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The phylogenetic relationship of the now fully sequenced species Drosophila erecta and 

D. yakuba with respect to the D. melanogaster species complex has been a subject of 

controversy. All three possible groupings of the species have been reported in the past, 

though recent multi-gene studies suggest that D. erecta and D. yakuba are sister species. 

Using the whole genomes of each of these species as well as the four other fully 

sequenced species in the subgenus Sophophora, we set out to investigate the placement of 

D. erecta and D. yakuba in the D. melanogaster species group and to understand the 

cause of the past incongruence. Though we find that the phylogeny grouping D. erecta 

and D. yakuba together is the best supported, we also find widespread incongruence in 

nucleotide and amino acid substitutions, insertions and deletions, and gene trees. The 

time inferred to span the two key speciation events is short enough that under the 

coalescent model, the incongruence could be the result of incomplete lineage sorting. 

Consistent with the lineage-sorting hypothesis, substitutions supporting the same tree 

were spatially clustered. Support for the different trees was found to be linked to 

recombination such that adjacent genes support the same tree most often in regions of 

low recombination and substitutions supporting the same tree are most enriched roughly 

on the same scale as linkage disequilibrium, also consistent with lineage sorting. The 

incongruence was found to be statistically significant and robust to model and species 

choice. No systematic biases were found. We conclude that phylogenetic incongruence in 

the D. melanogaster species complex is the result, at least in part, of incomplete lineage 

sorting. Incomplete lineage sorting will likely cause phylogenetic incongruence in many 

comparative genomics datasets. Methods to infer the correct species tree, the history of 



every base in the genome, and comparative methods that control for and/or utilize this 

information will be valuable advancements for the field of comparative genomics. 

Synopsis 

To take full advantage of the growing number of genome sequences from different 

organisms, it is necessary to understand the evolutionary relationships (phylogeny) 

between organisms. Unfortunately, phylogenies inferred from individual genes often 

conflict, reflecting either poor inferences or real variation in the history of genes. In this 

study, the authors examine relationships within the Drosophila melanogaster species 

subgroup, a group of flies with three fully sequenced species in which phylogeny has 

been a source of controversy. Although the bulk of the data support a phylogeny with 

Drosophila melanogaster as an outgroup to sister species Drosophila erecta and 

Drosophila yakuba, large portions of their genes support alternative phylogenies. 

According to the authors, the most plausible explanation for these observations is that 

polymorphisms in the ancestral population were maintained during the two rapid 

speciation events that led to these species. Subsequent to speciation, polymorphisms were 

randomly fixed in each species, and in some cases non-sister species fixed the same 

ancestral polymorphisms, while sister species did not. In these cases the genes are 

correctly inferred to have conflicting phylogenies. The authors note that rapid speciation 

events will often lead to such conflict, which needs to be accounted for in evolutionary 

analyses. 

Introduction 



With the sequencing of 12 species from the genus Drosophila, the field of 

comparative genomics is now presented with the opportunity and challenge of 

understanding the function and history of every base in the model organism Drosophila 

melanogaster (Dmel). This process will hopefully result in the discovery of new 

biological phenomena and the development of new methodologies that will eventually 

help with the task of annotating other clades in the tree of life, particularly the human 

genome. Because most analyses of multiple genome sequences involve inferences about 

evolutionary history, they require an accurate description of the relationship of the 

species being analyzed.  

The species history of the genus Drosophila has been the subject of numerous 

studies, and the consensus from the literature suggests that the relationship of the 12 

sequenced species is well resolved, with the exception of the species within the Dmel 

species subgroup and perhaps the placement of the Hawaiian species, D. grimshawi, and 

the virilis-repleta species, D. virilis and D. mojavenis [1–5]. Within the Dmel species 

group, the placement of D. erecta (Dere) and D. yakuba (Dyak) relative to the Dmel 

lineage has been the subject of numerous conflicting studies [1–3,6–15]. Considering the 

placement of Dmel, Dere, and Dyak, all three of the possible phylogenies (Figure 1) have 

received support. The topology (Dmel,(Dere,Dyak)), which we shall refer to as tree 1, 

was supported by studies of polytene chromosome banding sequences [6], satellite DNA 

[7], the COI and COII mitochondrial genes [3], mitochondrial DNA [16], the fru gene 

[17], the Cu/Zn SOD gene [18], the H3 gene family [19], a concatenation of 

mitochondrial and nuclear genes [20], a concatenation of the genes Adh, Adhr, Gld, and 

ry [8], and a concatenation of the genes Adh, Amyrel, janA, janB, and Sod [9]. The 



topology ((Dmel,Dere),Dyak), which we shall refer to as tree 2, was supported by studies 

of an internal transcribed spacer region of ribosomal RNA genes [10], nucleotide 

sequences 5′ of the Amy gene [15] and the Adh gene [8,21]. The topology 

((Dmel,Dyak),Dere), which we shall refer to as tree 3, was supported by studies of 

protein electrophoresis [11], mitochondrial DNA [12], single-copy nuclear and 

mitochondrial DNA hybridization [13], the Adh gene [1,14] and the Amy gene [15]. The 

support that each of these studies provides for the three phylogenies, however, is not 

uniformly strong. The most recent study by Ko et al. using the concatenation of multiple 

nuclear genes provides the most compelling evidence, with 100% bootstrap support, for 

the placement of Dere and Dyak as sister taxa relative to the Dmel lineage. That Ko et al. 

found such strong support for tree 1, despite using the Adh gene, which on its own has 

been found to support the other two trees, suggests that the past incongruence was likely 

the result of sampling variance [22,23]. Incongruence, however, can also be the result of 

numerous systematic biases [24–28] that are not overcome by increased sampling [29–

31], as well as phylogenetically meaningful phenomena, such as lateral transfer [32] and 

incomplete linage sorting [25,33–48]. 

In this study, we set out to examine the possible causes of incongruence in this 

phylogeny and to investigate the placement of Dere and Dyak in the Dmel species 

subgroup, using the newly sequenced genomes in the genus Drosophila. Although we 

found that tree 1, placing Dere and Dyak as sister species, is the best-supported tree, we 

found genome-wide incongruence in substitutions, insertions/deletions (indels), and gene 

trees. We show that the branch separating the split of Dmel from the split of Dere and 

Dyak is sufficiently short that incomplete lineage sorting is a plausible explanation for the 



incongruence. We further show that the support for the three possible trees is 

nonrandomly distributed across the genome such that adjacent genes supporting the same 

tree are more likely in regions of low recombination, and substitutions supporting the 

same tree are most enriched roughly on the same scale as estimates of linkage 

disequilibrium, consistent with theoretical predictions under the coalescent [49]. We 

tested for obvious systematic biases and found that no factor we examined could account 

for the incongruence. We conclude by suggesting that incongruence due to incomplete 

lineage sorting has important implications for comparative genomics research. 

