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Kinetic filtering: Enumerating biochemical circuits
that distinguish transient and sustained stimulation

Jaline Gerardin

Abstract

Many cellular processes require telling time. Cells may use kinetic filtering,
the ability to respond to sustained but not transient stimulation, to decode
information stored in dynamical profiles and exert control over relative timing of
events. Previous work has found only one circuit architecture, the AND-gated
coherent feed forward loop, capable of such behavior. We enumerate the space of 1-,
2-, and 3-node networks to ask what additional architectures can drive kinetic
filtering, which is quantified by measuring temporal dose response steepness and
trigger time. We find two types of positive feedback architectures, two types of
buffering architectures, and the coherent feed forward loop with AND logic are the
only kinetic filters of 3 or fewer components. The buffering double inhibition circuit
architecture is modular, reversible, capable of the widest range of trigger times, and

most suitable as a template for future engineering efforts.
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Chapter 1

INTRODUCTION

OVERVIEW

The relationship between structure and function of cellular signaling circuits
remains an intriguing problem. In this chapter, we introduce the concept of kinetic
filtering, the ability of a signaling circuit to distinguish between transient and
sustained stimuli. We describe our approach to finding design principles behind
circuits capable of kinetic filtering behavior and briefly outline our findings.

1.1 CIRCUIT STRUCTURE AND CIRCUIT FUNCTION

Cells experience a multitude of internal and external stimuli, and signal
transduction networks process sensed information into the appropriate response
(Figure 1.1)%. Receptors on the cell surface, for example, can be activated by the
presence of specific molecules. Decision-making biochemical circuits transduce the
signal from the receptor to response machinery that modulates gene expression,
changes cell shape, or triggers other behavior. For many years, scientists have
sought to fully understand how cells use biochemical circuits to carry information
and make decisions.

By studying extremely simplified systems, theoreticians have shown that
network elements such as positive feedback and biochemical mechanisms such as
cooperativity are responsible for observed behavior like bistability and all-or-none
switching?-4. Signaling systems with the same connectivity but different dynamical

behavior, such as the mitogen-activated protein kinase (MAPK) cascades found in a



variety of eukaryotic response pathways, have been observed to generate vastly
different responses>7.

The relationship between signaling circuit architecture and behavior is of
great interest in a variety of biological contexts. In addition to contributing towards
basic science goals of understanding biology, studying signal transduction networks
has many beneficial applications. In many cancer systems, cells proliferate because
their signaling circuits are constitutively on instead of responding only when
proliferation cues are present; drug targeting of overactive signaling components
has been remarkably successful as treatment8. Artificially turning on certain
signaling networks may aid in regenerative medicine. In synthetic biology efforts,
engineers need blueprints upon which to design and construct circuits that respond
to a specific signal in a specific way?19.

The usual approach to studying signaling circuits consists of investigating a
particular biological circuit in great detail and dissecting its biochemical features in
their entirety. This “top down” approach is suitable for understanding specific
circuits, but it is difficult to single out core behavioral machinery amidst all the
details. In addition, even after data for many systems have been gathered,
identifying unifying features across similarly behaving systems each with many
complex components remains a challenge.

Instead of studying one particular biological circuit, we take the “bottom up”
approach, beginning with simple, generalized circuits and seeking to discover the
core circuit elements that drive a specific behavior. The past ten years have seen an

explosion of theoretical and computational work on simple circuits linking



biochemical circuit structure to biological function, including studies of
oscillations!112, noise filtration!314, and temporal expression programs!>. These
investigations have typically focused on a single circuit structure or small family of
related circuits and described their behavior in quantitative detail. We look at the
problem from the opposite end: begin with a biological behavior and characterize
the signaling circuits that can give rise to it.

In order to definitively identify all simple circuits capable of a biological
behavior, we exhaustively search the space of low-complexity circuits in an
unbiased manner. By studying simpler circuits of fewer components, we can more
easily identify the key circuit elements responsible for that particular behavior.
Circuit elements that add robustness or redundancy can be eliminated. Parameters
can be individually tuned and their effects measured.

Several studies in recent years have used enumeration with great success to
search for circuits with specific behaviors in an unbiased manner. Previous work
has described circuits capable of switching!®, segmentation?’, perfect adaptation?s,
and spatial polarization19.

Systematically searching circuit space has two main benefits. First, we can be
confident that we have identified the complete set of circuits with our behavior of
interest, and circuits outside that set are guaranteed not to exhibit the behavior.
Second, we can potentially uncover architectures that can perform a biological
function but have not been found in actual biological systems. While these novel

architectures may be previously unobserved because they fail at some level in vivo,



it is also possible that evolution has overlooked them by chance and they would still
be functional in an engineered context.

Enumerative search is not the only way to computationally identify circuits
capable of biologically relevant behavior. Genetic algorithms have also been used to
find networks that oscillatel?, adapt to stimuli?%, and drive segmentation?l. While
computational resources limit enumerative search to small networks, genetic
algorithms have the freedom to evolve larger, more complex networks that may be
capable of more sophisticated behavior. Where genetic algorithms simulate an
evolutionary path to networks of greater and greater fitness, in enumerative search
all networks are considered independently, making fitness comparisons between
networks more challenging. However, because we aim to exhaustively identify core
circuit elements that drive behavior, for our purposes enumerative search is
preferred to genetic algorithms.

In this work we seek to identify circuits capable of distinguishing transient
and sustained stimuli. We envision a “periodic table” of signaling circuits, grouping
simple circuit architectures together by the type of functionality they can generate
(Figure 1.2).

1.2 KINETIC FILTERING ALLOWS CELLS TO MEASURE TIME

How do cells tell time and measure the duration of events? From
coordination of developmental processes to filtering of spurious signals, it is often
critical for cells to be able to measure time (Figure 1.3). Signaling components
immediately downstream of receptors must filter noisy, transient environmental

fluctuations from real, sustained signals?2. In addition, recent work has highlighted



the role that activation duration can play in maintaining input-output fidelity in
circuits that reuse the same components2324, Cells can encode information in
response dynamics, where decoding modules translate transient or sustained
dynamics into cell fate decisions. Measuring stimulation time also allows cells to
respond to signals only after a certain delay and coordinate events to happen in a
specific sequence, a critical ability in processes such as the cell cycle.

Several biological systems have been observed to use duration of signaling
events in determining cell fate. In rat neuronal precursor cells (PC-12 cells), kinetic
filtering allows cells to reuse the same signaling components in response to
different inputs (Figure 1.4 left). Growth factors EGF and NGF both stimulate
mitogen-activated protein kinase (MAPK) pathways that lead to ERK activation?>.
However, EGF stimulation results in transient ERK activation and eventual cell
proliferation, while NGF stimulation leads to prolonged ERK activation and cell
differentiation. If EGF stimulation is re-engineered to cause prolonged ERK
activation and NGF to cause transient ERK activation, then outcomes are switched:
EGF stimulation results in differentiation and NGF stimulation results in
proliferation?3. The circuitry thought to measure the duration of ERK activation
consists of a feed-forward motif, where activated ERK induces expression of a
transcription factor whose activity is dependent on the continued presence of active
ERK?6.

In the eukaryotic DNA damage response pathway, p53 is a transcription
factor that activates a suite of stress response genes?’. Recent studies of p53

dynamics has found that gamma irradiation, which induces double-stranded breaks



in DNA, results in a pulsatile activation of p53, while UV irradiation, which exposes
single-strand DNA, results in sustained activation of p532829 (Figure 1.4 right).
Ultimately, pulses of p53 induce cell cycle arrest while sustained p53 induces
apoptosis; however, the mechanism by which the cell “reads” p53 dynamics remains
unknown.

Recent work on sporulation in Bacillus subtilis has shown that cells may also
measure time by initiating an oscillator upon stimulation, “counting” the number of
oscillations, and setting the timer off after a threshold number has been reached3°.
In most other systems, however, there is little evidence for oscillations, leading us to
suspect that a different mechanism is responsible for measuring time.

1.3 ENUMERATING CIRCUITS TO SEARCH FOR KINETIC FILTERING BEHAVIOR

To date there has been no systematic study of which signaling circuit
architectures can kinetically filter stimuli and measure time. Even in biological
circuits discovered to measure duration of certain signaling events, the precise
circuitry responsible for the measurement is often not known.

Multi-staged cascades of reversible reactions have been shown to be capable
of kinetic filtering in the limit of very long cascades31-32. The only non-cascading
circuit with known kinetic filtering ability is the coherent feed forward loop with
AND logic, found by a comprehensive study of feed forward architectures in
transcriptional regulation33.34, In this architecture, input activates expression of two
output-activating transcription factors, one of which also activates expression of the
other. Presence of both transcription factors is necessary for output expression

(AND logic); thus, the coherent feed forward loop only responds to inputs with



duration long enough for signal to reach the output node via both arms of output
node activation.

We ask what non-oscillatory circuit architectures, with complexity on par
with or simpler than the coherent feed forward loop, are also kinetic filters that
allow cells to time the duration of signaling events. As discussed above, enumerative
search is an excellent method for characterizing the entire space of small circuits
capable of kinetic filtering.

We introduce the concept of “temporal ultrasensitivity” to quantify a
signaling network’s kinetic filtering behavior. Analogous to concentration-based
ultrasensitivity, temporal ultrasensitivity implies a steep temporal dose response
curve where inputs with duration shorter than the trigger time result in minimal or
no activation of the network and inputs longer than the trigger time result in
maximal activation. A temporally ultrasensitive circuit reports on input duration by
responding all-or-none to stimuli with duration longer or shorter than the trigger
time, respectively. Given that many biological responses happen at timescales faster
than transcription, we have chosen to focus on enzymatic circuits as a model system
for studying kinetic filtering (details discussed in Chapter 2).

We apply the enumeration method to signaling networks of 1, 2, and 3 nodes,
searching for the simplest core architectures capable of driving temporally
ultrasensitive behavior. While previous enumeration efforts have tended to ignore
the effect of node logic on circuit behavior, here we have allowed each node to
combine regulations of the same sign using OR or AND logic (see Chapter 2), which

model independent and cooperative interactions respectively.



The enumerative search identified thousands of circuits of 1, 2, or 3 nodes as
robust kinetic filters (Chapter 3). By clustering circuits by phenotype, we sorted the
kinetic filters into five groups with common structural features within each group:
two types of positive feedback architectures, two types of buffering architectures,
and the previously uncovered coherent feed forward loop with AND logic (Chapter
3). In addition to differing by phenotype, the five types of kinetic filters differ
mechanistically and with respect to their trigger time (Chapter 4).

While the coherent feed forward loop with AND logic is the only circuit with
experimentally derived biological examples, other types of kinetic filters are also
found in biological settings where telling time may be critical (Chapter 5). The
buffering double inhibition topology is particularly attractive as a blueprint for

constructing synthetic kinetic filters (Chapter 5).
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Chapter 2

SIMULATION METHODS

OVERVIEW

To identify the simplest kinetic filtering circuits, we enumerated the space of
1-, 2-, and 3-node enzymatic circuits, allowing each node to operate with OR or AND
logic, and quantified each topology’s performance by measuring its temporal
ultrasensitivity score and trigger time. Kinetic filters are circuits with temporal
ultrasensitivity score > 0.5 and trigger time 2 1, and kinetic filtering topologies are
robust when at least 10 out of 10,000 sampled parameter sets result in kinetic
filtering behavior. Regulatory interactions were simulated under enzymatic
conditions using total quasi-steady state Michaelis-Menten equations.

2.1 ENUMERATION

Our approach to finding kinetic filtering circuits involves systematic
screening of a library of circuit topologies with 1, 2, or 3 nodes and sampling 10,000
parameter sets for each topology (Figure 2.1). Each circuit’s kinetic filtering
behavior was quantified by subjecting the circuit to inputs of varying duration.

To enumerate circuit topologies, we allowed each node to use OR or AND
logic to combine regulations and each link to be positive, negative, or absent (Figure
2.2). We discarded topologies where the input signal does not reach the output
node. Circuits with regulations on a non-input, non-output node that does not in
turn regulate another node were also discarded. For AND logic topologies, we

discarded all circuits where the node with AND logic does not have two regulatory
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links of the same sign, counting input as a positive regulation. A total of 68,705
topologies were included in our enumerated circuit space.

Due to computational limitations, we only enumerated systems with one,
two, or three nodes. A four-node system contains on the order of 43 million
topologies before considering node logic, making an unbiased search of 4-node
circuit space prohibitively expensive.

2.2 PARAMETER SAMPLING

Up to 26 parameters were sampled for each circuit: kear and K, for each of
the up to 9 possible circuit links, 3 possible constitutive activators and deactivators,
and the input link. All parameter samplings used the Latin hypercube method3> with
range 0.1 to 10 for kear and 0.001 to 100 for Ki,; this range is roughly physiological
with units of seconds and pM. 10,000 parameter sets were sampled for the
enumerative search and 100,000 for determining parameter regime restrictions.

2.3 MODELING ENZYMATIC CIRCUITS

Reactions were modeled with total quasi-steady-state Michaelis-Menten
kinetics (tQSS-MM)36-38, While the usual Michaelis-Menten steady-state
approximation assumes excess of substrate compared to small enzyme
concentrations, in our system this assumption fails because every node can act as
both an enzyme and a substrate. Compared to the Michaelis-Menten model, the tQSS
model treats enzyme and substrate on more equal footing, tracking the total
concentration of substrate rather than the concentration of free substrate, and is
appropriate in a wider range of biochemical situations while still allowing rapid

simulation compared to mass action. See Figure 2.3 for example equations.
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Nodes were converted between active and inactive states according to
network linkages, where positive regulations catalyze activations and negative
regulations catalyze deactivations (Figure 2.3). The total concentration of each node
was held constant at 1, and only the active fraction of each node could catalyze other
reactions. For nodes operating under OR logic, tQSS-MM expressions for incoming
links were added. For nodes operating under AND logic, tQSS-MM expressions for
incoming links of the same sign were multiplied, and expressions for incoming links
of opposite signs are added. In systems of up to three nodes, no node can have two
or more activators and two or more deactivators, so if a node was acting under AND
logic, either the activators or the deactivators used AND logic but not both.

In addition to the regulations between nodes A, B, and/or C, a circuit had
additional constitutive activators and deactivators as needed such that no node had
only activators or only deactivators. Constitutive activators and deactivators had
constant concentration of 0.1.

Each circuit was numerically integrated using a fifth-order embedded Runge-
Kutta formula with an adaptive stepsize controller3®. Active concentrations of each
node were initialized to 0.1 and allowed to come to steady state before the
application of input. If the circuit could not initialize to a steady state, for example by
showing oscillating behavior, that circuit was discarded and additional simulations
were not performed. After input was removed, the system was again allowed to
reach steady state before output characteristics such as final value and maximum
amplitude were measured. See Table 2.1 for a description of simulation software;

code and additional details are contained in Appendix A.
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Code Description

simulate.cc Given a set of parameters and input characteristics,

simulates a circuit’s response to a single pulse of input

doseResponseMetrics.cc | Given a set of inputs and responses, calculates

steepness and EC50 of that dose response curve

runSimulations.py Simulation manager that reads in a list of parameters,
calls simulate.cc for various input durations, and calls
doseResponseMetrics.cc to calculate metrics of kinetic

filtering

Table 2.1. Key software for simulating large numbers of circuits at many input
durations and calculating metrics for kinetic filtering. Code is contained in Appendix

A.

2.4 QUANTITATIVE DEFINITION OF KINETIC FILTERING

Kinetic filtering circuits are those that respond maximally to long inputs and
minimally to short inputs. We quantified a circuit’s kinetic filtering ability by
subjecting the circuit to inputs of different duration but identical constant
amplitude, measuring the resulting output amplitudes and constructing a temporal
dose response curve, and using that curve to infer the circuit’s degree of temporal
ultrasensitivity (Figure 2.4).

