
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

On Improving the Availability of Replicated Files

Permalink

https://escholarship.org/uc/item/7rm9r36h

Authors

Long, Darrell
Paris, Jehan-Francois

Publication Date

1987-03-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rm9r36h
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

On Improving the Availability of Replicated Files
Darrell D. E. Long

Jehan-Fran~ois Paris

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, San Diego
La Jolla, California 92093

Abstract

To improve the availability and reliability of files the data
are often replicated at several sites. A scheme must then be
chosen to maintain the consistency of the file contents in the
presence of site failures. The most commonly used scheme
is voting. Voting is popular because it is simple and robust:
voting schemes do not depend on any sophisticated message
passing scheme and are unaffected by network partitions.

When network partitions cannot occur, better availabil­
ities and reliabilities can be achieved with the available copy
scheme. This scheme is somewhat more complex than vot­
ing as the recovery algorithm invoked after a failure of all
sites has to know which site failed last. We present in this
paper a new method aimed at finding this site. It consists
of recording those sites which received the most recent up­
date; this information can then be used to determine which
site holds the most recent version of the file upon site re­
covery. Our approach does not require any monitoring of
site failures and so has a much lower overhead than other
methods.

We also derive, under standard Markovian assumptions,
closed-form expressions for the availability of replicated files
managed by voting, available copy and a naive scheme that
does not keep track of the last copy to fail.

1. Introduction

To improve the reliability and availability of files, the data are often
replicated at several sites. A replicated file is an abstract data object
with the same semantics as an ordinary file; by storing copies of the file
data at several sites the reliability and the availability of a replicated
file object are increased.

The existence of several copies of the filedata residing at distinct
sites raises the issue of file consistency. It is unreasonable to require
the users of a replicated file system to be responsible for the consis­
tency of their files; therefore, to insure the consistency of the file con­
tents, a policy for maintaining the replicated data must be selected.
Several schemes have been proposed, including: voting,2.3.4.5.6.12 vot­
ing with witnesses,9 dynamic voting1 and available copy.8

Voting schemes insure the consistency of replicated files by hon­
oring read and write requests only when an appropriate quorum of
the sites holding copies of the file can be accessed. This method re­
quires that the file data be replicated on at least three sites before
there is an improvement in the availability over that of an ordinary
unreplicated file.

Other schemes, such as dynamic voting, improve on the avail­
ability provided by a simple voting algorithm. Unfortunately, these
methods provide this increased availability at the cost of increased
network traffic and computation.

In the absence of network partitions, an available copy scheme
greatly increases availability at a low cost. When a total failure oc­
curs, a naive available copy scheme that requires all sites to recover
exhibits poor performance because all sites are required to be repaired
before the correct state of the file can be ascertained. If we want to

CH2411-7/87/0000/0077$Ol.OO © 1987 IEEE
77

improve on this worst-case performance it is important to detect the
last site to fail.

This paper is presented in four sections: Section 2 discusses con­
sistency algorithms including voting schemes and the available copy
scheme, Section 3 presents our method for detecting the last site to
fail and Section 4 presents an analvsis of voting, available coPy and

naive available copy with some surprising results.

2. Consistency Algorith!TIs
In its simplest form, votin~·3.4.5,6.12 assumes that the correct state
of a replicated file is the state of the majority of its copies. Ascer­
taining the state of a replicated file requires collecting a quorum of
the copies. Should this be prevented by one or more site failures, the
file is considered to be unavailable.

This scheme can be refined by introducing different quorums for
read and write operations or by allocating different weights, including
none, to each copy. Consistency is guaranteed so long as:

1. the write quorum is high enough to disallow simultaneous writes
on two disjoint subsets of the copies, and

2. the read quorum is high enougb to disallow simultaneous reads
and writes on two disjoint subsets of the copies.