Results 

Comparative Annotation of Drosophila Species 

To analyze the phylogenetic history of the gene compliment of each of the seven 

fully sequenced species in the subgenus Sophophora, we mapped Dmel gene annotations 

onto each unannotated genome. Dmel coding sequences (19,186) were mapped to 

potential orthologous regions in each species using TBLASTN, and GeneWise was used 

to build gene models based on the Dmel gene in each region. These GeneWise models 

were matched back to Dmel translations using BLASTP, and genes for which clear 

orthologs could be found were used in downstream analysis (see Methods). Peptide 

sequences from orthologs were aligned using TCoffee [50] and cDNA alignments were 

mapped onto the peptide alignments. 

Species and Trees 



Of these seven subgenus Sophophora species, we chose to use Dmel, Dere, Dyak, 

and D. ananassae (Dana) for our initial analysis of the placement of Dere and Dyak 

within the Dmel species subgroup (we examine the effects of species choice on our 

results below). Dmel was chosen because the annotations were mapped from Dmel, and it 

is the primary model organism of the subgenus. D. simulans (Dsim) and D. sechellia 

(Dsec) were excluded from initial analysis because they were assumed to provide mostly 

redundant information to Dmel and they reduced the number of clear orthologs spanning 

the species by 2,544 genes, presumably because of lower sequence coverage and issues 

regarding the assembly of polymorphic reads in Dsim. Dana was chosen over D. 

pseudoobscura (Dpse) because it is the closest fully sequenced outgroup to the Dmel 

species subgroup. More than 9,000 genes (9,405) were found to have clear orthologs in 

all four of the chosen species. Figure 1 shows the three possible unrooted trees relating 

the species. 

Genome-Wide Incongruence 

We began our analysis looking directly at the genome-wide counts of amino acid 

substitutions, nucleotide substitutions, and indel events that were informative with respect 

to each of the three possible trees (see Methods). For all three characters, tree 1, which 

groups Dere and Dyak together, was found to have the most support (Figure 2A–2C). By 

a majority-rule consensus, tree 1 would be inferred to be the species tree, consistent with 

the findings of Ko et al. [8]. The high proportion of substitutions and indels supporting 

the alternate trees, however, suggests a poorly resolved tree and pervasive incongruence. 

What is the cause of this incongruence? The incongruent substitutions could be 

the product of any of a number of systematic biases, but the incongruent indels are 



unambiguous characters that are more difficult to explain as methodological artifacts 

[51,52]. The population genetic theory of the coalescent states that sufficiently close 

speciation events will lead to incongruence due to incomplete lineage sorting (Figure 3) 

[38]. Below we explore the compatibility of our data with the coalescent as well as test 

for possible systematic biases. 

Maximum Likelihood Gene Trees Show Incongruence 

We first repeated our analysis using maximum likelihood (ML) methods [53,54] 

to measure the informative divergence spanning the inferred speciation events and to test 

the robustness of the incongruent substitutions using more complex models of sequence 

evolution. ML analysis is not currently scalable to entire genomes in a single calculation, 

so we partitioned the genome into individual genes. If incomplete lineage sorting is the 

underlying cause of the incongruence, such a partition might also reveal variation in 

allelic histories that multigene concatenations could obscure [27,45,55]. Wanting to 

capture both the observed nucleotide and amino acid differences across the species [56], 

we used the F3×4 codon-based model from the PAML package [57] to compare the 

likelihood of each tree given each cDNA alignment (we test other models below). 

Consistent with the parsimony-based analysis, the majority of genes (57.8%) support tree 

1, while a high proportion (42.2%) support the other two trees (Figure 2D). 

The median synonymous divergence trees for the sets of genes supporting each 

tree are: (dmel:0.1301,(dere:0.1095,dyak:0.1201):0.0664,dana:1.3246) for tree 1, 

((dmel:0.1744,dere:0.1076):0.0498,dyak:0.0757,dana:1.2871) for tree 2, and 

((dmel:0.1801,dyak:0.1163):0.0454,dere:0.0719,dana:1.3147) for tree 3 (Figure 4). The 



branches between the speciation events are quite short, with the tree 1 branch being the 

longest at only 0.066, suggesting that these species split in rapid succession. 

Incongruence Is Expected for These Species under the Coalescent 

Is the time spanning these speciation events short enough to expect the observed 

levels of incongruence? Using the coalescent, the probability of congruence, or 

monophyly, can be directly calculated for the three-taxon case using the equation 

p(congruence) = 1 − 2 / 3exp(−t), where t is the time between speciation events in units 

of generations / 2Ne and Ne is the effective population size [58–60]. Figure 5 shows this 

probability graphically as a function of t. In order to go from an estimate of the 

informative divergence to this probability, the substitutions per site per year, the ancestral 

generation time and the ancestral population size must be known. Synonymous 

substitutions per site per year has been estimated to be in the range of 1–2 × 10−8 in 

Drosophila [1,13,61,62]. Generations per year for the extant taxa in the Dmel species 

subgroup is about ten and can be used as an estimate for the ancestral generation time 

[63]. The ancestral population size has been estimated in the range of 106 to 107, but this 

should be considered a poorly resolved parameter [64]. Theoretically, the median 

informative branch length measured above includes both divergence prior to the first 

speciation event and divergence between the two speciation events. If we take the 

informative divergence estimated from genes supporting the alternative trees to represent 

the expected amount of divergence prior to the first speciation event (0.05 and 0.045 for 

trees 2 and 3, respectively) and subtract their average (0.0475) from the tree 1 total 

informative divergence (0.066), we can get an estimate of the informative divergence 

spanning the two speciation events (0.019). This leads to an estimate of 9.5 × 105 to 1.9 × 



106 years, or 9.5 × 106 to 1.9 × 107 generations. The range of values for t becomes 0.48 to 

9.5, which produces probabilities for congruence in the range of 0.59 to 0.99995 (Figure 

5). Although the uncertainty in these parameter estimates does not permit us to say that 

incongruence would be guaranteed, they do allow us to say that incongruence due to 

incomplete lineage sorting is expected under plausible assumptions about these species’ 

ancestral population and speciation events.  

Spatial Structure of Tree Support  

Given that we observed incongruence in individual sites as well as for whole 

genes, we wanted to better understand the extent to which sites supporting the same tree 

are spatially correlated, with a particular interest in the compatibility of this structure with 

the incomplete lineage-sorting hypothesis. The above analysis of gene trees suggests that 

sites can be correlated out to the length of genes. To see if this correlation extends 

beyond individual genes we looked for blocks of adjacent genes supporting the same 

gene and tested for unusual block lengths. Using permutations of ML gene tree states to 

obtain significance, we found gene tree block lengths at expected frequencies, with the 

exception of an excess of long blocks supporting tree 3 in the range of 250 kb to 700 kb, 

three of which were highly significant (p < 0.05). 

