
UC Irvine
UC Irvine Previously Published Works

Title
Early Results from a Study of GenAI Adoption in a Large Brazilian Company: The Case of 
Globo

Permalink
https://escholarship.org/uc/item/7rj985mc

ISBN
9783031556418

Authors
Pereira, Guilherme
Prikladnicki, Rafael
Jackson, Victoria
et al.

Publication Date
2024

DOI
10.1007/978-3-031-55642-5_13

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rj985mc
https://escholarship.org/uc/item/7rj985mc#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Early results from a study of GenAI adoption in
a large Brazilian company: the case of Globo

Guilherme Pereira1[0009−0006−3521−6081], Rafael
Prikladnicki1[0000−0003−3351−4916], Victoria Jackson2[0000−0002−6326−931X],
André van der Hoek2[0000−0001−7917−932X], Luciane Fortes3, and Igor

Macaubas3

1 Pontif́ıcia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
2 University of California, Irvine, Irvine, CA, USA

3 Globo, Rio de Janeiro, Brazil

Abstract. Given the nascent and evolving nature of the latest Gen-
erative AI tools, there is little advice as to how best adopt generative
AI tools within software teams or what benefits and concerns can be
expected. In this chapter, we share the experiences of Globo, a large
media group, that has recently begun to adopt OpenAI ChatGPT and
GitHub Copilot for software development activities. We describe Globo’s
adoption approach and provide early insights into potential benefits and
concerns in the form of eight initial lessons that are apparent from di-
aries kept by developers as well as semi-structured interview with them.
Among the lessons learned are that the use of Generative AI tools drives
the adoption of additional developer tools and that developers intention-
ally use ChatGPT and Copilot in a complementary manner. We hope
that sharing these practical experiences will help other software teams
in successfully adopting generative AI tools.

Keywords: Generative AI · Software Teams · Developer Tools · Expe-
rience Report

1 Introduction

Software teams have always adapted their ways of working in response to techno-
logical and social advances. From the adoption of agile and lean ways of working,
through embracing DevOps practices, to utilizing cloud infrastructure, modern-
day engineering teams have accelerated their deliveries to where development
cycle times are measured in hours and days with multiple deployments to pro-
duction per day [12]. Generative AI, as evidenced through tools like OpenAI
ChatGPT4 and GitHub Copilot5, is the latest disruption that is expected to
have a profound impact on software teams [6]. An often touted key benefit is
an increase in developer productivity due to the ability of generative AI tools

4 https://openai.com/chatgpt
5 https://github.com/features/copilot



2 G. Pereira et al.

to speed up development activities, such as coding [14] and testing [9], by au-
tomatically generating code. Leveraging this automation requires developers to
change the way they work; they spend less time writing code and more time
reviewing and understanding code [5].

Yet adopting new ways of working and new tools is challenging for individ-
uals, teams, and companies. It can be time-consuming and expensive to retrain
teams to use new tools and to adapt their practices, especially when the tools
are immature and still evolving with little practical guidance, all while ensuring
that code is still shipped and deadlines are met. Companies thus need to be clear
on the benefits before embarking on a potentially lengthy and costly journey of
adopting generative AI tools [1].

To help others who are considering embarking on such a journey, we provide
this preliminary experience report of Globo, a media group, which has recently
adopted both OpenAI ChatGPT and GitHub Copilot for software development
activities. We share the approach for rolling out the tools and provide early
insights into the potential benefits and issues of using Generative AI. We defined
the following research question: what are the main lessons learned by adopting
Generative AI for software development at Globo?

The remainder of this chapter is organized as follows: section 2 presents
background information, while section 3 introduces the research design. Section
4 presents the eight lessons learned and section 5 concludes the chapter.

2 Background Information

This section provides a brief overview of the capabilities, benefits, and limitations
of GenAI tools used by software developers, with a focus on the two adopted by
Globo: OpenAI ChatGPT and GitHub Copilot.

GenAI is artificial intelligence capable of generating text, images, or other
media, using generative models [19]. These models learn patterns from input data
to generate data with similar characteristics. Recent advances in neural networks
have led to a number of GenAI tools. Some are general-purpose conversational
agents (e.g., OpenAI ChatGPT, Google Bard6) while others are geared towards a
specific audience such as developers (GitHub Copilot). In both cases, the models
have been trained on input data scoured from many sources on the Internet,
including some that are software engineering relevant (e.g., code from open-
source projects maintained on GitHub).

Within software development, ChatGPT has been shown to assist developers
in a variety of common software development activities, including authoring
requirements [27], generating architecture [2] and design models [8], fixing defects
[24], generating code [20], and seeking help [13].

Research on Copilot notes that it provides developers a perceived productiv-
ity boost, enabling them to work faster on repetitive tasks and an ability to focus
on more satisfying work [14]. Code generated by Copilot is of low cyclomatic com-
plexity [21] and is of the same complexity and as readable as human-generated

6 https://bard.google.com/



Case study of GenAI adoption 3

code [3]. When given coding problems, Copilot has been shown to generate valid
(e.g., compilable, interpretable) code although less than half of the solutions
were correct [28]. As well as coding, Copilot can assist with authoring unit tests
and identifying defective code [5].

