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1 Chapter 1: Introduction and Background

1.1 Abstract

Accurately segmenting biomedical images presents a significant challenge due to their complexity, com-
pounded by the labor-intensive nature of manual segmentation and the issue of insufficient data in the
healthcare industry. To tackle these challenges, my work focuses on leveraging machine learning techniques,
specifically Convolutional Neural Networks (CNNs), to address data scarcity while preserving the character-
istics of biomedical images. Chapter 1 provides essential background on biomedical image segmentation and
the machine learning techniques used to segment biomedical images. Building on this foundation, Chapter
2 presents a real-world application of region-growing algorithms applied to Digital Subtraction Angiography
(DSA) images. Using cross-validation to evaluate the accuracy of these methods is assessed, offering insights
into their efficacy for biomedical image segmentation tasks. Finally, Chapter 3 outlines future directions,
including extending the algorithm built in Chapter 2 to three-dimensional biomedical imaging data. Ex-
panding to include more data types, this study aims to enhance biomedical image segmentation techniques,
benefiting clinical decision-making and patient care.

1.2 Introduction and Background for Biomedical Image Segmentation

Image segmentation is the process of dividing an image into multiple regions, facilitating a deeper understand-
ing and analysis of digital images [2]. Each pixel in an image is categorized into its respective class through
pixel-to-pixel prediction [19]. There are two broad categories of image segmentation: semantic segmentation
and instance segmentation. Semantic segmentation categorizes an image into foreground and background,
assigning the same class to all similar objects within the image, thereby grouping together parts belonging
to the same category [19]. In contrast to this, instance segmentation not only categorizes individual objects
within the foreground but also performs semantic segmentation simultaneously, thereby categorizing each
object distinctly. Figure la displays an example of a microscopy image of Glioblastoma-astrocytoma U373
cells on a polyacrylamide substrate from the ISBI Cell Tracking Dataset [1, 15]. In Figure 1b, shows the
semantic segmentation of the cell image shown in Figure 1a and in Figure 1c shows the instance segmentation
of the same cell image.

(a) Cell Image (b) Semantic Segmentation (c) Instance Segmentation

Figure 1: Example of instance and semantic image segmentation: (a) a microscopy image of
Glioblastoma-astrocytoma U373 cells on a polyacrylamide substrate, (b) the semantic segmentation of the cell
image, and (c) the instance segmentation of the same cell image from the ISBI Cell Tracking Dataset.

Image segmentation is applicable across various image types, with significant implications in biomedical
imaging. With advancements in medical imaging techniques such as X-rays, ultrasound, CT scans, and MRI,
computer-aided image segmentation can extract specific regions of interest (Rols) for further evaluation, such
as organ identification and tumor detection [6]. Medical imaging is essential in diagnosing illnesses, planning
treatments, and monitoring progress. It allows healthcare providers to see inside the body and identify any
irregularities. Additionally, analyzing medical images can assist in various tasks such as diagnosing diseases,
planning treatments, localization of areas of interest, and even aiding in drug development [17].



Biomedical image segmentation, which involves partitioning images into meaningful segments, is partic-
ularly significant in both research and clinical settings[31, 26]. By segmenting medical images, clinicians
can identify and isolate regions of interest, such as organs or lesions, from complex CT and MRI scans[37].
This process not only facilitates the extraction of critical information regarding the shape, size, or volume of
regions like tumors but also aids in accurate diagnosis and treatment planning. However, manual segmenta-
tion can prove tedious, expensive, and prone to human error, highlighting the pressing need for automated
and reliable segmentation techniques to enhance efficiency and precision in medical imaging analysis.

Despite numerous successful approaches, image segmentation remains one of the most challenging aspects
of computer vision. This difficulty stems from the challenge of effectively representing features, especially
in medical images which often suffer from issues like blur, noise, and low contrast. While traditional seg-
mentation techniques such as edge detection and thresholding have historically been employed in medical
imaging, the arrival of deep learning has revolutionized image segmentation across various domains, includ-
ing biomedicine [40]. Deep learning techniques, particularly convolutional neural networks (CNNs) offer
advantages over traditional methods, particularly in handling complex tasks with large datasets. CNNs
excel at hierarchical feature representation, making them a prominent research focus in image processing
and computer vision, and providing excellent segmentation results even in the presence of image noise, blur,
or low contrast. [39, 37]

1.3 What are Convolutional Neural Networks?

Convolutional Neural Networks (CNNs) are widely used for image analysis tasks, such as image classification,
image segmentation, object detection, facial recognition, and much more. For example, CNNs have achieved
remarkable accuracy in image classification tasks, particularly with architectures like AlexNet [16], which
significantly advanced the field. In image segmentation, the U-Net [29] architecture has been especially ef-
fective for biomedical applications. CNNs are also essential in object detection frameworks like YOLO (You
Only Look Once) [27] and facial recognition systems such as FaceNet [30], demonstrating their versatility
and powerful performance in various image analysis domains.