These conditions are siJ;Ilpleto verify, and account for much of
the conceptual simplicity and the robustness of voting schemes. A
problem with voting is that it requires at least three copies to im­
prove file availability over that of an ordinary unreplicated file. Since
it disallows all file accesses when a majority of the copies are not
accessible, it considerably reduces file availability in the presence of
site failures. Several novel voting algorithms have been developed to
overcome these limitations.

One of the authors has proposed elsewhere9•1o to replace some
copies by witness copies that contain all of the state information but
none of the user specified data. Like ordinary copies, witnesses vote
and maintain a record of the file status. Since they do not contain
any information about the contents of the file, they only require a
negligible, fixed amount of storage. The maintenance of two copies
and one witness is easier than maintaining three copies and incurs
less network traffic. Analysis of the availability of a file implemented
using witness copies has shown this to be a very useful approach.

Dynamic voting2 is another algoritbm capable of functioning in
the presence of network partitions and site failures. Dynamic vot­
ing adjusts the necessary quorums of copies required for update or
read operations according to the changing states of the network. The
scheme improves file availability, but in doing so can incur heavy net­
work traffic.

When network partitions are known to be impossible, available

copy schemes provide a simple means for maintaining file consistency.
Available copy schemes are based on the observation that so long as
at least one site has been continuously available it is known to hold
the most recent version of the file data.

This work was supported in part by a grant from the NCR Co­
poration and the University of California MICROprogram.

I

The update rule for an available copy scheme is extremely simple:
write to all available copies. Since all available copies receive each
update, they are kept in a consistent state: data can then be read
from any available copy. If there is a copy of the file data on the
local site, then the read operation can be done locally, avoiding any
network traffic.

When a site recovers following a failure, if there is another site
which holds the most recent version of the file then the recovering site
can repair immediately. A complication arises in the event of total
failure: it is not known by the recovering sites which of them hold the
most recent version of the file until the last site to fail can be found.
In order to speed recovery, it is desirable to ascertain as quickly as
possible the last site, or set of sites, that failed.

In the original proposal for the available copy scheme,8 the goal
of detecting the last site to fail was achieved by maintaining several
sets of failure information, including: all sites participating in the
replication of the file, those sites which have been specifically included
and those which sites have been specifically excluded. An included
site is one which is known to hold a copy of the most recent version of
the file data, an excluded site is one which has failed and that failure
has been detected by an operational site.

When a site s fails another site t must detect that failure and
execute the transaction exclude(s). A failure detection mechanism
is assumed to exist and it is assumed to be foolproof. When a site t
repairs following a failure, it attempts to locate another site s which
is operational. If such a site can be found, then t will repair from
s and then request s to execute the transaction include(t). In the
presence of total failure, the information maintained by the include
and exclude transactions is used to compute the last site to fail; the
most recent version of the file data can then be found by examining
the version numbers of the sites.

The assumption was made that failures are easily detected and
notification of their occurrence can be broadcast to all surviving sites.
In general, failures are not easy to detect in a reliable manner. Time­
outs are the method usually employed for detecting failures, but they
are time consuming and unreliable in the case of a heavily loaded site.
An alternative would be to have daemon processes which poll all of
the sites to determine their status, but this introduces a window of
vulnerability proportional to the time between polls and also increases
network traffic.

The scheme that we propose is much simpler in that it only
requires the information about site availability to be broadcast each
time the file is modified. This leads to a simpler implementation and
to decreased network traffic.

3. An Improved Scheme

We present a method which requires only that the availability in­
formation be brought up to date when the file is modified or when
a repair operation occurs. Our scheme assumes a fixed set of sites
connected via a network which is free of partitions.

Definition 3.1. The was-available set, denoted W" for a site s is
the set of all sites that received the most recent update and all of
those sites which have repaired from site s.