However, it is not all positive news when it comes to using GenAI for software
activities. Drawbacks of using GenAI include hallucination, as in when ChatGPT
generates code that references libraries or packages that do not exist. This can
provide an exploitation entry point for bad actors [16], leading to security risks
[25]. Also, code generated by ChatGPT and Copilot can contain vulnerabilities
[15]. The code may contain bugs that may not be immediately apparent on initial
inspection [18]. In addition to these security and technical issues, there are wider
societal concerns such as potential copyright issues [17], the potential for bias
[7], and emerging legal issues [23].

Moreover, developers need to change their working practices to derive ben-
efits from GenAI tools. They need to be cognizant of recommended prompt
engineering techniques [26]; that is, how to best structure and organize their
prompts to gain helpful answers. Also, to overcome some of the limitations of
GenAI tools such as generating defective or insecure code, engineers need to
review and understand the code [20].

3 Research Design

The setting of the study is the Digital Platforms structure within Globo7, a
large media group based in Latin America. This structure is part of the Digital
Hub, which is Globo’s Digital Technology division, and has three areas: GloboID
(identity provider), Webmedia, and Publishing platform. These areas have ap-
proximately 250 people who provide solutions for digital products.

The study particularly concerned a pilot of introducing ChatGPT and Copi-
lot to six teams with over forty employees total in various roles (e.g., developers,
UX, DevOps, product owners, managers). A typical team consists of about five
developers, a UX designer, and a dedicated product owner. Each team is re-
sponsible for both the development and deployment of the software it develops.
Figure 1 depicts the distribution of participants based on their respective roles
within the teams. Developers are predominant. The teams follow agile practices
from well-known frameworks such as Scrum and XP, and they also use Kanban.
Teams are self-organized and usually run monthly sprints.

Within this software division, it had been agreed with the main executives
to evaluate the use of generative AI tools, specifically ChatGPT and GitHub
Copilot, in software development tasks. These two tools were chosen mainly for
the following reasons:

1. GitHub was already in use by the teams.
2. These two tools appear the most commonly used and talked about when

Generative AI is brought into software development.

7 https://grupoglobo.globo.com/



4 G. Pereira et al.

Fig. 1. The participants roles in their respective teams.

A project was initiated with the goal of rolling out the generative AI tools
to the development teams while ensuring that data was captured to evaluate
the benefits the AI tools provided. Specifically, the company aimed to assess
the impact of using these tools in the software development process to support
the decision of whether to invest in the technology more broadly across the
organization.

The versions of the tools that were introduced are GitHub Copilot for Busi-
ness and OpenAI ChatGPT 3.5. The company decided to use the free version of
OpenAI’s tool due to operational issues.

3.1 Project Approach

A multi-disciplinary team was assembled to execute the project. This team con-
sisted of a project manager, representatives from the company’s legal depart-
ment, and researchers from two Universities - PUCRS and UCI (one professor
and one PhD student each). Legal representatives were also included, as the
company had several legal concerns about the use of generative AI. These were
mostly about data leakage, code ownership, and code licenses that may govern
the code being suggested by the tools.

The academic researchers’ involvement in the study primarily consisted of
acting as unpaid consultants to the project team. They helped on designing the
study, including strategies for data collection and analysis. These also includes
recommended metrics and qualitative data that would be helpful in assessing
the potential benefits of the use of generative AI tools in software activities. The
project consisted of three phases planned to be completed in five months from
August 2023: Preparatory (1 month), Pilot (1 month) and Rollout (3 months).
At the time of writing, the Rollout phase is ongoing.

The first phase was necessary to undertake any preparatory activities re-
quired by the pilot and rollout, such as license procurement and agreement on



Case study of GenAI adoption 5

the specific metrics to be used to understand the outcomes of the study. It
included meetings with Digital Platforms management to define the study pro-
tocol, decide which teams would take part in the study, and choose which of the
six teams would do the pilot before all teams participated in the rollout.

The aim of the pilot was to obtain feedback on the use of generative AI
tools from a single team, so as to be able to refine and align the study protocol
with actual experiences. The outcomes of this phase were presented to both the
participants and the management of the company for a final round of feedback.

Globo’s management selected the pilot team based on the characteristics and
availability of the team. The pilot team subsequently participated in a kick-off
event to familiarize its members with the project and establish the essential in-
frastructure. Team members were instructed to use the tools freely, but record
experiences and examples of use in a spreadsheet (called a “diary” in the re-
mainder of this chapter). Effectively, the team members were encouraged to
experiment with the tools leading to experiential learning.

Participants were encouraged to use the tools freely in any software engi-
neering activity they felt appropriate. Following the lessons learned in the pilot
stage, the third phase of the project has now been kicked off with six partici-
pating teams. The same instructions were provided to these teams. This third
phase is in progress.

3.2 Data Collection

Various of qualitative data was captured both during the pilot and the first few
weeks of the broader rollout. Data collected during the pilot consisted of:

– At the start of the pilot, an initial survey8 (pre survey) captured the profile
of the participants and their expectations and concerns regarding the use of
the tools.

– Daily, a free-style document for team members to share their day-to-day
experiences with the tools (the “diary”). In this document, participants were
encouraged to provide descriptions of tasks and situations in which they
utilized the tools.

– Weekly, a 30-minute meeting took place between the researchers and the
pilot team to collect participants’ experiences of the tools that week. This
included discussions on the tasks they were trying to accomplish with the
AI tools and whether the tools were helpful.