CNNs were first introduced in 1980 as Neocognitron that laid some foundational ideas in the context of
pattern recognition and image processing. [5]. The concept of convolution, which involves sliding a filter (or
kernel) over an input image and computing element-wise multiplications, is central to CNNs. This operation
allows the network to extract features from the input data, mimicking the human brain’s ability to recognize
patterns. In a CNN, the convolutional layer applies multiple filters to the input image, each filter extracting
different features. These filters, also known as kernels, are essentially arrays of learnable parameters that
are adjusted during the training process to enhance the network’s ability to recognize specific patterns or
features. Images, being two-dimensional grids of pixel values, are well-suited for convolutional operations.
As the filters slide over the input image, they compute the element-wise product between their weights (pa-
rameters) and the corresponding region of the image, producing feature maps that represent different aspects
of the input. Overall, the convolutional layer plays a crucial role in feature extraction, enabling CNNs to
learn hierarchical representations of the input data, ultimately leading to effective pattern recognition, just
as the human brain does. [38]

1.4 Convolutional Neural Networks for Biomedical image segmentation

Deep Learning, particulary Convolutional Neural Networks(CNNs) plays a crucial role in Biomedical Image
Segmentation due to their ability to learn complex features adapt to the variability inherent in medical
images [36]. Biomedical images, derived from sources such as CT scans, MRIs, X-rays, and ultrasounds,
offer valuable insights into various anatomical structures, including organs, blood vessels, and bones [12].

CNNs excel at automatically learning intricate patterns and representations directly from image data,
alleviating the time-consuming process of manual interpretation. Among deep learning methods, CNNs are
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Figure 2: Unet architecture

commonly employed for feature extraction in medical image analysis [12, 7]. Notably, the U-Net architecture
has emerged as a prominent choice for biomedical image segmentation [29].

(I will replace the unet image later) The U-Net architecture comprises of an encoder-decoder net-
work, as illustrated in Figure 2. The encoder, located on the contracting path (left side), consists of con-
volutional layers followed by ReLU(Rectified Linear Unit is an activation function used in neural networks
that outputs the input directly if it is positive, otherwise it outputs zero - it adds non-linearity to the pro-
cess) activation functions and max-pooling operations that aids in feature extraction. On the other hand,
the decoder, situated on the expansive path (right side), aims to upsample feature maps obtained from
the encoder to preserve contextual information obtained from the encoder at higher resolutions. Crucially,
skip connections (seen as arrows in Figure 2) facilitate the transfer of information between corresponding
encoder and decoder layers, aiding in precise segmentation [29]. The output U-Net is probability maps of
the likelihood of each pixel belonging to a particular class.

U-Net has demonstrated remarkable success in medical image segmentation, attributed not only to its
capacity to capture contextual information efficiently but also its ability to learn from minimal annotated
data, often through a tile-based approach [18, 8]. U-Net, while powerful for biomedical image segmentation,
faces several challenges. It often produces patchy probability maps , leading to inconsistent and fragmented
segmentations that lack smooth and contiguous boundaries. Additionally, U-Net requires extensive anno-
tated training data to generalize effectively, which is labor-intensive and resource-demanding to obtain [29].

Patch-based methods help solve the issue of fragmented segmentation by breaking down large images
into smaller, manageable patches. These patches are individual segments of the larger image that the model
processes independently, which creates more diverse training data. This approach allows the model to
learn detailed features better, leading to smoother and more accurate segmentations. In response to these
challenges, my research focuses on a novel patch-based technique, the region growing algorithm [10], to
address segmentation complexities in medical images.



2 Chapter 2: Region Growing Algorithm for two-dimensional Dig-
ital Subtraction Angiography Images

2.1 Overview of Pipeline

In this chapter, we will explore a novel segmentation pipeline designed to enhance the connectivity of seg-
mented regions in Digital Subtraction Angiography (DSA) images, which are crucial for visualizing blood
vessels. This pipeline effectively combines the strengths of patch-based methods and the region-growing
algorithm to address the inherent limitations of the U-Net architecture, particularly in segmenting intricate
structures like blood vessels. DSA images are used to visualize blood vessels and diagnose various vascular
conditions. Accurate segmentation of these images is crucial for identifying abnormalities such as blockages,
or aneurysms. Connectivity in the context of blood vessel segmentation refers to the ability to represent the
vascular network as continuous and uninterrupted structures. This is vital for ensuring that the segmented
blood vessels accurately reflect the true anatomy, which is essential for reliable diagnosis and treatment
planning.

To enhance connectivity, we start by employing a convolutional neural network (CNN) inspired by the
U-Net architecture to predict 3x3 masks for the input DSA images. The image is divided into smaller patches
(80 X 80), allowing the model to focus on detailed features within each patch. This process generates diverse
and detailed training data, which is essential for accurately capturing the fine structures of blood vessels.
The 3x3 masks predicted by the CNN provide localized context for the next stage of the pipeline. These
masks serve as seed points for the region-growing algorithm, ensuring that the initial segmentation captures
essential details while providing a basis for further refinement.

The region-growing algorithm then takes over, using the 3x3 masks as seed points to iteratively expand
the segmented regions based on pixel similarity. Importantly, the expansion only occurs in the direction of
the foreground, which corresponds to the blood vessels in the DSA images. By iteratively expanding these
seeds, the algorithm ensures smooth and contiguous boundaries for the blood vessels, effectively mitigating
the boundary artifacts and inconsistencies typically introduced by patch-based methods alone. This com-
bined approach ensures that the segmented blood vessels are continuous, reducing the risk of fragmented
segments that can obscure the true vascular structure. Accurate and connected vessel segmentation improves
the ability to diagnose vascular conditions by providing a clear and complete representation of the vascular
network.