The was-available sets represent those sites which received the
most recent change to the file data. We posit the existence of an
atomic broadcast mechanism; this makes it possible to guarantee that
those sites which received the most recent update will appear in the
was-available set of each operational site. This condition can be re­
laxed by ascertaining which sites are operational when the file is first
opened and by sending this information along with the first update;
the second update will contain the set of sites which received the first
update and so forth. By delaying the information in this way, com­
munication costs are minimized at the expense of some increase in
recovery time.

Definition 3.2. Let S = {S1"'" sn} be the set of sites which hold
copies of the file data; then the closure of a was-available set W"

written C*CW,), is given by:

78

CkCW,) = U Ck-1CWt)
tEW,
n

C*CW,) = UC;CW,)
;=0

Definition 3.3. We say that a site t is a successor of a site sift
repaired from sand s subsequently failed.

For the purposes of this paper, we consider the transitive closure
of the successor relation; thus, for a set of sites S = {S1'"'' sn},

saying that Sj succeeds s; means that there can be any number of
intermediate successors up to n - 2.

Definition 3.4. A site that has ceased to be operational and that
has not been repaired is said to be a failed site.

A failed site is one that has ceased to function due to hardware
or software failure. We assume clean failure; if a site fails it simply
halts, malevolent failures are not tolerated. This fail-stopll behavior
can be simulated by an appropriate software layer and we will not
consider it further.

Definition 3.5. A site that has been repaired but is not yet known
to hold the most recent version of the file is said to be unavailable or
comatose.

A comatose site is one that has been repaired but the current
state of the file is not known. Sites enter this state following a total
failure and remain there until the most recent version of the file data
can ·be found by examining the version numbers of the other sites.

Definition 3.6. A site that has been continuously operational or
that has been repaired and holds the most recent version of the file
is said to be available.

We propose an algorithm that has a better worst case behavior
than a naive available copy scheme that does not attempt to detect the
last site to fail. By modifying the availability information of the sites
only when an update occurs we decrease the amount of the network
traffic. Our algorithm behaves just as the original available copy
algorithm except in the case of total failure: when a site s recovers
following total failure it utilizes the availability information by waiting
for only those sites in C*CW,) to recover. The algorithm is given below
as three cases, and more formally in Figure 1.

1. When a site s recovers from a failure it finds that W, = {s}.
This indicates that s was the last site to fail and can be made
immediately available.

2. When a site t recovers from a failure it finds another site s already
available. In this case t can repair from s; t is then included in
W, and W, is set equal to the modified W,.

3. When a site t recovers from a failure it finds no other sites avail­
able. In this case t must wait for all other sites in C*CWt) to
recover. A site s which holds the most recent version of the file
data must be in C*CWt). Site t can then repair from site s; t is
then included in W, and Wt is set equal to the modified W,.

The following theorem establishes the correctness of our update
and recovery policies. The proof is divided into four parts, considering
the cases of update, site failure and the three cases introduced by the
recovery algorithm.

Theorem 3.1. Following an update operation, a site failure or an
application of the recovery algorithm the following invariant holds:
'VsE s, C*CW,) contains the name of a site that holds a copy of the
most recent version of the file.

I
r

[
l
i

I

procedure RECOVERY is
begin

state(s) <- comatose
select

when all sites in C*(W,) have recovered =>

let t E C*(W,):':) Vu E C*(W,),version(t) 2: version(u)
or

when 3u E S:':) state(u) = available =>
let t be any such available site

end select

repair s from t
W,<-WtU{s}
Wt<-W,

state(s) <- available
end RECOVERY

Figure 1: Recovery Algorithm

Proof: Assume that the invariant holds. This is obviously true for the
initial state where all sites are available and Vs E S, W, = S. From
this state there are four ways in which the state of the system can be
changed: an update can occur, a site can fail, a site can recover and
find an active copy already available, or a site s can recover and be

required to wait for all sites in C*(W,) to recover. We consider each
case separately.

1. When an update occurs, all sites which are currently available
receive the update. The effect is to make the was-available sets
of all available sites consistent. The was-available set of each

active site now contains the names of all available sites; the was­
available sets of the failed sites remain unchanged.