– At the end of the pilot, a second survey 9 (post survey) captured participants’
perceptions of the tools, including their impact on the development process.

During the rollout phase, the same data was captured as in the pilot phase.
However, some adjustments were made in the diary document to collect which
AI tool was used for which tasks. We also collected how participants felt about

8 https://forms.gle/pPiF3vCAtahVrjcH9
9 https://forms.gle/wwYiCKAg6V314KZKA



6 G. Pereira et al.

their GenAI experience on that particular day, using a three-point scale: happy,
neutral, and sad.

All the members of Team 1 participated in the pilot phase. In the current
stage, the initial survey was answered by 47 people distributed among the six
teams, in the roles shown in Figure 1.

Due to the increase from one pilot team to six participating teams, in-person
debriefs were held every 15 days on a team basis for 30 minutes. We used the
following questions to guide the discussion:

– Please share the positive aspects and difficulties of interacting with Chat-
GPT and Copilot.

– Do you feel more productive?

– Did you identify any security threats or data leaks when you used the tools?

– Do you know and use any prompt engineering techniques?

– How has using Copilot/ChatGPT increased or reduced creativity and inno-
vation in your coding, design, and other tasks?

– Do you think you are saving time?

– If so, what have you done with the time saved?

– How has using Copilot/ChatGPT affected your general attitude towards
work, as well as your personal well-being at work?

To date, we have interviewed each team two times. Table 1 indicates the type
of application the teams develop. Table 2 contains other relevant information
about the teams, the technologies they use and software development processes
and practices adopted.

Table 1. Project developed by teams.

Team Application Description

T1 Develops a microfrontend platform that standardizes and facilitates the
development of user flows in registration, authentication, authorization
and privacy.

T2 The team works on the audio and video player for Android platforms.
It plays all of globo’s videos and podcasts on all the products that have
apps for these platforms.

T3 The team handles the delivery of streaming videos on demand from
packaging to distribution to users on our CDN.

T4 The team develops the authorization application. The systems are re-
sponsible for provisioning services to users.

T5 The Platform team responsible for digital interactivity in the company’s
applications, e.g., voting and comments. This is delivered to the end
user and also consumed by other products.

T6 On-demand image processing system. We work with compression, crop-
ping, resizing and applying filters.



Case study of GenAI adoption 7

Table 2. Way of working for each team.

Team
Number
of Members

Technologies Sw Dev Process Roles

T1 8 Go, React, Typescript. Kanban practices
4 Dev,
2 UX,
2 Other.

T2 10
Kotlin,
Kotlin Multiplatform.

Kanban practices

7 Dev,
1 Product Owner,
1 Team Leader,
1 Other.

T3 10 Go, Ruby.
Adapted
Scrum practices

5 Dev,
3 DevOps,
1 Product Owner,
1 Team Leader.

T4 8
Go, React
Typescript.

Adapted
Scrum practices

4 Dev,
1 DevOps,
1 Product Owner,
1 UX,
1 Other.

T5 6
Go, Lua,
Python, Javascript.

Adapted
Scrum practices

5 Dev,
1 UX.

T6 5
Go, Python,
Javascript.

Scrum practices
3 Dev,
1 DevOps,
1 Product Owner.

3.3 Data Analysis

Using the diaries and data collected during the meetings, the qualitative data
analysis process was conducted in two distinct phases by the researchers, com-
prising an initial screening phase and a subsequent detailed analysis phase. In
both phases, one researcher examined the data to identify insights and look for
themes that were subsequently discussed and reviewed with other members of
the research team. To help guide the analysis, five dimensions were considered:

Developer Concerns: We sought to identify the concerns and reservations
expressed by developers concerning the adoption of Generative AI tools in their
daily workflow.

Positive and Negative Aspects: A central aspect of our analysis was the
exploration of both positive and negative facets associated with the integration
of Generative AI tools in software development, allowing for a balanced under-
standing of their impact.



8 G. Pereira et al.

Tasks Enhanced: We explored the specific types of tasks and software
development activities where Generative AI tools proved to be particularly ad-
vantageous, discerning their areas of usefulness.

Productivity Enhancement: Lastly, we sought to evaluate the extent to
which these tools contributed to overall productivity gains within the software
development process.

Usage Across Roles: An integral element of the analysis was an exami-
nation of how developers and other team members across different roles were
leveraging Generative AI tools, shedding light on variations in usage patterns.

This analysis resulted in the identification of the initial eight lessons described
later.

3.4 Limitations and Threats to Validity

Our study is subject to some threats and limitations.First, the absence of quan-
titative data, such as bug counts or delivery times, restricts the ability to provide
concrete, measurable insights into the impact of these tools on development pro-
cesses. That is, our study shares perceptions from developers that ultimately
may not be true. Complementary or quantitative studies are needed.

Second, the study’s focus on a single large company may limit the general-
izability of its findings. Lastly, qualitative data collection, particularly through
diaries and interviews, introduces the possibility of response bias and subjectiv-
ity. While we sought to minimize this risk by comparing developers’ perspectives
with existing literature and interviewing a number of different teams to see if
there was commonality in the perceptions across teams, such risks will always
persist.