In summary, the goal of enhancing connectivity in the segmentation of DSA images is achieved by
integrating the detailed focus of patch-based methods with the iterative expansion of the region-growing al-
gorithm. This approach results in accurate, cohesive, and clinically valuable segmentations of blood vessels,
ultimately improving diagnostic and treatment outcomes. By addressing the limitations of traditional U-Net
architectures, this pipeline ensures that the segmented vascular structures are continuous and reflective of
true anatomical connections, which is crucial for effective medical imaging analysis.

2.2 Introduction and Motivation

Cerebrovascular diseases (CVDs) are conditions that affect blood flow and blood vessels in the brain, encom-
passing aneurysms, strokes, arteriovenous malformations, and arteriovenous fistulas. Patients with CVDs
are at risk of significant morbidity and mortality, making these diseases one of the leading causes of death
today [41]. The main motivation for this project stems from the challenges faced by stroke patients. Strokes,
which occur when blood flow to the brain is blocked or reduced, can lead to permanent neurological damage,
disability, or even death. Symptoms of strokes include dizziness, sudden confusion, and weakness in the
arms or legs. Strokes are broadly categorized into two types: ischemic and hemorrhagic. Ischemic strokes,
the most common type, are caused by the blockage of an artery due to clogged blood vessels. Hemorrhagic
strokes occur when a blood vessel in the brain leaks and bleeds into or around the brain.



Even though Computed Tomography (CT) and Magnetic Resonance (MR) imaging techniques are used
to detect strokes, Digital Subtraction Angiography (DSA) is an imaging method particularly valuable for
diagnosing and guiding treatment in cases of strokes and other CVDs. DSA is a fluoroscopy technique used
in interventional radiology to visualize blood vessels clearly in a bony or dense soft tissue environment. This
involves inserting a small catheter, usually in an artery in the leg, and passing it up to the blood vessels in
the brain. Images are produced using a contrast medium by subtracting a ”pre-contrast image” or mask from
subsequent images once the contrast medium has been introduced into the system, hence the term ”digital
subtraction angiography.” Subtraction angiography was first described in 1935 and, in English sources, in
1962 as a manual technique. Digital technology made DSA practical in the 1970s [9].

Accurate image segmentation is crucial for clearly visualizing blood vessels in DSA images, which helps
guide clinicians in making objective decisions. However, manually segmenting each region is very time-
intensive and subject to human error. In recent years, machine learning methods, especially Convolutional
Neural Networks (CNNs), have been extensively used for biomedical image segmentation because of their
capability to learn complex features. Biomedical images can be quite complex and show significant variabil-
ity, making them time-consuming to understand. CNNs, such as the U-net architecture, can automatically
learn important and complex patterns, adapting to different scenarios. [29)].

However, the traditional U-net has some drawbacks. Since it processes the entire image at once, it can
blur the local information of the blood vessels and their connections, producing patchy probability maps
[13, 8]. Additionally, in medical image analysis, there is often insufficient labeled training data to train
machine learning models adequately. One method to counteract this problem is to create many training
image-label pairs from a single image. This process of creating patches helps preserve localized information
and handle different resolutions of the images. Most importantly, using patch-based methods can address
the insufficient data problem by generating more data from a single image.

This project aims to use a patch-based method known as Region Growing Algorithm (RGCNet) on DSA
images. This approach aims to preserve localized information, handle different image resolutions, and ad-
dress the issue of insufficient data by creating more training samples from a single image. RGCNet offers the
potential to improve segmentation accuracy by focusing on local regions of interest within the images, thus
enhancing the overall performance of automated segmentation techniques in the context of cerebrovascular
diseases.

2.3 Data and Preprocessing
2.3.1 DSA Data

The 26 DSA images were manually traced from a randomly selected group of patients to label the ground
truth and the images were de-identified for each patient. There is only one DSA image per patient. The
contrast agent was iodixanol (Visipaque, General Electric), administered by intra-arterial power injection
at 5 ml/s for a total amount of 8 ml into the cervical carotid arteries, or at 3 ml/s for a total amount of 5
ml into the cervical vertebral arteries. The patients that were included in this study had either pathologi-
cal abnormalities from arteriovenous malformations, arteriovenous fistula, and cerebrovascular aneurysm, or
normal DSA findings [41].

Figure 3 displays a typical DSA image and its corresponding mask.

2.3.2 Cross Validation

Cross-validation is a statistical method used to evaluate the performance of machine learning algorithms
and improve their generalizability. This process typically involves splitting the dataset into two sets: one
for training the model and the other for testing. These sets are rotated in successive rounds, ensuring that
each data point is used for testing at least once. This technique helps ensure that the algorithm is unbiased
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(a) DSA Image (b) DSA Mask

Figure 3: On the left (a) is an example of a typical DSA Image, acquired during angiography, and on the right (b)
is its corresponding mask highlighting regions of interest.

towards unseen data and also provides information about how sensitive the learned model is to the training
data. The most basic type of cross validation method is k-fold cross validation. In k-fold cross validation,
the data is divided into k equal parts or folds. The model is then trained and tested k times, each time using
a different fold for testing and the remaining k-1 folds for training [28].