Input pulses of duration 0.25, 0.5, 1, 2, 3,4, 5,6, 7, 8,9, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 200, 300, 400, 500, 600, 800, 1000, 2000, 3000, 5000, 6000, 8000,

10000, 20000, and 50000 seconds were applied separately to each parameter set of
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each topology. Input amplitude was always 0.1. Maximum output amplitude was
measured over the period covering both the duration of the input pulse as well as a
post-pulse recovery period lasting until the system came to steady state. Circuits
that failed to reach steady state within 86,400 simulation seconds of recovery time
were rejected from consideration. Inverting circuits whose output decreased upon
application of input were also discarded to save overall computation time.

Kinetic filtering ability was quantified by plotting the circuit’s maximum
output amplitude in response to each duration of input and measuring the temporal
ultrasensitivity score (TU score) of the resulting curve (Figure 2.4). TU score was
defined as the ratio of input duration yielding 10% of maximum response to input
duration yielding 90% of maximum response, analogous to cooperativity score in
classical dose response curves3. The 10% and 90% input durations were
determined by interpolating a linear fit between the simulated input durations
bracketing the 10% and 90% response amplitudes respectively.

A kinetic filter’s trigger time was defined as the input duration that yielded
50% maximum output amplitude and qualitatively delineates what the circuit sees
as “long” versus “short” input. The trigger time was calculated by linear fit between
input durations bracketing 50% maximum output amplitude (Figure 2.4).

Maximal response (Rmax) and difference between maximal and minimal
response (AR) were also measured for each circuit (Figure 2.4). Circuits with Rmax
< 0.001 or AR/Rmax < 0.5 were rejected prior to analysis due to showing
respectively too little response to input or too little difference in output with respect

to input duration.
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Kinetic filters were defined as those circuits with TU score = 0.5 and trigger
time 2 1. A topology’s robustness was defined as the fraction of the topology’s
sampled parameter sets that were kinetic filters. For a topology to be a robust
kinetic filter, we required a minimum robustness of 0.0010 or 10 out of 10,000
sampled parameter sets to exhibit kinetic filtering behavior. Robustness
measurements across independent parameter samplings correlated well but not
well enough to directly compare robustness between two topologies with
robustness within 0.0020 of each other (Figure 2.5).

2.5. MEASUREMENT OF OTHER CIRCUIT BEHAVIORS

In addition to the basic measurements of kinetic filtering behavior described
above, we also measured other behaviors of circuits already found to be kinetic
filters. Rationale, results, and conclusions are presented in Chapter 4, but we
describe the simulation details below.

2.5.1 Clustering kinetic filters by phenotype

We used only the kinetic filtering parameter sets of minimal kinetic filtering
topologies of 1-, 2-, or 3-nodes found in the large enumeration study for this
analysis. For each of these parameter sets, we applied one pulse of duration 50,000
to measure 5 phenotypic metrics: long-term memory, on timing, on steepness, off
timing, and off steepness (Figure 2.6). Trigger time, described above, was the sixth
phenotypic metric.

Long-term memory was quantified by taking the ratio of final output level
after input pulse has been removed to the maximum output level achieved. Circuits

with long-term memory turn on and stay on after input has been removed, and this
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ratio is close to 1. In contrast, circuits that turn off once input has been removed
have this ratio close to 0.

The on timing phenotypic metric was defined simply by the time for output
to reach 50% maximum amplitude after input has been turned on. On steepness was
the ratio between the time needed for output to reach 10% maximum amplitude to
the time to reach 90% maximum amplitude, analogous to the quantification of
temporal ultrasensitivity (temporal dose response steepness) described above.

The off timing and off steepness metrics were not measured for circuits that
do not turn off after input is removed. Off timing was the time needed for output to
decrease to 50% maximum amplitude after input has been removed. Off steepness
was the ratio between the time needed for output to reach 90% amplitude to the
time to reach 10% maximum amplitude.

Trigger time, on timing, and off timing were transformed by taking base 10
logarithms on the calculated value. All metrics were subsequently normalized to
range [-1, 1]. Phenotypic clustering was performed using the Cluster software
program by clustering genes using hierarchical clustering, euclidean distances, and
centroid linkage. Principal components were calculated using the SciPy linalg.svd
singular value decomposition package. For data sets without off timing and off
steepness metrics, those metrics were set to the mean value of off timing and off
steepness respectively.

2.5.2 Quantification of tunability

For this analysis, we used kinetic filtering parameter sets identified in the

100,000 parameter set sampling of the 5 kinetic filtering prototypes. Every
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parameter of each parameter set, other than ke.: and K of the input acting on node
A, was scaled by a factor of 0.1 and 10 in turn. For each parameter scaling, TU score
and trigger time were measured. Circuits with TU score < 0.4 were rejected as no
longer exhibiting kinetic filtering behavior. Tunability of each parameter was
calculated by averaging the resulting trigger time for tuning that parameter and
multiplying by the fraction of tunings that resulted in a circuit the TU score = 0.5.
Tunable parameters were those with tunability = 1.5.

2.5.3 Quantification of reset time

Only the kinetic filtering parameter sets of 1-, 2- and 3-node minimal kinetic
filtering topologies found in the large enumeration study were used in this analysis.
For each parameter set, the input duration resulting in 90% maximum output
amplitude was determined as described above. This input duration was delivered in
two pulses of equal duration with separation 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250,
500, 1000, 5000, 10000, or 50000 seconds. Maximum output amplitude was
measured for each separation duration. The reset time, the pulse separation yielding
50% maximum output amplitude, was measured with the same method described
above for trigger time.

2.5.4 Quantification of integration ability

Only the kinetic filtering parameter sets of 1-, 2- and 3-node minimal kinetic
filtering topologies found in the large enumeration study were used in this analysis.
Temporal dose response curves for input amplitudes of 0.01, 0.03, 0.05, 0.07, 0.1,
0.3,0.5,0.7, 1, 3,5, 7, and 10 were constructed for kinetic filtering parameter sets of

minimal kinetic filtering topologies, and trigger times for each amplitude were
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measured as described above. Simulations resulting in TU score < 0.4, Rmax < 0.001,
and/or AR/Rmax < 0.3 were discarded. Circuits with fewer than 3 remaining
threshold measurements were also discarded. For the remaining circuits, slopes of
linear fit of log threshold and log input amplitude were calculated with the polyfit
function of the Numpy Python package.

2.6 MODELING TRANSCRIPTIONAL AND MIXED REGULATION CIRCUITS

Transcriptionally regulated links were modeled as two steps, transcription
and translation, with regulation occurring at the transcriptional level. Activators and
repressors modified mRNA synthesis levels in the standard manner4%41 with
sampled cooperativity, and basal synthesis was set to 0. Translation was modeled
with first-order dependence on mRNA levels; both mRNA and protein levels
decayed as first-order processes. Input remained an enzymatic process,
phosphorylating node A; phosphorylated node A could then continue to act as an
activator or repressor of downstream transcription.

Parameters were sampled using Latin hypercube with the following ranges.
Enzymatic parameter ranges were identical to those described above for purely
enzymatic circuits. Maximum transcription rate and mRNA decay rate each ranged
from 0.001 to 10; decay rate was the same for all mRNAs in the same circuit. Km'’s of
activator and repressor binding ranged from 0.001 to 100. Hill coefficients were
sampled at 1, 2, and 8. Translation rate constant and protein decay rate ranged from
0.01 to 10, and all proteins in the same circuit decayed at the same rate.

Equations were integrated using the odeint function of the integrator

function of the Scipy Python package. Input durations used were the same as for
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enzymatic circuits above, and temporal ultrasensitivity score and trigger time were

calculated as for enzymatic circuits.
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Chapter 3

ENUMERATION RESULTS AND CLASSIFICATION

OVERVIEW

To identify the simplest kinetic filtering circuits, we enumerated the space of
1-, 2-, and 3-node enzymatic circuits and quantified each topology’s performance by
measuring its temporal ultrasensitivity score and trigger time (see Chapter 2 for
details). We found thousands of 1-, 2-, and 3-node topologies to be robust kinetic
filters. In order to focus only on the architectural features that drive kinetic filtering
behavior, we identified the minimal topologies capable of kinetic filtering. We
subsequently used phenotypic clustering and principal component analysis to sort
the minimal topologies into five classes of kinetic filters.

3.1 ONE-NODE TOPOLOGIES

Four topologies comprise the space of 1-node circuits (Figure 3.1). For 1-
node networks, there is one possible regulatory link: feedback from A to itself.
Under OR logic, where all regulatory effects are summed, this link can be positive,
negative, or absent, yielding a total of 3 topologies. Under AND logic, where
regulatory effects of the same sign are multiplied, the link can only be positive,
because only the positive feedback link results in two regulatory effects of the same
sign, the other being the input. For all but the negative feedback case, a constitutive
deactivator is added so that node A has both activators and deactivators.

Enumerations for 2- and 3-node circuits follow the same pattern.
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For each of the four circuit topologies, we sampled 10,000 sets of parameters
describing kcat and Km of every regulation; for each parameter set, we measured the
circuit’s temporal ultrasensitivity score (TU score) and trigger time, the duration of
input that achieves 50% response amplitude (Figure 2.1, and see Chapter 2 for
details). Kinetic filtering circuits were defined as follows. We required TU score =
0.5 for kinetic filtering in order to consider only the most “all-or-none” kinetic
filters. We required trigger time > 1s in order to exclude the circuit with no
regulations, which behaves as a kinetic filter only for trigger times < 1s.

We quantified the robustness of each topology’s kinetic filtering by
measuring the fraction of a topology’s 10,000 parameter sets with TU score = 0.5
and trigger time 2 1s. A higher robustness implies that the topology’s performance
is more robust to changes in parameter values. We required a minimum robustness
of 0.001, or 10/10,000 parameter sets, for a topology to be counted as a kinetic
filter.

Of the three 1-node networks with OR logic and the one 1-node network with
AND logic, only the positive feedback topologies were kinetic filters with robustness
> 0.001 (Figure 3.1). Neither the negative feedback nor the no feedback circuit had a
single parameter set that showed kinetic filtering behavior. The AND-based positive
feedback circuit was over an order of magnitude more robust than the OR-based
positive feedback circuit. Details of positive feedback circuit phenotypes and

mechanisms are discussed below and in Chapter 4.
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3.2 TWO-NODE TOPOLOGIES

In two-node circuit space, each node can use OR or AND logic, yielding four
groups of circuits: OR on both nodes (54 topologies), AND on the input/output node
and OR on the regulator node (45 topologies), OR on the input/output node and
AND on the regulator node (12 topologies), and AND on both nodes (10 topologies),
a total of 121 topologies. Compared to using OR logic, using AND logic on a node
reduces the number of topologies available because we require an AND node to be
subjected to at least two regulations of the same sign.

Of the 2-node networks, the following were kinetic filters: 15 circuits using
OR on both nodes, 24 circuits with AND on input/output node A and OR on
regulator node B, 3 circuits with AND on node B and OR on node A, and 6 circuits
with AND on both nodes (Figure 3.2). As in the 1-node case, using AND logic allows
some topologies to be kinetic filters with much higher robustness than any topology
relying only on OR logic. The most robust 2-node kinetic filters were about twice as
robust as the most robust 1-node kinetic filter; increasing complexity allows
increased robustness. All robust 2-node kinetic filtering topologies are shown in
Figures 3.3 - 3.6.

3.4 THREE-NODE TOPOLOGIES

Three-node circuit space is comprised of a total of 68,580 topologies, of
which 15,330 were kinetic filters with robustness = 0.001 (Figure 3.7). Unlike in the
1- and 2-node systems, in the 3-node system some OR-only circuits are capable of
robustness comparable to the most robust AND-containing circuits. In terms of

maximum observed robustness, there is only a small gain when increasing
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complexity from 2 nodes to 3 nodes. Like the 1- and 2-node systems, however, AND-
containing circuit space contains more topologies that are highly robust kinetic
filters (Figure 3.8).

3.4 MINIMAL KINETIC FILTERING TOPOLOGIES

Our enumerative search identified 15,380 circuits of 1, 2, or 3 nodes to be
robust kinetic filters. While this is a very large number of circuits, most of the
enumerated circuit topologies did not exhibit kinetic filtering behavior (Figure 3.8).
We noted above that using AND logic on the input node allows circuits much greater
robustness than when using OR logic, and that increased robustness also allows a
higher fraction of topologies using AND logic on the input node to be robust kinetic
filters than topologies using OR logic.

To focus only on the core network features that drive kinetic filtering, we
identified minimal kinetic filtering topologies where removal of any link of
combination of links destroys robust kinetic filtering ability. In the 1-node system,
both kinetic filtering topologies are also minimal kinetic filters. In the 2-node
system, four circuits were minimal kinetic filters, but two were identical to 1-node
positive feedback circuits with node B taking the role of the constitutive deactivator,
so they have been ignored in subsequent analysis (Figure 3.9). Adding a second
node of complexity thus gains two new kinetic filtering architectures.

In the 3-node system, the 15,330 robust kinetic filters collapse into 21
minimal kinetic filtering topologies, vastly expanding the architectural space
available for kinetic filtering (Figure 3.10). Thus in 1-, 2-, and 3-node circuit space, a

total of 25 distinct minimal topologies form the basis set of all robust kinetic
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filtering circuits. All the remaining non-minimal kinetic filtering topologies contain
at least one of the minimal kinetic filtering topologies as a substructure.

3.5 CLASSIFYING KINETIC FILTERING TOPOLOGIES

3.5.1 Phenotypic clustering

To further classify the 25 minimal topologies, we clustered them by
phenotype. We measured 6 phenotypic metrics for each parameter set of the
minimal topologies that resulted in a kinetic filtering circuit, a total of 2896
parameter sets. The phenotypic metrics were as follows: 1) trigger time; 2) long-
term memory, defined as final output concentration divided by maximum output
concentration; 3) timing of the circuit turning on, defined as how long the output
took to reach 50% maximum amplitude; 4) steepness of the circuit turning on,
defined as how long the output took to reach 10% maximum amplitude divided by
how long the output took to reach 90% amplitude; 5) timing of the circuit turning
off, defined as how long the output took to decrease to 50% maximum amplitude
after the input was turned off; and 6) steepness of the circuit turning off, defined as
how long the output took to decrease to 10% maximum amplitude after the input
was turned off divided by how long the output took to decrease to 90% of maximum
amplitude after the input was turned off. See Chapter 2 and Figure 2.6 for more
details.

Results of clustering the 2896 individual circuits, making up 25 minimal
kinetic filtering topologies, by phenotype are shown in Figure 3.11. Hierarchical
clustering was performed using Cluster (Cluster 3.0 for Mac OS X using the C

Clustering Library version 1.36) with euclidean distances and centroid linkage.
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Underneath the clustered phenotypic metrics we have marked the location in the
clustering of each parameter set of the 25 minimal topologies. Topologies are
colored according to classification determined in subsequent analysis.

The clustergram in Figure 3.11 clearly shows that certain topologies have
very similar phenotypes. Topologies 5-8, for example, exhibit a phenotype not
accessible by any other topology, as do topologies 1 and 9-14. Topologies 15-17
form a closely related trio; so do topologies 18-20, and topologies 21-24 form a
quartet that also overlaps with topology 4. Topology 25 shows some but not all the
phenotypes available to topologies 21-24. Additionally, topologies 2, 3, and 15-20
can all access a phenotypic space on the far right of the clustergram that is not
populated by the other topologies. Based solely on qualitative observations, we can
use the clustergram to classify the 25 minimal kinetic filters into 5 groups: 1)
topologies 1 and 9-14; 2) topologies 2, 3, and 15-20; 3) topologies 4 and 21-24; 4)
topologies 5-8; and 5) topology 25.

