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Abstract: This study evaluated the effects of high-intensity pulsed light (PL) on sliced mortadella,
assessing how the parameters pulse width (1260 to 2520 µs) and number of pulses (one to three)
influence color, oxidative stability, and Listeria monocytogenes population. The different PL param-
eters generated a fluence ranging from 2.64 to 6.57 J/cm2 and irradiance ranging from 1046.9 to
1738.8 W/cm2. The PL slightly increased the temperature and pH of the samples, and this elevation
was well correlated to the higher number of pulses and higher fluence. The color parameter a* was
reduced while b* values increased after PL application, with these effects being more significant
in treatments with a higher number of pulses and higher fluence. The highest values of TBARS
were found in treatments with higher fluence (5.28 and 6.57 J/cm2), which were characterized by
the attribute “oxidized color” in sensory evaluation. The different PL conditions reduced the count
of L. monocytogenes by up to 1.44 Log CFU/cm2. The treatment with a pulse width of 1260 µs, two
pulses, fluence of 4.38 J/cm2, and irradiance of 1738.3 W/cm2 achieved the same efficacy in pathogen
reduction as the treatments with higher fluence. Moreover, these PL conditions had a minimal
impact on the color and oxidative stability of mortadella, demonstrating an effective balance between
microbiological safety and quality preservation.

Keywords: non-thermal treatment; emulsified meat products; post-cooking contamination; lipid
oxidation; sensory profile

1. Introduction

Mortadella is a meat product widely consumed in various parts of the world and
represents a significant percentage of the economic yield for many industries [1]. A con-
siderable amount of mortadella is marketed as sliced and vacuum-packed. However, if
any microbiological contamination occurs during the post-cooking stages, the shelf life and
safety of the product will be drastically compromised.

Contamination by L. monocytogenes is a reality in many industries, and several out-
breaks with fatal consequences have been reported worldwide [2–4]. In addition to this
microorganism’s high pathogenicity, another factor of concern is its ability to multiply at
refrigeration temperatures [5]. Moreover, mortadella is a ready-to-eat product, making
it a potential agent for transmitting foodborne diseases if contamination occurs after the
thermal treatment or if this treatment is not performed correctly [6]. Studies reported that
even in industries with rigorous hygienic–sanitary practices, it is not easy to eliminate L.
monocytogenes [7,8]. For this reason, in some countries, such as the United States, regulatory
bodies impose strict guidelines for meat products that are exposed to the environment
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after cooking, such as sliced mortadella, requiring specific measures to control L. monocyto-
genes contamination at these stages [9]. This requirement highlights the meat industry’s
challenge in ensuring the safety of ready-to-eat meat products that undergo post-cooking
processes with environmental exposure. Since traditional heat sterilization is impractical
for post-packaged ready-to-eat products due to the potential deterioration of sensory quali-
ties such as texture, flavor, and appearance [10], non-thermal decontamination methods
are preferred. Therefore, researching new strategies, especially environment-friendly and
efficient ones, to combat this microorganism is paramount.

In this regard, high-intensity pulsed light (PL), a non-thermal surface decontamination
technology [11], emerges as a potential alternative to address this problem faced by the
sliced meat product industry. The United States Food and Drug Administration (FDA)
approves this technology, offering advantages such as high efficiency and sustainability [12].
Moreover, studies have proven its efficacy in reducing the microbial contamination of
various food products, such as Escherichia coli and Enterococcus faecium on the surface of
shell eggs [13–15], Listeria innocua in sliced cheese [16], Pseudomonas fluorescens, E. coli
ATCC 25922, and L. innocua on cheese surfaces [11], and E. coli O157:H7 in Romaine
lettuce [15]. PL is an economically advantageous technology that uses inert gas lamps,
typically xenon gas [17]. Its antimicrobial mechanism involves the transformation of
high-power electrical pulses into broad-spectrum light that causes irreversible damage
to the DNA of microorganisms due to the formation of thymine pyrimidine and cytosine
dimers [18–20]. However, its use needs to be optimized for each type of food, as factors
such as chemical composition, surface characteristics, and product thickness can influence
the efficacy of PL [10,21].