If the blocks of genes supporting the same tree were the product of incomplete 

lineage sorting, then regions of low recombination ought to have larger blocks [65]. 

Although the ancestral recombination rates are not known, we looked to see if block 

lengths are correlated with Dmel recombination rates [66]. We found a weak negative 

correlation for all blocks (Pearson’s R = −0.13, p < 0.1) as well for blocks for each 

specific tree, with tree 2 blocks showing the strongest correlation (Pearson’s R = −0.30, p 



< 0.05). These weak correlations suggest a minor role for recombination rates in 

determining the spatial structure of support for different trees across the genome; 

however, there are many reasons for why strong correlations would not be expected, 

including poorly conserved recombination rates across these species [67–69] and gene 

conversion in regions of low recombination [70–72]. Nonetheless, these weak 

correlations establish a connection between recombination and the spatial structure of 

support that is at least consistent with lineage sorting. We next looked at the spatial 

correlation of individual sites to understand the spatial correlation at a finer scale. 

Using the whole-genome frequencies of informative amino acid and nucleotide 

substitutions supporting each tree, we looked to see if sites supporting the same tree are 

locally enriched across chromosomes (see Methods for more details). Figure 6 shows that 

informative amino acid and nucleotide substitutions supporting the same tree cluster 

together on the scale of less than 8 kb for trees 1 and 2 and less than 2 kb for tree 3. 

These local deviations in the frequencies of informative substitutions from the expected 

frequencies are quite highly significant (X2 test, p < 10−10). 

What forces might have shaped these clusters of informative sites supporting the 

same tree? Under the coalescent, linked neutrally evolving sites supporting the same tree 

have been proposed to be correlated at an expected distance equal to linkage 

disequilibrium [49]. Linkage disequilibrium in Dmel has been estimated to extend to the 

length of a few kilobases [73], suggesting that our results are consistent with theoretical 

expectations [49]. Theoretical considerations together with recent empirical evidence 

from Dmel, however, imply that neutral sites would not be expected to be in 

disequilibrium at distances greater than a few hundred base pairs [74,75], suggesting that 



perhaps selection has acted to increase the scale of these correlations [65]. Regardless of 

the influence of selection, the structure of the support for different trees across the 

genome is consistent with recombination acting within the context of incomplete lineage 

sorting. 

Additional support for this conclusion comes from the observation that 

mitochondrial genes exhibit no incongruence (K. Montooth and D. Rand, personal 

communication). This is expected, as recombination is not thought to occur in the 

mitochondrial genome. While mitochondrial evolution differs from nuclear evolution in 

more ways than just recombination [76], the complete lack of incongruence is 

nevertheless striking. 

Thus far we have presented results suggesting that incomplete lineage sorting is a 

plausible explanation for the observed incongruence. We next sought to rule out alternate 

explanations. 

Statistical Support for Incongruence 

Is the incongruence in gene trees unexpected given the strength of support for 

each inference? To address this question, we used the bootstrap [77] value, RELL [78], 

from 10,000 replicates as an estimate of the expected incongruence due to chance alone. 

Taylor and Piel have shown that for a large set of yeast genes, originally reported by 

Rokas et al [79], there is no significant difference between nonparametric bootstrap 

values and accuracy, as measured by congruence [80]. Earlier work suggests that 

bootstrap values are conservative and likely to underestimate accuracy [81,82]. Figure 7A 

shows the proportion of genes supporting each tree in bins of bootstrap value. Unlike the 

yeast phylogeny, our observed incongruence consistently exceeds that expected by 



bootstrap values. Thus, the incongruence for these four species using the F3×4 codon 

model appears to be statistically significant. 

Incongruence Is Robust to Model Choice 

We next tested whether the incongruence is robust to model choice. An empirical 

study of model choice and accuracy by Ren et al found that codon-based models are able 

to recover both recent and deep divergences well, while nucleotide-based models are less 

efficient at deep divergences and amino acid–based models are less efficient at recent 

divergences [56]. They also found that while more complex models fit the data better, 

they are not necessarily more accurate, a conclusion that has been made by other studies 

[83,84]. We looked at six models: nucleotide-based (HKY, HKY+G), codon-based 

(F3×4, F3×4+G), and amino acid–based (WAG+F, WAG+F+G) models both with and 

without a discrete gamma model of variable rates among sites (see Methods). 

Incongruence was found to exceed expected levels from bootstrap values across all 

models, suggesting that the incongruence is indeed robust to model choice (Figure S1). 

Comparing congruence across models, simpler models seem to produce more 

congruence than more complex models (Table 1). For each of the three types of models, 

addition of a discrete gamma resulted in lower congruence. For the models without 

discrete gamma, HKY was more congruent than F3×4, which was more congruent than 

WAG+F, perhaps due to the relatively recent divergences in this phylogeny. 

Interestingly, the more complex models, F3×4+G for nucleotides and WAG+F+G for 

amino acids, fit the alignments better for most genes, according to Akaike’s information 

criterion (Table 1) [85]. Thus, consistent with the finding of Ren et al. with the yeast 

dataset [56], more complex models fit the data better but produce less congruence. 



Species Choice Does Not Explain the Observed Incongruence 

To evaluate the robustness of the incongruence to species choice we examined the 

set of 5,778 genes for which a clear ortholog could be found in all seven fully sequenced 

species in the subgenous Sophophora: Dmel, Dsim, Dsec, Dere, Dyak, Dana, and Dpse. 

All 21 possible species combinations that include Dere and Dyak and at least one of 

Dmel, Dsim, and Dsec, as well as at least one of Dana and Dpse, were considered. The 

HKY model was used both because it was found to produce the most congruence in the 

original four species as well as because it is considerably more computationally efficient 

than the codon models. Across all species combinations, incongruence is consistently 

greater than expected from bootstrap values, suggesting that incongruence is not species 

choice dependent (Figures S1A and S2). 

Ranking species combinations by levels of congruence reveals that our original 

species choice produces the most congruence (Table 2), suggesting that our estimates are 

conservative. The relative congruence of the species combinations appears nonrandom, 

with respect to presence or absence of individual species, so we calculated the average 

congruence for each species across the combinations containing that species. Although 

the average congruence is very similar for each species, we found that Dana (82.4%) 

contributes most to congruence, while Dsim (80.8%), Dsec (80.4%), and Dpse (79.7%) 

contribute roughly equally and Dmel (78.9%) actually contributes least to congruence. 

We note that the presence of Dmel in the most congruent species combination goes 

against this general trend, perhaps reflecting further complexities in the impact of species 

choice on congruence. 