3.5.2 Principal components of phenotypic space

To classify the 25 minimal kinetic filters more quantitatively, we conducted a
principal component analysis using the 6 phenotypic metrics. Composition and
singular values of the 6 principal components are shown in Table 3.1. Squaring the
singular values gives the proportional variance explained by each principal

component.
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PC#1 PC#2 PC#3 PC#4 PC#5 PC#6
Singular value 29 26 22 16 15 7
Trigger time 0.169 | -0.564 0.298 | -0.433| -0.276 0.549
Long-term memory -0.938 -0.165 -0.082 0.117 0.025 0.268
ON timing -0.155 | -0.546 0.340 | -0.106 0.088 | -0.737
ON steepness 0.242 | -0.437 0.031 0.703 0.445 0.239
OFF timing -0.017 0.056 | -0.067 | -0.525 0.840 0.107
OFF steepness 0.093| -0.403| -0.885| -0.133| -0.109| -0.122

Table 3.1. Principal components of phenotypic space. Row 1 shows the singular

value of each of the 6 components, while remaining rows contain relative weights of

each of the phenotypic metrics that compose principal components.

Principal component 1 is composed nearly entirely of the long-term memory

phenotypic metric. Principal component 2 is mostly trigger time and on timing, but
also includes significant contributions from on steepness and off steepness.
Principal component 3 has its largest contribution from off steepness. Principal
components 4, 5, and 6 have smaller singular values and explain less of the variance
in the phenotypic metrics. Thus the 25 minimal kinetic filters phenotypically differ
from each other primarily in terms of long-term memory, trigger time and on
timing, and off steepness.

To group the minimal kinetic filtering topologies by phenotype, we found the
mean value of each principal component for all the parameter sets in each topology,
then plotted the means in 3D principal component space (Figure 3.12). The
topologies fall into three separate clusters: a group of 4 (green, topologies 5-8), a
group of 7 (red, topologies 1 and 9-14), and the remaining 14 topologies. The large
group of 14 can be subdivided into three groups: a singlet (orange, topology 25), a

group of 5 (blue, topologies 4 and 21-24) that are higher in principal component 3,
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and a group of 8 (purple, topologies 2, 3, and 15-20) that is lower in principal
component 3. These five groups correspond exactly to the qualitative groupings
seen in the clustergram in Figure 3.11.

3.5.3 Five classes of kinetic filters

The five classes of minimal kinetic filters are shown in Figure 3.13. Although
these groups were identified by clustering similar phenotypes, we find that
topologies within each group also share key structural features. All topologies in the
red group contain a positive feedback loop that activates a node using OR logic. The
positive feedback loop may be self-self (topologies 1, 10, 13, 14) or be encoded
through one (topologies 11, 12) or two (topology 9) regulator nodes. Regardless of
the size and location of the positive feedback loop, topologies in this group are all
bistable and capable of long-term memory (Figure 3.12).

Topologies in the purple group also contain positive feedback loops, but in
contrast to the red group, positive feedback now feeds into a node using AND logic.
Positive feedback loops can encompass one (topologies 1, 15, 18, 20), two
(topologies 3, 18), or three (topology 17) nodes but must feed back onto an AND
node. Unlike the positive feedback OR circuits in the red group, circuits with positive
feedback AND do not exhibit long-term memory (Figure 3.12).

In the blue group, all topologies contain a double inhibition motif, where a
node that acts as an inhibitor is itself inhibited. The double inhibition is presented as
a net positive feedback (topologies 4, 21, 22, 23) or in series (topology 24), but
phenotypes of kinetic filters are similar in the feedback and series cases (see

topologies 21-24 in Figure 3.11 as well as Figures 4.6-4.9). Although the double
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inhibition in feedback form is often categorized as a positive feedback loop with
exclusive bistability (A on and B off or vice versa), these minimal double inhibition
circuits are not bistable without additional positive feedback loops. Like the positive
feedback AND circuits, double inhibition circuits are incapable of long- term
memory, but show much higher off steepness than positive feedback AND circuits
(Figure 3.12). Unlike positive feedback circuits, double inhibition circuits cannot be
implemented using only one node.

Topologies in the last two groups require at least 3 nodes to implement their
shared structural features. In the green group, whose phenotype consists of long-
term memory and very long on timing (Figure 3.12), shared structural features
include a positive feedback loop through one node, a negative feedback loop
through at least two nodes, and an inverter on the output node. The mechanism for
kinetic filtering in this unusual class is explained in more detail in the next chapter.

Finally, the last group of kinetic filters consists of one circuit, the coherent
feed forward loop with AND logic, which is the only previously known kinetic filter.
In the coherent feed forward loop, signal from the input reaches the output node
through two parallel paths: directly from the node receiving input and from a
regulatory node that is also activated by the node receiving input. Circuits using the
coherent feed forward loop to drive kinetic filtering show no long-term memory,
short trigger time, and high off steepness (Figure 3.12).

More details of the principal component analysis are shown in Figures 3.14
and 3.15. In Figure 3.14, each data point represents one kinetic filtering parameter

set of a minimal kinetic filtering topology colored by the classification discussed
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above. In Figure 3.15, we show the distribution of principal component values as
stacked histograms, where each element in the stack is a class of kinetic filter. The
projections and histograms clearly show which principal components separate
which classes of kinetic filters.

Principal component 1, which corresponds to the long-term memory
phenotypic metric, separates the positive feedback OR and bistable buffering
inverter circuits from the other three classes. Principal component 2, a
conglomeration of trigger time and on timing, distinguishes positive feedback OR
and bistable buffering inverter circuits from each other. Principal component 2 also
separates coherent feed forward loop circuits from the positive feedback AND and
buffering double inhibition circuits, which are distinguished from each other via
principal component 3, which describes the steepness of the circuit turning off.

3.6 COMPARISON OF KINETIC FILTER PHENOTYPES

After enumerating all enzymatic circuits with 1, 2, or 3 nodes and
phenotypically clustering the minimal robust kinetic filtering topologies, we
identified five behavioral and structural classes of kinetic filters. A comparison of
phenotypic features of the five classes of kinetic filters is presented in Figure 3.16
and recapitulates many observations discussed above.

Positive feedback OR and bistable buffering inverters are both bistable
topologies that stay on after responding to input. These topologies are “fire-once”
systems that cannot respond again to new input. Positive feedback OR and bistable
buffering inverters differ in that bistable buffering inverters can only turn on after

input has turned off---their mechanism is discussed in more detail in Chapter 4.
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The remaining three classes of kinetic filters all turn off after responding to
input of any duration. Positive feedback AND circuits, however, turn off more
gradually than buffering double inhibition circuits and coherent feed forward
circuits. Buffering double inhibition circuits are the only topologies capable of
turning off quickly and immediately after a long input has turned off; they are the
only kinetic filtering architectures that can faithfully follow the shape of the input.
Coherent feed forward loop circuits, and some buffering double inhibition circuits,
show a delay-off phenotype where output stays elevated for a short while after
input has turned off but then turns off sharply.

We discuss mechanism and more details about kinetic filtering performance

of the five classes of small-network kinetic filters in Chapter 4.
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Chapter 4

FEATURES OF SIMPLE KINETIC FILTERS

OVERVIEW

In this chapter we conduct a more detailed investigation into the properties
of the five types of kinetic filters of 1, 2, or 3 nodes uncovered in Chapter 3. Taking a
detailed look at representative timecourses allows us to elucidate the mechanisms
by which the five kinetic filter classes distinguish between transient and sustained
stimuli. We show that different classes can access different regimes of trigger time
and demonstrate why a simple activation cascade is incapable of the long trigger
times we observe in double inhibition topologies. We also show that a kinetic filter’s
reset time, the length of time necessary for the circuit to forget a short input,
depends on architecture type. Preferred parameter regimes are identified for a
representative topology in each class of kinetic filter. Lastly, we show that most
kinetic filters are integrating input, but some can act as absolute timers insensitive
to input height.

4.1 EXAMPLE TIMECOURSES AND MECHANISMS OF FIVE TYPES OF KINETIC

FILTERS

4.1.1 Positive feedback OR

Positive feedback OR circuits are bistable switches. Temporal dose response
and timecourses of a representative circuit are shown in Figure 4.1, with additional
examples in Figure 4.2 (parameters used to plot timecourses and other data are

listed in Appendix B). Long inputs raise levels of active A above a threshold
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concentration, indicated by the dotted lines in the timecourses. When active A
surpasses the threshold, positive feedback strength exceeds deactivation strength,
activating A and bringing levels of active A up to a high steady state. Short inputs
leave concentration of active A below the threshold, where activity of the
constitutive deactivator dominates, and node A returns to its initial deactivated
state.

Once a positive feedback OR circuit has turned on, removal of input does not
result in output returning to the off state, as the positive feedback is strong enough
to keep the circuit in a stable on state. Positive feedback OR circuits thus exhibit
long-term memory and irreversibility; resetting the circuit requires degradation and
new synthesis of node A. See section 4.4 for a detailed examination on parameter
requirements for bistability in positive feedback OR circuits.

4.1.2 Positive feedback AND

Unlike positive feedback OR circuits, positive feedback AND circuits are not
bistable and instead slowly turn off after input has been removed (Figure 4.3, with
additional examples in Figure 4.4). Because of the AND gate at node A, both input
and positive feedback must be present to activate A, and thus A cannot remain
activated after input has turned off.

Given that both input and positive feedback must be present to activate A,
how do positive feedback AND circuits ever turn on? Positive feedback AND circuits
that are kinetic filters have very weak constitutive deactivators (see section 4.4 on
preferred parameter regimes), allowing input to activate a small amount of A on its

own. The circuit turns on if and only if the input was on long enough to activate
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enough A to trigger positive feedback. The weakness of the constitutive deactivator
also explains why output of an activated circuit turns off much more slowly than it
turns on, leading to the slow and flat off dynamics common in positive feedback
AND circuits. In the 2-node implementation of the positive feedback AND circuit,
both output and regulator concentrations decay very slowly to pre-input levels
(Figure 4.5).

4.1.3 Buffering double inhibition

Representative timecourses of double inhibition circuits are presented in
Figures 4.6-4.9. When input turns on, an increase in active A levels leads to a linear
decrease in active B levels. For long inputs, active B concentration drops to the point
where active node C can quickly accumulate. For short inputs, node B buffers the
input signal and concentration of active B never falls enough for active node C to rise
very much. When the double inhibition links are arranged in feedback (Figures 4.8
and 4.9), node A acts as both the input and the output node. Node A is initially
activated only a small amount by the input, and this small amount of active A is
enough to begin turning off B; when levels of active B have fallen low enough, A can
then fully activate.

Like positive feedback AND circuits, buffering double inhibition circuits show
a distinct delay between input application and rise in output. As we noted in the
phenotypic classification discussed in Chapter 3, buffering double inhibition circuits
have identical phenotype when the double inhibition links are arranged in series

and in feedback (compare timecourses Figures 4.6 and 4.8).
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Where positive feedback AND circuits delay while slowly accumulating
enough active A to overcome constitutive deactivation, buffering double inhibition
circuits delay while node B buffers the input signal. Unlike positive feedback AND
circuits, buffering double inhibition circuits can quickly turn off once input has been
removed, but can also show a lag in turning off for some parameter combinations
(Figure 4.7 bottom).

4.1.4 Bistable buffering inverter

In the bistable buffering inverter group of kinetic filters, a representative
timecourse shows that short inputs lead to oscillations between A and B that
eventually die out, and C is not activated (Figures 4.10 and 4.11). Long input gives A
enough time to completely deactivate B; because only active B can catalyze the
activation of B, B’s deactivation is permanent. When the input turns off, only
deactivators of A remain, allowing A to be deactivated and C to be activated by its
constitutive activator. The elements necessary to the bistable buffering inverter are
threefold: the regulator (node B) is turned off by input; the regulator can only be
activated via self positive feedback, with the consequence that once completely
deactivated, the regulator cannot be reactivated; and an inverter turns the depletion
of regulator into activation of the output node. These elements can be arranged in
multiple ways, as we saw in Chapter 3, without changing the output phenotype
(Figure 4.12).

Unlike any other class of kinetic filters, bistable buffering circuits only turn

on after input has been turned off as long as the input was long enough to activate
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the circuit. Longer inputs further delay output onset. Like positive feedback OR
circuits, bistable buffering inverter circuits show long-term memory.

4.1.5 Coherent feed forward loop AND

A representative coherent feed forward loop timecourse shows that output
node C is only activated when both active A and active B rise above a threshold
concentration, and C remains active until active A and active B drop back below that
threshold (Figures 4.13 and 4.14). Coherent feed forward circuits can remain
activated long after input has been turned off, but will eventually return to a
deactivated steady state once active A or active B falls below its threshold.

The coherent feed forward loop with AND logic has been previously
described as a delay-on circuit. In our hands, where we have used enzymatic instead
of transcriptional regulation, no Hill coefficients, and application of input to one
node instead of two, we observe both a delayed on and a delayed off. The delayed off
is due to the decay time of nodes A and B.

4.2 TRIGGER TIME

4.2.1 Distribution of trigger times by kinetic filter type

Kinetic filters of the five architecture types we found can have trigger times
spanning up to 5 orders of magnitude in time, but trigger time varies between
architecture types. Coherent feed forward loop kinetic filters are limited to short
trigger times, unlike circuits in the other four classes. Positive feedback OR and
bistable buffering inverter circuits also favor short trigger times but can access
longer trigger times for some parameter combinations. Positive feedback AND

kinetic filters tend to have longer trigger times than coherent feed forward, positive
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feedback OR, and bistable buffering inverter kinetic filters, but not as long as
buffering double inhibition kinetic filters. The longest trigger times and the widest
range of trigger times are accessible only to the buffering double inhibition
architecture.

Of the five classes of kinetic filters, the coherent feed forward loop and
buffering double inhibition architectures are the only classes where kinetic filters
are reversible and modular. These architectures have no long-term memory and can
quickly return to the off state after input has turned off; in a biological context,
further circuitry can be added downstream of coherent feed forward loop or
buffering double inhibition architectures to make cell fate decisions based on the
activity of the kinetic filter. For these reasons, we will focus on the coherent feed
forward loop and buffering double inhibition architectures in the next few sections.

4.2.2 Coherent feed forward loop trigger time is governed by longer trigger
time of its two arms

We asked why buffering double inhibition circuits can have much longer
trigger time than coherent feed forward loop circuits, which are limited to relatively
short trigger times. We resampled the coherent feed forward loop more finely, at
100,000 parameter sets, to gather better statistics. Taking only the kinetic filtering
parameter sets, we knocked out each arm of the coherent feed forward loop in turn
and measured the resulting circuit’s trigger time (Figure 4.16). Most of the knockout
circuits did not meet the TU score (steepness) requirement for kinetic filtering, and

of those that did, none had trigger time above 1s.
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Correlations of feed forward loop trigger time to trigger time of each of the
knockouts are shown in Figure 4.17 along with correlation of feed forward loop
trigger time to the shorter of the knockout trigger times (Figure 4.17) and longer of
the knockout trigger times (Figure 4.16). Trigger times of the two knockouts do not
correlate with each other. Slopes and correlation values are bootstrapped values.

We find that coherent feed forward loop trigger time correlates best with the
maximum trigger time of the two knockout circuits. In our set of coherent feed
forward loop Kkinetic filters, 45% had longer trigger times in the right arm knockout
(3-node cascade) and 55% had longer trigger times in the left arm knockout (2-node
cascade) (Figure 4.18). Timecourses of coherent feed forward loop circuits show
that circuits where the right arm knockout has longer trigger time also have
concentrations of node A that rise quickly to high levels after input turns on.
Similarly, when the left arm knockout has longer trigger time, node B rises more
quickly and to higher levels than node A.

While one might expect that the left arm of the coherent feed forward loop is
the slower arm because it contains an additional node and additional step compared
to the right arm, we find that the left arm is slower only in 45% of cases. Over half of
our kinetic filtering parameter sets had slow dynamics in turning on node A and
faster and more sensitive response at node B, thus making the shorter arm of the

coherent feed forward loop also the slower arm.
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4.2.3 Double activation circuits show faster dynamics than double inhibition
circuits even under identical parameters

After showing that coherent feed forward loop trigger time is determined by
the trigger time of its slower arm, we directly compared response dynamics of a
double inhibition circuit and a double activation circuit, which is a coherent feed
forward loop with the right arm knocked out (Figure 4.19). We used a kinetic
filtering parameter set of the double inhibition topology and also simulated the
double activation circuit using those parameters. We gave each circuit a single step
input and followed timecourses of output node C and regulator node B.