4 Eight Lessons

This section presents lessons learned from our ongoing study, until now, based
on the teams described in section 3.2. By analyzing the diaries and checkpoint
meetings, we have identified eight preliminary lessons about the adoption and
usage of GenAI by the developers. The lessons cover a variety of software devel-
opment activities. Some of the lessons apply to one of the tools only (e.g., Con-
text Matters) whereas others apply to both tools (e.g., Improving Unit Testing).
These eight lessons are shown in Figure 2 and categorized by the applicable tool
(ChatGPT and/or Copilot).

4.1 Lesson 1: GenAI’s Indirect Impact

At Globo, the influence of GenAI went beyond its primary functions. The devel-
opment teams increasingly recognized that GenAI indirectly encouraged them
to explore tools and practices that enhance code quality and overall project
success. Specifically, the Globo developers started using Sonar10 not just as a

10 https://www.sonarsource.com/



Case study of GenAI adoption 9

1. GenAI 
Indirect Impact

2. AI-enabled
Pair Programming

3. Improving
Unit Testing

8. Privacy and 
Data Security 
Concerns

7. Exploring GenAI Beyond Coding

6. Powerful 
Search 
Companion

4. Context 
Matters – 
Legacy 
Codebases

5. Better with 
Good Code

ChatGPT Copilot

Fig. 2. Lessons learned

post-development auditing tool, but especially to collect evidence of the effi-
ciency of GenAI (a requirement of the project). By analyzing the code gener-
ated or written with the assistance of GenAI, Sonar provided valuable insights
into code quality, identified potential vulnerabilities, and highlighted areas for
improvement. The developers also used ChatGPT to help using Sonar. A devel-
oper mentioned: “I used ChatGPT to ask a question about how to use Sonar on
a monorepo. The answer helped me confirm what I already thought was the way
to go. (Team 1, Dev 1)”. The developers noted that the integration of Sonar into
the development process enabled them to maintain a continuous focus on code
quality.

4.2 Lesson 2: Learning through AI-enabled Pair Programming

Pair programming, a core practice in Extreme Programming, is a collaborative
approach where two programmers work together at a single computer, with one
writing code and the other reviewing it in real-time. This strategy improves code
quality, reduces bugs, and promotes knowledge sharing [10]. With the advent of
AI-driven programming companions like ChatGPT and Copilot, pair program-
ming transcends human collaboration, introducing a novel dimension to coding
excellence.

In our study, ChatGPT and Copilot were widely used as a pair in coding
tasks like code generation and repair. The Globo developers often cited extreme
pair programming [4] when describing their interaction with tools. According
to them, ChatGPT and Copilot contributed in ways different from pair devel-
opers. Copilot was seen more as a smart auto-complete as it analyzes the code



10 G. Pereira et al.

in real-time, offering suggestions, auto-completing repetitive tasks, and provid-
ing context-aware code recommendations. This led to accelerated development
“Today, in pair programming with our team intern, we used Copilot to acceler-
ate development. (Team 1, Dev 2)”. ChatGPT, on the other hand, behaved like
another developer as they can direct questions to it and discuss ways to write
better code. Developers engaged in a conversation with ChatGPT, and sought
suggestions, clarifications, and even debugging assistance. Its ability to provide
instant code snippets, explanations, and algorithmic insights mirrored the col-
laborative nature of pair programming. As one developer described “We used
ChatGPT to pair program, and it gave good answers to our questions. (Team 1,
Dev 3)”.

One aspect worth mentioning is that the unique synergy between ChatGPT
and Copilot is what truly embodies the spirit of pair programming. Develop-
ers engaged in conversations with ChatGPT for problem-solving ideas and then
implemented those solutions with Copilot’s real-time assistance. As one devel-
oper noted, “Copilot helped complete the front-end code, and I asked ChatGPT
a few questions about refactoring. (Team 1, Dev 2)”. Using them in tandem
ensured that the code produced was not only efficient and bug-free but also in-
culcated a deeper understanding of programming concepts and best practices.
The blend of human expertise with AI intelligence resulted in a synergy that not
only enhanced code quality but also facilitated a continual learning journey for
developers.

4.3 Lesson 3: Improving Unit Testing

Several developers participating in the study highlighted the usefulness of Copi-
lot in implementing unit tests, “Copilot helped me create unit tests in a more
practical way for the code I refactored yesterday (Team 1, Dev 1)”. According
to them, the tool often accelerated the development of this class of tests con-
siderably, which seems to stem from Copilot’s extensive codebase knowledge. As
developers wrote code, Copilot suggested unit test cases, stubs, and mock data.
It helped automate the creation of test suites, making it easier to achieve com-
prehensive test coverage. Globo’s experience thus aligns with prior observations
(e.g., [6]).

ChatGPT appeared in a somewhat different context. Globo developers used
ChatGPT to understand application errors and solve problems in both pro-
duction and development environments. By describing the problem in plain lan-
guage, developers engaged in a conversation with ChatGPT to identify potential
bug causes. For example, a critical bug in production was solved through the
help of ChatGPT as “ChatGPT helped me quickly answer questions about the
(Go) language to solve an implementation. (Team 3, Dev 1)”. The developers
also felt that bugs were solved quicker because ChatGPT provided richer an-
swers than search engines “I felt I got the answer more clearly and quickly than
if I’d gone to Google directly. (Team 5, Dev 1)”.