Consistency 



Although the incongruence appears to be robust to model and species choice, a 

much more stringent test is to look at incongruence in the partition of genes that 

consistently support the same tree across all models and across all species combinations 

[86]. Of the 5,778 genes analyzed, 2,347 are consistent across all models and of those, 

1,600 (68.2%) are congruent while 443 (18.9%) support tree 2 and 304 (12.9%) support 

tree 3. Similarly, 1,918 genes are consistent across species combinations and of those, 

1,474 (76.8%) are congruent while 291 (15.2%) support tree 2 and 153 (8%) support tree 

3. Finally, 970 genes are consistent across all models and all species combinations and of 

those, 804 (82.9%) are congruent, while 101 (10.4%) support tree 2 and 61 (6.3%) 

support tree 3. This conservative partitioning reduces the amount of incongruence but 

does not eliminate it. We note that under the incomplete lineage-sorting hypothesis, 

incongruent genes are expected to have accumulated fewer informative substitutions 

(Figure 4) and therefore might be expected to be less robust to such a consistency test. 

To assess the statistical significance of the incongruence in the partition of genes 

consistent across all models and species combinations [31], we used the HKY model 

bootstrap values from the Dmel, Dere, Dyak, and Dana species combination to look at 

congruence as a function of bootstrap value. As shown in figure 7B, the congruence is 

less than expected for the highest bootstrap values. For the 521 genes with bootstrap 

values between 0.9 and 1.0, which is more than half of consistent genes, the incongruence 

was highly significant (X2 test, p < 10−3).  

To further test whether the statistical support from the incongruent genes is the 

result of consistent signal, as opposed to having hidden support [87] for tree 1, we 

concatenated the 804 consistent tree 1 genes, 101 consistent tree 2 genes, and 61 tree 3 



genes into three large alignments and repeated the ML analysis for the Dmel, Dere, Dyak, 

and Dana species combination and the HKY model. Interestingly, each tree-specific 

concatenation supported its tree with 100% bootstrap support [88]. Thus, the signal for 

incongruence appears to be consistent, highly significant, and robust to model and species 

choice consistency partitioning. 

Sequence and Evolutionary Properties 

We next looked at sequence and evolutionary properties of the genes supporting 

each tree to see if any clear biases could explain the incongruence. The properties we 

examined are sequence quality, gene length (measured in ungapped codons in the 

alignment), base composition (GC content) across the species at each position in the 

codon, transition–transversion ratio (kappa), ratio of nonsynonymous to synonymous 

divergence (dN/dS), informative synonymous divergence (ISD), ratio of informative 

synonymous divergence to noninformative synonymous divergence (RINSD), and total 

synonymous divergence (TSD). Table S1 shows the correlation of bootstrap values to 

each of these properties for the whole set of genes, genes supporting each tree, the set of 

genes found to be consistent across models and species combinations, the genes that 

consistently supported each tree, and the set of inconsistent genes. Distributions for each 

property are shown in Figures 8 and S3–S8. 

The strongest and most consistent correlations with bootstrap value are for ISD 

and RINSD (Table S1), which are in essence the signal and signal to noise. We’ve 

already shown that the median informative divergence in the genes supporting tree 1 is 

greater than that for the genes supporting trees 2 and 3 (Figure 4). Reflecting this, the 

distributions of ISD and RINSD for genes supporting trees 2 and 3 are shifted toward 



lower values compared to genes supporting tree 1 (Figures 8A and S3A). Comparing 

consistent genes and inconsistent genes reveals that nearly all genes with ISD values 

close to zero are classified as inconsistent (Figure 8B). Among consistent genes, those 

supporting trees 2 and 3 still have distributions of ISD and RINSD shifted slightly toward 

lower values compared to those supporting tree 1 (Figures 8C and S3B). The fact that 

incongruent genes are expected to have lower ISDs than congruent genes under the 

incomplete lineage-sorting model (see above), and the fact the ISD and RINSD 

distributions are highly overlapping for each of the three trees, suggests that lack of 

signal or low signal to noise cannot explain the observed incongruence. 

The long branch out to Dana (Figure 4) presents the concern that the 

incongruence may be due to homoplasy and perhaps long-branch attraction. TSD is 

distributed nearly identically across all sets of genes, including consistent and 

inconsistent genes, with a very slight bias toward trees 2 and 3 genes; inconsistent genes 

have lower TSDs (Figures 8D and S4). Although this does not rule out homoplasy as a 

source for noise in the inference of gene trees, it appears that regions with high 

mutational rates are not biased toward supporting incongruent or inconsistent genes [89], 

making it a less likely explanatory factor. In addition, although the trees in Figure 4 are 

not ultrametric (leaves equidistant from internal nodes), they are biased in the opposite 

direction as would be expected under long branch attraction, with the shortest branch in 

the Dmel species subgroup pairing with the longest branch out to Dana. Thus, homoplasy 

and long-branch attraction do not appear to be responsible for the incongruence. 

Another possibility is that sampling variance in short genes is leading to the 

incongruence [90]. We’ve already shown that a concatenation of the consistent genes 



supporting each tree gives 100% bootstrap support, making sampling variance an 

unlikely explanation. Gene length is very similar across the sets of genes supporting each 

tree, but tree 1 genes tend to be slightly longer than genes supporting trees 2 and 3 

(Figure 8E). Gene length is also weakly correlated with bootstrap value for the whole set, 

consistent genes, and tree 1 genes (both inconsistent and consistent) (Table S1). Our 

above results on the spatial correlation of sites, however, suggest that genes that extend 

more than a few kilobases would not be expected to be enriched for sites supporting the 

same tree above their background frequencies. We also found that enrichment is most 

pronounced for tree 1 sites and less so for incongruent sites. This increased mosaic 

structure [91] in incongruent genes is likely to be responsible for most of the shift to 

slightly larger genes in the tree 1 genes. The influence of sampling variance, however, is 

reflected in the shift of inconsistent genes compared to consistent genes toward shorter 

lengths. Thus, the small decrease in long genes in the incongruent set is probably a result 

of the spatial clustering of sites, while the small increase in short genes may be a 

combination of that effect and noise from sampling variance. Regardless, gene length is 

so similar across trees that it is unlikely to explain the incongruence. 

GC content has been estimated to vary considerably across the species in the 

Dmel species subgroup [92] and is therefore a major concern for systematic bias. We 

found that GC content is highly similar across species at first and second codon positions, 

but varied systematically at the third codon position (Figures 8F, S5A, and S5B). Dmel 

and Dana have nearly identical distributions of third codon position GC content, which is 

shifted toward lower values compared to Dere and Dyak, which also have nearly identical 

distributions. This bias in GC content across species is very conservative with respect to 



the inference of incongruent genes because the incongruence would need to overcome the 

signal from base composition alone [29]. To further verify that this bias only works to 

decrease the incongruence, we converted the cDNA alignments into Rs and Ys, for 

purines and pyrimidines, respectively, and repeated the ML analysis using the F81 model 

of evolution, effectively averaging the contribution of GC and AT content and only 

measuring transversions [29,93,94]. As expected, incongruence actually increases 

(45.2%) under the RY coding and is still statistically significant (Figure S9). Other 

methods, for example those of Galtier and Gouy [95,96] and Gu and Li [97], attempt to 

explicitly model nonstationary evolution, rather than control for it. These methods might 

reveal more precisely the underestimation of incongruence due to the base composition 

bias in these species but are not expected to provide an explanation for the observed 

incongruence. 