Dynamics of node B were the same in both cases, differing only in sign. In the
double inhibition circuit, node B begins in the fully activated state and is deactivated
upon input; in the double activation circuit node B begins in the fully deactivated
state and is activated upon input. As expected, the shape of deactivation and
activation are identical due to their underlying identical parameters.

Surprisingly, output node C dynamics are not identical. In the double
inhibition circuit, output activation exhibits a long delay; in the double activation
circuit, output is activated almost immediately (Figure 4.19). Tuning up the strength
of the constitutive deactivator can delay output activation in the double activator
circuit, but only by a small amount, and at the cost of flattening the rate of rising
active output levels (Figure 4.19, pink dotted lines). In the double inhibition circuit,
tuning up the strength of the constitutive activator has the opposite effect: output

activates sooner but also more gradually.
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The difference in output dynamics between double inhibition and double
activation circuits drives the difference in temporal dose response and hence kinetic
filtering behavior. Because output rises sooner after input application in double
activation circuits than in double inhibition circuits, temporal dose response curves
are shifted to the left for double activation circuits (Figure 4.19 bottom). We also see
the tradeoffs in steepness and delay noted above for double activation circuits:
increasing constitutive deactivator strength prolongs trigger time but decreases
temporal dose response steepness. For double inhibition circuits, longer trigger
time and steeper temporal dose response go hand in hand.

4.2.4 Differences in dynamics are driven by steady state behavior

To investigate the origin of asymmetry in the output dynamics, we examined
a simplified system consisting of only the output node, an activator, and a
deactivator (Figure 4.20). If the deactivator is slowly turned off while the activator is
held constant, the simple system approximates the double inhibition circuit. If the
activator is slowly turned on while the deactivator is held constant, the simple
system approximates the double inhibition circuit. To maximize symmetry, kcar = 1
and Ky, = 0.5 for both the activator and the deactivator. We solved for the steady
state concentration of active output Css as a function of activator concentration A,

deactivator concentration D, and Ky, of K:

Cos = ;—;(b +/b? — 4ac)
where
a=D-A
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b=-KA—-2DA—-D+A—-KD
c=KA+ DA
If keat's and Ki's are not equal for the activator and deactivator but instead have

values ka, kp, Ka, and Kp,

ka

bsz

A(1 —Kp — D) — (K,D + DA + D)

ka
kp

In Figure 4.20, we show the steady state amount of active output for different
concentrations of activator and deactivator. The steady state output diagram shows
the source of asymmetric dynamical behavior in double inhibition vs double
activation circuits. The system is most sensitive to changes in activator or
deactivator concentrations when those concentrations are small (near zero). In the
double activation circuit, the activator is being turned on by the input, and thus the
activator concentration regime is exactly where steady state output is most
sensitive to changes. In contrast, in double inhibition circuits, deactivator is being
turned off by the input. The deactivator concentration is initially outside the regime
where output is most sensitive to changes in deactivator concentration. Thus output
remains fairly constant until deactivator levels sink low enough to enter that regime.

Other observations from comparing double inhibition and double activation
timecourses and temporal dose responses are recapitulated in the steady state

diagram. In the increasing activator system, a larger concentration of constitutive
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deactivator pushes the curve to the right, yielding a larger EC50 but losing
steepness. This leads to the tradeoff between temporal dose response steepness and
trigger time discussed above. In the decreasing deactivator system, a larger
concentration of constitutive activator also flattens the deactivator-output curve
and increases EC50. However, because the deactivator is being decreased, a larger
EC50 results in a shorter time needed to activate output. Thus in the double
inhibition circuit, there is no tradeoff between temporal dose response steepness
and trigger time.

The steady state analysis suggests a few ways to manipulate the double
inhibition and double activation systems to bring their trigger times into the same
range. One could cap the concentration of deactivator to a small amount so that the
double inhibition system starts in the regime where output is sensitive to small
changes in deactivator concentration. Conversely, a simple way of further increasing
the delay of a double inhibition circuit is to increase the starting concentration of
deactivator. Adding cooperativity and Hill functions could change the shape of the
steady state curves and move the regime of high sensitivity to the right, allowing the
double activation circuits to show some delay before output is activated.

In our enumerative search, we ignored all circuits where output turned off in
response to input turning on. However, the steady state curves suggest that a
system where an activator is turned off should have longer trigger time than a
system where a deactivator is turned on. We tested an “activator on” circuit and a

“deactivator off” circuit and found that this was indeed the case (Figure 4.21).
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4.2.5 Trigger time tunability in response to individual parameters

We measured tunability by quantifying the effect of perturbing each
parameter in a kinetic filtering circuit. Beginning with the five canonical kinetic
filtering topologies, we took all parameter sets that resulted in kinetic filtering
behavior. Each parameter other than input keac and Km of each parameter set was
perturbed by a factor of 10 in each direction, and trigger times of the resulting
temporal dose response curves were measured (Figure 4.22). Two example
perturbations in coherent feed forward loop circuits are shown in Figure 4.23A.
Each parameter’s sensitivity was quantified by the fold change in trigger time upon
parameter perturbation. A tunable parameter was one where a 10-fold change in
parameter strength led to at least a 1.5-fold change in trigger time in either
direction.

The most tunable architectures, the buffering double inhibition and coherent
feed forward loop topologies, each had 3 tunable parameters, while the positive
feedback AND circuit had one and the positive feedback OR and bistable buffering

inverter circuits had none (Figure 4.23B, Table 4.1).

Parameter ‘ /10 mean ‘ /10 fraction | *10 mean ‘ *10 fraction | Max change
Positive feedback OR

kcat AA 0.15 0.01 0.11 0.40 0.04
Km AA 0.90 0.49 1.30 0.26 0.44
kcat FA 0.00 0.09 0.48 0.04
Km FA 1.39 0.71 0.69 0.15 0.98
Positive feedback AND

kearas G0N 0.21 0.10 0.9+ |0
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Km AA 0.83 1.00 1.77 0.71 1.25
kcat FA 0.79 0.43 1.33 0.18 0.34
Km FA 1.32 0.18 0.79 0.44 0.35
Buffering double inhibition

'kcatAB__ [NIS00N 0.29 0.10 0.56
Km AB 0.90 0.97 1.70 0.64
kcat FA 0.18 0.60 1025 0.47
Km FA 2.61 0.83 0.49 0.72
kcat BC 0.84 0.13 1.35 0.55 0.74
Km BC 1.04 0.99 0.95 0.76 1.02
kcat FB 0.68 0.42 1.92 0.18 0.34
Km FB 1.36 0.48 0.82 0.46 0.65
kcat FC 1.10 0.39 0.90 0.23 0.43
Km FC 0.98 0.94 1.07 0.78 0.92
Bistable buffering inverter
kcat AB 0.00 0.08 0.01 0.00
Km AB 0.41 0.17 5.93 0.08 0.46
kcat AC 0.98 0.36 1.01 0.60 0.61
Km AC 1.01 0.88 0.98 0.61 0.89
kcat FA 0.20 004  893] 0.01 0.10
Km FA 1.41 0.55 0.71 0.35 0.78
kcat BA 2.09 0.17 0.66 031 0.35
Km BA 0.95 0.74 1.16 0.51 0.71
kcat BB 0.30 0.05 0.00 0.01
Km BB 2.05 0.57 0.72 0.39 1.16
kcat FC 1.03 0.61 0.94 0.24 0.63
Km FC 0.97 0.52 1.02 0.62 0.63
Coherent feed forward loop AND
kcat AB 3.73 0.61 0.39 057 228
Km AB 0.77 0.92 215 0.80 1.72
kcat AC 3.96 0.20 0.29 0.88 0.78
Km AC 0.96 1.00 1.18 0.71 0.96
kcat FA 0.63 0.69 3.17 0.46 1.44
Km FA 1.73 0.76 0.72 0.71 1.31
kcat BC 3.96 0.20 0.29 0.88 0.78
Km BC 0.95 0.99 1.21 0.76 0.95
kcat FB 0.66 0.71 2.76 0.63 1.74
Km FB 1.37 0.92 0.80 0.84 1.26
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kcat FC 0.45 0.78 3.43 0.33 1.12

Km FC 1.08 0.99 0.87 0.86 1.07

Table 4.1 Tunability of kcat's and Ki's of canonical kinetic filtering architectures.
Columns: “/10 mean” = mean fold change in trigger time after dividing parameter by
10; “/10 fraction” = fraction of circuits where dividing parameter by 10 results in a
kinetic filter; “*10 mean” = mean fold change in trigger time after multiplying
parameter by 10; “*10 fraction” = fraction of circuits where multiplying parameter
by 10 results in a kinetic filter; “max change” = Maximum of (/10 mean * /10
fraction) and (*10 mean * *10 fraction). “FA” denotes the constitutive regulator of A,
and similarly for nodes B and C. Deeper blue color indicates larger fold changes in
trigger time; deeper orange coloring indicates brittle parameters where tuning
destroying kinetic filtering behavior; deeper green coloring indicates tunable

parameters.

Most of the tunable parameters were kcat's, though in a few cases Kn's were
also observed to tune trigger time. For positive feedback AND circuits, decreasing
keat of the positive feedback link increases trigger time. For buffering double
inhibition circuits, trigger time can be tuned by manipulating k. of the first
inhibition link as well as kcat or K, of the constitutive deactivator of the node where
input is applied. For coherent feed forward loop circuits, trigger time can be tuned
by changing keai's and Kn'’s of the first link on the left arm of the circuit.

4.2.6 Effects of chaining motifs

We asked how chaining multiple copies of the same kinetic filtering motif

affects trigger time. We took the buffering double inhibition and coherent feed
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forward loop as starting architectures. For the buffering double inhibition, we
simply added additional copies of the second two nodes, keeping the same
parameters as in the original kinetic filtering topology (Figure 4.24). For the
coherent feed forward loop, we added additional nodes into the left (longer) arm of
the feed forward loop, keeping the same parameters as in the first step of the left
arm (highlighted in red, Figure 4.24).

We measured fold change in trigger time of many kinetic filtering parameter
sets of each of the two architecture types when chaining multiple copies of each
basic motif (Figure 4.24). Buffering double inhibition circuits typically lost kinetic
filtering ability upon chaining because the later motifs were not being subjected to
the correct amplitude of input to which they are temporally sensitive. In contrast,
adding additional nodes into the longer left arm of the coherent feed forward loop
can increase trigger time by more than one order of magnitude. However, not all
coherent feed forward loop parameter sets showed increases in trigger time; in
some parameter sets, adding more nodes to the left arm actually decreased trigger
time.

Representative timecourses of each of these two coherent feed forward loop
behaviors are shown in Figure 4.25. Circuits where trigger time increases with more
nodes in the longer arm are those where the longer arm has slower dynamics than
the shorter arm. If the longer arm has fast dynamics, then adding additional nodes
can actually steepen the activation from that arm that the output node sees,
resulting in slightly faster dynamics in the output node and hence shorter trigger

time.
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4.2.7 Transcriptional and mixed regulation circuits

The coherent feed forward loop is the only kinetic filtering topology
identified as such in real biological systems (see Chapters 1 and 5). Unlike our
system, however, in biology the coherent feed forward loop is often encoded with
one transcriptional arm and one enzymatic arm. Because we observe only short
trigger times in our enzymatic-only coherent feed forward loops, we also simulated
transcription-only and mixed regulation coherent feed forward loop circuits. A
buffering double inhibition circuit was also simulated as a comparison. Both
simulations sampled 100,000 parameter sets. See Chapter 2 for simulation details.

Using transcriptional or mixed regulation increases trigger time for both
buffering double inhibition and coherent feed forward loop circuits (Figure 4.26).
While coherent feed forward loop circuits continue to have shorter trigger times
than buffering double inhibition circuits under all regulatory conditions, using
transcription does alleviate the differences to some extent.

4.3 RESET TIME

Because of the difference in off dynamics across the five types of kinetic
filters, we suspected that the five types might display different behavior when
presented with multiple short pulses. We measured the reset time of the 3-node
circuits in Figure 4.27 (simulation details in Chapter 2).

By definition, all kinetic filtering circuits have temporal ultrasensitivity score
> 0.5, which means that the ratio between input duration needed to reach 10%
maximum output amplitude and input duration needed to reach 90% amplitude is 2

0.5. This further means that the input duration needed to reach 10% amplitude is at
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least half the duration needed to reach 90% amplitude. Thus if an input pulse long
enough to activate to 90% is divided into two pulses of equal duration, each of those
pulses should activate output to at most 10% of maximum. To measure reset time,
we took those two pulses and separated them by varying amounts of time,
measuring maximum output amplitude for each separation length. We then
measured the separation duration necessary to achieve 50% of maximum output
amplitude; this is the reset time (Figure 4.27 and Chapter 2).

Unsurprisingly, positive feedback AND circuits had the longest reset times.
Since positive feedback AND circuits require a poor constitutive deactivator in order
to activate at all (see below on preferred parameter regimes), they show a very
slow, linear decrease in active output after input has been removed (Figures 4.3-
4.5). This means that positive feedback AND circuits require a long time to reset
active output levels back to initial levels; additionally, they may be good frequency
detectors if they can integrate effects of many short inputs but ignore short inputs
separated by a longer off time.

Buffering double inhibition circuits had the largest range of reset times,
reflecting their ability to exhibit short-term memory or turn off immediately when
input has turned off (Figure 4.7). Positive feedback OR and bistable buffering
inverter circuits had the shortest reset times.

4.4 PREFERRED PARAMETER REGIMES

Although the five architecture classes share kinetic filtering behavior, they
present a diverse array of parameter requirements and behaviors (Figures 4.28-

4.32). Kinetic filtering restricts the allowable parameter regimes of some but not all
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regulatory links each in circuit type, including many of the constitutive activators
and deactivators.

Positive feedback OR circuits require the constitutive deactivator to operate
in the saturated regime, and kca's of the positive feedback and deactivator must be
balanced to allow bistability (Figure 4.28). Positive feedback AND circuits require
the constitutive deactivator to operate in the linear regime with very slow kinetics,
which is essential for allowing input signal to “leak” through (Figure 4.29). Among
buffering double inhibition circuits, both inhibition links prefer the saturated
regime, while the constitutive activator of the buffering node prefers the linear
regime and slow kinetics, allowing even a small amount of node A to begin turning
off the buffering node (Figure 4.30). The bistable buffering inverter circuit prefers
input and deactivating links to be in the saturated regime and the constitutive
activator of node C to be in the linear regime (Figure 4.31). In coherent feed forward
loop circuits, all regulations on the output node prefer the saturated regime,
conferring zero-th order ultrasensitivity on the output node such that output
responds all-or-none to the presence of its activators (Figure 4.32).