2. When a site failure occurs, those sites which fail have as their
was-available sets the names of the sites which received the most

recent update. This is trivially true in the case of total failure
since for each site s, sEW, and no more updates can occur. If
a site s fails then W, contains the set of sites which received the
last update. Let t E W, be one of those sites. If t subsequently
fails and an update occurs following its demise then some site
u which is a successor of t will hold the most recent version of

the file data, otherwise t holds the most recent version of the file
data.

3. Suppose that when site s recovers there is a copy of the file at
site t which is available. The copy at site s will be repaired from
the copy at site t according to the recovery algorithm. The state­
ments W, <- Wt U {s} and W, <- W, insure that the invariant
holds. If site t fails following the repair, site s or one of its suc­
cessors will hold the most recent version of the file; in that case
the invariant will be preserved due to the transitivity of the C*
relation.

4. Similarly, when all of the sites in C*(W,) have recovered the site
t that holds the most recent version of the file can be found. The

repair is accomplished as in the previous case and the invariant
is preserved. It should be noted that when a site s recovers and
finds W, = {s} that s can be made available immediately sinc~

C*(W,) = {s}.

It should be noted that total failures do not often occur in prac­
tice, and when they do it is most often because of some catastrophic
event such as a power failure. Following a power failure, it is almost
always the case that all of the sites will recover within a few moments
of one another.

A naive available copy scheme does not attempt to detect the
last site to fail. Because it does not maintain availability information
about sites holding copies ofthe file data, network traffic is reduced at
the cost of introducing poor worst-case behavior. The naive scheme
operates as the previous scheme would if the was-available sets were
fixed so that Vs E S, W, = S, where S is the set of all sites. The
algorithm for such a scheme is given below as two cases, and more
formally in Figure?

79

procedure SIMPLE.RECOVERY is
begin

state(s) <- comatose
s elec t

when all sites have recovered =>

let t E S:':) Vu E S, version(t) 2: version(u)
or

when 3u E S:':) state(u) = available =>
let t be any such available site

end select

repair s from t
state(s) <- available

end SIMPLE.RECOVERY

Figure 2: N iive Recovery All!;orithm

1. When a site t recovers from a failure it finds another site s already
available. In this case t can repair from s.

2. When a site t recovers from a failure it finds no other sites avail­
able. In this case t must wait for all other sites to recover. The
site s which holds the most recent version of the file data can

then be found by examining the version numbers of all sites.

4. Availability Analysis

In this section, we compare the availabilities of replicated files man­
aged by voting, available copy and a simplified version of the avail­
able copy scheme. In all three cases, we assume that the copies of the
replicated file reside on distinct sites of a computer network. Sites
are subject to failures; these failures may either involve the site itself
or its communication interface. When a site fails, a repair process is
immediately initiated. The repair process will never fail although it
may take an arbitrary amount of time before completion. Should sev­
eral sites fail, the repair process will be performed in parallel on these
failed sites. We also assume that the repair process will attempt to
bring up to date all the copies that might have become obsolete dur­
ing the time the site under repair was not operational. Such attempts
will not be always successful since they depend on the availability of
up-to-date copies of the replicated file.

We assume that individual site failures are independent events
distributed according to the Poisson law. In other words, the prob­
ability that a given site will experience no failure during a time in­
terval of duration t will be given by e-~' where .\ is the failure rate.
Similarly, we will require that individual site repairs are independent
events distributed according to the Poisson law. The probability that
a given site will be repaired in less than t time units will be given by
1 - e-I't where /10 is the repair rate.

Although the assumption of a constant failure rate .\ is usually
reasonable, the assumption of exponential repair times is harder to
defend on general grounds. However, both assumptions are neces­
sary to represent our system by a Markov process8 with a reasonable
number of states.

The availability A of a system is the limiting value of the prob­
ability p(t) that that system will be operating correctly at time t.

