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Abstract

Partition coefficients describe how a solute is distributed between two immiscible

solvents. They are used in drug design as a measure of a solute’s hydrophobicity

and a proxy for its membrane permeability. We calculate partition coefficients from

transfer free energies using molecular dynamics simulations in explicit solvent. Setup

is done by our new Solvation Toolkit which automates the process of creating input

files for any combination of solutes and solvents for many popular molecular dynamics

software packages. We calculate partition coefficients between octanol/water and cy-

clohexane/water with the Generalized AMBER Force Field (GAFF) and the Dielectric

Corrected GAFF (GAFF-DC). With similar methods in the past we found a root-mean-

squared error (RMSE) of 6.3 kJ/mol in hydration free energies which would correspond

to an error of around 1.6 log units in partition coefficients if solvation free energies

in both solvents were estimated with comparable accuracy. Here we find an overall
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RMSE of about 1.2 log units with both force fields. Results from GAFF and GAFF-

DC seem to exhibit systematic biases in opposite directions with GAFF and GAFF-DC

for calculated cyclohexane/water partition coefficients.

Introduction

Partition coefficients provide a way to test the accuracy of atomistic force fields in various

solvent environments. They describe the ratio of concentrations of a neutral solute molecule

in a system with two immiscible solvents:

P =
[solute]Organic

[solute]Aqueous

(1)

where solute refers to the neutral solute in both solvents and are typically reported as the

logarithm of this concentration ratio (logP ).1–3 This differs from a distribution coefficient or

“apparent partition coefficient” which includes all ionized and unionized forms of the solute.4

logP is proportional to the transfer free energy between the two solvents and can be related

to the solvation free energies. Solvation free energies have been used to benchmark5–14

and inform changes15–17 to atomistic force fields, including the GROMOS 53A5 force field,

which was parameterized in part using solvation free enthalpies in cyclohexane.18 However,

solvation free energies can be difficult to measure experimentally10 compared to partition

coefficients, which are relatively easy to measure and are measured routinely.19 The access

to experimental logP values and their straightforward relationship to the solvation free

energy makes partition coefficients an excellent property to test and improve the accuracy

of atomistic force fields in different solvent environments.

Due to the popularity of these values in the pharmaceutical industry, many tools al-

ready exist to predict partition coefficients between octanol and water (logPoct). Partition

coefficients are used in the pharmaceutical industry to estimate how a drug may transfer

between different biological environments4,20 and are regularly used to predict a molecule’s
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hydrophobicity.21 Additionally, many quantitative structure activity relationship (QSAR)

methods use calculated logPoct as an input parameter.19 Methods for estimating partition-

ing are often based on additivity principles; for example, in 1964, Fujita et al. predicted

logPoct by determining the change in the partition coefficient when a functional group was

added to a benzene, then using these functional group contributions to predict partition

coefficients for new compounds.22 Similar methods are still used today, where partition coef-

ficients are calculated from contributions determined by molecular fragments2,23–29 or atom

types, characterized by element and bonding order.30–36 In recent years, machine learning

techniques have been developed using physical properties of the solute as parameters to

predict logPoct.19,37–47 However, very little work has been done to extend these methods to

other organic solvents, so there are only a few examples of empirically trained methods for

predicting cyclohexane/water partition coefficients.48–51 These methods vary in accuracy and

efficiency, but are all trained on experimental data, meaning that they have a limited do-

main of applicability. To some extent, more physical methods would be preferable, as these

could be general enough to cover any organic solute-solvent combination, even combinations

well outside the range of training data. One example of a relatively more physical approach

is COSMO-RS, which predicts solvation and partitioning with a quantum mechanics-based

approach combined with a variety of empirically-derived correction factors.5,52,53

ΔGhydration 

ΔGsolvation 
Gas 

Aqueous  

Organic   

ΔGtransfer 

Figure 1: Alchemical thermodynamic cycle used to calculate transfer free energies from
solvation free energies. Here we calculate ∆GTransfer from the difference in ∆Gsolvation into
cyclohexane or octanol and ∆Ghydration. logP is directly proportional to ∆GTransfer.
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Here we take a physical approach to calculating partition coefficients from solvation

free energies in octanol/water (logPoct) and cyclohexane/water (logPcyc) using alchemical

methods to calculate the transfer free energy. Alchemical free energy calculations take a

system through computationally accessible thermodynamic pathways to connect the target

end states54,55 – in this case, taking the solute out of one solvent and into the other. As

discussed elsewhere, the logarithm of the partition coefficient is proportional to the transfer

free energy between solvents,56 which means that we can use standard free energy techniques

to compute partition coefficients via an appropriate combination of solvation free energy

calculations. Specifically, we calculate the transfer free energy as the difference between the