For the positive feedback OR circuit, we were able to analytically describe the
parameter constraints on positive feedback and constitutive deactivator kca's to
ensure bistability and hence kinetic filtering behavior. Consider a one-node positive
feedback system where node A catalyzes its own activation and a constitutive
deactivator catalyzes its deactivation. The rate of change of A for a simple positive
feedback circuit with constitutive deactivator F is described using total quasi-

steady-state Michaelis-Menten equations as
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dA  kaA(L—A) kpFA
dt K,+A+(1-A4) K.+F+A

where total concentration of A is 1; ka and Ka and kr and Kr are keat and K, of

positive feedback and constitutive deactivation respectively. We simplify to

dA  kaA(L— A) kpFA
dt K, +1 Ki+F+A

At steady state,

dA

dt A=Agg

Let ¢ = kgp/ky4. Solving for steady state concentration of A, we find 3 roots:

AssO =0

1
Asss =5 (1= Ke = F /(1= Kp = F)? = 4((F Ky + 1) — (K + )

When the positive feedback system is bistable, there are 3 positive real values for
Agg. We can solve for the lower and upper bounds of ¢ as follows. At the lower
bound of ¢, A;s_ — 0, implying

4(pF (K4 +1) — (K +F)) =0
and the lower bound of ¢ to be

o Ke+F
F(K,+1)

The upper bound of ¢ is found by requiring the discriminant for the expression of

Ags, - to be positive:
(1—Ks—F)?—4(¢pF Ky + 1) — (K + F)) >0

yielding
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(1—-Kz—F)*+4(Ks + F)
4F (K, + 1)

¢ <

So the region of bistability of this simple positive feedback circuit with constitutive
deactivator is defined by the following requirement on the ratio of kcat's of the
deactivator and positive feedback:

KF+F kF (1_KF_F)2+4(KF+F)

—_— <
FK,+ 1) "k, aF(K, + 1)

Steady state concentration of A is plotted as a function of ky/k, for a positive
feedback OR kinetic filter in the bifurcation diagram in Figure 4.33 (top). For ease of
plotting, we have normalized kj/k, to its value in the starting parameter set. The
bifurcation diagram shows a region of one stable steady state (purple) where
deactivation strength is too high and the circuit is always off and a region of one
stable and one unstable steady state (green) where positive feedback strength is
high enough to always fully turn on the circuit if it strays from the fully off state.
Between the two regions lies the regime of one low and one high stable steady state
separated by an unstable steady state. In this regime, circuits are bistable and
exhibit kinetic filtering behavior.

The rate balance plots in Figure 4.33 (bottom) show how adding input to the
system destroys the low and intermediate steady states, kicking the system into the
high steady state. When input turns off, the system then falls into the high steady
state and remains there. Varying the deactivation kcar sShows how only intermediate
values of kcat allow activation and deactivation rate curves to cross each other three

times and yield two stable steady states.

75



A bifurcation diagram and rate balance plots for a representative positive
feedback AND circuit are shown in Figure 4.34. This type of kinetic filter is not
bistable and can only achieve the on state when input is on. Figure 4.34 shows that a
huge range of constitutive deactivator kca's allow the circuit to turn on; only
extremely high values of kea: prevent the circuit from turning on.

4.5 INTEGRATORS AND ABSOLUTE TIMERS

We asked whether the circuits we identified as kinetic filters are integrating
the input signal. Taking the set of minimal kinetic filtering topologies, we tested
each kinetic filtering parameter set for integration behavior. We measured each
parameter set’s trigger time for a set of input durations greater and lesser amplitude
(Figure 4.35 and see Chapter 2 for simulation details). Kinetic filters that are
integrators should have shorter trigger time for higher amplitude inputs and longer
trigger time for lower amplitude inputs. Kinetic filters that are absolute timers
should have the same trigger time for all amplitudes of input. To quantify
integration behavior, we simply measure the slope of trigger time versus input
amplitude.

Kinetic filtering circuits are usually integrators (Figure 4.36). Positive
feedback AND and bistable buffering inverter circuits are also able to act as absolute
timers, depending on specific topology and parameters.

Circuits that act as absolute timers have parameter sets that activate node A
maximally for even low input amplitudes, eliminating the effect of further increasing
input strength. Thus if a topology has node A as the output node, that topology can

never be an absolute timer. Tuning parameters of topologies that can be absolute
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timers can allow the same topology to act as an integrator or absolute timer in

different regimes of input amplitude.
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cuit with the inhibitors arranged in series.
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Chapter 5

DISCUSSION

OVERVIEW

The five types of kinetic filtering circuits identified and characterized in the
previous two chapters provide an array of design options for forward engineering of
kinetic filtering behavior. Biological examples of kinetic filters include the coherent
feed forward loop with AND logic as well as many examples of buffering double
inhibition circuits that are involved in circuits where timing is important. Future
directions for both experimental and computational efforts are described.

5.1 TWO STRATEGIES FOR KINETIC FILTERING

We found that kinetic filtering signaling circuits of three or fewer nodes can
be classified into five types that differ in both architecture and phenotype (Figure
3.13). Our enumerative approach allowed us to sample all possible kinetic filters of
1, 2, or 3 nodes in a consistent and unbiased manner and compare circuit
performances. We recovered the coherent feed forward loop with AND logic, the
only known kinetic filter, as one of our five types.

Four of the five kinetic filtering architectures use similar mechanisms to
perform kinetic filtering. In the positive feedback OR and AND, buffering double
inhibition, and bistable buffering inverter circuits, an input-activated regulation
must overcome a constitutive or pre-existing regulation before output turns on
(Figure 5.1). The time it takes for the input-activated regulation to “win” sets the

trigger time and hence the clock of the circuit.
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In contrast, coherent feed forward loop circuits use a fast arm/slow arm
mechanism to distinguish between short and long inputs, where the input signal
must reach the output node through both arms in order for the output to turn on,
but signal takes longer to travel through the slower arm; as discussed in Chapter 4,
the slower arm may be either arm of the coherent feed forward loop. Slowing down
parameters on the longer side of the circuit increases trigger time.

These five architecture types are not the only simple circuits that are kinetic
filters. A simple cascade of two nodes can satisfy temporal dose response steepness
(temporal ultrasensitivity score) = 0.5 for a small number of parameter sets, but the
trigger time for these circuits is always very low: less than 1s. In contrast, topologies
in the five architecture types we found can have trigger times spanning up to 5
orders of magnitude in time and achieve trigger times 5 orders of magnitude longer
than a 2- or 3-node cascade. Of the 5 kinetic filtering architecture families, the
bistable buffering inverter and coherent feed forward loop tend to have the shortest
trigger time, while the buffering double inhibition circuit has both the longest
trigger times and the largest range of accessible trigger time.

As shown in Chapter 4, trigger times of circuits where a regulator is turned
off are longer than trigger times of circuits where a regulator is turned on. As long as
the regulator that is being turned off begins in excess concentrations, the circuit will
have long trigger time. Tuning the regulator concentration is an easy way to tune
the circuit’s trigger time without changing kcat's and Ki's, making circuits that use

this strategy particularly attractive in terms of finer control over temporal behavior.
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5.2 DESIGN TABLE OF KINETIC FILTERING CIRCUITS

The five classes of kinetic filters present a diverse array of behaviors (Figure
5.2; see Chapters 3 and 4 for more details). Positive feedback OR and bistable
buffering inverter circuits, while structurally and mechanistically dissimilar, are
both bistable; these circuits can only fire once, and by locking on, they conflate cell
fate decisions with kinetic filtering behavior.

In contrast, circuits in the other three classes of kinetic filters are able to
reset after firing, allowing them to be sensitive to new inputs. These reusable
circuits require a separate downstream module that translates their amplitude into
cell fate decisions. Note that positive feedback AND circuits require a long recovery
period before being able to respond to new input without lingering effects of the
previous input. Thus, the most flexible and modular kinetic filters are the buffering
double inhibition and coherent feed forward loop AND topologies.

As discussed in Chapter 4, buffering double inhibition circuits show the
greatest range of trigger times and are able to access much longer trigger times than
the other classes of kinetic filters. In general, circuits where output is controlled by
turning off an activator or deactivator have longer trigger times than circuits where
output is controlled by turning on an activator or deactivator. This principle can
likely be extended to designing kinetic filters with any regulatory mechanism: if
input triggers reactions that deplete a regulatory component that begins in excess,
the circuit’s temporal dose response can show a long trigger time. Indeed, a rewired
yeast mating pathway shows a marked delay in turning on of transcriptional activity

when an inhibitor must first be titrated away#2. Using genetic circuits,
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experimenters have constructed a mutual inhibition toggle switch that can act as a
timer#4344, However, recall that kinetic filtering behavior also requires high
steepness in the temporal dose response curve, and long trigger time and high
steepness do not necessarily correlate positively.

Buffering double inhibition circuits are also the only type of kinetic filter
capable of turning off output immediately following the input turning off: positive
feedback AND circuits decay very slowly, coherent feed forward loop AND circuits
show a lag in turning off, and the other two circuit types do not turn off. If a cell
needs a kinetic filtering circuit to follow the shape of the input, the buffering double
inhibition topology is the only choice when constrained to three or fewer circuit
components.

Because positive feedback AND circuits decay slowly after input has turned
off, these circuits may act as frequency detectors, responding to high but not low
frequency input spikes. Further work is needed to test this hypothesis and delineate
the requirements for frequency detection.

When constructing a synthetic kinetic filter, engineers may desire different
properties for different situations. On the whole, however, the buffering double
inhibition circuit is clearly the best design choice for a generic kinetic filter due to its
modularity, reusability, and wide range of accessible trigger times.

5.3 BIOLOGICAL EXAMPLES OF KINETIC FILTERING CIRCUITS

In addition to being the only previously proposed kinetic filtering circuit, the
coherent feed forward loop is also the only architecture experimentally

demonstrated to distinguish between transient and sustained inputs. In growth

117



factor response in PC-12 cells, ERK induces expression of the transcription factor
cFos, which also requires subsequent phosphorylation by ERK in order to be active
(Figure 5.3). Consistent with our findings, the feed forward mechanism functions by
integrating a slow step (transcription and translation of cFos) and a fast step
(phosphorylation of cFos) with AND logic (cFos is only functional if both steps are
performed).

None of the other types of kinetic filters have been shown to exhibit temporal
ultrasensitivity in biology, but many biological systems thought to measure time
contain at least one of the five types. For example, many circuits that regulate cell
cycle transitions use double inhibition motifs (Figure 5.3), which we have shown
can exhibit kinetic filtering behavior.

Our work may help answer why many biological signaling pathways use
double inhibition rather than activation of an activator to implement what appears
to be the same function. The ability to filter out spurious input is particularly
valuable when the ultimate effect of the signaling pathway is drastic and
irreversible, such as cell division or cell death. Double inhibition also allows the cell
to navigate tricky timings such as waiting for completion of spindle assembly before
simultaneously separating sister chromatids during anaphase.

5.4 FUTURE DIRECTIONS

5.4.1 Experimental
Now that we have several designs of kinetic filtering circuits in hand, the next
step is to construct them in vivo. We suggest the buffering double inhibition circuit

as the template due to its simplicity and easy tunability: over- or underexpressing
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the regulator node will change the circuit’s trigger time. Although our findings are
based on enzymatic simulations, we believe that implementing this circuit with
other regulatory modes will likely also result in kinetic filtering behavior as long as
the middle regulator node begins in excess conditions.

Direct measurement of temporal dose response curves has traditionally been
challenging due to the difficulty of applying precise durations of input signals.
Recent advances in optogenetics have made possible just this type of experiment,
and we look forward to measurement of temporal ultrasensitivity of both biological
and synthetic designed circuits.

5.4.2 Computational

There remain many areas of kinetic filtering to investigate computationally.
How does mode of regulation affect circuit behavior? Biological circuits
implementing coherent feed forward loops as kinetic filters use transcription as the
slow arm and post-translational modification as the fast arm. We showed in Chapter
4 that these mixed regulation coherent feed forward loop circuits can have much
longer trigger time than purely enzymatic coherent feed forward loop circuits, but it
remains to be seen if and how different regulatory modes allow or disallow our five
architecture families to show kinetic filtering behavior.

Our enzymatic simulations did not include the possibility of cooperative
behavior other than through feedback loops. An interesting question is whether
expanding our parameter space to include Hill coefficients would also expand the
architectural space of circuits that are kinetic filters, even under our conditions of

fewer than 3 nodes.
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As previously described, the positive feedback AND circuit turns off very
slowly after input turns off and may act as a frequency detector. Both frequency
detection and delay circuits are behaviors closely related to kinetic filtering: positive
feedback AND circuits are kinetic filters and likely also frequency detectors, and
buffering double inhibitions circuits are kinetic filters that show a clear delay before
turning on. Further work is needed to clearly examine the relationship between
these three temporal behaviors and compare the circuits capable of each.

In this study, we have focused on the behavior and properties of only the
minimal kinetic filtering circuits. Recall that our enumerative screen identified
thousands of robust kinetic filters, all of which contained at least one of the minimal
kinetic filtering circuits as a substructure. Because we wanted to uncover the core
architectural elements capable of driving kinetic filtering, we have ignored all of the
non-minimal kinetic filters. However, Figure 3.2 and 3.7 show that non-minimal
topologies can be much more robust than minimal topologies alone. What structural
features contribute to greater robustness?

In Figure 5.4, we compare robustness between two minimal kinetic filters
and two non-minimal kinetic filters that contain at least one of the minimal kinetic
filters as substructures. Adding positive feedback to a minimal buffering double
inhibition kinetic filter can increase robustness 6-fold, and combining multiple
minimal kinetic filtering motifs within the same topology can increase robustness
nearly 10-fold. Rigorous, systematic study of robustness is not possible with our
relatively sparse parameter sampling, but identifying motifs and mechanisms by

which additional robustness is conferred is of interest both in understanding extra
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layers of complexity in biological kinetic filters and in building robust synthetic
circuits.

In addition to increasing circuit robustness, combining multiple minimal
kinetic filtering motifs within the same topology can result in phenotypes not
accessible to minimal kinetic filters alone. Combining positive feedback OR and
buffering double inhibition motifs, for example, results in circuits that show the
characteristic delay in turning on observed in buffering double inhibition circuits
and are bistable for very long inputs like positive feedback OR circuits (Figure 5.5).
Additional work can extend our phenotypic analysis covered in Chapter 3 to all
robust kinetic filters of 1, 2, or 3 nodes, and we may find even more phenotypes of
interest.

While we are confident that we have identified all robust kinetic filters of 1,
2, or 3 nodes, it is possible that new architectures can perform kinetic filtering
under conditions of more than 3 nodes. At this time, enumerating 4-node circuit
space with reasonable parameter sampling is beyond our computational resources,
but a genetic algorithm study would be capable of evolving kinetic filters of higher
complexity that may have interesting architectural and phenotypic features.

Finally, it would be interesting to search the entire space of mapped
biological circuits for our kinetic filtering motifs. The coherent feed forward loop
has been shown to be overrepresented in genetic circuits!®; we anticipate that the
simple kinetic filtering motifs such as positive feedback and double inhibition are

also likely to be very common.
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This study is part of recent efforts to build a map between circuit structure
and circuit function. We envision a “periodic table” of signaling circuits, classifying a
coarse-grained space of circuits into regions capable of observed cell behavior such
as perfect adaptation, oscillations, spatial polarization, and persistence detection.
Such a table would be invaluable for forward engineering in synthetic biology.
Kinetic filters would be powerful tools for synthetic biologists building complex
cellular behavior, particularly behaviors involving temporal regulation and
dynamics, and an understanding of not only the architecture but also the robustness
and limitations of candidate network topologies is essential for future engineering

efforts.
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Appendix A

SIMULATION CODE

This appendix contains 3 software programs to run simulations of signaling

circuits and analyze their temporal dose response curves.

A.1 simulate.cc

/3kkskskskskokskskokskskokokskskokskskokskskokskskosk sk sk sk sk sk skokskskokskskok sk sksk sk sk sksk sk skokokskok sk skok sk sk sk sk sk sk sk k ok

*

XX K K X X K KX X K AKX K KX XK XXX XXX XXX %X

* % ¥ X

simulate.cc
Jaline Gerardin 2010

Modeling enzymatic circuits, 3 nodes, OR/AND, 1 pulse of input

simulate.cc is given a number of command line arguments, simulates
a circuit's response to 1 pulse of input, and outputs to stdout in
one of 2 modes: metrics (no RECORD mode) and full timecourse
(RECORD mode).

Command line arguments:
[input duration] [basal input] [change in input]

[node A logic] [node B logic] [node C logic] where @ is OR and 1 is
AND

26 kcat's and Kms:

[kcat of input acting on node A] [Km of input acting on node Al
[kcat of A acting on A] [Km of A acting on A] [kcat of A acting on
Bl [Km of A acting on B] [kcat of A acting on C] [Km of A acting on
C] [kcat of constitutive regulator of A][Km of constitutive
regulator of A]

+ similar for node B and node C

Note that regulation type (activator, inhibitor, absent) is coded
in kcat: positive kcat = activator, negative kcat = inhibitor, and
@ kcat = absent.

