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ABSTRACT OF THE THESIS

Multiscale robust topology optimization for fiber composites
with multiscale material uncertainty propagation

by

Alvaro Diaz Flores Caminero

Master of Science in Structural Engineering

University of California San Diego, 2024

Professor Hyunsun Alicia Kim, Chair

A multiscale multi-fidelity robust topology Optimization (MFRTO) is proposed to design

continuous fiber-reinforced composites (CFRC) components minimizing the structural compli-

ance mean and variance subjected to material uncertainties within a prescribed volume constraint.

The topology optimization problem employs the level set method, where the fiber orientation

is continuously updated following principle stress approach. At the macro level, multi fidelity

x



Monte Carlo (MFMC) is used to compute the mean and variance of the structural compliance

utilizing a density filter creating lower mesh-related fidelity models from the highest fidelity

models. Likewise, the mean and variance of the macroscopic elastic properties of a unidirectional

fiber-reinforced composite are computed via different fidelity numerical homogenization ap-

proaches, specifically the generalized method of cells (GMC) and High-Fidelity GMC (HFGMC).

Numerical simulations are performed to validate the proposed algorithm, showcasing peculiar

features of the achieved optimal solutions with respect to the topology found in the case of

deterministic materials. The paper also discusses the computational efficiency of the approach,

particularly the speed-up achieved compared to the traditional Monte Carlo method.

Keywords: Multi-Scale Robust Topology Optimization, Fiber-Reinforced

Composites, Material Uncertainty, Multi-fidelity Monte Carlo.

xi



Chapter 1

Introduction

In this chapter, we tackle the current state of the art in topology optimization of continuous

fiber-reinforced composites under uncertainty, as well as explain the challenges that need to be

addressed. For that purpose, we did a literature review.

Composite materials, particularly continuous fiber-reinforced composites, have gained

significant attention in engineering applications due to their high strength-to-weight ratios and

customizable properties. However, the complexity of their microstructures poses challenges

in design and analysis. Since the microscopic fiber patterns are significantly smaller in scale

relative to the overall dimensions of macro-scale components, homogenization techniques can

be employed to derive effective macroscopic material properties. This approach averages out the

complex microstructural details, resulting in simplified yet accurate material characteristics that

reflect the overall behavior of the composite material.

Building on this concept, Aboudi [1] provided a review of homogenization techniques,

namely the Generalized Method of Cells (GMC) and its enhanced version, the High-Fidelity

Generalized Method of Cells (HFGMC). Those methods have been widely used for their ability

to capture microstructural details and predict the macroscopic behavior of composites. The GMC

method provides a semi-analytical approach to homogenization by modeling the composite as

an assemblage of repeating unit cells, allowing for efficient computation of effective properties.

The HFGMC extends this method by incorporating higher-order displacement fields within the
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unit cells, leading to improved accuracy in capturing stress and strain distributions.

Numerical methods such as finite element-based homogenization have also been em-

ployed to model the complex behavior of fiber composites. Kouznetsova et al. [34] introduced

a gradient-enhanced computational homogenization method that models microstructural size

effects within a nonlinear framework. Andreassen [5] provided an educational description of

numerical homogenization, presenting an efficient method to determine the effective macroscopic

properties of periodic composite materials, such as the elasticity tensor, using a simple Matlab

implementation that can be extended to multiple materials, conductivity, thermal expansion, and

fluid permeability with flexibility in 2D periodic unit cell shapes. Furthermore, Bruggi el al. [10]

applied the integration of homogenization techniques with multi-scale topology optimization

enabling the design of composite materials with optimized structural performance incorporating

uncertainty in loading amplitude. This approach allows for the simultaneous optimization of both

the macroscopic structure and the microscopic material layout, leading to advanced composite

designs with tailored properties.

Integrating optimal fiber orientation and external shape into a single numerical process

can be achieved through topology optimization which has proven to be an effective and efficient

method for addressing this design challenge, as highlighted in recent review [54]. The classical

topology optimization problem looks for the optimal distribution of a given amount of material

inside a prescribed domain, in order to optimize the mechanical response of the body to a

given load. Multi-scale topology optimisation approach utilizes the separation of scales, where

numerical homogenization is applied to model the microstructure—whether at the micro- or

meso-scale—by employing equivalent material properties at the macro-scale [27, 41].

