC(b2) < si, and Si is
a iegalvsﬁaté; In a PN, b1 or b2 can fire in Si»
But if,there existé: “ | | “
t%, . (S1) > t¥ ,(Si) |
then b1 never fires in Si. Iq state-Si, b2 will
always fire before b1; and the TPN will leave state
Si before bl can fire. (Thé example of figure 2

shows this situation).

From definitions 3. 1.1 and 3.1.5 there exists:
t?bi(SJ) $;t“b1

for any 1 and j.

From definitions 3. 1.1 and 3.1.6 there exists:
t*“bi(SJ) < t*=bi

haad -

for any i and j.

- 18 -

Figure 2: (a) a PN; (b) a TPN of the previous PN

3.2.8 Sﬁppose that‘b1,b2;.;...;.,5p is the set.of all the"
' bars that satisfy: = o
IC(bi) < S
then t=#*(Sj) is given by: _ 4
t**(s;) = min(t==_.(8j); t**sa(Sj);.....t**bp(Sj)?
' (3.2.8+1)

becéuse'thé first bar that arrive fo its maximél
waiting time (t==*) has to firé, |
Replacing 3.2.7 in 3.2.8.1:
£*%(S3) <. min(£**b1; t¥%b2jeevsressst®¥bp)
o (3.2.8.2) .

(3.2.8‘2) gives an upper bound to the value of the’
maximal time that the TPN can be in stéte Sj» This
upper bound is not the minimal,.but'it'is easy-to
compute since the values ﬁ**bi are given in the
definition of thé TPN. The exact value of t¥=(Sj)
is giﬁen by (3.2.8,1); but in several practical .

~~

- cases the values t=*_.(Sj) are dificult to compute.

3.2.9 Q(B) is defined as the set: |
Q(B) :[Q]; Q2; o‘ttst:.Qp] oL - ’[
each element of the set is an ordered, finite or.

infinite,sequence of bags. _ -

Qi is given by:

Qi = [Qi ; Qiz;'i‘%t-s-;QiJ;ib]

Each element of Qi is a legal state in the TPN that

satisfies:

B ¢ 0id

Each' Qi represents a possible sequence in the TPN.

- In Qi the bag B holds tokens, and there are not

transitions in the sequence such that if bar bk -

fires in QiJ then: |

B </ QiJd - IC(bk) (3.2.9.1)

This means that in Qi,.there is not a transition
such that du}ing its execution B does not hoid
tokens.

The sequences. Qi are chosen so that .they are. of
maximal length. Thus if Qi and QJ afe members of
Q(B) then: | |

Qi </ Q]

The set Q(B) includes all the possible sequences'

that satisfy the previous constraints.

Using this definition, the maximal time that B

can hold tokens satisfies:

£5%B < max(t¥%(Q11)+t#%(Q12)4us jt5%(Q2) 4es ;L% (Qp tus)

(3.2.9.2)

Note that t=»=B may be infinite if ohe of the Qi have

1

L R b T AL S AL A VL M 3, e S o AT W <t - e P et

Gt 8 s mnen i L

A e

an infinite number of elements, This happens if

there exists a loop 6f‘states such that all of themn

include B and in the loop there are not transitions

that satisfy (3.2.9.1).

- 22 -

4, RECOVERABILITY OF TPM AFTER A LOSS OF. TOKEN

+

In this section. we show how processes thet are not
recoVeneble in the PN modei can be transformed into
recoverable processes using the TPY model.

Soppose that a'procees, that is not recoverable after
the 1oss of a token in F, is given by its TM. Our‘goal ie.
to build a TPV so that its possible states and tran31t10ns
are equal to those 1in 'the given M« If the TM 'is.'
implemented'oy a PN, thenn [2] shows that the pfocessAisjnot
récoverable if'exist either: | | -

\ 1. loops of illegal etates, or

2. termiral illegal states.