Copilot excels in expediting the creation of unit tests, while ChatGPT’s ben-
efit lies in diagnosing the root causes of bugs, even in production environments.



Case study of GenAI adoption 11

For example, Copilot helped to develop unit tests with method syntax and mock-
up objects, while ChatGPT was a suitable alternative to solving doubts about
a specific programming language or a specific tool such as cache-control head-
ers. Together, the combination of Copilot and ChatGPT in testing represents a
potent synergy in software development.

4.4 Lesson 4: Context Matters - GenAI and Legacy Codebases

Based on the conversation with the teams, we found that Copilot’s performance
varied significantly depending on the context of the application it is used with.
Developers working on legacy code found Copilot was not helpful while others
found it more beneficial with new projects and codebases.

The integration of Copilot into projects featuring legacy code and older tech-
nology often presented developers with a unique set of challenges. Copilot’s
understanding of the context in such cases was less accurate due to outdated
conventions, coding practices, and technology stacks. It sometimes struggled to
provide relevant suggestions and did not always fully comprehend the intricacies
of legacy systems. Adapting Copilot to understand and work effectively with
legacy code often required manual adjustments and a deeper contextual under-
standing by developers. As one developer working on legacy code noted “Copilot
can’t help. It doesn’t seem to understand code that isn’t well-structured. (Team 1,
Dev 4)”. Interestingly, it appears that ChatGPT copes better with legacy code
as the same developer describes “ChatGPT gives pertinent answers to specific
questions, even about legacy technologies. (Team 1, Dev 4)”.

According to the Globo developers, Copilot shined in the realm of new
projects and fresh codebases. Its understanding of modern coding conventions,
current technology stacks, and best practices was better. As one developer noted
“Copilot is competent to recognize context within the file. (Team 5, Dev 1)”, and
another noted its support for modern-day coding practices “Copilot looks smart
for testing well-structured code. Good for isolated components. (Team 2, Dev 1)”.

Overall, this is an important point for Globo to take forward and explore,
given that some of its codebase contains legacy code. A key outcome, then, is that
it could be beneficial to explore how to make the GenAI tools more supportive
of legacy code perhaps by building an internal language model based on its own
code base. How this then balances with knowledge learned from external sources
will remain to be seen.

4.5 Lesson 5: Copilot is Better With Good Code

While Copilot really helped the teams, it relied on developers crafting high-
quality code to provide better suggestions. The responsibility for the quality of
code suggestions was a shared endeavor that hinged on the developer’s expertise.
A Globo developer said that “Copilot depends on the developer. For example,
if you start writing a method with a proper name, [it] makes better suggestions.
Sometimes it can’t even do it. (Team 2, Dev 1)”.



12 G. Pereira et al.

Developers had to be mindful of the code they wrote, ensuring it was read-
able, maintainable, and followed established coding standards. Copilot, in turn,
complemented the developer’s work by offering suggestions that aligned with
the code’s context. Copilot leveraged its understanding of code patterns, best
practices, and programming languages to offer suggestions. However, developers
were the ones who set the foundation by writing code that was well-structured,
adhered to best practices, and was clear in its intent. To illustrate this, another
developer said: “Creating a function with a descriptive name will help the Copilot
answer. (Team 3, Dev 2)”.

4.6 Lesson 6: ChatGPT as a Powerful Search Companion

Some Globo developers turned to ChatGPT as a viable and favored search plat-
form compared to Google, dedicated software engineering Q&A platforms such
as Stack Overflow11, or even documentation. They did this because ChatGPT
allowed them to pose their questions in plain language and receive immediate,
context-aware responses. The Globo developers felt that this type of interaction
significantly reduced the time they spent searching and filtering through search
results, making it an attractive choice for developers seeking swift and precise
answers. Specifically, the developers noted that ChatGPT helped speed up their
work as “ChatGPT helps with technical questions faster than Google (Team 5,
Dev 2)” and “AI delivers a more practical summary (Team 3, Dev 2)” in com-
parison to traditional search engines. Moreover, the developers felt the answers
were more “assertive” than Google searches, leading to “accelerated work.”

4.7 Lesson 7: Exploring GenAI’s Beyond Coding

While it is clear that GenAI has found its place in coding and testing, there is
a widespread lack of awareness regarding its potential in other software devel-
opment activities, such as software requirements or software design. Most of the
Globo reports to date concerned how developers explored several ways of gener-
ating code, obtaining debugging support, and expediting the testing process.

However, GenAI has the capability to assist beyond coding, such as in soft-
ware requirements, from generating user stories and use cases to aiding in re-
quirement analysis and documentation. One of the teams started exploring this,
using it to streamline the process by seeking recommendations from ChatGPT,
and ensuring that requirements are well-defined. One team member mentioned
that “ChatGPT provides good support for writing documentation. I use it a lot
for documentation. (Team 4, Dev 1)” (In this case, they mean requirements
documentation, not code comments.).

GenAI can also be a good resource in design activities. It has the capability to
assist in creating wireframes, generating design documents, and even automat-
ing certain design tasks. By providing design suggestions, aiding in prototype
creation, and facilitating iterative design, GenAI can optimize the entire design

11 https://stackoverflow.com/



Case study of GenAI adoption 13

process. At Globo, some aspects of this were explored. For example, one team
member mentioned that “ChatGPT helped us with a task that required us to build
a flow diagram. It helped to elucidate complex flows in blocks of code. (Team 4,
Dev 2).”