In this work, I used 5-fold cross-validation. The dataset consisted of 26 image and mask pairs, which
were randomly split into 5 sets. Each fold had 21 pairs for training and 5 pairs for testing. The training
set was further split into training and validation sets with an 80-20 ratio via images/masks. The model,
described in section Section 2.4, was trained on 80% of the data and validated on 20%. The validation was
used to select the best weights for the model. The trained models were then tested using the region growing
algorithm described in section Section 2.5 on the corresponding unseen testing sets.

After dividing the dataset for 5-fold cross-validation, each image and mask pair in the training set under-
went balancing, as detailed in Section 2.3.3. This process ensured that all classes were equally represented,
enhancing the model’s ability to learn effectively. Following balancing, patches from all images were pooled
together to improve data representation and facilitate robust learning. Pooling helped ensure adequate
representation of rare categories, thereby enhancing the model’s resilience to data variations.

2.3.3 Creation of Training Data and Labels

For pre-processing the data, we have normalized the images by dividing each pixel by the maximum pixel
value in the image. To create the training data, we needed an (80, 80) block around each pixel in the image.
We slide through every pixel in the image and get an (80, 80) block around it, considering it as the center
pixel. This means using offsets of +40 pixels from the center pixel to capture the full block. Thus, for each
image of size (512, 512), a total of 262,144 image-label pairs are constructed, one for each pixel in the image.
To avoid complications around the boundaries of the image, the images and masks were padded by 40 zeros
in each direction. For example, the original image was of the size (512, 512), and after padding, the size of
the new image becomes (592, 592). This padding ensures that all (80, 80) blocks have valid pixels at the
edges of the image. The same is done for the corresponding masks.

The training dataset is constructed of these mini tiles of the size (80, 80). In other words, here is where
we use patch based methods. These mini tiles that are created for training data are the patches. Figure 4
portrays the creation of 80 X 80 patches of the training image. The left panel shows the original image, the
middle panel shows a zoomed in area from the original image and the right panel is illustrating the 80 X 80
patches for the zoomed in image. Similarly, we constructed a testing data-set by forming tiles of the from
the testing image.
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Original Image: (512 X 512) Zoomed-in Image: (110 X 140)

(80 X 80) patches of the zoomed-in image

Figure 4: Example illustrating the creation of patches for training images. The left panel displays a sample
training image, while the middle panel offers a close-up view of a referenced section from the left image. The right
panel demonstrates the generation of 80 x 80 patches from the zoomed-in section shown in the middle panel.

mFL
= B

(3 X 3) patches of the zoomed-in mask

-

Original Mask: (512 X 512) Zoomed-in Mask: (10 X 10)

Figure 5: Example illustrating the creation of patches for training masks. The left panel displays a sample
training mask, while the middle panel offers a close-up view of a referenced section from mask in the left panel. The
right panel demonstrates the generation of 3 x 3 patches from the zoomed-in section shown in the middle panel.

In the similar way, the training mask was composed by taking a (3, 3) block around each pixel for each
corresponding mask. A mask is an image the same size as the original, where each pixel indicates the class
or object of the corresponding pixel in the original image. Masks are used in image segmentation tasks to
classify each pixel in the image. This 3x3 block captures the local neighborhood around each pixel, providing
context for the central pixel, which is crucial for segmentation tasks. An example of how this was imple-
mented is shown in ??7. The left panel displays a sample training mask, the middle panel offers a close-up
view of a referenced section from the mask in the left panel, and the right panel demonstrates the generation
of 3 x 3 patches from the zoomed-in section shown in the middle panel.

It is evident from the above DSA image and mask Figure 4 and Figure 5, that there is more background
pixels(zeros), than foreground pixels(ones) in the image. This class imbalance problem can influence what is
learned and prioritized in the network and thus we will balance the data. Since directly assessing the class
imbalance from the images could be complex, we opted to analyze the training masks. We calculated the sum
of each 3x3 mask in the training data, with sums ranging from 0 (all background) to 9 (all foreground). We
then down-sampled the data to the lowest number of patches per class of the masks and their corresponding
image patches to achieve balance.



Sum Number of patches per sum
0.0 235316
1.0 3803
2.0 3209
3.0 3212
4.0 2404
5.0 2186
6.0 2634
7.0 2131
8.0 2018
9.0 5231

Table 1: Distribution of Training Mask Patch Sums: Table showing the counts of training image/mask patches for
each sum, from 0 to 9, highlighting a predominance of background patches (sum 0) and the fewest patches at sum 8.

Table 1 shows a table of sums of training mask patches, ranging from 0 to 9 in the left column and in
the right is the number of training image/mask patches for that corresponding sum. As we can see from the
table most number of patches belong to the category of sum 0, which means most of the patches are just
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from the background of the image. Analyzing the table further, we notice that the lowest number of patches
belong to sum 8. In our case, we down-sampled the data to address the class imbalance issue. This means
that we deliberately reduced the number of training samples by selecting a subset of patches, ensuring a
more balanced representation of foreground and background classes. To achieve this, we identified the class
with the fewest samples (in our case, the foreground class with sum 8 in the training mask patches) and
sampled an appropriate number of patches from each class to achieve a balanced dataset. By doing so, we
ensured that the model receives sufficient training data from each class to learn effectively without being
biased towards the majority class.