2] shows that for each loop of illegal 'states there
ex1sts a correspondent loop of legal states that 1nclude the
condltlon F. 1In [2J, it is also shown that the designer can
choose an implementation such that if there exists a legal.
transition:

t,, = A1 + F —>A2A+F

k

and A1 is not a legal state then there does not exist the

‘transition: _ _
St = A1 -> A2
D A

when the PN arrives to A1 after a fajilure. Therefore one of

the tran51tlons of the legal loop can be 1mplemented SO’ that_

- 23 -

there ié‘ggg a,gorrespéndent loop of illegal states.

Suppose that the given TM is implemented by a PN such
that there afe not loops of illegal .states;' In this.
strUctufe, after the écéurrenée 6f'avfailure, thé proceés'
will terminate in an illegal States .

In order to transfor@ fhe‘proceSS'to a recoverable one,
for each illegal terminal node ‘Ai we have to implement a’ bar
bi that fires in Ai. This bar has to execute a transiﬁiéﬁ_
from Ai to a legél state in the 1TM, say Si. This méans.-
'éhat: | | I

1, IC(bi) < Ai, and-
2, IC(bi) includes all the instances in Ai that ape'pét)
in si. S

On the other hand, bi is not allowed to.fire in»an&“
legal state. This means that bi .50es not affect the
,exeéution_ when there 1is not failﬁre, so that the TH is
. normally executed. In order to disab;é the firing Qf.bi'
during normal execution, t*i has to satisfy:

t*i > t#*IC(bi)

Note that if there exists loops such that the states in
the ioop include IC(Bi), then‘fhe implementétion haé.to be
such that t"?IC(bi) is not infinite. Tﬁe fbllowing example

shovis this situation.

- ?u -

4.1 EXAMPLE

Figure 3 shows a TM that has to be implemented such

that it is recoverable in the case that a loss of token
occurs in the condition 5. (One possible implementation is
the PH shown in figure 4. Figure 5 shows the ETM
corresponding to this implementation. The ﬁumber in each
arc denotes the bar that implements the corresponding
transition.- In this implementation there exists two
problems: | ‘

1» a loop of the illegal states 24 and 25. This loop

can be broken if bar 4 is not allowed to fire in 24.

But bar 4 has to fire in 245, 234, 244, and 246,

Instead of bar- 4 we will implement four different
bars: - _ ' .

1. Ic(es’) = 45

2. IC(b4%) = 43
3. IC(b43) = uy
4, IC(b4t) = ue

These four bars implement the same trénsitions
that bar 4 implements, but they can not fire in
state 24,

2. The state 26 is illegal and terminal. But, t=%26 is

infinite because of the loop between the states 246

Figure 3: A Token Machine (TM)

Figure 4: A PN for the TM of figure 3

The ETM for the PN of figure 4

Figure 5

and 256 connected by the transitions executed by the

bars 4 and 5.

But after the transition from 246 to 256 is

executed by 4“ instead of bar 4, also this problem

is solved. - In this éase, bar 44 removes the token

from 6 and places a new token. This means that the

maximal existence time of 26 (t#%26) is broken

when bar.uu fires.

“Figure 6 shows thé new implementation of the TM, after

bar Mtwas split into four different bars. Figure 7T shows

the ETH for the PN of figure 6. This ETM shows that there

is only one illegal terminal state, the state 26. This

means that we have to implement a bar that fires in 26. The"

input conditions of this bar are one of the three following

possibilities:

1. C(7)
2. IC(7)
3~ Ic(7)

In our example we

that IC(7) = 26.

choose the last possibility. "This means

As Shown before, t*7 has-to satisfy:

t=7 > t==26

The next step is to compute t=**26, or at least an upper

- 29 -

Figure 6: A PN for the TM of figure 3

The ETM for the PN of figure 6

Figure T:

~bound of t==26, In the next._steps we will follow the

- procedure described in 3,2.9.