Sequence qualities, transition–transversion ratios, and dN/dS values were found 

be distributed similarly across trees, suggesting they are unlikely factors for systematic 

bias (Figures S6–S8). 

Sequence Properties Associated with Spatial Clustering 

We last looked to see if the spatial clustering of sites supporting the same tree 

could be explained by evolutionary rate or base composition variation. To examine the 

relationship of evolutionary rate and the clustering of sites supporting each tree, we 

measured total divergence and the fraction of sites supporting each tree in overlapping 

windows across the chromosomes. For windows of sizes 5 kb or 1 kb, no correlation 

could be found between divergence and the fraction of sites supporting each tree, 

suggesting that evolutionary rate is unlikely to explain the spatial clustering. To test 



whether changes in GC content could explain the clustering of sites we used the RY-

coded alignments (described above) [29,93,94] and repeated the spatial clustering 

analysis. Figure S10 shows that sites are still correlated in a similar range of a few 

kilobases, suggesting that variance in GC content is unlikely to be causing the spatial 

clustering of sites. Thus, both the incongruence as well as the spatial clustering of sites 

appear to be robust to the sequence and evolutionary properties examined. 

Discussion 

We initially set out to confirm the placement of Dere and Dyak as sister species, 

relative to the Dmel lineage, in the Dmel species subgroup, using the fully sequenced 

genomes of seven species in the subgenus Sophophora. Although we did find that the 

best-supported phylogeny is that which places Dere and Dyak as sister species, we also 

found pervasive incongruence of substitutions, indels, and gene trees (figure 2). While 

incongruence in substitutions and gene trees could be the result of systematic biases, the 

incongruent indels, particularly unique insertions, presented strong enough evidence for 

unbiased incongruence that we also considered incomplete lineage sorting as a possible 

explanation. Assuming plausible values of substitution rate, generation time, and 

ancestral population size, we found that the time between the split of Dmel and the split 

of Dere and Dyak is sufficiently short that incomplete lineage sorting would be expected 

(Figures 3–5). Interestingly, we observed that the support for each of the three trees has a 

spatial structure across the genome, which is related to low recombination, both locally 

and globally (Figure 6). This further supports the hypothesis that the observed 

incongruence is due, at least in part, to incomplete lineage sorting. 



To test for other plausible explanations we examined model choice, species 

choice, and variation in sequence and evolutionary properties and found no obvious 

candidate factors to explain the incongruence or the spatial structure of support for trees 

(Tables 1 and 2; Figures 7, 8, S1–S10). We therefore conclude that incomplete lineage 

sorting is the best-going explanation for the lack of resolution in this phylogeny. 

Nevertheless, we likely did not exhaust the possible tests for alternate hypotheses 

for incongruence and suspect that this dataset will prove an interesting area for systematic 

research, much as the Rokas et al. yeast dataset has [69]. Comparing our results to the 

yeast dataset reveals important differences: there is significant incongruence beyond what 

would be expected by chance (Figure 7A), the level of incongruence is relatively robust 

to model choice (Tables 1 and 2; Figures 7B and S1), and basic sequence properties, like 

GC content, vary in ways that are conservative with respect to the incongruence (Figures 

8, S3–S10) [29]. Similar to the yeast dataset, however, we find that the evolutionary 

model that maximizes the congruence (or accuracy, as Ren et al. refer to it) is typically 

the simplest (HKY), while the model that fits the data best is the most complex (F3×4 

+G) (Table 1) [56]. 

To further understand the extent and nature of incomplete lineage sorting in the 

Dmel species subgroup, we suggest several types of future studies. First, to further test 

the agreement of the observed incongruence with theoretical predictions, better estimates 

of the ancestral effective population size, mutation rates, time between speciation events, 

ancestral recombination events [98], and examining the effects of selection (both 

directional and balancing [99]) would be of clear benefit. In addition, of great interest 

will be studies of lineage sorting across all taxa in the species group (especially the Dsim 



species complex [39]) and the influence of migration and gene flow on the symmetry of 

lineage sorting (because tree 2 is asymmetrically favored). Genome-wide population data 

already exist for Dsim and are expected for Dmel, which have the potential to help in the 

effort to understand these processes. Finally, methodological improvements might 

include increased large-scale taxon sampling, particularly from closely related taxa 

outside the species subgroup, such as the D. suzukii and D. takahashii subgroups [3], 

would alleviate potential biases introduced by the long branches out to Dana and Dpse. 

Although this study should prove quite valuable to the increasing numbers of 

comparative genomics researchers studying the genus Drosophila, we believe our 

findings have important implications for comparative genomics as a whole. The idea that 

speciation events have occurred in rapid bursts throughout the tree of life [100–102] is 

likely broadly understood (for example, the short branch connecting the human, mouse, 

and dog lineages [103]), but the idea that genomes may be mosaics of conflicting 

genealogies as a result of rapid speciation is perhaps less well appreciated. As more 

species are sequenced, particularly the dense taxon sampling that is currently beginning 

in model organism clades, increasing numbers of close speciation events will likely result 

in many cases of incomplete lineage sorting in genome-scale data. As many methods 

used in comparative genomics require an accurate phylogeny, the comparative genomics 

community must develop methods that are robust to or take into account variation in 

phylogeny. 

We envision three types of methods that will need to be developed to 

appropriately account for this kind of variation. The first are methods that can infer the 

most likely species tree using an entire genome in a single calculation, considering 



lineage sorting explicitly. The second are methods that can infer the most likely history of 

every base in every species, given the species tree. Last, comparative genomics methods 

that use phylogenies would need to be altered to control for and utilize the output from 

the second kind of method. Progress is being made in the first two categories 

[27,38,47,48,98,104–113], although no currently available method can deal with a whole-

genome dataset such as this one. Though well appreciated in the systematics and 

population genetics communities, the issue of incomplete lineage sorting is rarely 

considered in the bioinformatics and comparative genomics communities, so the third 

category of method is virtually nonexistent. Accounting for variation in evolutionary 

histories will have different effects on different classes of methods, but we suggest that 

parsimony-based methods would be most strongly affected. An important example of 

such a phylogeny-based method is genome-wide multiple alignment using a guide tree 

(i.e., [114,115]), which is the first step in nearly all comparative genomic analyses. The 

availability of genome-scale datasets such as the one analyzed here should allow rapid 

progress in all three of these types of methods; we suggest that their development will be 

of great benefit to the evolutionary and comparative genomics community in the near 

future. 