2.4 Architecture and Training

/‘10)(10)(512

IXIXA

X3X1024

2 0 X 256

L @ Double Convolution +
RelLU

0 X40 X 128 | Max Pooling
L

gox 88 X 64 ﬁ Single Convolution

Figure 6: Network Architecture: Convolutional Neural Network (CNN) architecture consisting of layers with
double convolution and ReLU (purple), max pooling (yellow), and a final single convolution (red). The dimensions
of each layer are indicated, starting from 80x80x64 to 3x3x1.

T used a 25-layer Neural Network that resembles the encoder part of U-net[29]; there are 5 double con-
volutional layers activated by ReLu and each double convolutional layer is followed by a maxpooling layer,
the last double convolution layer is followed by a single convolution to reshape into (3,3,1) - where 1 repre-
sents if a pixel is in foreground or background. The architecture is exhibited in Figure 6. This model was
trained on the training data created earlier in the data preprocessing step. During training, the model was
optimized using the Adam optimizer [14] and trained with the Binary Cross Entropy loss function. Training
was conducted on a GPU available on the MERCED Cluster. The training process spanned 50 epochs, with
a batch size of 50 images for the training data.

In general, Convolutional Neural Networks (CNNs) are trained to produce output masks of the same size
as the input. However, in this case, we map an 80x80 input image to a 3x3 output mask. This approach
captures all the contextual data around each pixel, ensuring contiguity. The 80x80 patch provides a wide
range of information crucial for learning features and recognizing patterns. By predicting a 3x3 region, the
network ensures spatial consistency within this smaller area, helping to maintain smooth transitions and
reduce jagged edges in the segmentation map. The central pixels are influenced by a coherent set of features
derived from the larger context.

11



2.5 Region Growing Algorithm

In the testing phase of our network evaluation, we utilize the Region Growing Algorithm (RGC) for efficient
segmentation. Unlike the training phase, where the focus is on parameter optimization, testing aims for
accurate results within a reasonable timeframe. The RGC’s iterative approach, expanding around foreground
pixels, ensures contiguous regions without processing the entire image. This targeted strategy significantly
reduces processing time compared to comprehensive image analysis. This algorithm grows iteratively around
each foregorund pixel towards the direction of foreground pixels to ensure the contiguity of the predicted

region.

(a) Starting with a single initial foreground (b) Next candidate pixels to pass through
pixel in yellow the trained network in red

i b

(c) Foreground (yellow) and background (d) Next iteration of candidate pixels (red)
(blue) predicted pixels to pass through the network

Figure 7: Example illustrating the region growing method. The process begins with a single initial foreground
pixel (yellow) as shown in the first panel. The second panel identifies the next candidate pixels (red) that will be
evaluated by the trained network. The third panel shows the predicted classification of pixels into foreground
(yellow) and background (blue). Finally, the fourth panel highlights the next set of candidate pixels (red) for the
subsequent iteration of the network evaluation. Yellow indicates foreground pixels, blue indicates background
pixels, and red indicates the next candidate pixels for classification.

Figure 7 shows the working of the region growing algorithm in detailed steps. In all of the images, yellow
represents predicted foreground pixels, purple represents predicted background pixels, and red represents
the pixels that will be predicted in the next iteration of the algorithm. For example, Figure 7a shows one
foreground pixel on the testing image in yellow. Figure 7b shows the candidate pixels that will be predicted
in the next iteration. To determine these candidates, we extract an 80 X 80 patch around each center pixel
and pass it through the trained network. The network outputs a 3 X 3 probability mask, indicating the
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likelihood of each pixel being classified as foreground or background. The algorithm makes a prediction
based on the trained model, which can be seen in Figure 7c, which shows the predictions from the above
candidate pixels. The pixels in yellow were categorized as foreground and the pixels in purple were cate-
gorized as the background. To avoid unnecesary computation, the algorithm only expands in directions of
foreground pixels and discards the background ones. Thus, in the next iteration of the algorithm, the pixels
that will be predicted into foreground and background (Figure 7d, red), only surround the centroids which
were predicted as foreground in the previous iteration (Figure 7c, yellow). We can see in Figure 7d that the
next set of candidate pixels in red are either adjacent or diagonal to the foreground pixels. Here I am using
a trial and error threshold of 0.1 on the predictions. Pixels with a prediction probability greater than 0.1
are considered foreground. This threshold was selected based on experimentation.

In practice, however, we do not start with one candidate initial pixel, we instead start with many to
ensure computational speed. Instead, we start with 500 initial randomly selected pixels in the image. We
keep track of the indices whose prediction is 1 i.e. the foreground pixels and only those indices go into the
next iteration and the others are removed. We follow this procedure until there are no new indices are left to
run. Figure 8 displays the construction of the predicted test image after every 82 iterations of the algorithm.

Figure 8: Reconstruction process of the same predicted test image at intervals of every 82 iterations of the
algorithm. The series of subplots illustrates the progressive refinement and development of the image as the
algorithm iteratively updates the predictions. Both the top and bottom rows show the same image evolving over
time.