hydration free energy and the solvation free energy into the organic phase (Figure 1). Similar

methods for calculating hydration free energies have yielded fairly accurate results.,6,11,13,14

as did a recent effort for predicting relative solubilities in a variety of organic solvents this

approach.57

A variety of previous studies have calculated partition coefficients from solvation free

energies. Early attempts to calculate logP based molecular dynamics simulations used

free energy perturbation, changing the identity of the solute in both solvents to obtain

octanol/water56,58 and chloroform/water59–61 relative partition coefficients (comparing par-

tition of two different solutes). A number of attempts have been made to calculate logP from

absolute solvation free energies with all atom force fields.16,62–64 For example, two recent stud-

ies used a hydrid atomic level/coarse grained force field with the General AMBER Force Field

(GAFF)65 for solute parameters.,66,67 the same force field we apply here. Our present study

is the first attempt at logP calculations with the Dielectric Corrected General AMBER Force

Field (GAFF-DC)15 for such calculations, and we are not aware of any prior applications

of alchemical techniques to the calculation of water-cyclohexane partition coefficients other

than the relative work using free energy perturbation noted above. Another new feature of

this work is that we provide an automated work flow for solvation free energies and therefore

partition coefficient calculations, in that our new Solvation Toolkit was used to create all
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input files and is available on GitHub at https://github.com/MobleyLab/SolvationToolkit,

and analysis of the solvation free energies was fully automated with the Alchemical Analysis

tool.68 To facilitate additional applications of this technique, all setup and analysis scripts

are also available in the Additional information, which is provided free on charge online at

http://n2t.net/ark:/b7280/d15k5m

Computational Theory and Methods

Automated setup for arbitrary mixtures using Solvation Toolkit

Molecular modeling in different software packages requires a variety of input file types, termi-

nal applications, and work flows. In an effort to automate our simulations, we have created

Solvation Toolkit to generalize workflows across different software packages. It aims to de-

liver a simple tool to set mixtures of arbitrary combinations of solutes and solvents for use in

popular molecular dynamics software packages such as GROMACS69–75 and AMBER This

piece of software relies on other software packages including OpenMolTools,76,77 OpenEye’s

Python toolkits,78–88 AmberTools,89–94 Packmol,95 ParmEd,96 and MDTraj.97

The program can be logically divided into three main sections related to different tasks:

converting simple input to molecular structures, generating force field parameters, and build-

ing a solvated box. These are followed by output to the proper file formats. The toolkit

begins by requiring the IUPAC name or the SMILES string and the desired number of

molecules for all compounds in the system. As recommended by OpenEye,98 the OEChem

toolkit is used to convert these into a molecular structure and generate up to 800 confor-

mations of the molecule. Next, the Quacpac toolkit is used to automatically select the

best conformation and to assign symmetric AM1-BCC charges.88,99 OpenEye’s toolkits were

used rather than Antechamber as OpenEye’s AM1-BCC implementation is maintained by

Christopher Bayly, one of the original authors of AM1-BCC, and has several features beyond

Antechamber’s AM1-BCC, including better handling of multi-conformer molecules, proper
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symmetrization of charges which ought to be symmetric, and others.98 Using AMBER mod-

ules, GAFF parameters are assigned to the charged molecule with Antechamber and LEaP

is used to produce a monomer topology file. Then the monomers for each compound in

the mixture are assembled using Packmol to pack the different types of molecules into a

box region defined by geometric constraints to keep atoms from different molecules at a safe

pairwise distance.95 Finally, LEaP is used to generate the final AMBER topology and coor-

dinate files of the solvated mixture. In an optional extra step, ParmEd is used to convert

the AMBER files into GROMACS files.

The SolvationToolkit package is released as open source to the scientific community. It

can be download via github at github.com/mobleylab/SolvationToolkit and example files are

provided to illustrate the main capabilities of the software package.

Theory for Computing Partition Coefficients

Partition coefficients can be estimated from solvation free energies derived from molecular

dynamics simulations. We estimate logP directly from the transfer free energy of the solute

moving from the aqueous to organic layer. The transfer free energy can be calculated as the

difference in the solvation free energies obtained via the thermodynamic pathway presented

in Figure 1. Therefore logP is directly proportional to a difference in the solvation free

energies:

logP =
−∆Gtransfer

R T ln(10)
=

∆Ghydration −∆Gsolvation

R T ln(10)
(2)

Here R is the molar Boltzmann constant and T is the temperature, 298.15 K in this case.

We will calculate the solvation free energy for each solute in all three solvents. The equation

above can then be used to calculate logPoct and logPcyc.