A = lim p(t)t_oo

Since the available copy scheme does not operate correctly in
the presence of partitions, we will assume that the communications

network linking the several sites where the physical copies of the repli­
cated files reside cannot fail.

4.1. Voting

We will restrict our analysis to the case where all sites containing
copies have equal failure rates .\ and equal repair rates /10. Under
these conditions, it is common to assign equal weights to all the copies
of the replicated file. Equal weights. cause a particular problem for
replicated files with an even number of copies. Draw conditions will
occur every time an equal number of copies are up and down. To
solve these ties, we will have to slightly adjust the weights of the

Figure 3: State-Transition-Rate Diagram for Voting

and

(n even)

1

Av(1) = Av(2) = 1+ p
1+ 3p

Av(3) = Av(4) = (1+ p)3

1+ 5p + 10p2

Av(5) = Av(6) = (1 + p)5

n/2+1 (n .)pn-j (ni2)pn/2
"" n-J +Av(n) = ~ (1 + p)n 2(1 + p)n)="

Should there be an even number of copies, we will adjust the
weights of the copies in order to break up the ties. The best that we
can do will be to allow access in one half of these ties. The availability
of the file will then be given by

4.2. Available Copy

Recall that the available copy scheme distinguishes between the copies
that have fully recovered from a failure-the available copies-and
those that have still to be brought up-to-date and remain unavailable
or coinatose. Comatose copies are only present after all copies of the
replicated file have failed. They can fail and recover like available
copies do. Once all the copies of the file have failed, the recovery
algorithm will wait until the copy that failed last recovers, mark it as
being available and use it to bring all other copies of the file up-to­
date.

The state-transition-rate diagram for a replicated file having n
copies will have 2n states. The first n states labelled from 51 to 5n will
represent the states of the file when 1 to n copies are available; n - 1
new states labelled from 5~ to 5~_1will represent the states of the file
when all copies ofthe file have failed and 1 to n-1 copies not including
the copy that failed last have recovered but remain unavailable. As
for voting, state 50 will represent the situations where all copies of
the file have failed and none have yet recovered.

As seen in Figure 4, transitions between states obey the following
rules:

1. State 5n has one outgoing transition with rate n). going to state
5n-1: this transition corresponds to the failure of one of the n
available copies;

2. All states 5j with j = 1, ... , n - 1 have two outgoing transitions:
one with rate (n - j)Jl that goes to state 5Hl and corresponds
to the recovery of one failed copy while the other one with rate
j). goes to state 5j-1 and corresponds to the failure of one of the
available copies;

3. State 50 has two outgoing transitions: one with rate Jl that goes
to state 51 ap.dcorresponds to the recovery of the copy that failed
last while the other one with rate (n - 1)Jl goes to state 5~ this
transition corresponds to the recovery of one of the other n - 1
failed copies;

4. All states 5; with j = 1, ... , n - 2 have three outgoing tran­
sitions: one with rate Jl goes to state SH1 and corresponds to
the recovery of the copy that failed last, another one with rate
(n - j - 1)Jl goes to state S;+1 and corresponds to the recov­
ery of one of the other n - j - 1 failed copies while the last one
goes to state S;_1 and corresponds to the failure of one of the
unavailable copies;

In particular, we have

(n odd)

where p =).//J is the ratio of the failure rate over the repair rate. If we
have an odd number of copies all with equal weights, the availability
Av(n) of the file will be given by

n>'Pn = /JPn-1

((n - 1).+ /J)Pn-1 = n).Pn + 2/JPn-2

(j>. + (n - j)/J)Pj = (j + 1).pj+1 + (n - j + 1)/JPj-1

where Pi denotes the probability that the file is in state 5j• One can
easily derive from them the equilibrium state probabilities Pn, ... , Po,
which are given by

1
Pn = (1 + p)n

copies in such a way that all ties will be removed without reversing
any existing quorum.