Most topology optimization work has been conducted for isotropic materials, where

properties are uniform in all directions, simplifying the optimization process. However, extend-

ing topology optimization to anisotropic materials, such as composites, introduces additional

challenges and complexities due to the directional dependence of material properties, including

accurately modeling the anisotropic behavior within the optimization framework, ensuring man-
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ufacturability of the optimized designs, and managing increased computational demands. To

effectively align the anisotropy of microstructures to stress directions, it is possible to release

the rotational freedom in the unit cell, as pioneered by Bendsøe and Kikuchi [7]. Groen [26]

developed a method that allows the dimensions of the members in different principal directions

of the cubic unit cell to vary independently. By also permitting the unit cells to rotate, these

methods are able to generate lattices with orthotropic properties that are truly adapted to the

macroscale loads. In fiber composite materials, fiber orientation can effectively tailor structural

performance in stress concentration problems [46], stiffness [39], buckling [6], and natural

frequency [56]. Ghandi et al. [23] classified in his review different parameterizing techniques

for anisotropic materials’ topology optimization including the continuous parameterization of

fiber orientation (CFO), where the design uses the orientation angle itself as the design variable.

CFO approaches trace back to when Pedersen [42] derived an analytical expression to

optimize the fiber angle based on the principal strain directions—the strain-based method. Soon

after, Suzuki and Kikuchi [47] proposed the stress-based method, which, despite their similarity,

produces a slightly stiffer structure than the strain method due to strong couplings among the

orientation variables in the strain-based method [15]. Later, Gea and Luo [24] demonstrated that

the fiber orientation coincides with the principal stress/strain fields for relatively weak shear and

some strong shear types of anisotropic materials, avoiding the non-uniqueness. Heitkamp et al.

[29], presents a method for improving the mechanical properties of additively manufactured parts

by embedding continuous fibers along principal stress trajectories. This approach, as compared

to traditional unidirectional fiber alignment, resulted in a tensile strength increase by a factor

of 3 and a flexural strength improvement by a factor of 1.9, demonstrating the effectiveness of

stress-oriented fiber placement. Zheng et al. [44], introduces a method for optimizing continuous

fiber-reinforced composites (CFRCs) that accounts for the differing moduli in tension and

compression. The method incorporates the tension/compression bi-modulus orthotropic property

using a weighted compliance matrix (WCM) material model and optimizes fiber orientation by

aligning it with the principal stress directions. Matteo et al. [11] proposed a procedure to achieve
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the optimal layout of fiber-reinforced polymer (FRP) reinforcements for masonry structures

based on a topology optimization approach, where the layout of the reinforcement is completely

free to rotate independently. The optimal orientation of the fibers found to be close, but not

identical, to the direction of the tensile principal stresses of the underlying panel, which can

be conveniently implemented as a starting guess for the fiber orientation in the optimization

procedure.

Desai et al. [19] used topological derivatives to obtain the distribution of fiber, matrix,

and voids along with the fiber orientation, which they then post-process to achieve evenly spaced

fiber trajectories suitable for manufacturing. Jantos et al. [32] applied a thermodynamics-based

orientation approach for anisotropic materials to classical topology optimization problems,

enhancing the method through a filtering technique to control fiber smoothness. Li et al. [37]

proposed a one-scale topology optimization framework with fiber composites’ orientation and

morphology optimization, including fiber volume fraction, spacing, and thickness. Boddeti

et al. [8] introduced a design-to-manufacture multiscale workflow for composite materials,

where fiber and matrix properties undergo homogenization, and fiber orientation follows a

continuous parameterization approach. Wang et al. [52] developed a new algorithm for fiber

placement—Stress Vector Tracing algorithm—to create load-dependent and continuous fiber

paths. Fernandes et al. [22] demonstrated 3D printing fabrication feasibility and testing of a

carbon fiber-reinforced composite (CFRC) structure with topology optimization and optimal

fiber orientation. Haichao et al. [4] introduced a multi-fidelity approach to fuse models of

varying fidelity and optimize fiber orientation and topology in buckling problems using a genetic

algorithm.