A few assumptions were made in order to simplify this estimation of the transfer free

energy and partition coefficient. First, the two solvents were taken to be completely immis-

cible. Depending on the solubility of the organic solvent in water, this assumption may not
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always hold. In theory, very polar solutes could carry water molecules with them across the

solvent interface.1 Separately calculating the solvation free energy in each solvent does not

allow for this possibility, and – because we use pure solvents here – assumes immiscibility.

Additionally, during solvation free energy calculations, the solutions were also taken to be

at infinite dilution, meaning there will be one solute molecule in a bulk solution of solvent.

When experimental measurements were taken at sufficiently low concentrations, calculated

solvation free energies have been shown to have good agreement.57,100 If experimental mea-

surements of partition coefficients were made at concentrations deviating substantially from

infinite dilution (i.e. where dimerization or oligomerization plays a role) this would be a

potential source of error.

Selecting a Data Set

Experimental data was collected from the literature for both logPoct (36 molecules) and

logPcyc (41 molecules). There are many sources for experimental data for logPoct due to

its use in the pharmaceutical industry. Albert Leo et al.’s collection of partition coefficients

remains one of the larger collections of partition coefficients with a diverse set of organic sol-

vents.1 Initially, we assumed finding experimental octanol/water partition coefficients would

be easy, as they are so regularly measured, therefore 41 solutes with cyclohexane partition

coefficients provided were chosen from this collection. We made sure a diverse set of func-

tional groups and a wide range of logPcyc were represented in this set. In the literature,

the solutes are labeled with their common names, which do not always include proper spec-

ification for stereochemistry. The chosen molecules only include those with unambiguous

stereochemistry. The set of 41 molecules were chosen based on the available logPcyc data,

but ultimately we were only able to find experimental logPoct for 36 of these compounds,

so the octanol set studied here is a subset of the cyclohexane set. For logPoct values not

provided in Leo et al.,1 other sources of experimental data were found.21,101 The final set of

molecules included a range of logPcyc from -3.32 to 3.42 and logPoct from -0.82 to 5.01.
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Creating Input Files

In order to setup the simulations, OpenEye’s OEChem and Omega79 Python toolkits were

used to convert the molecule names provided by Leo et al. into SMILES strings and IUPAC

names. The SMILES strings for the solutes and solvents were used to build coordinate and

topology files for use in GROMACS via the Solvation Toolkit described above. Recent studies

have shown that calculated hydration free energies are independent of box size over a range

of typical simulation box sizes (2-8 nm box edge).102 Solvation free energy in cyclohexane is

also independent of box size (2-4.5 nm box edge), as shown by members of the Mobley group

in a recent study.103,104 Here, the number of solvent molecules were chosen such that the box

edge was around 3nm, sufficiently large for the GROMACS parameters specified below (100

octanol or 150 cyclohexane solvent molecules). As discussed above, the simulations were

taken at infinite dilution, therefore only 1 solute molecule was added to each box.

SolvationToolkit uses OpenMolTools76 Amber module to build monomer files. Originally,

the OpenMolTools Amber module only represented water as flexible GAFF water, whereas

we wanted to use TIP3P.105 The monomer topology file for the solute was built according to

the protocol in Solvation Toolkit described above. The final solvated mixture was built with

OpenMolTools Gromacs module to make cubic boxes of the solute in water with at least

1.2nm between the solute and the nearest box edge. OpenMolTools version 0.7.0 forward

uses TIP3P water in the Amber module so water input files can now be built directly with

the SolvationToolkit.

Simulation Protocols with GROMACS

Generally protocols were taken from previous work with relative solubility calculations57 and

updated to work with GROMACS 5.0.6.69–72 The alchemical solvation was broken into 20

lambda states. In the first 5 lambda states the electrostatic interactions between the solute

and solvent were turned off. Then the Van der Waals interactions (modeled by Lennard

Jones potentials) were switched off in the last 15 lambda states. Specifically, Lennard-Jones
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interactions were scaled using λ = [0.0, 0.0, 0.0, 0.0, 0.0, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50,

0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0] and electrostatic interactions were scaled

using λ = [0.0, 0.25, 0.50, 0.75, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0]. Each state was minimized using GROMACS steepest decent algorithm and then

equilibrated for a total of 150ps. The equilibration was broken into three steps: (1) 50ps

constant volume, (2) 50ps constant pressure with the Berendsen barostat,106 and (3) 50ps

constant pressure with the Parrinello-Rahman barostat.107 These were followed by a 5ns

production phase at each λ, still using the Parrinello-Rahman barostat. The initial 100ps of

the production stage was also removed to give the system extra time to reach equilibrium.