However, our study so far showed that the use of GenAI beyond coding is un-
derexplored at Globo. The teams have not yet explored GenAI for requirements,
design, and even other activities such as software architecture. The examples
mentioned above are the only instances of its use for such tasks so far. At the
same time, recent literature suggests that this is common at other places too
[22].

4.8 Lesson 8: Privacy and Data Security are Important Concerns

The use of GenAI brings an issue of great concern—privacy. Privacy, especially
at the organizational level, is a fundamental right and a critical consideration
in the age of AI. The sensitive nature of data, proprietary information, and
the potential for data breaches underscore the importance of safeguarding an
organization’s digital assets. Based on the data collected so far, this concern
with privacy limited the use and potential of GenAI in several ways. One of
the primary concerns was the integration of third-party code or services, as this
introduced a degree of uncertainty. This is illustrated by another quote from the
study: “Gen AI may make us use third-party code that we are not authorized
to use, or we will not cite the source. (Team 6, Dev 1).” A second concern was
around data leakage, “There is concern mainly about the leakage of credentials
and/or sensitive information that may be contained in the code. (Team 5, Dev
2).” Another developer said: “ChatGPT needs context. It generates insecurity
as more context is needed to get a satisfactory response. (Team 4, Dev 2).” One
immediate action was the development of a best practice guide by the legal team
at Globo. How best to address these concerns is something to be explored further
as Globo continues its adoption of GenAI.

4.9 Discussion

Although the adoption of GenAI is ongoing at Globo, these first eight lessons
provide some interesting perspectives for further consideration. One notewor-
thy perspective is that when examining the lessons holistically, it seems that
ChatGPT and Copilot are complements, rather than alternatives. Based on the
analysis, they are complements for two reasons: (i) they support somewhat dif-
ferent use cases, and (ii) where they support the same use case, they do so
in different ways by playing to each other’s strengths. For example, Globo de-
velopers are using ChatGPT as a search companion (Lesson 6), because of its
natural language user interface and understanding of context. For AI-enabled
pair programming (Lesson 2), both ChatGPT and Copilot assisted the devel-
oper. A developer first would engage with ChatGPT to explore the problem and
solution space and then complete the implementation using Copilot’s intelligent
auto-complete.



14 G. Pereira et al.

While Globo developers reflected on how GenAI can help them in effective
ways to save time (e.g., improving testing (Lesson 3)) they also raised concerns
such as the ability of GenAI to support legacy codebases (Lesson 4) and the
potential for privacy risks (Lesson 8). These are crucial to address if the potential
of GenAI is to be fully realized, As stated earlier, how to do so remains an open
question.

The adoption of GenAI tools is also spurring Globo to adopt additional tools
such as Sonar for measuring code quality and identifying potential vulnerabilities
(Lesson 1). This adoption could potentially assist with some of the potential
privacy and security risks noted in Lesson 8, though it is not a complete solution
for that. Again, the Globo teams will need to consider the limitations and what
can be done further.

Finally, it is somewhat surprising that GenAI has been little explored by
Globo developers for non-coding activities such as requirements engineering or
design (Lesson 7). It is unclear why this is, perhaps due to a lack of aware-
ness of the potential of GenAI beyond merely code and test generation. Indeed,
the broader research literature does not talk about this much [11], nor does
the popular literature (e.g., magazines, blogs). At the same time, because of its
generative capabilities, one would expect potential benefits precisely for activi-
ties such as requirements and design, where creative and broad exploration can
matter. Globo’s management plans to look at this potential in this regard in
detail.

5 Conclusion

In the era of ever-advancing technology and the relentless evolution of software
development, ChatGPT and Copilot have emerged as pivotal players, redefin-
ing the way developers write code, conduct testing, and seek answers. These
AI-powered companions offered novel solutions to age-old challenges, and their
presence has already left an indelible mark on the development landscape. Both
tools represent a shift in how developers interact with technology, learn, and
enhance their craft.

Our findings at Globo include that ChatGPT has not only expedited coding
tasks but has also evolved into a rapid search companion for developers, often
outperforming conventional search engines. Developers feel it offers immediate
and precise information, reshaping how they access knowledge and insights.

Copilot, on the other hand, has excelled at creating synergy between human
expertise and artificial intelligence, empowering Globo developers to write better
code faster. Developers have recognized that Copilot’s performance is closely
intertwined with their own coding practices, so are cognizant of the importance
of writing their own quality code to receive better suggestions.

As GenAI technology continues to evolve, it is okay to say that ChatGPT and
Copilot have marked a new era that prioritizes collaboration between humans
and artificial intelligence. The future of software development holds exciting po-
tential as we continue to explore the ever-expanding horizons of AI companions



Case study of GenAI adoption 15

like ChatGPT and Copilot. Yet, we must proceed with care. When real produc-
tion code, and especially legacy code, is involved, new practices must be found
to more effectively leverage GenAI tools.