In the past decade, there has been a significant increase in the number of works addressing

topology optimization under uncertainties. These publications are generally classified based on

the specific object of topology optimization, the numerical procedures employed, and the sources

of uncertainty (e.g., loading, geometry, stiffness, production tolerance, material properties).

Tootkaboni et al. [50] highlighted that, under real-world conditions, many of the terms in
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the optimization problem, including applied loads, and the stiffness of the structure, may

involve some degree of uncertainty. Schuëller [45] presented a review on some of the most

relevant developments in the field of optimization under uncertainty. One prominent approach

is Reliability-Based Design Optimization (RBDO), which seeks to minimize the probability of

failure for a given objective by either reducing the area under the probability density function

that falls outside the success boundaries or by shifting the mean value further away from these

boundaries. As highlighted by Tauzowski [48], reliability analysis itself is an optimization

procedure, therefore, applying reliability as a constraint in topology optimization becomes

a complex problem referred to as nested optimization. More examples of Reliability Based

Topology Optimization include works by Kharmanda et al. [33], Wang et al. [51, 53], and

Zeshang et al. [38].

Alternatively, Robust Design Optimization (RDO) focuses on minimizing the impact of

stochastic variability on the mean design by integrating higher-order statistics, such as variance,

into the optimization process. The robust optimization procedure typically involves two phases:

an initial deterministic optimization aimed at performance enhancement, followed by a sensitivity

analysis that accounts for uncertainties. Dunning et al. [20, 21] introduced a robust structural

topology optimization method that is both efficient and precise, aiming to minimize the expected

compliance while accounting for uncertainties in both the magnitude and direction of applied

loads.

Deng et al. [18] introduced a multiscale topology optimization approach for porous

materials under Gaussian random field loading uncertainties. However, when the random field is

non-Gaussian, one must use a Monte Carlo method to compute a fourth-order statistical moment,

making it computationally intensive. More examples of robust topology optimization under

loading uncertainty include works by Cai et al. [13], Yanan et al. [55], and Cai et al. [12]. Sheng

et al. [16] proposed a non-intrusive solution using Monte Carlo simulations combined with a

Kriging model to accelerate computation and optimize the topology and fiber orientation of

fiber-reinforced composite structures under loading uncertainty.
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Despite advancements in uncertainty quantification methods, previous research has

predominantly concentrated on uncertainties associated with structural design parameters, such

as applied loads, while comparatively less emphasis has been placed on uncertainties related to

material properties. This distinction is critical, as material uncertainty can significantly influence

the performance and reliability of composite structures.

Agrawal et al. [3] presented a robust topology optimization (RTO) method to address

material uncertainties in negative Poisson ratio metamaterials, achieving significantly more stable

designs compared to deterministic optimization. Hamdia et al. [28] proposed a multilevel Monte

Carlo method to speed up computation in topology optimization of flexoelectric composites with

material uncertainty. Kumar et al. [35] introduced an efficient uncertainty quantification and

global sensitivity analysis method for composite applications through sparse polynomial chaos

expansion enhanced with Latin hypercube sampling. In a subsequent publication, Kumar et al.

[36] expanded this research to include multi-scale uncertainties, such as laminate orientation and

thickness, using Sparse Polynomial Chaos Expansion (SPCE) and gradient-free genetic algorithm

NSGA II to optimize stiffness and cost under a 99.5% mass constraint reliability. Thillaithevan

et al. [49] demonstrated a robust optimization methodology for multivariable parameterized

lattice microstructures by introducing material uncertainties at the microscale through uncertain

perturbations to the lattice truss radii. Zheng et al. [57] explored the effects of material

uncertainty, specifically elastic modulus and Poisson’s ratio uncertainties, on the performance

and topology optimization of multi-material structures, using non-intrusive polynomial chaos

expansion. Hyun et al. [30] a robust topology optimization method for isotropic materials using

density-based topology optimization, addressing material uncertainty through the multifidelity