Despite PL being effective in reducing microorganisms in foods, it can cause some
alterations that compromise the quality of the product. One possible alteration is the
increase in lipid oxidation due to the high energy applied to the food [22]. PL can also
alter the color of foods [23], which is one attribute that primarily impacts consumers’
purchasing decisions, especially in the case of sliced meat products. Therefore, it is essential
to determine the best conditions for applying PL that allow for increased microbiological
safety while minimal adverse effects on the color and lipid oxidation of the food product
take place [24].

A growing interest in PL application to foods is observed. Still, there is a gap in
the scientific literature regarding PL-specific use in highly consumed ready-to-eat meat
products, such as mortadella. In this context, the present study sought to investigate how
the PL parameters pulse width and number of pulses impact the quality attributes of
color and oxidative stability when aiming to reduce the L. monocytogenes population in
sliced mortadella.

2. Materials and Methods
2.1. Production of Mortadellas

Mortadella was elaborated with the following formulation: beef (70%), pork backfat
(15%), sodium chloride (NaCl) (2.5%), sodium tripolyphosphate (STPP) (0.5%), sodium
nitrite (0.015%), sodium erythorbate (0.025%), monosodium glutamate (0.3%), garlic pow-
der (0.1%), coriander powder (0.1%), black pepper (0.1%), and ice (11.36%). The beef and
pork backfat were ground using a 5 mm disc (PJ-22 Plus Professional, Jamar, Tupã, Brazil).
The beef was then placed in a cutter (Model 0.5L 60 Hz, G-Paniz, Francisco Beltrão, Brazil)
and minced with NaCl and STPP for 30 s. After the addition of the other ingredients and
additives, the mincing continued for another 30 s. Then, the pork backfat and ice were
added, and the mincing was continued until a homogeneous mass was obtained. The mass
temperature was kept below 12 ◦C throughout the mincing process. The meat mass was
stuffed into plastic casings with a thickness of 46 µ and a diameter of 32 mm (Viscofan, São
Paulo, Brazil), forming 150 g pieces. The cooking was carried out in water at 80 ◦C until
an internal temperature of 72 ◦C was reached. The mortadellas were cooled in an ice bath
for 20 min and stored at 4 ◦C for 24 h. The mortadella centesimal composition was deter-
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mined based on the AOAC (2010) methodology, and the following values were obtained:
64.4 ± 1.2% moisture, 17.9 ± 0.5% lipids, and 16.1 ± 0.2% proteins [25].

Mortadella pieces were sliced to a thickness of 2.5 mm (approximately 1 g and area of
9.08 cm2) on an electric slicer (CFIF 275, Metvisa, Brusque, Brazil) previously sanitized with
70% alcohol. The samples were divided into two groups: PL on non-inoculated samples
and PL on inoculated samples.

2.2. L. monocytogenes Suspension

A lyophilized strain of L. monocytogenes (CCT 7474) isolated from sausages from the
André Tosello Foundation (Campinas, Brazil) was rehydrated and cultured in BHI broth
(Brain Heart Infusion, Kasvi, Brazil) at 37 ◦C for 24 h. Subsequently, using a bacteriological
loop, the rehydrated strain was streaked on the surface of Petri dishes containing ALOA
agar (Agar Listeria Ottaviani & Agosti, Neogen, Lansing, MI, USA). The plates were
incubated at 37 ◦C for 48 h. Afterward, a colony-forming unit from the ALOA agar plates
was transferred to tubes containing 5 mL of TSB broth (Tryptone Soy Broth, Kasvi, Brazil).
The tubes were incubated at 37 ◦C for 7 h with shaking at 210 rpm (TE-4200; Tecnal,
Piracicaba, Brazil) to enter the stationary phase and reach an L. monocytogenes concentration
of around 109 CFU/mL. Subsequently, the tubes were centrifuged at 5000 rpm for 5 min,
and the supernatant was removed. The resulting pellets were resuspended in 5 mL of
0.1 M phosphate buffer solution (pH 7.2) and homogenized in a vortex (Digital Vortex
Mixer, Fisher Scientific, Pittsburgh, PA, USA), forming the L. monocytogenes suspension [24].

2.3. Mortadella Inoculation

Fifty microliters of the L. monocytogenes suspension was distributed onto a slice
of mortadella, which was placed on a sterile Petri dish. After an absorption period of
15 min, the samples were subjected to PL treatments described in the following subsection.
Samples without the application of PL treatment were used as a control.