6 Acknowledgements

This work is partially supported by Globo in Brazil. Rafael Prikladnicki is par-
tially supported by CNPq in Brazil. Guilherme Pereira is supported by the
Ministry of Science, Technology, and Innovations, with resources from Law No.
8.248, dated October 23, 1991, within the scope of PPI-SOFTEX, coordinated
by Softex, and published in the Residência em TIC 02 - Aditivo, Official Gazette
01245.012095/2020-56. This material is based upon work supported by the US
National Science Foundation under grant CCF-2210812.

References

1. Agrawal, K.P.: Towards adoption of generative ai in organi-
zational settings. Journal of Computer Information Systems
0(0), 1–16 (2023). https://doi.org/10.1080/08874417.2023.2240744,
https://doi.org/10.1080/08874417.2023.2240744

2. Ahmad, A., Waseem, M., Liang, P., Fahmideh, M., Aktar, M.S., Mikko-
nen, T.: Towards Human-Bot Collaborative Software Architecting with Chat-
GPT. In: Proceedings of the 27th International Conference on Evaluation
and Assessment in Software Engineering. pp. 279–285. EASE ’23, Associa-
tion for Computing Machinery (2023). https://doi.org/10.1145/3593434.3593468,
https://dl.acm.org/doi/10.1145/3593434.3593468

3. Al Madi, N.: How Readable is Model-generated Code? Examining Readability and
Visual Inspection of GitHub Copilot. In: Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering. pp. 1–5. ASE ’22, Associ-
ation for Computing Machinery (2023). https://doi.org/10.1145/3551349.3560438,
https://dl.acm.org/doi/10.1145/3551349.3560438

4. Beck, K.: Extreme Programming Explained: Embrace Change.
An Alan R. Apt Book Series, Addison-Wesley (2000),
https://books.google.com.br/books?id=G8EL4H4vf7UC

5. Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk,
T., Gazit, I.: Taking Flight with Copilot: Early insights and opportunities of AI-
powered pair-programming tools. Queue 20(6), Pages 10:35–Pages 10:57 (2023).
https://doi.org/10.1145/3582083, https://dl.acm.org/doi/10.1145/3582083

6. Ebert, C., Louridas, P.: Generative AI for Software Practitioners. IEEE Software
40(4), 30–38 (2023). https://doi.org/10.1109/MS.2023.3265877

7. Ernst, N.A., Bavota, G.: AI-Driven Development Is Here: Should YouWorry? IEEE
Software 39(2), 106–110 (2022). https://doi.org/10.1109/MS.2021.3133805

8. Fill, H.G., Fettke, P., Köpke, J.: Conceptual Modeling and Large
Language Models: Impressions From First Experiments With Chat-
GPT. Enterprise Modelling and Information Systems Architec-
tures (EMISAJ) 18, 1–15 (2023). https://doi.org/10.18417/emisa.18.3,
https://folia.unifr.ch/global/documents/324646



16 G. Pereira et al.

9. Guilherme, V., Vincenzi, A.: An initial investigation of chatgpt unit test genera-
tion capability. In: Proceedings of the 8th Brazilian Symposium on Systematic and
Automated Software Testing. p. 15–24. SAST ’23, Association for Computing Ma-
chinery, New York, NY, USA (2023). https://doi.org/10.1145/3624032.3624035,
https://doi.org/10.1145/3624032.3624035

10. Hannay, J.E., Dyb̊a, T., Arisholm, E., Sjøberg, D.I.: The effectiveness of pair pro-
gramming: A meta-analysis. Information and software technology 51(7), 1110–1122
(2009)

11. Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J.,
Wang, H.: Large language models for software engineering: A systematic literature
review (2023)

12. Humble, J., Kim, G.: Accelerate: The science of lean software and devops: Building
and scaling high performing technology organizations. IT Revolution (2018)

13. Kabir, S., Udo-Imeh, D.N., Kou, B., Zhang, T.: Who Answers It Better?
An In-Depth Analysis of ChatGPT and Stack Overflow Answers to Soft-
ware Engineering Questions (2023). https://doi.org/10.48550/arXiv.2308.02312,
http://arxiv.org/abs/2308.02312

14. Kalliamvakou, E.: Research: Quantifying GitHub Copilot’s impact on devel-
oper productivity and happiness (2022), https://github.blog/2022-09-07-research-
quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

15. Khoury, R., Avila, A.R., Brunelle, J., Camara, B.M.: How Secure is Code
Generated by ChatGPT? (2023). https://doi.org/10.48550/arXiv.2304.09655,
http://arxiv.org/abs/2304.09655

16. Lanyado, B.: Can you trust ChatGPT’s package recommendations? (2023),
https://vulcan.io/blog/ai-hallucinations-package-risk/

17. Lucchi, N.: Chatgpt: A case study on copyright challenges for generative artifi-
cial intelligence systems. European Journal of Risk Regulation p. 1–23 (2023).
https://doi.org/10.1017/err.2023.59

18. Moradi Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh, F.,
Desmarais, M.C., Jiang, Z.M.J.: GitHub Copilot AI pair pro-
grammer: Asset or Liability? Journal of Systems and Soft-
ware 203, 111734 (2023). https://doi.org/10.1016/j.jss.2023.111734,
https://www.sciencedirect.com/science/article/pii/S0164121223001292

19. Murgia, M.: Generative AI exists because of the transformer (2023),
https://ig.ft.com/generative-ai/

20. Nascimento, N., Alencar, P., Cowan, D.: Comparing Software Developers with
ChatGPT: An Empirical Investigation. arXiv preprint arXiv.2305.11837 (2023).
https://doi.org/10.48550/arXiv.2305.11837, http://arxiv.org/abs/2305.11837