Methods 

Assemblies. 

Dmel release 4.2 genome, cDNA, and translation sequences were downloaded 

from Flybase (http://www.flybase.net). Prepublication assemblies for Dere and Dana 

(dated August 1, 2005), sequenced and assembled by Agencourt Bioscience 



(http://www.agencourt.com), and for Dsec (dated October 28, 2005), assembled and 

sequenced by the Broad Institute (http://www.broad.mit.edu), were downloaded from the 

Berkeley AAA website (http://rana.lbl.gov/drosophila). The prepublication assemblies for 

Dyak (dated July 4, 2004) and Dsim (dated June 2, 2005) were downloaded from the 

Washington University School of Medicine Genome Sequencing Center's website 

(ftp://genome.wustl.edu/pub). The Dpse v1.04 assembly was downloaded from Flybase. 

Dere, Dyak, and Dana assemblies can be found in Datasets S1–S6. Sequencing traces 

corresponding to these genomes are in the National Center for Biotechnology 

Information (NCBI) trace archive (http://ncbi.nlm.nih.gov/Traces/trace.cgi; species_code, 

“DROSOPHILA ERECTA,” “DROSOPHILA YAKUBA,” “DROSOPHILA 

ANANASSAE,” “DROSOPHILA SIMULANS,” “DROSOPHILA SECHELLIA,” 

“DROSOPHILA PSEUDOOBSCURA”).  

Comparative annotation. 

Each of the sequence assemblies were annotated separately by mapping Dmel 

gene models onto the unannotated genome in a pairwise fashion using a modified 

reciprocal–BLAST approach [116] to assign orthology/paralogy relationships, and a 

comparative gene finder, GeneWise [117,118], to build gene models. The annotation 

pipeline consisted of three steps. (1) For each Dmel translation, we used the protein 

sequence as a NCBI TBLASTN [119] query (e-value threshold, 1 × 10−3) against the 

scaffolds of the target assembly. (2) The scaffolds were ordered by the hit e-value 

reported by TBLASTN, and up to two regions were selected from the two best scaffolds 

and used as input to construct gene models using GeneWise. To improve the chance of 

constructing a complete gene model using GeneWise, the regions were selected by 



clustering high-scoring pairs on the scaffold such that every high-scoring pair within 100 

kb of another high-scoring pair was included in the same region, and a buffer of 10 kb 

was included at the ends of the regions. (3) The predicted translations of the models 

reported by GeneWise were then used as BLASTP queries against a database of Dmel 

translations, with an e-value threshold of 1 × 10−3. 

We then assigned orthology/paralogy relationships using a heuristic algorithm 

that takes into account (1) the rank of the starting Dmel translation in the BLASTP 

results, (2) the rank of alternative translations from the gene corresponding to the starting 

Dmel translation, and (3) whether or not there were highly ranked hits to genes other than 

the gene corresponding to the starting Dmel translation. One-to-one orthology was 

assigned when the only top-ranked hits in the BLASTP results were translations from the 

gene corresponding to the starting Dmel translation. Hits that had e-values within one 

order of magnitude were considered equivalently ranked. For genes with more than one 

translation with clear orthologs in each species, the first historically annotated (translation 

with the lowest letter ID) was used to represent the gene. 

cDNA and translation sequences can be found in Datasets S7–S18. 

Informative substitutions and indels. 

Informative substitutions supporting each tree were counted across all cDNA and 

peptide alignments. Only single substitutions that split the four species into two groups of 

two were considered. Informative substitutions for tree 1 grouped Dmel and Dana 

together and Dere and Dyak together. Likewise, tree 2 grouped Dmel and Dere together 

and tree 3 grouped Dmel and Dyak together. 



Informative indels supporting each tree were counted across all peptide 

alignments. Indels were classified as informative in the same way that substitutions were. 

Indels were further filtered to avoid artifacts from alignment errors. Only indels with five 

amino acids of perfect identity in flanking sequences, with no mono-, di-, or tri-amino 

acid repeats, were included. Insertions were inferred based on an absence in Dana and 

one of the ingroup species. Such insertions, where the inserted sequence is the same in 

the two species containing it, provided strong, unambiguous characters. 

ML gene trees. 

The Codeml program of the PAML package (version 3.14) [57,120] was run on 

each gene using the following three unrooted trees: tree 1, ((Dmel,(Dere,Dyak),Dana); 

tree 2, ((Dmel,Dere),Dyak,Dana); and tree 3, ((Dmel,Dyak),Dere,Dana) (see Figure 1). 

Codeml was run using the F3×4 model, such that equilibrium codon frequencies were 

calculated from the average nucleotide frequencies at the three codon positions 

(CodonFreq = 2), amino amino acid distances were equal (aaDist = 0), one dN/dS value 

was estimated for all lineages using an initial value of 0.4 (model = 0, fix_omega = 0, 

omega = 0.4), the transition–transversion ratio was estimated with an initial value of 2 

(fix_kappa = 0, kappa = 2), substitution rates across sites were set to be equal (fix_alpha 

= 1, alpha = 0), substitution rates were allowed to vary freely across lineages (clock = 0), 

and codons with ambiguous positions (gaps or Ns) were ignored (cleandata = 1). 

Spatial analysis. 

Based on the ML tree for each gene, the genome was divided up into blocks 

supporting each tree. A ten-gene sliding window was used to calculate a running average 



of the support for each tree along each chromosome. Each window was assigned a tree 

based on the most frequent genealogy in the window. Each gene was then reassigned a 

tree based on the most frequent tree of all the windows that contained it. This effectively 

allows the neighbors of a gene to influence its assignment, and near neighbors have more 

influence than far neighbors. Adjacent genes that support the same tree were combined 

together into blocks. To measure the significance of the size of the blocks, the labels for 

each gene in the genome were randomized 1,000 times and the blocks were recalculated 

for each replicate, using the windowing method described above. Recombination rates for 

a subset of genes in Dmel, calculated by Hey and Kliman [66] using the R statistic, were 

downloaded. The average R in each block was calculated where a gene could be found in 

their set. The Pearson correlation of the average R within blocks and the length of blocks 

was calculated using the R statistics package [121]. 

Informative substitutions in genes were used to look at the structure of support for 

the different trees across the genome independent of the likelihood inference. The counts 

of each type of informative substitution were calculated in 60 nonoverlapping 1-kb 

windows surrounding each informative substitution across all chromosomes. The 

frequency of each kind of informative substitution across the whole genome was used to 

calculate an expected count for each 1-kb window. In each window, the enrichment of 

informative substitutions supporting the same tree was calculated. The X2 significance of 

windows was calculated by comparing the observed frequencies of informative mutations 

supporting each tree with the genome averages of those frequencies.  