2.4. Application of Pulsed Light (PL) on Sliced Mortadellas

PL was applied using the benchtop X–1100 System (Xenon Corporation, Wilming-
ton, NC, USA), whose specifications were detailed by [24]. The samples were individ-
ually positioned in the chamber’s center at 10.95 cm from the xenon lamp, resulting in
9.92 cm between the lamp and the sample top surface. The applied voltage was 3000 V,
and the PL treatment was carried out in a climate-controlled room at 21 ◦C. Four different
PL conditions were selected with variations in pulse width and number of pulses as fol-
lows: T1260P2 = pulse width of 1260 µs and 2 pulses; T1260P3 = pulse width of 1260 µs and
3 pulses; T2520P1 = pulse width of 2520 µs and 1 pulse; and T2520P2 = pulse width of 2520 µs
and 2 pulses. These PL parameters were selected based on preliminary tests. Immedi-
ately after the pulse was applied, the mortadella slices were vacuum-packed and stored at
4 ◦C for up to 30 days. The incident fluence (J/cm2) on the samples in each pulse was
measured with the help of an Ophir Optronics Inc. radiometer, model Nova II, equipped
with a pyroelectric sensor model L40 150 A, both from North Logan, UT, USA. This device
was positioned in the same spot as the samples (exact distance between the surface and
the lamp), and fluence readings were taken in triplicate. The irradiance (W/cm2) was
calculated using the fluence value divided by the total treatment time [24].

2.5. Mortadella Physicochemical Parameters

Temperature, pH, water activity (aw), and color analyses were performed to character-
ize sliced mortadella samples before and after the PL treatment. The surface temperature of
the slice before and after PL treatment was measured using a digital infrared thermometer
(Fluke 62 Max, Fluke Corp, Everett, WA, USA). Twenty slices were used to measure the
temperature for each PL treatment condition. Five untreated and five PL-treated slices were
used for pH and aw analyses. pH measurements were taken using a pH meter (Model DM
23, Digimed, São Paulo, Brazil), equipped with a glass electrode probe, in a 1:10 mixture of
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the sample and distilled water, calibrated with pH 4 and 7 buffer solutions. Water activity
(aw) was determined using an Aqualab 4TE device (Decagon, Pullman, WA, USA).

Instrumental color determination was performed on twenty slices using the Delta
Vista 450G colorimeter (Delta Color, São Leopoldo, Brazil) configured with illuminant D65,
an observation angle of 10◦, and an aperture of 1.5 cm. The same slice was evaluated for L*,
a*, and b* values before and after PL treatment. In addition, the ∆E (total color difference)
was calculated considering the variations in L*, a*, and b* values after (subscript 2) and
before (subscript 1) PL treatment, as in Equation (1).

∆E =
[
(L∗

2 − L∗
1)

2 + (a∗2 − a∗1)
2 + (b∗2 − b∗1)

2
]0.5

(1)

2.6. L. monocytogenes Counting

L. monocytogenes enumeration in inoculated samples treated and untreated by PL
(control) was performed in triplicate. The samples were placed in sterile bags, diluted
(1:10) with 15 mL of 0.1% peptone water, and manually massaged for approximately 30 s to
extract the bacterial cells, and thus, the first dilution was obtained. Afterward, five serial
dilutions (1:10) were made in 0.1% peptone water. Then, 100 µL was surface-plated on
90 mm Petri dishes containing PCA agar (Plate Count Agar, Kasvi) and spread using a
disposable sterile Drigalski spatula in a T shape. The plates were incubated inverted at
37 ◦C for 48 h, and the results were expressed in log CFU/cm2 of mortadella. To calculate
the logarithmic reduction in the count of L. monocytogenes caused by PL application, the
log CFU/cm2 count in the inoculated samples untreated with PL was subtracted from the
bacterial count in inoculated samples treated with PL. Non-inoculated samples without PL
treatment were also analyzed to ensure the absence of any bacteria in mortadella samples.

2.7. Mortadella Oxidative Stability after Storage

The oxidative stability of non-inoculated samples was evaluated on the 1st and 30th
days of storage at 4 ◦C through TBARS and sensory profile analysis. The four PL treatments
and a control sample without PL application were analyzed. The TBARS analysis was
performed in triplicate according to the methodology described by Bruna et al. (2001), and
the results were expressed in mg of malondialdehyde per kg of sample [26].