The possible sequences of states that include 26, and

that satisfy the constraints exblained in 3.2.9 are:"

1t

Q1 [236; 246; 266]

Q2

[256; 246; 266]
Frqm 3.2g8: |
1. t#%(236) < t#®%2

2, tw=(246) < min(t=x3 ; ==yt
3. t*=(266) < t*=6
b, t=%(256) < t*=5

and using (3.2.9.2) there exists that:

t==26 < max(tW*2+min(t"*3;t**4u)+t=*6 ; t*"5+min(t**3;t**uu)+t#*6)

Thus, if:
t=7 > max(t**2+min(t¥*3;t**uu)+t#*6'; t**5+min(t**é;tﬁ*44)+t**6)
(4 121)
‘then:
t*7 > t**26
And if:
| OC(7).= Si
where Si is one of thé legal states then the process-is.
recoverable. In our example we choose:
| 0c(7) = 1

Figure § shows the TPN that implementsutheArecoverable

- 32 -

process of the.given TM. Ve assume that the values of txwx2,
t*%6, t«=5 and either t=*#3 or t==4u are finite, and that t=7
is chosen so that (4,1.1) is satisfiea.. The TPH of figure 8
irmplements the TM 6f fiéure 3 and it is recoverable in case
of a loss of tpkeg in condition 5, After a failure, the
system will arrive to state 26, After the process 'is in

state 26 for a time equal to t=7, then bar 7 will fire and

the TPN will return to legal state 1.

Figure 8: A recoverable TPN for the TM of figure 3

- 34 -

5. RECOVERABILITY OF A COMMUNICATION PROTOCOL

L3

.The study of thé communication protdcols in this paper
is moﬁivated by practical keasons. During the 1last years,
many computer networks have beén designed and implementéd.
Since the probability of failures in the communication links
is relatively high, the implementation of recoverable
protocols processes is of considerable impprténce. |

fhe presentétion'in this sec£ion is basea, in part; oﬁ
the sﬁudy presented in [4] and on the~examplés given ih (11,
The new model, the TPN, is usedf The examples presented
here are a simplified model of the IMP-IMP protocols_u;éd.in'
the ARPANET. The stgdy of these protoc@ls are_pfesented by .

the two following examples.

5. 1 EXAMPLE 1

In this section the protocol of.figure 9 is studied.
This protocol 1is presented in [1], We suppose that a
possible failure is the ioss of the message M. This means
that.a token inAH can-disappear. The dotted line from E to
A represent thé preparation of a new‘message by the sender}
The dotted liﬁe from D to B represents the receiving
process.

-~

In order tb simplify the example we suppose that the

?

- 35 -

Figure 9: A PN of a protocol process .

- 36 -

~dotted 1line between E and A is activated before the 1line

between D and B;. This means that thé receiver is ready to
receive before the sender is read& to send., This assumption'
only siﬁplifies the explanatiods and it does not reduce the
generalipy of the example.,

The ETH of the ENlof figure 9 is given in figure 10.
The'ETM shows that exist only one illegal state, WB, and
this state is also terminal. Section A'shows-that in order
to‘tranéform_such a process to fecoverable, therevhas to be
a bar that fires inAstate WB, If this bar is called 7, then

there exists the following possibilities: -

1. IC(7) = WB
2. IC(7) =B
3. IC(7) =W

. In the first possibility, bar 7 1is dependent- in both

the sender and the receiver. In real systems this structure

. is difficult to implement because of the physical distance

between sender and receiver. In our example, we choose the
third possibility. In this cése bar 7 is dependent only in

the state of the sender. In case of a failure, the sender

~will send again a transmition of the lost message. This

means that: _
IC(7) = W

and;

_37 -

Figure 10: ETM for the PN of figure 9

. o 0C(T) = My

" so that in case of a failure the system will return to state
WiE. |

On the other haﬁd, bar 7 ‘has .to firé only if a failure
have been occurred. ~In other words:

EET > tEEW
From figufes 9 and 10 it is possible to.show that:
t*fw = EF®2 4 gE=3 4 tE=l

Thus, t=7 has to sétisfy: | - |

te7 > tEw2 4 tEw3 4 tawl S (5¢1¢1)

. The récoverable TPN and its corresponding ETM are shown in

figures 11 and 12 respectively. This TPMN is recoverable-
from failures of type "loss of token" in F. . Note thét_if;'

(5.1+1) is not. satisfied then the‘ ETM is infinite and theA

prccess is not recoverable. In many practical systems the
t*7, that satisfies (5.1.1), can be very large. In these

cases, the protocol of the next example can be used.
5.2 EXAMPLE 2

Suppose that each message carry a sequence nuniber. If

these numbers are from the set of integers [1,2,++..,n] then .

the messages are sended sequentially in the order:'
1352342203 1325523031520 00000 vsas

In the PN -that represents this protocol there exist

Figure 1i: E‘ecoVehable TPN for the TM .of figure 9

- 40 -

Figure 12: ETM for the TPN of figure 11 |

RIS

different - COnditibns | Mi H (1 = 1,2,...n)f1 Each~- Mi
correspond to the meséage carrying the sequehce number i.

In the same way, for each i (i = 1,2,...n) there exists
the conditions:

Ai ready to send message i

Bi = ready to receive’messége i
Ki = acknowledge to méssage i is sended
Wi = waiting for acknowledge to message i
Ei = acknowledge to méssage i was received
Ci = message 1 was received . |
Di = prepafe for receiving next'messager
These cénditioné correépond to the conditions-@, B, K, W,JE,
C, and D of the PN in the previous ‘examples
 For simplicity, in the present example; we assume that
n=2 (the same épproach is applyable in the general case).
Figure 13 shows the PN fdr thié case. This PN is similar-to
two instances of the PN shown in figvre 9. The only
difference is in the dotted lines. The dotted lines .
represent the sender and the recelver processes. In this
case, these processes are responsiﬁle of the corregt
sequencing of the messages.:
Figure 14 shows the porrespondiﬁg ETM for the case that
2 failure can occur in M1 or MZ, aésuming initial state’

A1B1. Also here, we suppose that the receiver is ready to

Figure 13: PN _of a protocol process

- 43 -

receive before the sender is.ready to send. This ass;ption
again'simplifiés the analysis of this exémple, Butuit does
not reduce its generality.

The ETM of figpre 14 is similar to two instances of the
ETM shown in figure 10. In _Order to convert thel P5I of
figure 13'to récoverable; the approacﬁ is similar torthat
de;cﬁibed in the previous example; In this case, two_Bars
are added, bars 17 and 27. ' In the same way as in ‘the .

previous example, there exists:

1. IC(17) = Wi
2. 0C(17) = WiM1 | | . |
5. TIT > tEw12 4 tEw13 4 texil o (5u2.1)
4, IC(27) = W2 | | | o
’ 5+ OC(27)‘= Wan2
6. T=27 > t=%22 4+ t=%23 + tE#2l | | (5;2.2)

This TPN is shown in figure 15 énd it‘is recoverable..

. But, what happens if (5.2.1) or (5.2;2) are bét
satisfiedé. In this case, bar 17.or baf 27 can‘fireAbefobe
it'is éUre'ﬁhat‘the TPN is in an'illegal state. This means
that the bars 17 or 27 céﬁ fire also in legal stétes. | In

order to simplify the following ekplanations, f¢r the case

that (5.2.1) or (5.2.2) are not satisfied we assume that:

E=%12 4+ t®*13 4 t*~14 > t®17 > t=¥12 + t¥=13 (5.2.3)

Figure 14: ETM for the PN of figure 13

Figure 15: ERecoverable TPiv for the PN of figure 13- _

E¥%22 4 £¥w23 4 twR2h > £%27 > t¥=22 4+ t*=23 (5.2.4)

Thejisame appfoéch is applicable for .the genefal case in‘
which (5.2.1) and (5.2.2) are not satisfied.