The new Hydroxynator used to setup calculations in GAFF-DC

We also recomputed solvation free energies using the dielectric corrected AMBER force

field (GAFF-DC) parameters proposed by Fennell et al.15 GAFF-DC implements changes

to the Lennard-Jones parameters of hydroxyl group oxygens and scales the charges for all

atoms in the hydroxyl group. These changes improve the accuracy of hydration free energy

calculations15 and to some extent relative solubilities.57 Partition coefficients calculated from

GAFF-DC solvation free energies provide a way to monitor how the accuracy of calculations

with GAFF-DC compares with GAFF. The Hydroxynator tool changes the parameters of

a topology file from GAFF to GAFF-DC.15 It was applied to the topology files for only

alcohols in water and cyclohexane and all solutes in octanol, as the solvent is an alcohol

in that case. Since GAFF-DC only changes parameters around hydroxyl groups, applying

Hydroxynator to the topology files for non-alcohols in water or cyclohexane would result in

no change to the file. Following the protocol above, simulations were run in GROMACS

with the GAFF-DC files. Results from these simulations will be labeled “GAFF-DC”.

The initial implementation of Hydroxynator15 could only handle topology files with one

molecule containing a hydroxyl group. Up until now this was sufficient as GAFF-DC had

only been tested on systems where the solute was the alcohol. However, as our octanol sys-
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tems contain multiple molecules with hydroxyl groups, we rewrote Hydroxynator, relying on

ParmEd (version 2.0.4) to read in a GAFF topology file and parse through each molecule to

identify hydroxyl groups and adjust the parameters for those molecules. Like the original, this

tool is open source and can be downloaded from https://github.com/MobleyLab/Hydroxynator.108

Analysis of Simulations and Results

The partition coefficients for both solvents (logPoct and logPcyc) were calculated from the

calculated solvation free energies. The free energy difference between each lambda value

and the solvation free energy was calculated using the Multistate Bennett Acceptance Ratio

(MBAR)109 through the Alchemical Analysis tool.68 As demonstrated above, the partition

coefficients were calculated from the transfer free energy (eq. 2). A variety of error metrics

were calculated in order to compare the calculated logP to experiment, including root-mean-

squared error (RMSE), average signed error (ASE), Pearson’s correlation coefficient (R), and

the percent of calculated logP with the correct sign. Following established methods,9 each

metric was calculated for 1,000 bootstrap trials and the uncertainty was reported as the

standard deviation from these results. In order to compare our results with an empirically

trained method, we estimated logPoct with the OpenEye OEXLogP tool.31,78 The error

metric analysis was repeated to compare the OEXLogP values with experiment. To examine

the statistical difference between GAFF and GAFF-DC, a t-test was performed to compare

GAFF and GAFF-DC values using methods available with the SciPy110 Python module.

Density convergence plots were all created for all GAFF simulations showing the cumulative

average versus time. Uncertainty for each measurement was given by σ = std√
N
g

where std is

the standard deviation in the density measurements, N is the number of measurements and

g is the statistical inefficiency.109
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Results and Discussion

We estimated cyclohexane/water and octanol/water partition coefficients from solvation free

energies as described above (eq. 2) for a set of small molecules, with both standard GAFF

parameters and the GAFF-DC parameter set. Our results are organized into four sets

based on the organic solvent (cyclohexane or octanol) and force field (GAFF or GAFF-DC).

Complete tables of our solvation free energies and partition coefficients, both calculated and

experimental, are available in the supporting information.

While experimental values were reported without uncertainties, experimental measure-

ments do involve uncertainty, raising questions about the typical uncertainty in the reported

values. To assist with this, we found there were 17 molecules from our set with multiple

experimental values reported,1 and we used the difference in these measurements to estimate

an average experimental uncertainty of about 0.3 log units.a In reality, some measurements

are likely susceptible to higher errors than others, but without experimental uncertainty

estimates or repeated measurements for all compounds, we have no way of assigning differ-

ent uncertainties to different measurements. Therefore, the same uncertainty is used for all

results analysis.

In general, we saw rather good agreement between the experimental and calculated par-

tition coefficients (Figure 2). Considering all partition coefficients measured, we found a

root-mean-square error (RMSE) of 1.2± 0.2 in GAFF and 1.2± 0.1 in GAFF-DC , a Pear-

son’s correlation coefficient (R) of 0.8±0.1 in both force fields and an average signed error of