The sensory profile was evaluated by 15 trained panelists (9 women and 6 men) over
18 years old in two sessions for each analysis day. The samples were identified with a
three-digit code and presented to the panelists monadically and in complete balanced
blocks [27]. The panelists evaluated the attributes “pink color” and “oxidized color” of the
vacuum-packed mortadella slices, replicating consumers’ perspectives when considering
the product in commercial conditions. A 9 cm unstructured scale was used, where the left
side corresponded to “little” and the right side to “much”. The sensory tests were conducted
in booths under controlled light and temperature conditions. For safety reasons, flavor and
aroma attributes related to lipid oxidation were not evaluated, as the PL equipment was
located in a Level 2 Biosafety environment.

2.8. Statistical Analysis

The experiment was repeated three times. The results of the physicochemical and
microbiological analyses were analyzed using a generalized linear model considering
“treatments” and “storage time” as fixed effects and repetitions as random effects. The
interaction between “treatments” and “storage time” was also analyzed when relevant. The
Tukey test (p < 0.05) was used to compare means. A GPA (Generalized Procrustes Analysis)
map generated from a matrix with 5 rows (5 treatments) and 30 columns (2 descriptors and
15 panelists) was applied for the evaluation of sensory analysis data.
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3. Results and Discussion
3.1. Parameters of PL Applied to the Sliced Mortadellas and the Resulting Fluence and Irradiance

Table 1 illustrates how different pulse width settings and the number of pulses, apply-
ing a voltage of 3000 V, influence fluence and irradiance during the treatment of samples.
Notably, fluence, which represents the total amount of optical energy (J) delivered per area
of the sample, and irradiance, which is the fluence distributed per unit of time (W/cm2),
are directly affected by the variation in these parameters [24].

Table 1. Parameters of pulsed light applied to the sliced mortadellas and the resulting fluence and
irradiance.

Treatments Pulse Width (µs) Number of Pulses Fluence (J/cm2) Irradiance (W/cm2)

T1260P2 1260 2 4.38 ± 0.01 c 1738.3 ± 5.2 a

T1260P3 1260 3 6.57 ± 0.01 a 1738.8 ± 4.8 a

T2520P1 2520 1 2.64 ± 0.01 d 1049.3 ± 3.6 b

T2520P2 2520 2 5.28 ± 0.01 b 1046.9 ± 3.5 b

Mean values ± standard deviation (n = 3 replicates). Different letters indicate significant differences based on
Tukey’s test (p < 0.05).

As expected, an increase in the number of pulses increased fluence, representing more
energy delivered to the sample. However, it is worth highlighting that a fluence increase
does not translate into a higher irradiance, which remained approximately constant for
treatments with the same pulse width, regardless of the number of pulses. The observed
behavior is characteristic of the PL treatment. It indicates that the energy efficiency and
effectiveness of the treatment depend not only on the total amount of energy delivered
(fluence) but also on how this energy is distributed over time (irradiance).

Interestingly, Table 1 also revealed that treatments with the same pulse width but
different numbers of pulses (such as T2520P1 and T2520P2) showed that the fluence doubles
with twice the number of pulses while irradiance remains relatively stable. As observed,
irradiance is a stable device parameter for a given voltage and pulse width, corroborating
that energy efficiency and inactivation potential are more closely related to irradiance and
treatment duration than to fluence alone [24].

The data analysis further demonstrated that treatments with a longer pulse width
(2520 µs) resulted in lower irradiance when compared to those of shorter width (1260 µs),
even when the fluence was similar. It indicates that a higher irradiance, applied over a
shorter period, may not be as effective as a lower irradiance applied over a more extended
period, especially considering the production of reactive oxygen species (ROS) and the
subsequent microbial inactivation [28].

Therefore, differentiating between fluence and irradiance is crucial to understanding
the efficacy of PL treatments. While fluence indicates the total amount of energy delivered,
irradiance determines the rate at which this energy is applied, significantly influencing the
treatments’ inactivation results and energy efficiency.