The TH for the TPHN described in figure 15, for the case
that (5.2.3) and (5;2.M) aré satisfied, it is shéwn in
figure 16, This \TM, is infiqite since the number of
instances of M1 and M2 gro%s infinitely. In this situation

it can occur that the execution never returns to *“normal

_execution”. By "normal execution" we mean the legal states

of figure 14. At this point, we can-look at the problemrin
the fdllowing way: '

"when baf’17 fires in states W1K1D1 or_w1K1B1, or Wwhen
bar 27 fires in statés W2K2D2 or: l2K2BZ2, they‘

- introduce a2 pseudo failure of type generation of extra

token"

When bar 17 fires, an extra token is added to M1, and when
bar 27 fires, an extra token is added to M2. The states

after the occurrance of the “pseudo‘ failure" are called

pseudo illegal states‘ The'transitions between these states

are called pseudo illegal transitions.

At this point, ~we want to 'insure .that, after the
occurrance of a pseudo;failuhe, the execution will/always

return to the/légal étates. The solution of this problen is

CoVTI WIS
IVFITE . -

Figure 16: TM for the case that '(5-.'2} 3) .and (5.2.4) are @aTr Vver T
' | | : - TVEWMITE
satisfied - SVEmiTe

- g -

the éame as’ in the case that a Areal failure of ﬁype
“generation of an illegal token" has occurred;

~In order to solve in general this kind of problem, it
is hecessary. to exhaustively analyze the problem of
"recoverability under the generation of an illegal tokeﬁ",
in a similar way as was done in [2] for the case of “loss of

token". But, several particular cases can be easily solved

without such an analysis.

lext, the solution of our example‘is given. At this

-point, we can not formally determine if our solution is the

onlyApossible solﬁtion. But, the solution presénted here
appear to be appliable in mahyipractical cases. |

Suppose that a "cut-set" of pseudo illegal arcs- is-
chosen in the TH of figure 16. Sinée the cﬁt—set include
only pseudo illegal states it divides the TM into two parts:
1. part 1 includes all the legal states and part of the

pseudo illegal states,
2. part 2 includes only all the'pseudo illegal states

that are not included in part 1.

In our example the cut-set of arcs [a1 , a2] in figure
16 is chosen. | |

If bars are added so that:

1. there exists a path from each pseudo illegal state in

part 1, to a legal state,

-~ 49 -

5. the additional bars can not fire in legal states,
3, the arcs of the cut—seﬁ (a1 and a2 in the example)
- will néver bé executed,
then the process is recoverable under the occurrance of a

pseudo failure. If the conditions above are satisfied,

~after the occurrance of a pseudo failure the execution will

always return to a legal state.
In order to satisfy these conditions, the bars 18 and
28 are added to the TPMN of figure 15, such that:

IC(18) = B1M2

6C(18) = B1
IC(28) = B2H1
0Cc(28) = B2

F]

?he new TPN is shown in figure 17 and the correspondent
TM in figure 18. Figure 18 shows that éonditions 1 and 2
are satisfied. Condition 2 1is satisfied .because neither
IC(18) nor IC(28) (BiM2 or B2M1) are_included in any of the
legal states. In order to satisfy condition 3, we have to
insure that ares a1l and a2 (figure 18) will never be
executed. Tﬁis means that in state W2M2B2M1 bar 28 will
fire before bar 22 can fire, and that in state4W1M131M2 bar
18 will fire before bar 12 één.firem In other words, using
property 2.2.5: |

tex g (WIMIBIN2) < t= ., (WIMIBIM2) (5.2.5)