2.6 Post-processing and Analysis

After the testing process, we can compare our predicted segmentation to the ground truth segmentation.
The objective was to use the region growing algorithm to predict the flow of the veins in the brain, ensuring
that the segmentation accurately represents the most relevant anatomical structures for further analysis.
The largest connected component is used to ensure that the predicted segmentation focuses on the most
significant and continuous structure, which is critical for accurately identifying and analyzing the flow of
veins in the brain. Figure 9a shows the original test image used for evaluation, while Figure 9b displays
the test mask applied to delineate specific regions of interest within the test image. This mask guides the
reconstruction process by indicating areas to be segmented. In Figure 9(c), we observe the fully reconstructed
image after the algorithm processes the test image and mask. This reconstructed image represents the
predicted segmentation over the entire region of interest. Figure 9d displays the largest connected component
of the reconstructed image, highlighting the most significant contiguous area identified by the algorithm.
Additionally, any holes within the largest connected component have been filled to ensure a more accurate
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and contiguous representation of the vascular structure. This component is crucial for understanding the
vein structure as it provides a clear and focused representation of the primary vascular pathways.

(¢) Reconstructed Mask (d) Largest Connected Component

Figure 9: Final Results: A comprehensive overview of the input and output stages in the reconstruction process.
These subfigures collectively illustrate the test image, test mask, fully reconstructed mask, and the largest
connected component identified in the reconstruction.

In the Figure 10 we analyze our reconstruction by comparing it with the test mask. The white parts in
this image shows the true positives, i.e. the portion that was foreground in the original test mask and was
also predicted as foreground by the algorithm. The black here shows the true negatives, i.e. the background
in the test mask that was also predicted as background by the algorithm. The false positives, i.e. the fore-
ground predicted by the algorithm but was background in the original mask is depicted in yellow. Red shows
the false negatives, i.e. part that was predicted as background by the algorithm but was not background in
the original mask.

Upon examining the results in the figure, it appears that there are more false negatives (red) than false
positives (yellow). This indicates that the algorithm tends to under-predict the foreground regions, missing
significant parts of the vein structures. The presence of false positives, although less prevalent, suggests
that there are some areas where the algorithm incorrectly identifies background regions as part of the vein
structure.The higher prevalence of false negatives indicates that the algorithm struggles more with sensitivity
(detecting all actual vein structures) than specificity (correctly identifying background regions). Overall, the
results suggest that while the algorithm effectively identifies many true positives and true negatives, it needs
refinement to better capture all true vein structures and reduce the occurrence of false negatives. Addressing
these issues could significantly improve the segmentation accuracy and reliability.
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Figure 10: Analysis: Image shows comparison of the original test mask with the largest component of
reconstruction. White represents true positives, black represents true negatives, yellow represents false positives,
and red represents false negatives

In addition to qualitative analysis, it is imperative to include quantitative analysis to measure how
accurate the segmentation masks are. In the world of biomedical image segmentation, jaccard index and dice
score have become the most popular measures of evaluation[3]. The Jaccard score calculates the similarity
between two masks, predicted and the original by dividing the intersection between both by the union of
both the masks, as shown in Equation (1).

|AN B|
where A is the predicted mask and B is the ground truth of the test mask. The closer the score is to 100%,
the closer are the predictions to the original mask. In this case, the Jaccard score was approximately 65%,
indicating a moderate level of overlap between the predicted and ground truth masks. The dice score is
another statistical measure to check the similarity between two masks. It is calculated by dividing twice
the intersection between both the masks by the sum of number of elements in each mask, as shown in
Equation (2)
2|AN B| @)
Al + B
The closer the score is to 100%, the closer are the predictions to the original mask. The Dice score was ap-
proximately 79% in this case. These quantitative results indicate that the segmentation algorithm performs
reasonably well, but there is still room for improvement. A Jaccard score of 65% and a Dice score of 79%
show that while the algorithm can accurately capture many of the vein structures, it still misses some areas
or incorrectly identifies background regions as veins.

Dice Score =

In addition to the qualitative and quantitative analyses using Jaccard index and Dice score, we also
calculated the accuracy of our segmentation algorithm. The accuracy is defined as the proportion of true
results (both true positives and true negatives) among the total number of cases, as shown in Equation (3)

TP+TN 3)
TP+TN+FP+ FN

where TP represents true positives, TN represents true negatives, FP represents false positives, and FN
represents false negatives, we calculated the accuracy of our segmentation algorithm to be approximately

Accuracy =
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94%. Comparing our results to those reported in Zhang et al. [41], where a U-net based deep learning
approach achieved an average Dice coefficient of 82.68% and an accuracy of 97.8%, highlights the limitations
and potential of our current approach. While there is a gap in performance, our results are notable given the
significant constraint of training on a single image. The results demonstrate that even with a limited training
dataset, the combination of a patch-based approach and the region growing algorithm can yield reasonable
segmentation performance. This suggests that the methodology has strong potential, particularly when a
small amount of data is available.

The primary objective of this study was to enhance the contiguity of the region. Examination of Figure 11
reveals that the largest connected component in the reconstructed mask is larger than that in the original
test mask.

(a) Largest Connected Component of (b) Largest Connected Component of
the original Test mask the Reconstructed Mask

Figure 11: Comparison of the largest connected components in the original test mask and the reconstructed mask.
The left image shows the largest connected component of the original test mask, while the right image depicts the
largest connected component of the reconstructed mask, highlighting the improvements in connectivity achieved
through the reconstruction process.