3.2. Effect of PL on Temperature, pH, and aw of Sliced Mortadella

PL emits broad-spectrum energy, which can result in sample heating. A maximum
variation of around 7 ◦C caused by PL application was observed, as presented in Figure 1. It
was observed that a higher number of pulses provided a greater increase in the temperature
of the mortadella slices. This temperature increase occurred due to the delivery of energy
in shorter intervals, a characteristic of applying a higher number of pulses. With each
additional pulse, there is a rapid injection of energy into the sample, which does not have
sufficient time to dissipate between pulses, culminating in a progressive accumulation
of heat in the sample [29]. Borges et al. [23] observed a similar phenomenon, reporting
that increased pulses raised the temperature of cured and smoked pork loin samples by
up to 19.7 ◦C. Similarly, in their studies on pork meat, Koch et al. [30] also observed a
temperature increase ranging from 17.2 to 24.1 ◦C. These results highlight the importance
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of controlling the number of pulses in the application of PL, as excessive thermal changes
can cause structural and compositional alterations in mortadella, potentially accelerating
lipid oxidation and color modifications, which could reduce consumer acceptance.
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Figure 1. Variation in the temperature on the sliced mortadella surface caused by pulsed light (PL)
application. Different letters indicate significant differences based on Tukey’s test (p < 0.05). Error
bars depict the standard error of the average. Treatments: see Table 1.

The variations in pH caused by PL application in the mortadella samples are presented
in Figure 2. Interestingly, treatments with the same pulse width but with more pulses
showed a more significant increase in pH. This phenomenon can be attributed to several
factors. Firstly, the application of PL may have caused the release of basic compounds from
the meat proteins, especially under a higher number of pulses, which provides more intense
heating [31]. Another possibility is that PL may have reduced the product’s concentration
of organic acids or other acidic components, increasing pH [32]. These changes in pH are
important, as they can influence the texture, flavor, and microbiological stability of the
mortadella, highlighting the need for additional studies to understand these effects better
and optimize the application of PL in meat products. It is observed that irradiance does
not have a direct relationship with variations in temperature and pH; however, as fluence
increases, there is an increase in both temperature and pH.

Simultaneously, applying PL increased the aw values to less than 0.005. Although this
change is technically measurable, it falls within the error range of the equipment used. This
result indicates that the application of PL did not have a significant practical impact on the
aw levels.
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3.3. PL Effect on the Instrumental Color of Sliced Mortadella

The variations in the color of the mortadellas, as objectively measured using instru-
mental analysis, are presented in Figure 3. It was observed that the different PL conditions
applied did not significantly impact the L* values of the mortadellas (Figure 3a). However,
there was a significant reduction in the a* values (Figure 3b) and a significant increase in
the b* values (Figure 3c) in most of the PL conditions tested. The exception was the T2520P1
treatment, which used only one pulse and did not cause a significant reduction in the a*
values. The most significant effect (p < 0.001) was observed in the T1260P3 treatment, which
had the highest number of pulses and the highest temperature increase (Figure 1). These
changes in the instrumental color of the mortadellas can be attributed to different aspects
of PL. For example, the decrease in red intensity, indicated by the lower a* values, may
have been caused by the denaturation of nitrosylhemochrome, both due to the heat locally
generated and the exposure to ultraviolet and visible light from PL [30,33]. Regarding the
increase in yellowish hue, indicated by the rise in b* values, a possible explanation is that
the energy from PL generates surface heat and accelerates lipid oxidation. This oxidation
can form compounds that alter fats’ appearance, giving a yellowish tonality to food [34].

The ∆E, which represents the total color difference, was calculated for each treatment
condition with PL to assess whether the modifications in L*, a*, and b* values resulted in
sensorily perceptible changes in the color of the mortadella (Figure 3d). The results showed
that the treatment with only one pulse (T2520P1) resulted in the lowest ∆E value, less than
1, followed by the treatment with two pulses and a pulse width of 1260 µs (T1260P2), which
had a ∆E less than 2. ∆E values below 2 are generally considered almost imperceptible by
most consumers [35], indicating that these PL conditions caused minimal changes in the
color of the mortadella.
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Figure 3. Changes in instrumental color ((a): L*; (b): a* and (c): b*) and ∆E values (d) of sliced
mortadellas caused by pulsed light (PL) application. Significance: ns (p > 0.05); * (p < 0.05);
** (p < 0.01); *** (p < 0.001). Treatments: see Table 1.