21. Nguyen, N., Nadi, S.: An empirical evaluation of GitHub copilot’s
code suggestions. In: Proceedings of the 19th International Conference
on Mining Software Repositories. pp. 1–5. MSR ’22, Association for
Computing Machinery (2022). https://doi.org/10.1145/3524842.3528470,
https://dl.acm.org/doi/10.1145/3524842.3528470

22. Ozkaya, I.: Can architecture knowledge guide software develop-
ment with generative ai? IEEE Software 40(05), 4–8 (sep 2023).
https://doi.org/10.1109/MS.2023.3306641

23. Ray, S.: Samsung Bans ChatGPT Among Employees After Sensitive Code
Leak (2023), https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-
bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/



Case study of GenAI adoption 17

24. Sobania, D., Briesch, M., Hanna, C., Petke, J.: An Analysis
of the Automatic Bug Fixing Performance of ChatGPT (2023).
https://doi.org/10.48550/arXiv.2301.08653, http://arxiv.org/abs/2301.08653

25. Tal, L.: Can machines dream of secure code? From AI hallucinations to software
vulnerabilities (2023), https://snyk.io/blog/ai-hallucinations/

26. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., Schmidt, D.C.: A Prompt Pattern Catalog to Enhance Prompt
Engineering with ChatGPT (2023). https://doi.org/10.48550/arXiv.2302.11382,
http://arxiv.org/abs/2302.11382

27. White, J., Hays, S., Fu, Q., Spencer-Smith, J., Schmidt, D.C.: ChatGPT
Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elici-
tation, and Software Design (2023). https://doi.org/10.48550/arXiv.2303.07839,
http://arxiv.org/abs/2303.07839

28. Yetistiren, B., Ozsoy, I., Tuzun, E.: Assessing the quality of GitHub
copilot’s code generation. In: Proceedings of the 18th Interna-
tional Conference on Predictive Models and Data Analytics in Soft-
ware Engineering. pp. 62–71. PROMISE 2022, Association for Com-
puting Machinery (2022). https://doi.org/10.1145/3558489.3559072,
https://dl.acm.org/doi/10.1145/3558489.3559072

7 Appendix - Surveys

7.1 Pre Survey

This qualitative research begins the execution of the study on the use of gen-
erative AI tools in software development at Globo. The objective of the ques-
tionnaire is to get to know the members of the teams participating in the study.
Your feedback and participation are very important to understanding the char-
acteristics, skills and perspectives of each participant. The data will only be used
for research purposes.

1. Team

2. Age

a) 18 - 25 years old

b) 26 - 35 years old

c) 36 - 45 years old

d) 46 - 55 years

e) More than 56 years old

3. Gender

4. Experience in software development

a) 1 to 3 years

b) 4 to 7 years

c) 8+ years

5. Certifications in software development



18 G. Pereira et al.

6. Programming languages you’ve worked with
a) Python
b) Java
c) JavaScript
d) C++
e) W
f) Ruby
g) Go
h) Others

7. How long have you worked at the company? a) 1 to 3 years
b) 4 to 7 years
c) 8+ years

8. What is your role on the team?
a) Coordinator
b) Developer
c) DevOps
d) Product Owner
e) UX
f) Other

9. Do you have experience with artificial intelligence (AI) techniques?
a) No experience
b) Theoretical experiment, without application to real projects
c) Application in real projects

10. Have you used Generative AI tools (e.g. ChatGPT, GitHub Copilot)?
a) Never used
b) Yes, but not for real projects
c) Yes, even in real projects

11. Do you believe that using generative AI technologies can speed up the
software development process?

a) Yes
b) No

12. Do you believe that the use of generative AI technologies can influence
the adoption of best development practices?

a) Yes
b) No

13. Do you expect the use of generative AI technologies to affect collaboration
and communication between development team members? How?

14. In your opinion, does the use of these tools have an impact on creativity
in the software development process? How?

15. Do you have any concerns about using these technologies in professional
software development?



Case study of GenAI adoption 19

7.2 Post survey

This qualitative research finalizes the execution of the study on the use of gen-
erative AI tools in software development at Globo. The objective of the ques-
tionnaire is to understand the perceptions of the experiment participants, after
a period of using Generative AI tools. Your feedback and participation are very
important to understanding the characteristics, skills and perspectives of each
participant. The data will only be used for research purposes.

1. Team

2. Do you find generative AI tools useful for software development? Why?

3. What benefits (not limited to code) have you seen from using generative
AI tools?

4. What negative aspects (not limited to code) have been observed in the use
of generative AI tools?

5. Do you believe that generative AI tools have facilitated or accelerated the
software development process? Why?

6. Have you noticed any differences in code quality when using generative AI
tools? In what aspects?

7. Regarding codes written by you without the support of the AI tool, what
differences do you notice?

8. Have generative AI tools helped you avoid common mistakes or identify
problems in the code? In what way?

9. Do you think generative AI tools have promoted greater knowledge sharing
among team members?

10. Describe difficulties or limitations you have encountered when using gen-
erative AI tools?

11. Based on your experience during the experiment, what do you think could
be improved in generative AI tools?