0.5±0.1 in GAFF and 0.2±0.1 in GAFF-DC. A common metric for evaluating the accuracy

of partition coefficients in octanol is to check that the sign of the logP for the calculated
aFrom the data provided in Leo et al. 13 of the compounds had at least 2 logPcyc measurements: bu-

tanol (950), ethyl benzalcyanoacetate (4312), p-ethylphenol (2938), benzaldehyde (2133), 2-4-dimethylphenol
(2914), o-methylphenol (2336), aniline (1711), p-methylphenol (2348), p-toluidine (2422), p-iodophenol
(1425), 2-5-dimethylphenol (2917), m-methylphenol (2323), salicylic acid (2185). 8 of the compounds had at
least 2 logPoct measurements: o-toluidine (2411), butylamine (1014), p-methylphenol (2348), diethylamine
(1028), p-toluidine (2422), o-nitrophenol (1453), m-methylphenol (2323), salicylic acid (2185)
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Figure 2: Comparison of the calculated logP to the experimental logP . Data is divided into four sets,
covering partition from water into both organic solvents (cyclohexane and octanol) for both force fields
(GAFF and GAFF-DC). Alcohols are indicated separately since GAFF-DC affect the parameters for hydroxyl
groups. The shaded region indicates where experimental and calculated logP agree within 1.5 log units,
the predicted error given the accuracy of hydration free energy calculations in the FreeSolv Database.111
Outliers greater than 3 log units are labeled by number.

and experimental data is the same.67 The sign determines if the solute prefers the organic

or aqueous layer. For all measured logP , 82 ± 4% in GAFF and 79 ± 5% in GAFF-DC

agreed by sign with the experimental data. These error metrics were computed for logPoct

and logPcyc separately and for alcohol solute molecules as a subset (Table 1).

There were a few clear outliers in both solvents. We will focus on those with larger

than 3 log unit difference between calculated and experimental values (Figure 2). In oc-

tanol, the calculated logPoct for erythromycin (5785) was overestimated by 3.8 log units.

The outliers in cyclohexane were pentachlorophenol (1307) by 5.6 log units and nitrocyclo-

hexane (1879) by 3.9 log units. Past studies of hydration free energies have shown that

atom-centered charges can be inadequate to describe the electrostatic potential around poly-
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Table 1: Shown are the Pearson correlation coefficient (R), the root-mean-squared error
(RMSE), average signed error (ASE), and percent correct sign for the comparison of cal-
culated and experimental partition coefficients for both organic solvents and the selected
force fields. Analysis is presented for the entire set of solutes (All) and separately for only
hydroxyl containing solutes (Alcohols).

Solvent ForceField Subset R RMSE ASE Correct Sign
Cyclohexane GAFF All 0.7± 0.1 1.4± 0.3 0.4± 0.2 68± 7%

Cyclohexane GAFF-DC All 0.7± 0.1 1.3± 0.2 −0.1± 0.2 63± 7%

Octanol GAFF All 0.83± 0.07 1.1± 0.2 0.7± 0.1 97± 3%

Octanol GAFF-DC All 0.86± 0.06 0.9± 0.1 0.5± 0.1 97± 3%

Cyclohexane GAFF Alcohols 0.5± 0.3 1.5± 0.6 0.7± 0.3 70± 10%

Cyclohexane GAFF-DC Alcohols 0.5± 0.3 1.5± 0.4 −0.5± 0.4 60± 10%

Octanol GAFF Alcohols 0.8± 0.2 1.2± 0.4 0.6± 0.3 100± 1%

Octanol GAFF-DC Alcohols 0.9± 0.1 0.9± 0.2 0.5± 0.2 100± 1%

chlorinated compounds, likely explaining difficulty reproducing the partition coefficients for

pentachlorophenol.11 Erythromycin is a large molecule with many rotatable bonds and rings.

It seems likely that our errors for erythromycin could be due to problems with conforma-

tional sampling, though another possible source of errors could be conformation-dependence

of partial charges. To check the latter, we took many snapshots of erythromycin from our

simulations and calculated partial charges for each conformation separately, then looked at

the average and standard deviation in these charge sets for each atom. The standard de-

viation of all charge sets was orders of magnitude smaller than the average, thus our data

does not support charge variation as the explanation for the error here. Instead, we suspect

that the problem is conformational sampling, and that in order to accurately sample all of

the possible configurations, longer simulation times or enhanced sampling methods may be

needed. We decided to explore the possibility of sampling issues with erythromycin further,

these results are discussed in depth below.

logPoct values were also calculated with OpenEye’s OEXLogP tool. These results are

included in the Supporting Information tables and the scripts to used to calculate them are

available with the additional information online. The OEXLogP results in an R value of

0.83 ± 0.09, RMSE of 0.6 ± 0.1, ASE of −0.1 ± 0.1, and correct sign of 94 ± 4%. Clearly,

OEXLogP more accurately estimates logPoct than the values calculated with either force
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field. This is perhaps not surprising given the wealth of experimental octanol partitioning

data that can be used for training empirical methods like this one. However, there are a

few examples where the logPoct calculated by our alchemical solvation free energy method

results were closer to experiment than OEXLogP. Most notably, salicyclic acid (2185) and

o-nitrophenol (1453) where the OEXLogP under estimates logPoct by 1.5 and 2.1 log units

respectively. But given the small size of our present test set, we cannot draw meaningful

predictions about whether and when alchemical methods will be more accurate in general

than OEXLogP or other empirically trained methods.