The state of this file can then be conveniently represented by
the current number of copies that are available at any time. Failures
and repairs of sites are the only events that can change the state of
the system. Since processes resulting in these two events were as­
sumed to be Markovian, the probability of two such events occurring
simultaneously is zero.

Suppose that the system was initially in the state 5n where all
current copies of the file were available. This state will be left for
the state 5n_1 if one of the n sites fails. Since each site failure is
an independent event, the total rate at which state 5n will be left is
equal to n times the individual failure rate>. of a single site. The
state 5n_1 will in turn be left if either:

1. the only site that was down is repaired and the system returns
to the state 5n, or

2. one of the n - 1 sites that were operational now fails.
The rate at which the first event may occur is the repair rate of

a single site /J. The rate at which the second event may occur is equal
to n - 1 times the individual failure rate>. of a single site.

In general, the rate at which a state 5j, with 0 < j < n, may be
left will be given by j>. + (n - j)/J, as shown in Figure 3.

The equilibrium conditions for our system are given by

80

I

Figure 4: State-Transition-Rate Diagram for Available Copy

r

l
I

r
II

r

I

5. State S~_1 has one outgoing transition with rate J.L going to state
Sn and another one with rate (n - 1». going to state S~_2: the
first transition corresponds to the recovery of the last failed copy
while the second one corresponds to the failure of one of the
unavailable copies.

The equilibrium conditions for our system are given by

nAPn = J.L(Pn-1 + P~-1)

((n - l)A + J.L)Pn-1 = nAp" + J.L(2Pn-2 + P~-2)

((n - 1». + J.L)P~-1 = J.LP~-2

(jA + (n - j)J.L)pj = (j + 1)APj+1 + J.L((n - j + 1)pj_1 + pi-1)

(jA + (n - j)J.L)pJ = (j + 1».pJ+1 + (n - j)J.LPJ-1

(A + (n - 1)J.L)P1 = 2APz + J.LPo

(A + (n - l)J.L)p~ = 2Ap~ + (n - l)J.LPo

nJ.Lpo = A(Pl + pD
and

n n-l
LPi+ LP~ = 1,
i:;:;:O k=l

where Pi denotes the probability that the file is in state Si and P~
the probability that the file is in state S~. One can easily derive from
them the availability of the replicated file and which is again given
by

n

AA(n) = LPi
i::::;l

In particular, we have

1
AA(l) = -

l+p

AA(2) = 1+ 3p+ p2
(1 + p)3

A (3)= 2+9p+17p2+11p3+2p4
A (1 + p)3(2 + 3p+ 2p2)

AA(4) = 6 + 37 p+ 99p2 + 152p3 + 124p4 + 47 p5 + 6p6
(1 + p)4(6 + 13p + llp2 + 6p3)

where p =).!J.L. Note that AA(l) corresponds to the degenerate case
of a replicated file which has one single copy and is only included for
the sake of completeness.

4.3. Naive Available Copy
In the naive available copy algorithm, no record is kept of which copy
failed last. 0 nee all the copies of a file have failed, the recovery algo­
rithm will then have to wait until all copies of the file have recovered.
It will then select the copy with the highest version number, mark
it as being available and use it to bring all other copies of the file
up-to-date.

81

As seen in Figure 5, the state-transition-rate diagram for a repli
cated file of n copies will still have 2n states. As before, n of thesE
states labelled from S1 to S" will represent the states of the file when

1to n copies are available and n -1 of these states labelled from Si to
S~_1 will represent the states of the file when all copies of the file have
failed and 1 to n - 1 copies have recovered but remain unavailable.
State So will continue to represent the situations where all copies of
the file have failed and none have yet recovered.