On the other hand, treatments with three pulses and 1260 µs (T1260P3) and with two
pulses and 2520 µs (T2520P2) had ∆E values in the range of 2 to 5, which are slightly
perceptible and perceptible, respectively, for most consumers [35]. These treatments had
higher fluence, 6.57 and 5.28 J/cm2, respectively, in contrast to those with lower ∆E, which
had a fluence of 2.64 and 4.28 J/cm2. These results suggest, therefore, that both the number
of pulses and the higher fluence may be correlated with the most significant modifications
in the color of the mortadella.

3.4. PL Effect on the Reduction in L. monocytogenes

The logarithmic reduction in L. monocytogenes caused by PL application is presented in
Figure 4. The PL conditions tested resulted in a reduction ranging between 0.43 and 1.44 Log
CFU/cm2, indicating the efficacy of PL in decreasing the microbial load. When treatments
with lower fluence were compared, it was observed that T1260P2 (4.38 J/cm2) achieved a
significantly higher reduction (p < 0.05) than T2520P1 (2.64 J/cm2). This greater reduction in
T1260P2 can be attributed to the higher number of pulses and a greater irradiance, which
likely intensified the exposure to PL energy, causing more effective damage to the cellular
structure and DNA of the bacteria [36,37].
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When treatments with a pulse width of 1260 µs were compared, a similar reduc-
tion in L. monocytogenes (p > 0.05) was found, even with differences in fluences (4.38 and
6.57 J/cm2) and the number of pulses (two and three). This similarity suggests that, in this
specific range, variations in the fluence and number of pulses may not have been suffi-
cient to create a significant difference in microbial reduction efficacy. In addition, T1260P2
and T1260P3 treatments have exhibited similar high irradiances (1738.3 ± 5.2 W/cm2 and
1738.8 ± 4.8 W/cm2, respectively). This trend aligns with the findings of Xie et al. [38],
who reported that while pulse width and irradiance are constant, the number of pulses
does not significantly affect inactivation efficiency.

In contrast, the results of treatments with a pulse width of 2520 µs revealed that the
T2520P2 treatment, with two pulses and a fluence of 5.28 J/cm2, had a significantly higher
reduction (p < 0.05) of approximately 1 log CFU/cm2 compared to T2520P1, which had
one pulse and a fluence of 2.64 J/cm2. This result may be related to the higher number
of pulses and the higher fluence applied. Conversely, treatments T2520P1 and T2520P2,
with a longer pulse width of 2520 µs, showed lower irradiances (1049.3 ± 3.6 W/cm2 and
1046.9 ± 3.5 W/cm2, respectively). This result reflects Xie et al.’s [38] finding of a negative
relationship between inactivation efficiency and pulse number at lower irradiance.

Interestingly, T2520P2, with a performance similar to T1260P2, suggests that the ideal
combination of pulse width, number of pulses, fluence, and irradiance is crucial for maxi-
mizing efficacy against L. monocytogenes, highlighting the complexity and non-linear nature
of the relationship between PL treatment parameters and microbial reduction efficacy.

The current literature offers limited studies focusing on the inactivation of L. monocyto-
genes by PL in sliced mortadella. The reduction achieved in this study slightly exceeded the
outcomes reported by Hierro et al. [39], who documented a 1.11 Log CFU/cm2 reduction
for L. monocytogenes with the application of PL (2–3 pulses, 250 µs per pulse and 8.4 J/cm2)
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in vacuum-packaged mortadella slices. This result is consistent with earlier findings by
Fernández et al. [40] which demonstrated PL’s capability to penetrate packaging films of
varying compositions and thicknesses.