Comparing results with GAFF and GAFF-DC to previous work with

both force fields

Our results are about as accurate in GAFF as past work would predict, but significantly

less accurate with GAFF-DC. The simulation parameters used here to calculate solvation

free energies with GAFF are the same used by Mobley and collaborators for the calculations

reported in the FreeSolv database.111 FreeSolv includes the calculated and experimental

hydration free energies for 643 neutral solutes. For the calculations reported in FreeSolv,

there is an RMSE of 6.3 kJ/mol for the whole database. Assuming the solvation free energy

calculations in each solvent (i.e. water and cyclohexane) would have a similar error, this

would translate to an expected error of 1.6 log units in logP . Fennell et al. also used

these GAFF and GAFF-DC parameters when testing the development of GAFF-DC.15 They

found a similar RMSE for hydration free energy calculations with GAFF, but significantly

better performance in GAFF-DC with an RMSE of only 1.9 kJ/mol, which would lead to

an expected error of 0.47 log units for logP . When we consider all our logP calculations in

both solvents the RMSE is 1.2 log units for both force fields. Our calculated logP results are

within uncertainty of what would be expected given the accuracy of hydration free energies

in FreeSolv. Despite significant improvement in past hydration free energy calculations,15

we see no significant improvement in logP values calculated with GAFF-DC compared to
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GAFF (Table 1).

For solvation free energies in cyclohexane and water, only alcohols are affected by the

change from GAFF to GAFF-DC, so they should be addressed as a subset of the data. Our

results show a significant bias in the calculated logPcyc. Partition coefficients calculated

with GAFF show alcohols prefer cyclohexane to water more strongly than in experiment as

demonstrated by the average signed error (0.7± 0.3) and Figure 2a. The calculated logPcyc

in GAFF-DC show alcohols to prefer water over cyclohexane with an average signed error of

−0.5±0.3 (Figure 2b). Thus, GAFF-DC shifts the systematic error for alcohol logPcyc from

having one sign to having the other, as shown in Figure 2. GAFF-DC was parameterized

to improve simulations in pure methanol, leading to more polarized hydroxyl groups.15 It

follows that the less polarized alcohols in GAFF might over-favor cyclohexane, but when

more polarized would move to favoring water.

In octanol, however, there is no significant change in the accuracy of the calculated

partition coefficients with GAFF compared to GAFF-DC (Figures 2c,d). The calculated

logPoct indicates all solutes prefer octanol over water more strongly than in experiment for

both force fields as indicated by the average signed error (GAFF: 0.7± 0.1 and GAFF-DC:

0.5± 0.1). When only considering alcohol solutes there is still a preference for octanol over

water with no significant change in the average signed error (GAFF: 0.6±0.3 and GAFF-DC:

0.5 ± 0.2). The RMSE also decreases slightly for GAFF-DC with all solutes and alcohols,

but the change is still within uncertainty (Table 1). T-tests comparing the logPoct values

calculated with GAFF and GAFF-DC resulted in t = 2.4 and p = 0.022 indicating the

two sets of calculated values are significantly different, even though there is no statistically

significant change in the overall error metrics. This significant difference appears to be

consistent with a slight overall improvement in calculated values with GAFF-DC
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Figure 3: Comparison of calculated solvation free energies and partition coefficients for 4 different initial
conformations of erythromycin (5785). If the conformational space was thoroughly sampled, changes in
initial conformation would have no effect on the solvation free energy. Here we see significant changes in all
three free energies, dramatically affecting calculated partition coefficients.

Sampling in largest solute molecule

Our solutes varied in size and flexibility from only 2 heavy atoms and no rotatable bonds

(methanol, 159) to 51 heavy atoms and 7 rotatable bonds (erythromycin, 5785). As men-

tioned above, erythromycin was also an obvious outlier in octanol. For these reasons, we

chose erythromycin as a test case to check how the initial solute conformation might affect

solvation free energy and therefore logP . Each new conformation is placed in an independent

box of solvent molecules. If the conformational space of the solute is being thoroughly sam-

pled and solvent sampling is adequate, then the solvation free energy should not be affected

by a change in the initial conformation. We simulated erythromycin in each of the solvents

three additional times each with a different initial conformation. Variations in solvation free

energies of about 4 kJ/mol in each solvent led to variations of up to 1.6 log units in logPcyc

and 2.2 log units in logPoct (Figure 3). These results suggest a significant dependence on

the initial conformation of the erythromycin, which in turn points to issues in sampling the

conformational space of the solute. Longer time scales or different sampling techniques will

need to be applied for solutes as large and flexible as erythromycin.
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(a) Density convergence of octanol
with o-nitrophenol (1453) as solute
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(b) Density convergence of octanol
with 2,5-dimethylphenol (2917) as solute
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Figure 4: A cumulative average of the density during simulations of the solute in octanol.
The overall average is indicated with a solid black line.