Transitions between states will be quite similar to those observed
for the diagram for a conventional available copy algorithm with the
exception that there will be no transitions from state So to state S1

nor any transition from a state Sj with j ::;n - 2 to an available state.
By examining Figure 5, it can be seen that the transitions between
states obey the following rules:

1. State So will have now only one outgoing transition with rate
nJ.L that goes to state Si: this transition will correspond to the
recovery of any of the n failed copies;

2. All states Sj with j = 1, ... , n - 2 will have only two outgoing
transitions: one with rate (n - j)J.L will go to state Sj+1 and will
correspond to the recovery of one of the n - j failed copies while
the other one will go to state Sj_1 and will correspond to the
failure of one of the unavailable copies.

The equilibrium conditions for our system are given by

nAp" = J.L(P"-1 + P~-l)
((n - 1». + J.L)P"-1 = nAp" + 2J.LP"_2

((n - l)A + J.L)P~-1 = 2J.LP~_2

(jA + (n - j)J.L)Pj = (j + l)APj+l + (n - j + 1)J.Lpj_1

(jA + (n - j)J.L)pJ = (j + 1)).PJ+1 + (n - j + 1)J.LpJ_1

(A + (n -l)J.L)Pl = 2APz

(A + (n - l)J.L)p~ = 2Ap~ + nJ.LPo

nJ.LPo = A(Pl + pD
and

n n-l

LPd LP~ = 1,
i=O k=l

where Pi denotes the probability that the file is in state Si and P~

the probability that the file is in state S~. The availability of the
replicated file is again given by

"
ANA(n) = LPi

i=l

Figure 5: State-Transition-Rate Diagram for Simplified Available Copy

(p)

(p)

.2

.2

.15

.15

.1

.1

Three Av/tilable Copies

Three Simplified Available Copies

Three Voting Copies

Two A vailabJe Copies

Two Simplified Available Copies

Two Voting Copies

.05

.05

+-+
0--0
0--0

+---+
0--0
0--0

D.

Figure 7: Compared Availabilities for Three Copies

Figure 6: Compared Availabilities for Two Copies

o.

.92

.96

.9·1

.98

1.

.8

. 85

.95

1.

(A)

(A)
In particular, we have

where p =)..//1. Note that AN A (2) = Av (3), which means that two
copies managed by our naive available copy scheme have the same
availability as three copies managed by a voting algorithm .

4.4. Discussion

The figures 6, 7 and 8 contain the compared availabilities of repli­
cated files with two, three and four copies respectively for the three
consistency algorithms we have studied: voting, available copy and
naive available copy. In all three graphs, p varies between 0 and 0.20;
the first value corresponding to perfectly reliable copies and the latter
to copies that are repaired five times faster than they fail and thus
have an individual availability of 83.33%.

These graphs call for a few comments: First, they clearly indicate
that both the traditional and the naive available copy schemes pro­
duce much higher availabilities than voting; Second, they fail to show
any significant difference between the two available copy schemes un­
der investigation for values of p less than 0.10.

Most of today's computers are characterized by availabilities well
above 0.95 and by values of p well below 0.05. Within this range of
values of p, the availabilities of the two schemes appear to be practi­
cally the same, which could lead us to the conclusion that the naive
recovery scheme would perform as well as the conventional algorithm.
The real question is how this conclusion could apply to real replicated
files whose behavior does not always conform to the hypotheses we
introduced to build our stochastic model. Observed repair time dis­
tributions are characterized by coefficients of variation less than one.
Under such conditions, sites will tend to recover in the same order
as they failed. The last site to recover after a total failure will of­
ten be the last one that failed. When this happens, the conventional
available copy scheme will be unable to recover faster than our na"ive
algorithm as it will have to wait for the last copy to recover in order
to get the last copy that failed.

A more important limitation of our model lies in that we have
totally discounted the possibility of jrreversjble fajJures, such as disk
head crashes. Files managed by voting schemes can be protected
against such failures by requiring that all write quorums include more
than one copy. Available copy schemes are clearly more vulnerable
since they allow updates as long as one copy remains available. Our
naive scheme will perform even worse than the traditional available

82

I

(A)

copy algorithm since a manual intervention will be required to re­
cover from any total failure in which one of the failed sites cannot be
repaired.