Optional arguments:
Initial concentrations of nodes A, B, and C. If none are given,
simulate.cc will initialize the circuit from initial concentration

of 0.1 for each node, then either output the initialized values
(metrics mode) or continue onward to apply input (fill timecourse
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mode). If the circuit cannot reach steady state during
initialization, an error of "-1" is outputed. If initial
concentrations are given, simulate.cc will apply input without
pre-initializing and simulate from there.

ODEs are defined in the getplus() function and integrated using a
fifth-order Runge-Kutta method with adaptive stepsize control.

In metrics mode, simulate.cc will calculate and output metrics
immediately after the input pulse as well as after the circuit has
reached steady state once input has turned off. Metrics include
initial output value, final output value, output amplitude, and
other metrics. Normally simulate.cc is set to output an error
message of "-1" if the output node decreases in value in response
to input.

skokokkKKK KKK KKk sksksksksksksksksksksk sk sk sk sk sk sksksk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /

XK K K K K KX X X X X X X X

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <algorithm>
#include <limits>
#include <vector>
#include <iostream>
using namespace std;

/*%k CONSTANTS AND PARAMETERS s/

// mode toggler: uncomment to output timecourse; comment to output
timecourse metrics

//#define RECORD

#define RECNODE 2 // output node

#define NUMNODES 3 // number of nodes

#define INIT 0.1 // initial concentrations

#define FCONC 0.1 // constitutive enzyme conc

#define TOTALNODE 1 // total concentration of each node

// parameters for determining if steady state has been reached
#define ZERO 0.000001 // below le-6 —> set to 0.

#define SSCHECKSTART 50

#define SSCHECKEVERY 200

// adaptive Runge-Kutta parameters (ODE integrator)
#define DELTAZ 0.000001

#define SAFETY 0.9

#define ERRCON 0.000189

#define HMIN 0.001

#define HMAX 0.1

// parameters for metric measurement
#define INTTIME 50000 // duration to integrate over for measuring
integration of output

// global parameters set in command line
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double base_input; // basal input level

int Aand, Band, Cand; // logic of each node

double Ainit = INIT, Binit = INIT, Cinit = INIT; // initial value of
each node

// kcat's and Km's for 3-node circuit

double kIA, KIA;

double kAA, KAA, kBA, KBA, kCA, KCA, KFAA, KFAA;
double kAB, KAB, kBB, KBB, kCB, KCB, kFBB, KFBB;
double kAC, KAC, kBC, KBC, kCC, KCC, kFCC, KFCC;

/*x*kx FUNCTION DECLARATIONS skkx/

// initializations

void start(vector<double> &ks, vector<double> &Ks, vector<int>
&andtrack);

// Runge-Kutta ODE solver
void step_rkck(double hl, vector<double> &innodes, vector<double>
&outnodes, vector<double> &yerr,

vector<double> &Ks, vector<double> &ks, vector<int>
&andtrack);
double step_rkas(double hl, double &h2, vector<double> &nodes,
vector<double> &Ks,

vector<double> &ks, vector<int> &andtrack);

double mymax(vector<double> &x);

// ODEs defined
void getplus(vector<double> &plus, vector<double> &nodes,
vector<double> &Ks,

vector<double> &ks, vector<int> &andtrack);

// calculate timecourse metrics
int get_metrics(vector<double> &timecourse, vector<double> &timevec,
double &init, double &final, double &peakheight,

double &peaktime, double &halfup, double &halfdown, double
&sstime, double &integral, double &ten,

double &ninety, double &inttopeak, double &inttohalf);

/*xkk MAIN skxkx

k
* 1. Read in parameters from command line
* 2. Initialize nodes to pre-input steady state
* 3. Apply input and simulate response
* 4, Remove input and simulate response until steady state is reached
k
*/
int main(int argc, charxx argv)
{

/*xx READ IN AND SET SIMULATION PARAMETERS s*x*/

double input_duration, input_change;
int initialization_duration = 1000000; // maximum allowable time for
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initialization
bool initialize = false;

if(argc < 33) // if not enough arguments in command line
{
cout << "Syntax: ./FILENAME input_duration basal_input
change_in_input [node logic x 3] [26 kcats and Kms]. You have
<< argc << ||\n||;
return 1;

}

int k = 1;

input_duration = atof(argv[k++]);
base_input = atof(argv[k++]);
input_change = atof(argv[k++]);

// node logic. @ = OR, 1 = AND

Aand = atoi(argv[k++]);
Band = atoi(argv[k++]);
Cand = atoi(argv[k++]);

// kcat and Km of input acting on node A
KIA = atof(argv[k++]);
KIA = atof(argvlk++]);

// regulations by node A

kAA = atof(argv[k++]);
KAA = atof(argv[k++]);
kAB = atof(argv[k++]);
KAB = atof(argv[k++]);
kKAC = atof(argv[k++]);
KAC = atof(argv([k++]);

// constitutive regulator of A
KFAA = atof(argv[k++]);
KFAA = atof(argv[k++]);

// regulations by node B

kBA = atof(argv[k++]);
KBA = atof(argv[k++]);
kBB = atof(argv[k++]);
KBB = atof(argv[k++]);
kBC = atof(argv[k++]);
KBC = atof(argv[k++]);

// constitutive regulator of B
kFBB = atof(argv[k++]);
KFBB = atof(argv[k++]);

// regulations by node C
kCA = atof(argv[k++]);

KCA = atof(argv[k++]);
kCB = atof(argv[k++]);
KCB = atof(argv[k++]);
kCC = atof(argv[k++]);
KCC = atof(argv[k++]);

// constitutive regulator of C
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kFCC
KFCC

atof(argv[k++]);
atof(argv[k++]);

// if initialized node concentrations are given, use those;
otherwise, simulation will initialize
if(argc == 36)

{
Ainit = atof(argvlk++]);
Binit = atof(argv[k++]);
Cinit = atof(argvlk++]1);
}
else

initialize = true;

// starting node concentrations, parameter values, node logic set
vector<double> nodes (NUMNODES);

nodes [0] Ainit;

nodes [1] Binit;

nodes [2] = Cinit;

vector<double> ks (NUMNODES*(NUMNODES+1));

vector<double> Ks(NUMNODES*(NUMNODES+1));

vector<int> andtrack (NUMNODES) ;

start(ks, Ks, andtrack);

// variables for tracking steady state
vector<double> sstrack = nodes;
bool foundss = false;

// variables for managing ODE solver
double h, hnext = 0.05; // adaptive stepsize starting size
double time = 0;

/*xx IF NECESSARY, INITIALIZE NODE CONCENTRATIONS BY LETTING THE
SYSTEM COME TO STEADY STATE skkx/
if(initialize)
{

for(int i = 0; i < initialization_duration; i++)

{
// one step in ODE solver
h = hnext;
h = step_rkas(h, hnext, nodes, Ks, ks, andtrack);
if(h < 0)
break;
time += h;

// check whether steady state has been reached; if so, stop
initializing
if (i%SSCHECKEVERY == 0 && time > SSCHECKSTART)
if(fabs(nodes[@] - sstrack[@]) < ZERO && fabs(nodes[1] -
sstrack[1]) < ZERO && fabs(nodes[2] - sstrack[2]) < ZERO)
{
foundss = true;
break;
¥

else
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for(int j = @; j < NUMNODES; j++)
sstrack[j] = nodes[j];

// if timecourse is not being outputed, output initialized node
concentrations or output "-1" for error message
#ifndef RECORD

. if(foundss == false)
cout << -1 << "\t" << -1 << "\t" << -1 << endl;
return 1;

}
else

{
cout << nodes[0] << " " << nodes[1l] << " " << nodes[2] << endl;
return 0;

}

#endif
}

/*xx APPLY INPUT AND SIMULATE RESPONSE sx/

// variables for measuring timecourse metrics
double initC, finalC, peakC, integral;

double peaktime, halfup, halfdown, sstime;
double ten, ninety;

double inttopeak, inttohalf;

vector<double> timecourse;

vector<double> timevec;

// input is changed
base_input += input_change;

// record starting output concentration and starting time
time = 0;

timecourse.push_back(nodes [RECNODE] ) ;
timevec.push_back(time);

// ODE solver management
h =0.01;

// simulate for duration input_duration
while(time < input_duration)
{
// one step in ODE solver
double myh = step_rkas(h, hnext, nodes, Ks, ks, andtrack);
if(myh < @) // solver error
{
cout << -1 << "\t" << -1 << "\t" << -1 << endl;
return 1;
¥
time += myh;
h = hnext;
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// record output concentration and time
timecourse.push_back(nodes [RECNODE]);
timevec.push_back(time);

// if timecourse is being outputed, do that
#ifdef RECORD

cout << time << "\t" << nodes[0] << "\t" << nodes[1l] << "\t" <<
nodes [2] << endl;
#endif

}

// calculate timecourse metrics
int sign = get_metrics(timecourse, timevec, initC, finalC, peakC,
peaktime, halfup, halfdown, sstime, integral, ten, ninety, inttopeak,
inttohalf);
// if metrics are being outputed, do that
#ifndef RECORD
cout << initC << "\t" << finalC << "\t" << peakC << "\t" << peaktime
<< "\t" << halfup << "\t" << halfdown
<< "\t" << sstime << "\t" << integral << "\t" << ten << "\t" <<
ninety << "\t" << inttopeak << "\t"
<< inttohalf << "\t";
#endif

/**xx REMOVE INPUT AND SIMULATE RESPONSE s/

// steady state tracking variables
foundss = false;
sstrack = nodes;

// return input to initial level
base_input —= input_change;

// ODE solver
h =0.01;

// simulate until steady state is reached or 86400 seconds, whichever
comes first
int 1 = 0;
while(time < 86400)
{
i++;
// one step in ODE solver
double myh = step_rkas(h, hnext, nodes, Ks, ks, andtrack);
if(myh < 0)
{
cout << -1 << "\t" << -1 << "\t" << -1 << endl;
return 1;
}
time += myh;
h = hnext;

// record output concentration and time
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timecourse.push_back(nodes [RECNODE]);

timevec.push_back(time);

// if timecourse is being outputed, do that
#ifdef RECORD

cout << time << "\t" << nodes[0] << "\t" << nodes[1] << "\t" <<
nodes[2] << endl;
#endif

// check whether steady state has been reached
if (i%SSCHECKEVERY == @ && i > SSCHECKSTART)
if(fabs(nodes[@] - sstrack[@]) < ZERO && fabs(nodes[1] -
sstrack[1]) < ZERO && fabs(nodes[2] - sstrack[2]) < ZERO
&& fabs(nodes[RECNODE] - timecourse[timecourse.size()-2]) <

ZERO)
{
foundss = true;
break;
}
else
for(int j = @; j < NUMNODES; j++)
sstrack[j] = nodes[j];
}

// calculate timecourse metrics

sign = get_metrics(timecourse, timevec, initC, finalC, peakC,
peaktime, halfup, halfdown, sstime, integral, ten, ninety, inttopeak,
inttohalf);

// if metrics are being outputed, do that
#ifndef RECORD
if(foundss == false || sign < @) // if steady state was not reached,
or if output turned off in response to input, output error
cout << "-1\n";
else
cout << initC << "\t" << finalC << "\t" << peakC << "\t" <<
peaktime << "\t" << halfup << "\t" << halfdown
<< "\t" << sstime << "\t" << integral << "\t" << ten << "\t" <<
ninety << "\t" << inttopeak << "\t"
<< inttohalf << endl;
#endif

return 0;

b

/**%*k FUNCTION DEFINITIONS skkx/
/% find maximum element in vector x/
double mymax(vector<double> &x)
{

double max = x[0];

for(unsigned int i = 1; i < x.size(); i++)

if(x[i]l > max)
max = x[i];
return max;

b
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/* adaptive stepsize control for Runge-Kutta ODE solver */
double step_rkas(double hl, double &h2, vector<double> &nodes,
vector<double> &Ks,

vector<double> &ks, vector<int> &andtrack)
{

double deltal, h = hl, htemp;
vector<double> outnodes(NUMNODES) ;
vector<double> yerr(NUMNODES) ;

time_t rkstart = time(NULL);

for(;;)

{
time_t rknow = time(NULL);
if (rknow — rkstart > 100)

return -1;
step_rkck(h, nodes, outnodes, yerr, Ks, ks, andtrack);
deltal = mymax(yerr);
if(h < HMIN || deltal < DELTAZ)

break;
if(deltal <= DELTAZ)

break;
htemp = hxSAFETYxpow(fabs(DELTAZ/deltal), 0.2);
if(htemp < 0.1%h)

h = 0.1xh;
else

h = htemp;

}

if(deltal > ERRCON)
h2 = hxSAFETYxpow(fabs(DELTAZ/deltal), 0.25);

else
h2 = 5%xh;
if(h2 < HMIN)
h2 = HMIN;
if(h2 > HMAX)
h2 = HMAX;

for(int i = ©; i < NUMNODES; i++)
{
nodes[i] = outnodes[i];
if(nodes[i] < ZERO)
nodes[i] = 0;
else if(nodes[i] > TOTALNODE)
nodes[i] = TOTALNODE;
}

return h;

}
/* Fifth-order Runge-Kutta step */
void step_rkck(double hl, vector<double> &innodes, vector<double>
&outnodes, vector<double> &yerr,

vector<double> &Ks, vector<double> &ks, vector<int>
&andtrack)

140



vector<double> plus(NUMNODES);
getplus(plus, innodes, Ks, ks, andtrack);
vector<double> rkk1(NUMNODES);
vector<double> rkk2(NUMNODES);
vector<double> rkk3(NUMNODES);
vector<double> rkk4(NUMNODES);
vector<double> rkk5(NUMNODES) ;
vector<double> rkk6(NUMNODES) ;
vector<double> tempnodes (NUMNODES) ;

for(int 1 = @; 1 < NUMNODES; i++)
{
rkk1[i] = hlxplus[il; // k1
tempnodes[i] = innodes[i] + (1./5)x*rkk1[i];
}
getplus(plus, tempnodes, Ks, ks, andtrack);
for(int 1 = @; 1 < NUMNODES; i++)
{
rkk2[i] = hlxplus[il; // k2
tempnodes[i] = innodes[i] + (3./40)*rkk1[i] + (9./40)xrkk2[i];
}
getplus(plus, tempnodes, Ks, ks, andtrack);
for(int 1 = @; 1 < NUMNODES; i++)
{
rkk3[i] = hlxplus[il; // k3
tempnodes[i] = innodes[i] + (3./10)*rkk1[i] + (-9./10)*rkk2[i] +
(6./5)*rkk3[il;
}
getplus(plus, tempnodes, Ks, ks, andtrack);
for(int 1 = @; 1 < NUMNODES; i++)
{
rkk4[i] = hlxplus[il; // k4
tempnodes[i] = innodes[i] + (-11./54)*rkk1[i] + (5./2)*rkk2[i] +
(=70./27)*xrkk3[1i] + (35./27)*rkk4[i];
}
getplus(plus, tempnodes, Ks, ks, andtrack);
for(int 1 = @; 1 < NUMNODES; i++)
{
rkk5[i] = h1lxplus[il; // k5
tempnodes[i] = innodes[i] + (1631./55296)*rkk1[i] +
(175./512)%rkk2[i] + (575./13824)%rkk3[i] + (44275./110592)*xrkk4[i] +
(253./4096)*rkk5[i];
}
getplus(plus, tempnodes, Ks, ks, andtrack);
for(int 1 = @; 1 < NUMNODES; i++)
{
rkk6[i] = hlxplus[il; // k6
outnodes[i]l = innodes[i] + (37./378)*rkk1[i] + (250./621)*rkk3[i]
+ (125./594)*rkk4[i] + (512./1771)%rkk6[i];
yerr[i] = (37./378 - 2825./27648)xrkk1[i] + (250./621 -
18575./48384)*rkk3[i] + (125./594 - 13575./55296)*rkk4[i]
+ (-277./14336)*rkk5[i] + (512./1771 - 1./4)*rkk6[il;
}
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/* differential equations defined */
void getplus(vector<double> &plus, vector<double> &nodes,
vector<double> &Ks,
vector<double> &ks, vector<int> &andtrack)
{

for(int 1 = @; 1 < NUMNODES; i++)
plus[i] = 0;
vector<double> conc(NUMNODES*(NUMNODES+1));

for(int 1 = @; 1 < NUMNODES; i++)
{
for(int j = @; j < (NUMNODES+1); j++)
if (ks [ix(NUMNODES+1)+j] > 0)
conc [i*(NUMNODES+1)+j] = TOTALNODE - nodes[il;
else
conc [ix(NUMNODES+1)+j] = nodes[i];

if(andtrack[i] == @) // node is under OR logic

{
for(int j = @; j < (NUMNODES); j++)
{
if(fabs(ks[ix(NUMNODES+1)+j]) > @)
plus[i] +=

nodes [j1xks [ix(NUMNODES+1)+j]*conc[i%(NUMNODES+1)+j]/(conc[i*(NUMNODES+
1)+j] + Ks[ik(NUMNODES+1)+j] + nodes[jl);
}

b
else // node is under AND logic
{
if(i != @) // node is not input node
{
double inl = @, in2 = @, in3 = 0;
int signl = 1, sign2 = 1, sign3 = 1;
if (Ks [ix(NUMNODES+1)+0] > @) // if there's regulation by A on
node i
{

inl = ks[ix(NUMNODES+1)+0]*nodes[@]/(conc[ikx(NUMNODES+1)+0] +
Ks [i%(NUMNODES+1)+@] + nodes[0]);
if (ks [ix(NUMNODES+1)+0] < 0)
signl = -1;