Examining convergence of solvation free energies in octanol

Octanol has a tendency to form clusters where the polar hydroxyl groups group together

and separate from the non-polar carbon chains. These clusters have been suggested as a

source of slow equilibration in simulations.58,112 Convergence of physical properties can help

indicate that a system has sufficiently equilibrated. To observe how well the simulations

in octanol converged, we plotted average density versus simulation time (Figure 4). These

plots were made with data from the production phase, meaning the system has already spent

considerable time equilibrating. In a system that has converged, the average density should

be within uncertainty of a constant value. In the case of o-nitrophenol (1453), the cumulative

average density is within uncertainty of the overall average within the first 300 ps the density

appears to be converging (Figure 4a). However in the case for 2,5-dimethylphenol (2917),

the system does not get within uncertainty of the overall average until 4400 ps meaning the

density may not have completely converged in the 5000 ps production phase (Figure 4b). In

the solvation free energy calculations, we remove the first 100 ps of the production phase for

additional equilibration, but it is included here. If the initial part of the production phase

had not reached equilibrium, we might expect removing data from the beginning of the
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simulation would decrease the amount of time it takes the density to apparently converge.

To test if this was the case, we considered density convergence plots with the first 100, 300,

and 1000 ps removed from the beginning of the data sets for 1453 and 2917. The plots

from this analysis are available in the additional information, but there was no significant

improvement in the apparent time to convergence when any amount of data was removed

from the 2917 simulation.

These two systems are meant to represent the best and worst examples of simulations

in octanol; plots for all other solutes are available in the additional information. We do

not necessarily expect that the solute identity for these relatively small solutes dramatically

impacts the convergence of the density of the entire system. Indeed, the density of the

simulation with erythromycin, which has been shown to have sampling problems, converged

more quickly than simulations with smaller solutes. Since each system is set up indepen-

dently, the difference in convergence of the density for these different systems is likely the

result of changes in initial conditions. If that is the case, it clearly indicates that octanol

rearrangement is quite slow. As a follow-up, we performed three additional simulations for

(4-bromo-benzal)-acetylacetone (4299) with larger box sizes (400 octanol molecules and 1

solute molecule) and fully interacting solvent (λ = 0). In one of these cases, the average den-

sity did not converge within the 5 ns production time, evidence that the slow rearrangement

of octanol does not appear to be dependent on box size. The data and resulting convergence

plots from these simulations are available in the additional information. The fact that the

density converges quite slowly raises concerns about how well these simulations are con-

verged. Thus, despite fairly accurate results for logPoct there are still issues to be resolved

to guarantee sufficient sampling when octanol is used as the solvent.
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Conclusions

We did not initially expect accurate results for transfer energies into cyclohexane. Beauchamp

et al. recently reported results for a benchmarking study for GAFF based on calculations

of dielectric constants in pure solvents. They argued that GAFF would not accurately pre-

dict transfer free energies into cyclohexane because of an inaccurate representation of the

solvent’s dielectric constant.77 They suggested transfer free energies from aqueous solutions

into cyclohexane would have an error around -3.8 kJ/mol. Since partition coefficients are

directly proportional to the transfer free energy, this translates to an error of +0.7 log units

in logPcyc. While there is a slight bias for alcohols in cyclohexane, there is no obviously

trend in the logPcyc for all solutes (Figure 2a). While we do observe an overall average

signed error in that same direction (0.4 ± 0.2), its magnitude suggests less bias than was

anticipated for transfer free energies in cyclohexane. One possible reason for the lack of

bias is Beauchamp et al. based their conclusions on calculations of the dielectric constant.

This limits the free energy estimation to contributions from the electrostatic interactions.

It is possible that Van der Waals interactions may play a role in counteracting a potential

electrostatic bias introduced by the solvent dielectric constant. Given the diverse sizes and

functional groups represented in this small set of molecules, we find GAFF’s performance on

cyclohexane partition coefficients to be surprisingly good.

As discussed in the methods section, a number of assumptions were made in order to

perform these simulations. Some of these assumptions will need to be addressed in the

future if partition coefficient calculations are going to be pursued. For one, we treated the

solvents as completely immiscible. This approximation will be worse as the organic solvent

becomes more polar and more miscible with water. For more polar organic solvents, water is

more likely to permeate the organic/aqueous interface and may impact the accuracy of the

calculated partition coefficient. Calculating solvation free energies into wet octanol, instead

of the dry used here, may improve calculated logPoct values. Additionally, there is some

evidence to suggest polar solutes carry water molecules with them into the organic layer.1
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The assumption of complete immiscibility does not allow for this possibility. One way to

examine if a polar solute is carrying water across the interface would be to perform a set of

simulations near the interface between the aqueous and organic layers. Umbrella sampling

at various distances from the interface could then be used to monitor if the solute is pulling

water into the organic layer with it.