Bootstrap values. 



RELL bootstrap values [78] from 10,000 replicates were taken from the Codeml 

output. 

PAML models. 

All models were run using the same settings as described above for F3×4 except 

where HKY (model = 4) or WAG+F (model = 3) was specified and where the gamma 

function was used (fix_alpha = 0, alpha = 1.0, ncatg = 8). 

Akaike’s information criterion. 

Akaike’s information criterion (AIC) was calculated as AIC = −2 ln L + 2 N, 

where L is the likelihood of the model given the data, and N is the degrees of freedom 

[85]. Only consistent genes were used in this analysis, so the tree was the same across all 

models. The likelihood and degrees of freedom were taken directly from PAML output. 

HKY, HKY+G, F3×4, and F3×4+G were compared, and WAG+F and WAG+F+G were 

compared. 

Sequence and evolutionary properties analysis. 

The sequence quality in each species was calculated as the mean sequence quality 

score of the coding bases. Bootstrap value, length, GC content, transition–transversion 

ratio, dN/dS, ISD, NSD, and TSD were taken directly from the PAML output for the ML 

tree from the original analysis using the F3×4 model and the Dmel, Dere, Dyak, and 

Dana species combination. The Spearman rank correlations were calculated using the R 

statistics package [121]. 

Divergence windows. 



To examine the correlation of divergence with the proportion of sites supporting 

each tree in local areas across the genome we used 5-kb and 1-kb windows, overlapping 

by 2.5 kb and 0.5 kb, respectively. Using the synonymous site divergences reported by 

Codeml from the original analysis, we calculated the synonymous divergence per coding 

site in each window. We also calculated the proportion of sites supporting each tree in 

each window. Windows with no synonymous coding sites were excluded. 
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Figure S1. 

Significance of Incongruence under Six Evolutionary Models 



An excess of incongruence above what is expected by chance was observed for genes 

from Dmel, Dere, Dyak, and Dana using the HKY model (A), the HKY+G model (B), 

the F3×4 model (C), the F3×4+G model (D), the WAG+F model (E), and the WAG+F+G 

model (F). Genes were binned by bootstrap value, and the proportion of genes supporting 

tree 1 (red line), tree 2 (green line), and tree 3 (purple line) were plotted. The expected 

congruence based on the bootstrap value in each bin (black solid line) demonstrates the 

excess incongruence. 

Found at DOI: 10.1371/journal.pgen.0020173.sg001 (829 KB EPS). 

Figure S2. 

Significance of Incongruence for 20 Species Combinations 

An excess of incongruence above what is expected by chance was observed using the 

HKY model for genes from Dmel, Dsec, Dsim, Dere, Dyak, Dana, and Dpse (A), Dmel, 

Dsec, Dsim, Dere, Dyak, and Dana (B), Dmel, Dsec, Dsim, Dere, Dyak, and Dpse (C), 

Dmel, Dsec, Dere, Dyak, Dana, and Dpse (D), Dmel, Dsim, Dere, Dyak, Dana, and Dpse 

(E), Dsec, Dsim, Dere, Dyak, Dana, and Dpse (F), Dsec, Dere, Dyak, Dana, and Dpse 

(G), Dmel, Dsim, Dere, Dyak, and Dana (H), Dsim, Dere, Dyak, Dana, and Dpse (I), 

Dmel, Dsec, Dere, Dyak and Dana (J), Dsim, Dere, Dyak, and Dana (K), Dsec, Dsim, 

Dere, Dyak, and Dana (L), Dsec, Dere, Dyak, and Dana (M), Dmel, Dsec, Dere, Dyak, 

and Dpse (N), Dmel, Dsim, Dere, Dyak, and Dpse (O), Dmel, Dere, Dyak, and Dpse (P), 

Dsec, Dsim, Dere, Dyak, and Dpse (Q), Dsim, Dere, Dyak, and Dpse (R), Dsec, Dere, 

Dyak, and Dpse (S), and Dmel, Dere, Dyak, Dana, and Dpse (T). Genes were binned by 

bootstrap value, and the proportion of genes supporting tree 1 (red line), tree 2 (green 



line), and tree 3 (purple line) were plotted. The expected congruence based on the 

bootstrap value in each bin (black solid line) demonstrates the excess incongruence. 

Found at DOI: 10.1371/journal.pgen.0020173.sg002 (68 KB PDF). 

Figure S3. 

RINSD 

Although the distributions of the RINSD for incongruent genes are biased toward lower 

values relative to congruent genes for the set of all genes (A), distributions are similar 

across trees for the set of consistent genes. Distributions were calculated using results 

from the original ML analysis using the F3×4 model and the Dmel, Dere, Dyak, and 

Dana species combination. 

Found at DOI: 10.1371/journal.pgen.0020173.sg003 (719 KB EPS). 

Figure S4. 

TSD 

TSD is distributed similarly across consistent and inconsistent genes (A) as well as across 

trees for consistent genes (B), with a slight bias toward lower values for inconsistent 

genes and consistent genes supporting trees 2 and 3. Distributions were calculated using 

results from the original ML analysis using the F3×4 model and the Dmel, Dere, Dyak, 

and Dana species combination. 

Found at DOI: 10.1371/journal.pgen.0020173.sg004 (701 KB EPS). 

Figure S5. 

First and Second Codon Position GC Content 



GC content is distributed nearly identically across species for first (A) and second (B) 

codon positions in all genes. Distributions were calculated using results from the original 

ML analysis using the F3×4 model and the Dmel, Dere, Dyak, and Dana species 

combination. 

Found at DOI: 10.1371/journal.pgen.0020173.sg005 (677 KB EPS). 

Figure S6. 

Sequencing Quality Scores 

Mean sequencing quality scores for coding nucleotides in a gene are distributed nearly 

identically across trees in the set of all genes for Dere (A), Dyak (B) and Dana (C). 

Distributions were calculated using results from the original ML analysis using the F3×4 

model and the Dmel, Dere, Dyak, and Dana species combination. 

Found at DOI: 10.1371/journal.pgen.0020173.sg006 (845 KB EPS). 

Figure S7. 

Transition–Transversion Ratio 

Transition–transversion ratios are similarly distributed across trees for the set of all 

genes. Distributions were calculated using results from the original ML analysis using the 

F3×4 model and the Dmel, Dere, Dyak, and Dana species combination. 

Found at DOI: 10.1371/journal.pgen.0020173.sg007 (657 KB EPS). 

Figure S8. 

dN/dS 



dN/dS values are similarly distributed across trees for the set of all genes. Distributions 

were calculated using results from the original ML analysis using the F3×4 model and the 

Dmel, Dere, Dyak, and Dana species combination. 