}
if (ks [ix(NUMNODES+1)+0] * ks[ix(NUMNODES+1)+1] > @) // if reg
by A and by B have the same sign
inl %= ks[i*(NUMNODES+1)+1]*nodes[1]/(conc[i*(NUMNODES+1)+1] +
Ks [ix(NUMNODES+1)+1] + nodes[1]);
else if(Ks[i*(NUMNODES+1)+1] > @) // if reg by A and by B
have different sign

{
in2 = ks[i%x(NUMNODES+1)+1]*nodes[1]/(conc[ix(NUMNODES+1)+1] +
Ks [i*(NUMNODES+1)+1] + nodes[1]);
if (ks [i*x(NUMNODES+1)+1] < 0)
sign2 = -1;

}
if (ks [ix(NUMNODES+1)+@] * ks[ix(NUMNODES+1)+2] > @) // if reg
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by A and by C have the same sign
inl %= ks[i*(NUMNODES+1)+2]xnodes[2]/(conc[i*(NUMNODES+1)+2] +
Ks [i*(NUMNODES+1)+2] + nodes[2]);
else if(ks[i*x(NUMNODES+1)+1] * ks[ix(NUMNODES+1)+2] > @) //
if reg by B and by C have the same sign
in2 *= ks[i*(NUMNODES+1)+2]*nodes[2]/(conc[i*(NUMNODES+1)+2] +
Ks [i*(NUMNODES+1)+2] + nodes[2]);
else if(Ks[ikx(NUMNODES+1)+2] > @) // if reg by C exists
{

in3 = ks[ix(NUMNODES+1)+2]x*nodes[2]/(conc[ikx(NUMNODES+1)+2] +
Ks [ix(NUMNODES+1)+2] + nodes[2]);
if (ks [ix(NUMNODES+1)+2] < @)
sign3 = -1;
}

if(inl > 0 && signl < Q)
inl %= signl;
if(in2 > 0 && sign2 < 0)
in2 %= sign2;
if(in3 > 0 && sign3 < 0)
in3 %= sign3;

plus[i] += inlxconc[ix(NUMNODES+1)+0@] +
in2%conc [i%(NUMNODES+1)+1] + in3skconc[i%(NUMNODES+1)+2];
}
else // node is input node
{
double in@ = base_inputxkIA/((TOTALNODE-nodes[@]) + KIA +
base_input);
double inl = @, in2 = @, in3 = 0;
int signl = 1, sign2 = 1, sign3 = 1;
if (ks [0x(NUMNODES+1)+0] > @) // if reg by A has the same sign
as input (positive)
in@ *= ks[@*(NUMNODES+1)+0]xnodes[0]/(conc[@*(NUMNODES+1)+0] +
Ks [0*(NUMNODES+1)+0] + nodes[0]);
else if(Ks[@*(NUMNODES+1)+0] > @) // if there's regulation by
A on node i
{
inl = ks[@*(NUMNODES+1)+@]*nodes[@]/(conc [0x(NUMNODES+1)+0] +
Ks [0*(NUMNODES+1)+0] + nodes[0]);
if (ks [0%(NUMNODES+1)+0] < 0)
signl = -1;
}

if (ks [0x(NUMNODES+1)+1] > @) // if reg by B has the same sign
as input
in@ *= ks [@*(NUMNODES+1)+1]*nodes[1]/(conc[@*(NUMNODES+1)+1] +
Ks [0*(NUMNODES+1)+1] + nodes[1]);
else if(ks[@*(NUMNODES+1)+@0] * ks[@x(NUMNODES+1)+1] > @) //
if reg by A and by B have the same sign
inl %= ks[@*(NUMNODES+1)+1]*nodes[1]/(conc[@*(NUMNODES+1)+1] +
Ks [0*(NUMNODES+1)+1] + nodes[1]);
else if(Ks[@*(NUMNODES+1)+1] > @) // if reg by B exists
{

in2 = ks[@*(NUMNODES+1)+1]*nodes[1]/(conc[@x(NUMNODES+1)+1] +
Ks [0* (NUMNODES+1)+1] + nodes[1]);
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if (ks [0x(NUMNODES+1)+1] < @)
sign2 = -1;

if (ks [0x(NUMNODES+1)+2] > @) // if reg by C has the same sign
as input
in@ *= ks [@x(NUMNODES+1)+2]xnodes[2]/(conc[@x(NUMNODES+1)+2] +
Ks [0x(NUMNODES+1)+2] + nodes[2]);
else if(ks[@x(NUMNODES+1)+0] x ks[0x(NUMNODES+1)+2] > @) //
if reg by A and by C have the same sign
inl *= ks [@x(NUMNODES+1)+2]xnodes [2]/(conc [@x(NUMNODES+1)+2] +
Ks [0x(NUMNODES+1)+2] + nodes[2]);
else if(ks[@*(NUMNODES+1)+1] * ks[@x(NUMNODES+1)+2] > @) //
if reg by B and by C have the same sign
in2 *= ks [@x(NUMNODES+1)+2]xnodes [2]/(conc [@x(NUMNODES+1)+2] +
Ks [@0x(NUMNODES+1)+2] + nodes[2]);
else if(Ks[@x(NUMNODES+1)+2] > @) // if reg by C exists
{

in3 = ks[@x(NUMNODES+1)+2]*nodes[2]/(conc[@x(NUMNODES+1)+2] +
Ks [0% (NUMNODES+1)+2] + nodes[2]);
if (ks [@x(NUMNODES+1)+2] < @)
sign3 = -1;
}

if(inl > 0 && signl < Q)
inl %= signl;
if(in2 > 0 && sign2 < 0)
in2 %= sign2;
if(in3 > 0 && sign3 < 0)
in3 %= sign3;

plus[@] += in@x(TOTALNODE - nodes[0]) +
inlxconc [@x(NUMNODES+1)+0] + in2%conc[@*(NUMNODES+1)+1] +
in3%conc [@0* (NUMNODES+1)+2];
}
}
// effect of constitutive activator/deactivator
if (ks [ix(NUMNODES+1)+3] '= 0)
plus[i] +=
FCONCxks [ ix (NUMNODES+1)+31*conc [i*(NUMNODES+1)+31/(conc [ix(NUMNODES+1)+
3] + Ks[i*(NUMNODES+1)+3] + FCONC);
}

if(andtrack[0] == @) // add effect of input if input node is using OR
logic
plus[@] += base_inputxkIAx(TOTALNODE-nodes[@])/((TOTALNODE-
nodes[0]) + KIA + base_input);
}

/* calculate timecourse metrics *x/
int get_metrics(vector<double> &timecourse, vector<double> &timevec,
double &init,
double &final, double &peakheight, double &peaktime, double
&halfup,
double &halfdown, double &sstime, double &integral, double &ten,
double &ninety, double &inttopeak, double &inttohalf)
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// initialize quantities to track

double halfheight;

bool pastpeak = false, pasthalf = false;

init = timecourse[@]; // output initial value

final = timecourse.back(); // output final value

peakheight = @; // maximum output amplitude

peaktime = @; // time maximum output amplitude was reached

halfup = @; // time 50% max output amplitude was reached, starting
from low amplitude

halfdown = sstime; // time 50% max output amplitude was reached,
starting from high amplitude

sstime = timecourse.size() - 1; // time output reached steady state

integral = 0; // integral of output

ten = 0; // time 10% max output amplitude was reached, starting from
low amplitude

ninety = @; // time 90% max output amplitude was reached, starting
from high amplitude

inttopeak = @; // integral to 50% max amplitude

inttohalf = @; // integral to maximum amplitude

int sign = 1; // = (1, -1) if output turns (on, off) in response to
input

int ipeaktime = 1;

vector<double> temp(timecourse.size());

// make a copy of the timecourse, shifting initial value to zero and
taking absolute value.
for(unsigned int i = @; i < timecourse.size(); i++)
{
temp[i] = fabs(timecourse[i] - init);
if(timevec[i] < INTTIME)
integral += temp[il;

}

for(unsigned int i = 0; i < temp.size(); i++)
if(temp[i] > peakheight)
{
peakheight = temp[il;
ipeaktime = 1i;
peaktime = timevec[i];
}
halfheight = peakheight/2;
for(unsigned int i = 0; i < temp.size(); i++)

if(ninety == 0 and temp[i] >= 0.9xpeakheight)
ninety = timevec[il;

if(ten == 0 and temp[i] >= 0.1xpeakheight)
ten = timevecl[i];

if(halfup == 0 and temp[i] >= halfheight)

halfup =

pasthalf
}

if(pastpeak == false && temp[i] >= peakheight)

timevec[i];
= true;
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{

pastpeak = true;
pasthalf = false;
b
if(pastpeak == true && pasthalf == false && temp[i] <=
halfheight)
{
halfdown = timevec[i];
break;
b
b

b

for(unsigned int i = 0; i < temp.size(); i++)
{
if(temp[i] < halfheight)
inttohalf += templ[i];
if(temp[i] < peakheight)
inttopeak += templ[il];
else
break;

}

if(timecourse[ipeaktime] < init)
sign = -1;
return sign;

/* initialize parameter vectors x/

void start(vector<double> &ks, vector<double> &Ks, vector<int>

&andtrack)

{

// initialize kcat's

ks [0x(NUMNODES+1)+0] = kAA;

ks [0« (NUMNODES+1)+1] = kBA;

ks [0« (NUMNODES+1)+2] = kCA;

ks [0« (NUMNODES+1)+3] = kFAA;
ks [1x(NUMNODES+1)+0] = kAB;

ks [1x(NUMNODES+1)+1] = kBB;

ks [1x(NUMNODES+1)+2] = kCB;

ks [1x(NUMNODES+1)+3] = kFBB;
ks [2x(NUMNODES+1)+0] = kAC;

ks [2x(NUMNODES+1)+1] = kBC;

ks [2x(NUMNODES+1)+2] = kCC;

ks [2x(NUMNODES+1)+3] = kFCC;
// initialize Km's

Ks [0« (NUMNODES+1)+0] = KAA;

Ks [0 (NUMNODES+1)+1] = KBA;

Ks [0 (NUMNODES+1)+2] = KCA;

Ks [0x(NUMNODES+1)+3] = KFAA;
Ks [1x(NUMNODES+1)+0] = KAB;

Ks [1x(NUMNODES+1)+1] = KBB;

Ks [1x(NUMNODES+1)+2] = KCB;

Ks [1x(NUMNODES+1)+3] = KFBB;
Ks [2*x (NUMNODES+1)+0] = KAC;

Ks [2*%(NUMNODES+1)+1] = KBC;
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Ks [2% (NUMNODES+1) +2]
Ks [2% (NUMNODES+1) +3]

KCC;
KFCC;

// initialize logic coder

andtrack[@] = Aand;
andtrack[1] = Band;
andtrack[2] = Cand;
}
/* end x/
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A.2 doseResponseMetrics.cc

/kkskskokskokskskokskskokskskskskskskokskskokskskok sk sksk sk sk skok sk skokskskok ok skok sk sksk sk sk sk sk ok sk ok ok

* doseResponseMetrics.cc
Jaline Gerardin 2010

given a dose response, calculate steepness and EC50
command line arguments:

[number of data points] [responses] [doses]
sorokskoroksotoksotokskokokskokokskokokokskokokskokoksokoksotoksotokskokokskokokskokokskkokokkokok /

*
*
*
*
*
*

#include <stdlib.h>
#include <stdio.h>
#include <vector>

#include <iostream>

u

sing namespace std;

int main(int argc, charxxargv)

{

// number of data points in dose response
int numpoints = atoi(argvI[1]);

// read in response values

vector<double> ydata(numpoints);

for(int 1 = 0; i < numpoints; i++)
ydata[i] = atof(argv[i+2]);

// find maximum and minimum response values
double max = ydatalnumpoints-1];
double min = ydatalo];
for(int 1 = 0; i < numpoints; i++)
{
if(ydatali]l > max)
max = ydatalil];
if(ydatali]l < min)
min = ydatalil];

}

// calculate values for 90%, 50%, and 10% response
double ninety = (max - min)*0.9 + min;

double fifty = (max — min)*0.5 + min;

double ten = (max - min)*@0.1 + min;

// read in dose values

vector<double> xdata(numpoints);

for(int 1 = 0; i < numpoints; i++)
xdatal[i]l = atof(argv[i+2+numpoints]);

// identify indexes bracketing 10%, 50%, and 90% response
int tenm = 0, tenp = 1;
int ninem = numpoints - 2, ninep = numpoints - 1;
int fifm = @, fifp = numpoints-1;
for(int 1 = 0; i < numpoints; i++)
{
if(ydatali] > ten)
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{

tenm = i-1;
tenp = i;
break;
}
}
for(int 1 = @; i < numpoints; i++)
{
if(ydatal[i] > fifty)
{
fifm = i-1;
fifp = 1i;
break;
}
}
for(int i = numpoints-1; i >= 0; i—-)
{
if(ydatali]l < ninety)
{
ninem = 1i;
ninep = i+1;
break;
}
¥

// use linear interpolation between bracketing indexes to estimate
// doses for 10%, 50%, and 90%

ten -= ydataltenm];

ten /= (ydatal[tenp] - ydata[tenm]);

fifty —-= ydatalfifm];

fifty /= (ydatal[fifp] - ydatal[fifm]);

ninety -= ydatalninem];

ninety /= (ydatalninep] - ydatalninem]);

double tenint = (xdataltenp] - xdatal[tenm])xten + xdatal[tenm];
double nineint = (xdatalninep] - xdatalninem])x*ninety + xdatalninem];
double fifint = (xdatal[fifp] - xdatal[fifm])xfifty + xdatal[fifm];
// write to stdout
cout << max << "\t" << tenint/nineint << "\t"
<< fifint << endl;

return 0;
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A.3 runSimulations.py

#

'/usr/bin/python

B e e e e B e S e e

HHHHHFHHR

runSimulations.py
Jaline Gerardin 2010

Given a parameter file, the function runOneGroup simulates circuit
response to inputs of various duration. Temporal dose responses and
kintic filtering metrics (temporal ultrasensitivity score and
trigger time) are calculated and outputed to file.