In any study evaluating the accuracy of a computational model or method, the reliability

of the experimental data must be considered. Partition coefficients are no different and a

number of specific concerns have been well documented for experimental logP data. For

example, a recent survey found that sources of partition coefficient measurements cited in

some databases are not actually the original measurement of the reported value.113,114 The

miscibility of water and octanol can also pose problems with experimental measurements.

Above we discussed how the clustering of water around polar solutes has been proposed as

a concern. Especially in shake-flask techniques, octanol transferring into the aqueous phase

can form small clusters around a non-polar solute to over-favor the aqueous phase.113,115

With these concerns, a more non-polar solvent may be a better option for using partition

coefficients to evaluate force fields. When comparing any computed physical property with

experiment, experimental data must always be carefully curated to ensure high quality.

We propose that partition coefficients, given the ease and frequency with which they

are measured experimentally, provide a new way to benchmark the accuracy of atomistic

force fields. The results for logPcyc in particular show continued biases for alcohol solutes,

indicating these calculations may be helpful for further force field improvements. While

our set contains relatively few solutes containing hydroxyl groups, there is still a clear bias

for these results with both force fields. The calculated logPcyc for alcohols overestimates

the solute concentration in cyclohexane with GAFF and in water with GAFF-DC. GAFF-

DC increases the polarization of the hydroxyl group. It was parameterized to correct the

dielectric constant of pure liquid methanol. When initially proposed, Fennell et al. showed

GAFF-DC significantly improves calculated hydration free energies for solutes with hydroxyl
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groups.15 However, a recent study calculated relative solubilities and did not see a significant

change in the accuracy of results in GAFF-DC compared to GAFF.57 We would expect

GAFF-DC to improve calculated properties in environments where they would be naturally

more polarized, such as water or other polar solvents. Cyclohexane would not be expected

to increase the polarization in the hydroxyl group, so in our view GAFF-DC could actually

decrease the accuracy of calculated properties in such an environment, though we do not

observe a significant change in overall accuracy here. However, we do see that GAFF-DC

results in a systematic error (averaged signed error) for alcohol partition coefficients between

cyclohexane and water which has the opposite sign of that with GAFF and differs by more

than one log unit. Essentially, it appears likely that because of the lack of polarization of

cyclohexane, GAFF-DC results in over polarized solutes in cyclohexane. We do not see this

same effect in octanol, possibly because GAFF-DC also polarizes octanol. We find that

GAFF-DC outperforms standard GAFF for hydration free energies, but shows no significant

improvement in overall accuracy for partition coefficients. This may indicate that we are

encountering the limits of fixed charge force fields. Fixed charge force fields do not allow for

changes in polarization as the environment around the solute molecule changes. A similar

issue was encountered in GROMOS force field development, where it was found that no single

charge set could adequately capture both hydration free enthalpies and the thermodynamics

of pure organic liquids.18 Overcoming this limitation will be a key step in improving the

accuracy of such simulations.

The first goal of this project was to create an automated protocol for calculating partition

coefficients from solvation free energies using GROMACS. By introducing Solvation Toolkit,

automating this setup was successful. We plan to use these protocols to extend this small

database of partition coefficients in the near future.
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Additional Files Available Online

A database with all information, scripts, and files required to repeat the simulations and data

analysis presented here is made available free of charge online at http://n2t.net/ark:/b7280/d15k5m

. This includes GROMACS molecular dynamics parameter files, topology files, and coordi-

nate files. It contains all results files: GROMACS files required to run Alchemical Analysis

and the corresponding results for each solute in each solvent with both force fields, density

data used to create convergence plots, convergence plots for each solute in each solvent, and

GROMACS energy output files. It also has a directory of python scripts used to create,

run, and store data for all simulations and electronically readable files with data on every

molecule. There are multiple README documents explaining how the content is organized.

Alchemical Analysis, Hydroxynator, and Solvation Toolkit are all available open source and

are maintained on GitHub at http://github.com/MobleyLab.
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Supporting Information Available

One pdf file with the tables considered too long for the main text are available in the

Supporting Information. Two tables with complete lists of calculated solvation free energies

for all solutes in water, cyclohexane, and octanol with determined with both force fields

(GAFF and GAFF-DC). logPcyc and logPoct tables with experimental and calculated values

using GAFF and GAFF-DC. This material is available free of charge via the Internet at
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RT ln10
ΔGTransfer = ΔGSolvation −ΔGHydration
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