Bibliography

[1] Davcev, D. and W. A. Burkhard, "Consistency and Recovery
Control for Replicated Files," Proceedings of the ACM Tenth
Symposium on Operating System Principles, (December 1985),
87-96 .

[2] Ellis, C. A., "Consistency and Correctness of Duplicate Database
Systems," Operating Systems Review, 11, 1977.

[3] Ellis, C. S., R. A. Floyd, "The Roe File Systems," Proceedings
of the Third Symposium on Reliability in Distributed Software
and Database Systems, 1983.

[4] Garcia-Molina, H., "Elections in a Distributed Computer Sys­
tems," IEEE Transactions on Computers, C-31, 1982, 48-59.

[5] Garcia-Molina, H. and D. Barbara, "Optimizing the Reliability
Provided by Voting Mechanisms," Proceedings of the Fourth In­
ternational Conference on Distributed Computing Systems, San
Francisco, California (May 1984), 340-346.

[6] Gifford, D. K. "Weighted Voting for Replicated Data," Proceed­
ings of the Seventh ACM Symposium on Operating System Prin­
ciples, Pacific Grove, California, (December 1979), 150-161.

[7] Gnedenko, B. V., Mathematical Methods in Reliability Theory,
Moscow, English Translation, New York, Academic Press, 1968.

[8] Goodman, N., D. Skeen, A. Chan, U. Dayal, R. Fox and D.

Ries, "A Recovery Algorithm for a Distributed Database Sys­
tem," Proceedings ofthe Second ACM Symposium on Principles
of Database Systems, Atlanta, Georgia (March 1983), 8-15.

[9] Paris, J.-F., "Voting with Witnesses: A Consistency Scheme for
Replicated Files," Proceedings of the Sixth International Con­
ference on Distributed Computing Systems, Cambridge, Mas­
sachusetts (May 1986), 606-612.

[10] Paris, J.-F., "Voting with a Variable Number of Copies," Pro­
ceedings of the Sixteenth Fault-Tolerant Computing Symposium,
Vienna, Austria. (July 1986), 50-55.

[11] Schlichting, R. D. and F. B. Schneider, "Fail Stop Processors:
An Approach to Designing Fault-Tolerant Computing Systems,"
ACM Transactions on Computer Systems, 1983, 222-238.

[12] Thomas, R. H., "A Majority Consensus Approach to Concur­
rency Control," ACM Transactions on Database Systems 4,
1979, 180-209.

.2 (p).15.1

Four Available Copies

Four Simplified AvaiJable Copies

Four Voting Copies

.05

+---+
0--0
0-0

Figure 8: Compared Availabilities for Four Copies

o .

.92

.94

.90

.98

I.

5. Conclusion

In this paper we have presented a new method aimed at improving
the performance of replicated files managed by an available copy con­
sistency scheme. Our method consists of recording those sites which
received the most recent update; this information can be used to de­

termine which site holds the most recent version of the file upon site
recovery. Unlike the original method, our approach does not require
any monitoring of site failures and has a much lower overhead.

We have also derived, under standard Markovian assumptions,
closed-form expressions for the availability of replicated files managed
by voting, available copy and a naive scheme that does not keep track
of the last copy to fail. These data clearly indicate that the two latter
schemes perform better than voting.

Acknowledgements

We wish to thank WaIter Burkhard, Bruce Martin and all the mem­

bers of the Gemini group for their help and their encouragement. We
are also grateful to Laurette Bradley for her helpful suggestions, and
to John Carroll for his help in producing the state diagrams. The first
author is especially indebted to Ernestine MCKinney for her assistance
and encouragement.

This work has been done with the aid of MACSYMA,a large sym­
bolic manipulation program developed at the Massachusetts Institute
of Technology. MACSYMAis a trademark of Symbolics, Inc.

83

l

I