B e e e e e e e e e e

import commands
import os

HOMEDIR = '/netapp/home/gerardin/noise/"'

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
d

.f

runOneGroup reads in parameters from file and outputs a temporal
dose response and kinetic filtering metrics for each parameter set
that ran successfully.

runOneGroup's 'program' argument is the code that simulates circuit
response to input.

required format for parameter file:

line 1: basal input, change in input, node logic for 3 nodes,
topology ID number, starting parameter ID number

subsequent lines: 26 kcat's and Km's for each line. Link regulation
type (activator, inhibitor, absent) is coded in kcat values
(positive, negative, @ respectively)

Temporal dose responses are outputed to rundir and kinetic filtering
metrics are outputed to directory stem_[node A logic] [node B

logic] [node C logic]
ef runOneGroup(program, paramfile, rundir, stem):

# open parameter file and read in settings in first line

finparam = open(paramfile)

settings = finparam.readline()

[base_input, change, Aand, Band, Cand, topnum, circuit_index] = I[n
or n in settings.split()]

circuit_index = int(circuit_index)

# file for storing temporal dose response curves
rawoutfile = rundir + 'raw/data_' + str(topnum)

# file for storing temporal dose reponse metrics

metdir = HOMEDIR + stem + '_' + Aand + Band + Cand + '/'
outfile = metdir + 'data_' + str(topnum)

# start indexing parameters at circuit_index
param = circuit_index
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# input durations to test

intimes = [0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 800, 1000, 2000,
3000, 5000, 6000, 8000, 10000, 20000, 50000]

# for each parameter set in parameter file
for thisparam in finparam.readlines()
print 'running top ' + str(topnum) + ' param ' + str(param)

data = [] # stores maximum output amplitudes
times = [] # stores input durations
params = ' '.join(thisparam.split())

# try to initialize the circuit
initialization = runOneTime(program, intimes[@], base_input,
change, Aand, Band, Cand, params, '')
# if circuit did not reach steady state
if(initialization < 0)
param += 1
continue # continue to next parameter set

# apply shortest input duration
diff@ = runOneTime(program, intimes[@], base_input, change,
Aand, Band, Cand, params, initialization)
# if error in simulation
if diffo < 0 :
param += 1
continue # continue to next parameter set

# apply longest input duration
difflast = runOneTime(program, intimes[len(intimes)-1],
base_input, change, Aand, Band, Cand, params, initialization)
# if amplitude is too small or amplitude is identical for
shortest and longest inputs
if(difflast < 10%x-30 or abs(difflast - diff@) < 10%*x-30)
param += 1
continue # continue to next parameter set

# store shortest input duration and output amplitude
times.append(intimes[0])
data.append(diffo)

# check that all input duration simulations finished without

error
allok =1

# test the remaining input durations
for i in range(1, len(intimes)-1)
next = runOneTime(program, intimes[i], base_input, change,
Aand, Band, Cand, params, initialization)
if next < @ : # if error in simulations, break out of loop
allok = 0
break
# store output amplitude and input duration
data.append(next)
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times.append(intimes[i])

# starting with 6th input duration, check if output
amplitude is equivalent to amplitude for longest input duration

if i > 4 and abs(next - difflast) < 10xx-15 : # if so, skip
remaining input durations and break out of loop
break

# if simulation error occurred, continue to next parameter set
if allok == :

param += 1
continue

# if all input durations were run, append data for longest
duration

if len(times) == len(intimes) - 1 :
data.append(difflast)
times.append(intimes[len(intimes)-11)

# record maximum output amplitudes to file
with open(rawoutfile, 'a') as fout :

fout.write(str(topnum) + '\t' + str(param) + '\t')
for i in range(len(data)):

fout.write(str(datali])+'\t")
fout.write('\n")

# calculate temporal dose response metrics and write to file if
calculations were error-free

ultradata = getultra(times, data)
if len(str(ultradata)) > @ and ultradata
with open(outfile, 'a') as fout :

fout.write(str(topnum) + '\t' + str(param) + '\t' +
str(ultradata) + '\t' + str(max(data) - min(data)) + '\n')

= -1:

# increment parameter tracker
param += 1

finparam.close()

# run simulation of one parameter set, one input duration
def runOneTime(program, intime, base_input, change, Aand, Band, Cand,
params, initialization)

line = commands.getoutput('%(program)s %(intime)s %(base_input)s
%(change)s %(Aand)s %(Band)s %(Cand)s %(params)s %(initialization)s' %
vars())

try :
data = [float(n) for n in line.split()]

except ValueError:

print line

return -1

if(datal[o] == -1)

: # if circuit could not reach steady state
during initialization, return error
return -1
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if initialization == : # if in initialization phase, return
initial steady state
return line

if datal[10] == -1 or len(data) < 24 : # if something went wrong
during simulation, return error
return -1

return datal[14] # otherwise return maximum output amplitude
# calculate temporal dose response metrics
def getultra(times, data)

# program used to calculate temporal dose response metrics
program = 'doseResponseMetrics’

# calculate metrics
numpoints = len(times)

mytimes = ' '.join(['%.2f'%x for x in times])
mydata = ' '.join(['%.15f'%x for x in datal)
TUmetrics = commands.getoutput(HOMEDIR + program + ' ' +

str(numpoints) + + mydata + ' ' + mytimes)

# if error in calculating metrics, return -1
if ('nan' in TUmetrics or 'inf' in TUmetrics)
return -1

# return metrics
return TUmetrics
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Appendix B

PARAMETERS USED TO CONSTRUCT FIGURES

Figure Circuit Link kcat Km
4.1 1-node positive Input 2.09411 3.37287
feedback OR AA 1.5531 0.06026
A deactivator 3.24638 | 0.0415
4.2 top 1-node positive Input 3.05351 31.369
feedback OR AA 3.34811 13.2434
A deactivator 0.44648 | 0.0062
4.2 bottom | 1-node positive Input 0.19724 | 7.14496
feedback OR AA 3.74628 | 28.7409
A deactivator 0.27277 | 0.02429
4.3 1-node positive Input 4.33112 0.14962
feedback AND AA 0.94493 | 0.06173
A deactivator 0.10195 12.7057
4.4 top 1-node positive Input 2.85365 | 0.00429
feedback AND AA 6.9024 8.67961
A deactivator 1.13868 | 65.013
4.4 bottom | 1-node positive Input 1.7402 0.00135
feedback AND AA 0.13728 | 0.00123
A deactivator 0.31915 | 95.4993
4.5 2-node positive Input 9.79039 | 6.56901
feedback AND AB 1.58489 | 0.13474
BA 5.80497 | 0.00314
A deactivator 3.79665 61.0239
B deactivator 1.92575 0.00387
4.6 3-node double Input 1.71791 25.704
inhibition AB 1.03134 | 0.00245471
BC 496821 | 0.00389493
A deactivator 0.493856 | 0.0989692
B activator 0.29964 2.43781
C activator 7.67361 0.21208
4.7 top 3-node double Input 0.680769 | 34.4747
inhibition AB 1.70687 | 0.00958297
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BC 0.591834 | 0.00338844
A deactivator 0.560273 | 0.0615177
B activator 0.810588 | 23.632
C activator 0.846837 | 0.351156
4.7 bottom | 3-node double Input 0.128115 | 28.6748
inhibition AB 410771 0.00145714
BC 4.79071 0.0273842
A deactivator 3.47696 50.2343
B activator 0.105439 | 0.00858025
C activator 1.95794 0.213059
4.8 2-node double Input 0.74611 0.13725
inhibition AB 0.29147 0.01939
BA 3.6191 0.00254
B activator 0.74405 71.6143
4.9 top 2-node double Input 2.95529 | 0.00217
inhibition AB 0.24729 0.00168
BA 4.58775 0.05689
B activator 0.34277 43.8026
4.9 bottom | 2-node double Input 2.98263 0.02121
inhibition AB 0.65433 0.01152
BA 7.38244 0.63023
B activator 0.15689 0.52541
4.10 Buffering bistable Input 0.565458 | 0.00248599
inverter AB 3.85301 15.1705
AC 0.125314 | 0.00300608
BA 1.28529 0.0295801
BB 0.153957 | 0.296483
A deactivator 0.298813 | 0.168461
C activator 2.47172 86.3973
4.11 top Buffering bistable Input 4.74242 17.5792
inverter AB 5.90745 3.2961
AC 0.1293 0.511093
BA 1.69824 22.6725
BB 0.947109 | 1.15744
A deactivator 0.289601 | 10.1625
C activator 5.14991 28.5759
4.11 Buffering bistable Input 1.35644 | 0.0658415
bottom inverter AB 1.69434 1.26619
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AC 1.39959 0.0156315
BA 6.01174 68.3912
BB 0.137025 | 0.00165386
A deactivator 6.20583 82.5087
C activator 7.30802 13.9476
4.12 top Buffering bistable Input 3.29458 | 4.72607
inverter AA 0.657355 | 4.61318
AC 0.626037 | 1.1272
BA 0.574116 | 2.63027
BB 1.1102 0.0171396
CA 0.181886 | 5.2723
CB 8.34449 0.00102565
B deactivator 4.67951 1.55597
C activator 0.236483 | 4.9545
4.12 Buffering bistable Input 1.54028 | 0.0145211
bottom inverter AC 1.82642 0.0021752
BB 1.32617 0.00710395
BC 7.05342 0.042462
CB 5.47772 0.0185994
A deactivator 5.83983 0.328473
B deactivator 2.834 0.428549
C activator 0.100415 | 0.0152581
4.13 Coherent feed Input 1.67109 | 9.98849
forward AND AB 0.196426 | 4.98884
AC 4.75554 0.149796
BC 2.90402 0.0959401
A deactivator 0.180053 | 0.724436
B deactivator 1.05779 4.43098
C deactivator 1.61287 0.0110917
4.14 top Coherent feed Input 0.430527 | 0.172783
forward AND AB 0.120448 | 0.00305141
AC 9.38426 0.02509
BC 5.32844 0.00387258
A deactivator 0.585599 | 0.109018
B deactivator 3.4261 1.21339
C deactivator 2.76949 0.063314
4.14 Coherent feed Input 1.69044 | 0.187932
bottom forward AND AB 0.774105 | 7.02263
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AC 2.37575 0.450298
BC 3.96096 0.102329
A deactivator 0.677642 | 0.00119536
B deactivator 6.54034 47.152
C deactivator 4.44631 0.0224388
4.18 Coherent feed Input 0.45288 | 0.00119
forward AND circuit | AB 2.07329 0.00659
A AC 7.2144 0.20855
BC 0.10214 0.00491
A deactivator 0.2638 2.08857
B deactivator 2.83635 0.02791
C deactivator 0.18782 0.00364
Coherent feed Input 3.18684 | 0.0402
forward AND circuit | AB 0.1457 15.6513
B AC 3.70817 0.00194
BC 0.67459 0.00393
A deactivator 0.20398 0.02658
B deactivator 0.75903 1.71771
C deactivator 0.31307 0.00458
Coherent feed Input 0.85925 | 0.71146
forward AND circuit | AB 8.02269 13.9508
C AC 5.41427 0.004
BC 1.21222 1.93108
A deactivator 0.10277 0.00828
B deactivator 0.104 0.27428
C deactivator 1.22524 0.00118
Coherent feed Input 1.1551 0.17995
forward AND circuit | AB 2.71269 3.74498
D AC 7.2711 0.01006
BC 1.22783 0.01661
A deactivator 0.11411 0.00678
B deactivator 1.11527 0.01402
C deactivator 1.5313 0.00394
Coherent feed Input 0.3525 0.10859
forward AND circuit | AB 0.4202 0.00333
E AC 0.99165 0.06039
BC 8.82673 0.01361
A deactivator 0.58833 0.17974
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B deactivator 0.1057 0.00447
C deactivator 6.08808 0.02549
Coherent feed Input 1.6641 86.9461
forward AND circuit | AB 1.44344 0.00487
F AC 8.02971 0.0308
BC 8.89201 0.49017
A deactivator 0.44974 2.24285
B deactivator 1.6761 6.59478
C deactivator 6.18671 0.00707
Coherent feed Input 0.9637 14.6707
forward AND circuit | AB 0.16929 0.02395
G AC 3.50187 0.07134
BC 3.23773 0.14062
A deactivator 0.15485 23.2943
B deactivator 0.1416 11.2954
C deactivator 0.26436 0.00193
Coherent feed Input 1.63878 | 2.261
forward AND circuit | AB 1.01845 0.00336
H AC 2.54706 0.01789
BC 9.96965 0.06219
A deactivator 0.20989 0.00236
B deactivator 0.10858 26.9836
C deactivator 6.37206 0.01798
4.19 3-node double Input 0.29239 70.3396
inhibition AB 0.1641 0.00132
BC 0.60292 0.00134
A deactivator 0.65322 1.97129
B activator 0.21034 18.6509
C activator 4.40555 30.6761
3-node double Input 0.29239 70.3396
activation AB 0.1641 0.00132
BC 0.60292 0.00134
A deactivator 0.65322 1.97129
B deactivator 0.21034 18.6509
C deactivator 4.40555 30.6761
4.20 Decreasing Activator 1 0.5
deactivator Deactivator 1 0.5
Increasing activator | Activator 1 0.5
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Deactivator 1 0.5
4.22B Top, no Input 3.92121 23.7657
perturbation AB 0.67911 0.57372
AC 4.67584 0.00267
BC 9.08071 0.00136
A deactivator 1.25147 79.919
B deactivator 1.499 0.02126
C deactivator 3.7418 0.00244
Top, increase kcat Input 3.92121 23.7657
AB 6.7911 0.57372
AC 4.67584 0.00267
BC 9.08071 0.00136
A deactivator 1.25147 79.919
B deactivator 1.499 0.02126
C deactivator 3.7418 0.00244
Top, decrease kcat Input 3.92121 23.7657
AB 0.067911 | 0.57372
AC 4.67584 0.00267
BC 9.08071 0.00136
A deactivator 1.25147 79.919
B deactivator 1.499 0.02126
C deactivator 3.7418 0.00244
Bottom, no Input 0.34521 73.969
perturbation AB 499436 | 9.4504
AC 1.43107 0.00156
BC 4.032 0.00182
A deactivator 0.13686 15.9074
B deactivator 0.1614 0.00865
C deactivator 0.45442 0.00627
Bottom, increase Input 0.34521 73.969
kcat AB 49.9436 9.4504
AC 1.43107 0.00156
BC 4.032 0.00182
A deactivator 0.13686 15.9074
B deactivator 0.1614 0.00865
C deactivator 0.45442 0.00627
Bottom, decrease Input 0.34521 73.969
kcat AB 0.499436 | 9.4504
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AC 1.43107 0.00156
BC 4.032 0.00182
A deactivator 0.13686 15.9074
B deactivator 0.1614 0.00865
C deactivator 0.45442 0.00627
4.24 left Coherent feed Input 1.91602 0.00959401
forward AND AB 0.193821 | 39.5367
AC 5.03501 0.0630957
BC 7.46449 0.00286088
A deactivator 0.10666 22.1055
B deactivator 8.60201 96.1612
C deactivator 0.867361 | 0.00578096
4.24 right | Coherent feed Input 0.497966 | 0.0824138
forward AND AB 3.1521 0.0472063
AC 1.18522 0.00430527
BC 2.3518 0.0161622
A deactivator 0.144145 | 14.1091
B deactivator 6.20012 0.0840427
C deactivator 1.01065 0.00191205
4.31 1-node positive Input 2.09411 3.37287
feedback OR AA 1.5531 0.06026
A deactivator 3.24638 0.0415
4.32 1-node positive Input 4.33112 0.14962
feedback AND AA 0.94493 0.06173
A deactivator 0.10195 12.7057
4.33 3-node positive Input 7.82348 | 4.30527
integrator | feedback OR AC 0.393007 | 0.496021
BC 3.5678 0.00140605
CC 1.17382 0.0325462
A deactivator 0.116466 | 0.238781
4.33 3-node positive Input 9.89464 0.187499
absolute feedback AND AC 0.348819 | 0.0231739
timer BC 0.273401 | 3.97649
CC 9.48855 5.13452
A deactivator 1.86466 0.512271
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