Found at DOI: 10.1371/journal.pgen.0020173.sg008 (657 KB EPS). 

Figure S9. 

Significance of Incongruence under RY Coding and F81 Model 

An excess of incongruence above what is expected by chance was observed for genes 

from Dmel, Dere, Dyak, and Dana using RY coding and the F81 model. Genes were 

binned by bootstrap value, and the proportion of genes supporting tree 1 (red), tree 2 

(green line), and tree 3 (purple line) were plotted. The expected congruence based on the 

bootstrap value in each bin (black solid line) demonstrates the excess incongruence. 

Found at DOI: 10.1371/journal.pgen.0020173.sg009 (644 KB EPS). 

Figure S10. 

Clustering of Informative Sites with RY Coding 

Controlling for differences in GC content using RY coding, the enrichment of 

informative nucleotide substitutions near other substitutions that support the same 

phylogeny was found for all three trees and is on a scale roughly similar to estimates of 

linkage disequilibrium. At each informative site in the genome, the counts of informative 

sites supporting each of the three trees in 1-kb windows extending 30 kb up- and 

downstream were measured. For each type of informative site, the enrichment of the 

same type of informative site in each 1-kb window was calculated using the observed 



counts and the expected number of sites based on their genome-wide frequency. 

Enrichment is log10 (observed / expected). 

Found at DOI: 10.1371/journal.pgen.0020173.sg010 (645 KB EPS). 

Table S1. 

Spearman Rank Correlations of Sequence and Evolutionary Properties with Bootstrap 
Values across Sets of Genes 

Found at DOI: 10.1371/journal.pgen.0020173.st001 (26 KB XLS). 
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Figure 1. Phylogenies 

The three possible phylogenies for Dmel, Dere, and Dyak, with Dana as an outgroup. 



DOI: 10.1371/journal.pgen.0020173.g001 

Figure 2. Widespread Incongruence of Substitutions, Indels, and Gene Trees 

(A) The proportion of informative nucleotide substitutions in 9,405 genes supporting 

each of the three trees. Tree 1 (red) is supported by 170,002 (44.7%) nucleotide changes;  

tree 2 (green), 112,278 (29.5%) nucleotide changes; and tree 3 (purple), 98,117 (25.8%) 

nucleotide changes.  

(B) The proportion of informative amino acid substitutions in 9,405 genes supporting 

each of the three trees. Tree 1 (red) is supported by 28,628 (49.3%) amino acid changes; 

tree 2 (green), 15,182 (26.2%) amino acid changes; and tree 3 (purple), 14,203 (24.5%) 

amino acid changes.  

(C) The proportion of informative insertions or deletions (indels) in 9,405 genes 

supporting each of the three genes. Indels were filtered, requiring five flanking amino 

acids of perfect identity and no repetitive sequence. Tree 1 (red) is supported by 2 

deletions and 6 insertions (66.7%); tree 2 (green), 1 deletion and 1 insertion (16.7%); and 

tree 3 (purple), 2 insertions (16.7%). Similar proportions but much larger counts are 

found when the indels are not filtered.  

(D) The proportion of 9,315 genes with ML support for each of the three trees. Tree 1 

(red) has ML support for 5,381 (57.8%); tree 2 (green), 2,188 (23.5%); and tree 3 

(purple), 1,746 (18.7%). 

DOI: 10.1371/journal.pgen.0020173.g002 

Figure 3. Incomplete Lineage Sorting 



The history of a gene (colored lines) is drawn in the context of a species tree (gray bars). 

New lineages arising from new polymorphisms in the gene are drawn in different colors. 

In this case, the two alleles in the population prior to the split of Dmel are maintained 

through to the split of Dere and Dyak, leading to incomplete lineage sorting and an 

incongruent genealogy (tree 2). The greater the diversity in the ancestral population and 

the shorter the time between speciation events, the more likely nonspecies genealogies 

are. 

DOI: 10.1371/journal.pgen.0020173.g003 

Figure 4. Median Synonymous Trees 

Median synonymous branch length trees derived from the genes supporting each of the 

three trees are drawn to the same scale. The branch spanning the two speciation events is 

quite short for all trees. 

DOI: 10.1371/journal.pgen.0020173.g004 

Figure 5. Coalescence Probabilities for Each Tree 

Using the formula p(congruence) = 1 − 2/3exp(−t), where t = generations / 2Ne, the 

probability of the species tree (black) and the probability of one of the two alternate trees 

(gray) was plotted as a function of t. 

DOI: 10.1371/journal.pgen.0020173.g005 

Figure 6. Clustering of Informative Sites 

The enrichment of informative nucleotide (A) and amino acid (B) substitutions near other 

substitutions that support the same phylogeny was found for all three trees and is on a 



scale roughly similar to estimates of linkage disequilibrium. At each informative site in 

the genome, the counts of informative sites supporting each of the three trees in 1-kb 

windows extending 30 kb up- and downstream were measured. For each type of 

informative site, the enrichment of the same type of informative site in each 1-kb window 

was calculated using the observed counts and the expected number of sites based on their 

genome-wide frequency. Enrichment is log10(observed / expected).  

DOI: 10.1371/journal.pgen.0020173.g006 

Figure 7. Significance of Incongruence 

An excess of incongruence above what is expected by chance was observed for the set of 

all genes (A) as well as the set of genes that consistently supported the same tree across 

models and species combinations (B). Genes were binned by bootstrap value, and the 

proportion of genes supporting tree 1 (red line), tree 2 (green line), and tree 3 (purple 

line) were plotted. The expected congruence based on the bootstrap value in each bin 

(black solid line) and the 95% confidence interval based on a X2 distribution (black dash 

line) demonstrates the excess incongruence. 

DOI: 10.1371/journal.pgen.0020173.g007 

Figure 8. Sequence and Evolutionary Gene Properties 

Sequence and evolutionary properties of the genes are unable to explain the 

incongruence. Distributions are calculated using results from the original ML analysis 

using the F3×4 model and the Dmel, Dere, Dyak, and Dana species combination. The 

distributions of informative synonymous divergences in genes supporting each tree reveal 

a bias toward lower values for the incongruent genes (A). Nearly all genes with little or 



no informative synonymous divergence, however, are classified as inconsistent (B). 

Therefore, consistent genes have very similar distributions of ISD across trees (C). TSD 

is distributed similarly across trees, suggesting homoplasy due to increased mutation rates 

is not causing the incongruence (D). Gene length is slightly higher in tree 1 genes but 

overall is very similar across trees (E). Third codon position GC content is slightly biased 

toward lower values for Dmel and Dana and higher values for Dere and Dyak, creating a 

conservative bias for the incongruence (F). 

DOI: 10.1371/journal.pgen.0020173.g008 