Visually, the Region Growing CNN reconstruction demonstrates greater connectivity compared to the
original mask. One metric used for evaluation is the centerline Dice (clIDice) [33]. The clDice assesses the
accuracy of tubular structure segmentation by emphasizing the preservation of centerline topology. It quan-
tifies how well the segmented centerlines align with the ground truth, which is crucial for tasks in medical
imaging such as vascular analysis and nerve tracking. The clDice is computed as follows:

2 X |Skeletongeg N Skeletong|
|Skeletongeg| 4 |Skeletongy|

(4)

clDice =

Here, Skeletonges represents the skeleton of the segmented image, and Skeletong; represents the skeleton
of the ground truth mask. The notation |-| denotes the cardinality or number of pixels in their respective
skeleton representations. Skeletonization is a process that reduces tubular structures to their medial axes
while maintaining their connectivity. In the context of this study, the centerline Dice (clDice) metric was
utilized to quantitatively evaluate the accuracy of tubular structure segmentation. The clDice score of 71%
indicates how well the segmented centerlines align with those in the ground truth mask. Specifically, a clDice
score of 71% implies that the segmented centerlines overlap with the ground truth centerlines by 71% on av-
erage. This metric is crucial in medical imaging for tasks such as vascular analysis and nerve tracking, where
accurately identifying and delineating tubular structures is essential for diagnosis and treatment planning.
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Another aspect investigated in this study was the ratio of the largest component of the reconstructed
structure to the total area of the reconstruction. This ratio is calculated as follows:

Length of the largest connected component

Ratio of Largest Connected Component = (5)

Total area of the reconstructed structure

Here, Length of the largest connected component metric measures the longest continuous path of pixels
and total area of the reconstructed structure refers to the entirety of the area covered by the reconstructed
image or segmented region, encompassing all pixels that compose the segmented structure. It quantifies the
overall size and spatial coverage of the reconstructed object or area of interest.

This came out to be 70%, which means 70% of the reconstruction is connected. In this context, the
”Length of Largest Component” refers to the cumulative size or extent of the largest connected segment
within the reconstructed image. The ”Total Reconstructed Area” denotes the entire area covered by the
reconstructed structure. For instance, a calculated ratio of 70% indicates that the largest connected compo-
nent comprises 70% of the total reconstructed area. This metric provides valuable insights into the structural
integrity and continuity of the reconstructed region. A higher ratio typically suggests a more cohesive and
connected reconstruction, which is beneficial for accurate representation and analysis in medical imaging
applications.

2.7 Discussion

In this chapter, we have demonstrated the application of the Region Growing Algorithm (RGCNet) on
two-dimensional Digital Subtraction Angiography (DSA) images. Our approach shows compelling results,
particularly in terms of accuracy, despite being trained and tested with limited data. The primary goal of
our work was to enhance the segmentation accuracy of DSA images to aid in the diagnosis and treatment
of cerebrovascular diseases (CVDs). By using a patch-based method combined with an iterative flood fill
algorithm, we aimed to preserve localized information and handle varying image resolutions more effectively.
Our results indicate that RGCNet significantly improves the clarity and precision of segmented blood vessels
in DSA images. This improvement is crucial for clinicians as it facilitates more accurate assessments and
informed decision-making. The ability to generate multiple training image-label pairs from a single image has
proven beneficial in addressing the common challenge of insufficient labeled training data in medical imaging.

In the next part of my research, I will expand this work to the 3D DSA images using a 3D CNN architec-

ture. This expansion will allow us to capture more complex spatial relationships within the cerebrovascular
structures, potentially leading to even more accurate and informative segmentation results.

2.8 Acknowledgements
I would like to thank Xiaoyin Xu for providing the DSA images used in this study [41].
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3 Chapter 3: Region Growing Algorithm for 3D Biomedical Im-
ages

3.1 Importance of 3D Biomedical Image Segmentation

Medical images, including computerized tomography (CT), magnetic resonance imaging (MRI), and diffusion
tensor imaging (DTI), are fundamental to modern medical practices and research. These images serve as
critical data sources for Al and VR applications, which are integral to strategic advancements in healthcare
technologies. Consequently, the analysis and understanding of medical images are essential for driving for-
ward medical innovations [34]. 3D image analysis, in particular, plays a pivotal role in accurately diagnosing
and planning treatments by providing comprehensive views of anatomical structures. This technology en-
hances the precision of surgical procedures and radiotherapy by allowing for detailed visualization of complex
anatomies. Additionally, 3D image analysis supports the development of personalized medicine by facilitat-
ing the study of individual anatomical and pathological variations. The future of healthcare increasingly
relies on 3D medical images, which offer more depth and volume compared to traditional 2D images. This
added dimension provides more detailed information about medical issues, significantly improving diagnostic
accuracy and treatment efficacy [42].

3D biomedical image segmentation is a crucial aspect of 3D image analysis. It involves partitioning a
3D medical image into segments to isolate regions of interest, such as organs, tissues, or tumors. This seg-
mentation is essential for various medical applications: enhancing diagnostic accuracy by clearly delineating
anatomical structures and pathological regions [43], improving treatment planning by allowing for precise
targeting of affected areas [23], and supporting personalized treatment plans by providing detailed images
tailored to an individual’s unique anatomy [11]. Moreover, segmentation enables quantitative assessments,
such as measuring tumor volumes or monitoring disease progression, which are crucial for research and clini-
cal decision-making. Segmented images also provide annotated datasets that are essential for training Al and
machine learning models, driving innovations in automated diagnosis and treatment planning. In summary,
3D biomedical image segmentation is a key technology in modern healthcare, enhancing diagnostic accuracy,
treatment precision, and the development of personalized medicine, while also supporting advancements in
AT and machine learning, underscoring its critical role in advancing medical technology and improving pa-
tient care.