50

TPH

A new

Figure 17

} ey
EoMNTINVES vo &
CINFIMVITE

B

i v
CFTIKYES T2

Figure 18: TH for the ETM of figure 17
TVFIpMTE

~ 52 -

t**28(w2M252M1) < t*22(w2M282M1) (5,2.6)

But since M1 < IC(12), and the token .in M1 is placed
when the process enter the state WiMIBIM2 then:

g, ,(WIMIBIM2) = tx12 _ (5.2.7)

Note that in this case t=12 is the minimal time that can
elapse between a token is being placed in M1 until this

token 1is removed. This time can be interpreted as the

minimal propagation time of the message M1 i}
In the same way thére exists:

¥, (W2H2B2M1) = £#22 : (5.2, 8)

and t=*22 can be interpreted as the minimal propagation time

of the message M2,

From figure 17 and 18 it is possible to show that:

t**18(W1M1B1M2) t %18 - t=11 - t=26 (5+2+9)

and tEw, (W2H2B2M1) = £==28 - t¥21 - £716 | (5.2.10)

Replacing (5.2.7) and (5.2.9) in (S‘é.S) the result is:

Ex%18 - t#11 — £%26 < t=12 (5.2.11)

and replacing (5.2.8) and (5.2.10) in (5.2.6) the result is:

The TH of the TPHN of figure 17, with the constraints

given by (5.2.3), (5.2.4), (5.2.11), and (5.2.12) is shown

in figure 19, This TM includes all (and only) the states,
1ega1' and pseudo illegal, 'that' are 1included (in what we
called “part 1" of the TM of figure 16. But, this is not
the oniy way to 1look ét the problem. The pseudo 1illegal
states Qf part 1 are allowed to hold tokens, just'as the
legal states. This means that these pseudo illegal‘states
can be also considered as legal states. Thus, all the
states of figure-19 can be considered legal. These two Qays
of inﬁefpretation are eqﬁally convenient,.
The TPN of figure 17, with the constfaints (5.2.3),
'(5.2.4), (5.2a11)vand (5.2.12) was designeq-so that it is
recoverable under failures of kind "loss of tokens" in M1 or’
M2, The,ETM of figure 20 shows this prqpertyb
The process, as given”by the.TH of}figufe 19 or the TPH
of figure 17 (and the constrains in the execution times);
has interesting properties, as following:
1. The 'messages are received in the same order(Ithét
they are sent. This property is shown directly from
. figure 19, / States W2M2B2M1 and WiM1BIM2 are the
cnly states in which two messagés are simultaneously
in the .link. But, in W2M2B2H1 the.message'M1/was
sent first (note that the only precessor of WZMZBZMi

is A2B2M1), and in this.case M1 is received first

(the only successor of W2M2B2M1 is W2M2B2). In the

Ll 24n3TJ JO NI 9U3 J40J HI :61 24n3T1g

2.

-~ 56 « ...

same way, .when the process js in W1M1B|H2 the
message M2 was sent first and it will be received
first, This 1imitation in the order or the messagesl
can be remeved, in part, if the Sequence number of
each neéssage is chosen from _more than two

possibilities [4]..

Unequalities (5.2.11) andg (5.2.12) can be rewritten
as: |
E¥=18 < t=12 4 tw11 4 txog (5.2.11a)
E=%28 < t=22 4 =27 . t¥i6. ' (5.2,12a)

(5.2.11a3) ‘shows that the maximal time that takes to

recelve an 1llegal message (t“’18) has to be smaller

than the minimal time it takes to. prepare a new

message (t#*26), to send it (t*11) and to receive it

(t=12), (see Figure 17). 'The‘same relation' exist in
(5.2.12a)., |
As shown befcore, tx12 bepresents the minimajl
propagation:time of the_message Mi.. In a certain
way, t*=18 represent the maximal propagation time of
2. But since in practice Mj and M2 propagate in
the Same channel then (t**18 - t*12) denotes the

variance in the propapatlon time of the rnessages.