The efficacy of PL may also have been influenced by the mortadella matrix, charac-
terized by irregularities and roughness, which may have created a shading effect or even
protection against UV light, especially considering the thick polysaccharide cell layer of
L. monocytogenes, which can protect the cell nucleus and its DNA from lethal light dis-
charges [11]. In this sense, Hierro et al. [39] reported a higher L. monocytogenes inactivation
on cooked ham than in mortadella, demonstrating that the surface topography greatly
impacts the antimicrobial effect of PL. Results from other studies corroborate this variation
in PL efficacy depending on the food matrix. Borges et al. [23] observed a reduction of up
to 1.58 Log CFU/g in L. monocytogenes in cured loin using a fluence of 5.31 J/cm2. Similarly,
Fernández et al. [41] reduced L. innocua by 2 Log CFU/cm2 on the surface of dry-cured ham
with a fluence of 8.4 J/cm2. These studies show that differences in pathogen reduction after
PL application can be attributed to the characteristics of the matrix, such as fat content and
surface homogeneity, suggesting that smoother and more homogeneous surfaces allow for
greater pathogen reduction. In addition to the matrix variability, strain-by-strain differences
in L. monocytogenes resistance may also contribute to variability in reduction rates across
studies. Different strains may exhibit distinct resistance levels to PL treatment due to their
genetic and structural differences, which can affect their vulnerability to UV light and the
overall efficacy of microbial inactivation. Therefore, these results highlight the importance
of considering the specific characteristics of the food matrix and the biological properties of
the pathogen when evaluating the efficacy of PL. The fact that PL resulted in a reduction of
up to 1.44 Log CFU/cm2 in this study is notable, considering the robust characteristics of L.
monocytogenes and the irregularities of this meat product.

3.5. PL Effect on the Oxidative Stability of Sliced Mortadella

The results of the TBARS analysis of mortadella samples during storage are presented
in Figure 5. A significant interaction between treatments and storage time was observed
(p < 0.05). The application of PL in almost all tested conditions, except for T1260P2, increased
TBARS values compared to the control (not treated with PL). This increase in TBARS
values after PL application can be attributed to the intense luminous energy potentially
accelerating lipid oxidation reactions [42]. Similar studies also reported increased lipid
oxidation shortly after PL application in different meat products [32,33,43].

After 30 days of storage, an increase in TBARS values was observed in all treatments,
including the control. Notably, the highest values were found in treatments with higher
fluences (T2520P2: 5.28 J/cm2; T1260P3: 6.57 J/cm2). A plausible explanation is that a higher
fluence provides more energy [42] and increases the speed of oxidative reactions, leading
to a higher TBARS index. On the other hand, the T1260P2 treatment, with a fluence of
4.38 J/cm2, showed TBARS values similar (p > 0.05) to the control after 30 days. This result
suggests that applying a lower fluence and a greater irradiance may effectively mitigate
the undesirable effects of PL on the oxidative stability of mortadella. Additionally, the
observation that T2520P1 showed higher TBARS values on the 30th day of storage than
T1260P2 highlights the importance of pulse width as a critical factor, mainly as T2520P1
had the lowest fluence of all treatments. Therefore, this variable should also be care-
fully considered and adjusted to optimize the effects of PL and preserve product quality
over time.

The GPA map used to evaluate the sensory analysis results of mortadella samples is
presented in Figure 6. Interestingly, samples with fluences of 6.57 and 5.28 J/cm2 (T1260P3
and T2520P2, respectively) were characterized by the attribute “oxidized color”, both at the
beginning (Figure 6a) and at the end (Figure 6b) of the storage period. This observation is
consistent with the highest values of ∆E (Figure 3) and TBARS (Figure 5) found in these
samples. On the other hand, samples with a fluence of 4.38 and 2.64 J/cm2 (T1260P2 and
T2520P1) were positioned close to the control, especially on the 30th day of storage, and
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were characterized by the attribute “pink color”. This result is particularly interesting as it
indicates that, despite the modifications in color and TBARS values caused by PL, these
changes were not pronounced enough to be perceived by consumers.
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Figure 6. Generalized Procrustes Analysis (GPA) map for sensory analysis results of sliced mortadellas
on day 1 (a) and day 30 (b) of storage. Treatments: see Table 1.

4. Conclusions

This study demonstrated the potential of applying pulsed light (PL) to sliced mor-
tadella, analyzing how parameters such as pulse width (1260 to 2520 µs), number of pulses
(one to three), fluence (2.64 to 6.57 J/cm2), and irradiance (1046.9 to 1738.3 W/cm2) affect
color, oxidative stability, and L. monocytogenes count. The T1260P2 treatment (1260 µs pulse
width, two pulses, 4.38 J/cm2 fluence, and 1738.8 W/cm2 irradiance) provided an effective
balance between pathogen reduction and maintaining color and oxidative stability. The
1.44 log CFU/cm2 reduction in L. monocytogenes indicates a promising strategy for enhanc-
ing the safety of ready-to-eat products. Future research should explore other variables such
as packaging types, storage conditions, and the influence on other pathogens and quality
characteristics to further optimize this technology for sliced meat products.
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