3.2 3D CNNs for Biomedical Image Segmentation

As discussed in Chapter 1, Convolutional Neural Networks are the best way to segment biomedical images.
With advancements in neural network architectures, data augmentation techniques, and high-end GPUs,
analyzing volumetric medical data with 3D deep learning has become feasible [34, 24]. The effective use of
3D CNNs emerged after the breakthrough success of AlexNet in 2012, which was made possible by advanced
parallel computing architectures.[34].

While 1D CNNs extract spectral features and 2D CNNs extract spatial features from data, 3D CNNs can
simultaneously capture both spectral and spatial features from input volumes. This capability makes 3D
CNNs particularly useful for analyzing volumetric data in medical imaging. The mathematical formulation
of a 3D CNN is similar to that of a 2D CNN, but with an additional dimension [34]. A 3D CNN-based
segmentation model processes 3D images and produces 3D prediction masks, leveraging a network structure
similar to standard 2D CNN models but extended to handle volumetric data. The convolution and pooling
layers operate in three dimensions, allowing the model to capture spatial features across all axes. This ca-
pability makes 3D CNNs particularly effective for analyzing volumetric medical data [24].

Several medical image segmentation approaches use 2D deep learning methods, which effectively learn
spatial relationships within a 2D plane. This works well for 2D medical images, however in 3D volumetric
data such as MRI, CT, or USG, regions of interest often span multiple slices, making inter-slice information
crucial. 2D CNNs cannot capture this inter-slice information, potentially limiting segmentation performance.
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In contrast, 3D CNNs use convolution kernels in three dimensions, allowing them to learn spatial features
across slices, resulting in better segmentation results for volumetric data [24].

3.3 Proposal: Expanding Region Growing Algorithm in 3D

In the medical imaging domain, creating a sufficiently large 3D dataset is highly challenging due to the
invasive nature of some imaging techniques (e.g., CT), the extended duration required for imaging, and the
labor-intensive process of annotating 3D data, [4]. This is where I want to leverage the idea of using patch
based methods and Region Growing algorithm. We only require one image mask pair to use the patch based
methods. The data created from that can be used to train a 3D CNN model, similar to the 2D CNN used
in Chapter 2.

3.3.1 Preparation of 3D Training Data

The training dataset will be constructed from small 3D patches of size (80, 80, 80) now instead of (80,
80) in 2D. This involves using patch-based methods to create these mini volumetric tiles from the training
data. Similarly, masks will be constructed in 3D patches of size (3,3,3) instead of (3,3). By utilizing these
3D patches, the model can learn spatial relationships across multiple slices, enhancing the segmentation
performance for volumetric medical images such as MRI, CT, or ultrasound scans.

3.3.2 3D CNN Architecture for training 3D data

I am planning to use similar CNN architecture as used for 2D, 25-layer Neural Network that will consists of 5
double 3D convolutional layers activated by ReLLU, each followed by a 3D max-pooling layer to progressively
reduce the spatial dimensions while capturing essential features. The final double convolution layer is followed
by a single 3D convolution to reshape the output into a size of (3, 3, 3, 1), where 1 indicates whether a voxel
(a value on a grid in three-dimensional space, analogous to a pixel in 2D images) is in the foreground or
background. This will allow the network to learn and predict the spatial relationships within the volumetric
data effectively.

3.3.3 Region Growing Algorithm in 3D

In the testing phase of our 3D network evaluation, we propose using the 3D Region Growing Algorithm
(RGA) for efficient segmentation of volumetric medical images. This approach ensures accurate results
while optimizing processing time by focusing on contiguous regions rather than the entire volume. The 3D
RGA operates by iteratively expanding around foreground voxels. Starting from initial foreground voxels,
the algorithm grows by evaluating neighboring voxels in all three dimensions (x, y, and z), ensuring that
the predicted regions remain contiguous. This method is particularly effective in handling the complex
structures often present in medical volumetric data. The workflow begins with an initial set of foreground
voxels identified by the trained 3D CNN model. For each iteration, the algorithm examines neighboring
voxels around the current foreground voxels. A 3D patch, for instance, 80x80x80, around each central voxel
is extracted and passed through the trained network to generate a probability map. This map predicts the
likelihood of each voxel being part of the foreground or background. Voxels with a probability above a certain
threshold (e.g., 0.1) are classified as foreground and added to the region. This process continues iteratively,
expanding the region by adding adjacent voxels that meet the foreground criteria, thereby ensuring that
only the necessary parts of the volume are processed. By focusing only on regions around foreground
voxels, the algorithm significantly reduces computational load compared to processing the entire volume.
This targeted approach allows for faster and more efficient segmentation, particularly beneficial for large
volumetric datasets such as MRI, CT, or ultrasound scans.
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4 Timeline

Semester Goal
e 3D Region Growing Algorithm
e Look into measures of evaluating
Connectivity
Fall 2024

e Write paper on 2D Region Grow-
ing

Spring 2025

Apply 3D Region Growing to 3D
DSA data

Summer 2025

Possible Internship

Fall 2025

Look into Mathematical models for
image segmentation

Spring 2026

Defend Thesis
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