But, from (5.2.11a) :

- 57 -~

E¥%18 = £%12 < t=1] 4 t=26 . (5.2.11b)

Thus, the minimal ’preparation time of a riessage

(t;26) Plus the minimal sending time (t*11) has to
be greater than the variance of the propégation
time. This means that in a recoverable process of_'
this kind‘a higﬁer uncertainty in the propagation

time leads toAﬁhé reduction of the frequency of the

messages. The same conclusion can be derived fronm

.(5G2612a)|

6. CONCLUSIONS

6.1 SUMMARY

[1], [2] and this baper are very closely connected each
to each other. ‘Since these thrée papers form an almost
indivisible unit this conclu51ons are related to the entire
set, and not only to this. paper.-

In these papers the problem of .recoverability bf
processes have been' modéled and formally defined using
elements of the.Petri-net;. The particular case of failures
of type'"loss of tokens" has been exhaustlvely explored. A
way of de31qn1ng processes that are recoverable from .this
.Klnd of failures was glven. This way of des1gn1ng is based.
on the propertles of recoverable TMs and on a procedure for
d831gn1ng a PN that implements a given TH. This last
procedure can be useful nqt only for the design of
recoverable processes, but in génerél for designing PH s
Wwith properties thaﬁ are better tefleéted~in the TM than in
‘the PN itself.

In the case that no assuptions have been méde about . the
~ execution times. of the different parts of the PN, ﬁhe
recoverable processes under a2 failuré of type *“loss of
token" are very limitated in_ ﬁheir possible structure.

These 1limitations are usually unacceptable in practical

PN's, and a new nodel, the-TPN, vas defined. Fop any given .

TM, that has 8 correspondent PN, a TPN can be designed so

given failure of type "loss of token®,

But,Ain this recoverable TPN it is necessary to accept

constraints in the execution times.of its parts. If these

constraints can not be accepted, they can be partially

relaxed by introducing .a "pseudo failure» of type

"generation of token". In this case, the recovery from the"

"pseudo failupe» has to be insured.

The apbr‘oach used in these bapers for the sfudy~_ of
failures df type "loss of tokens“ can be applied inlorder to
explore other types of failures.

Cther authors ([3] in section 7-2) have written about
the importance of “the problem or inclﬁding some measure of
Sservice times at the modules”. Since the TPN includes this
measure of service time, this nmodel can be useful not only
in the exploration of recoverability,'butAin order to model
and explore othep properties of processes.

The approach presented in this set of pabers does noﬁ
diffefentiate between the hardware ‘componenfs and the

software parts of the procésses. - The -approach is uniform

- 60 -

and in practice each part can be implemented by any kind of

elements,

6.2

SUGCESTIONS FOR FURTHER EXPLORATIOHN

This work points out several areas needing further

research. Among these areas are:

1.

the formal analysis of recoverability under the

occurrance’ of other kind of failures. Among these,
"generation of illegal tokens",etc. - ' !

The further research of the TPN model.

"The formal analysis of other properties of

proéesses,such as:
(a) “fail-soft",
(b) “fail;tolerant”,
(c) “best;effort?
The research of fhe transfer of failures among

processes in an hierarchical structure.

REFERENCES

(1] Merlin, P M. Fecoverability of Processes.’

Technical Report #Uy Department orf Information and

Computer Science; University of California,

Irvine,~
92664; February 197y,

(2] Merlin, p,u, - 4 Study on Recoverability of
Processes, .Technical

Report #47; Department of

Computer Science;

California, Irvine, 92664;

Information and University of

April 19714,

[3] Larson, K.c. Computation Graphs; Department of

" Information and . Computer Science; University of

California, Irvine, California, 92664; 1974,

[4] Postel, J.B. 3 Graph Model Analysis of Computer

Communications Protocols; Computer

Science
Department; UCLA; Los Angeles),

California, 1974,