Monte Carlo (MFMC) approach. The method integrates low-cost, low-fidelity models with a

high-fidelity model to reduce the computational burden typically associated with traditional

Monte Carlo simulations. The proposed methodology demonstrates efficient resource allocation

and achieves a significant computational speed-up while preserving accuracy, as confirmed by

numerical examples.
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In summary, current approaches in multiscale topology optimization for fiber-reinforced

composites have advanced the integration of optimal fiber orientation and structural topology,

using homogenization techniques to handle microstructural complexities. Despite advancements

in modeling anisotropic behaviors and accounting for uncertainties in loading and geometry,

the incorporation of material uncertainties—-especially in fiber and matrix properties–remains

underdeveloped. Current approaches utilize computationally intensive Monte Carlo (MC)

simulations for uncertainty quantification, which, while accurate, are often impractical due

to high computational costs. To address this, other methods have been developed that aim to

improve efficiency, sometimes at the expense of accuracy.

We propose a multiscale framework that can guarantee an upper bound for the mean-

squared error of the propagated mechanical properties and the objective function, achieving a

maximum combined speedup of 298 times compared to Monte-Carlo simulation. In addition, we

apply this method to optimize the topology and fiber orientation of a CFRC structure using the

level-set method.

Chapter 1, in part is currently being prepared for submission for publication of the

material. Diaz-Flores Caminero, Alvaro; Ismail, Hussein; Chadhuri, Anirban; Kim, H. Alicia.

The thesis author was the primary investigator and author of this material.
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Chapter 2

Formulation

Consider a Cartesian coordinate system Oz1z2z3, where a three-dimensional body com-

posed of a linear elastic material occupies the region Ω. The stress and strain components,

denoted by σi j and εi j, respectively, are related through the material’s constitutive law, which

can be expressed as:

σi j =Ci jklεkl (2.1)

where Ci jkl is the fourth-order elasticity tensor, capturing the anisotropic response of the

material. Under the assumption of plane stress, the elasticity tensor C simplifies as out-of-plane

stress σ33 is zero. The in-plane elasticity tensor is given by:

C =


C11 C12 C16

C12 C22 C26

C61 C62 C66

 (2.2)

Let θ be the angle between the global X-axis and the fiber direction. To incorporate this

fiber orientation, the elasticity tensor in the global coordinate system can be obtained by rotating

the local elasticity tensor using a rotation matrix T(θ). The transformed elasticity tensor in the

global coordinate system is given by:

For fiber-reinforced composite materials, the orientation of the fibers significantly influ-
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ences the material’s stiffness. Let θ denote the angle between the global X-axis and the fiber

direction. To account for this fiber orientation, the elasticity tensor in the global coordinate

system is derived from the local coordinate system using a rotation matrix T(θ). The transformed

elasticity tensor in the global system is given by:

C(θ) = T(θ)CTT (θ) (2.3)

2.1 Multi-scale Level set Topology Optimization: Determin-
istic Case

2.1.1 Preliminaries

A classical problem in topology optimization is to determine the optimal material dis-

tribution within a structure that maximizes its stiffness. In other words, the goal is to find the

optimal distribution of material within a given domain Ω, such that the structural compliance is

minimized while satisfying a volume fraction constraint.

In the context of multi-scale topology optimization for fiber composite, the boundaries

evolve at the macro scale using the level set method, where material regions are tracked by a

level set function φ(x) at point x ∈ Ω. Successively, fiber orientation at the micro-scale is found

to minimize the strain energy through a sub-optimization routine described in section 2.1.3.

The homogenized elasticity tensor of the fiber composite is derived through a microme-

chanical analysis technique within the framework of the Method Of Cells (MOC), which provides

the overall behavior of a multiphase material by taking into account the response of the individual

constituents, their volume fractions, and the detailed interaction between the phases. In this

work, the adopted method is the most recent generalization of Method Of Cells, referred to as

the High Fidelity Generalized Method Of Cells (HFGMC). This method can provide the overall

behavior of periodic multiphase materials of various types, including thermoelastic, viscoelastic,

thermo-inelastic, and electromagnetothermoelastic materials [1].
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The level set function defines the material layout within the domain Ω, where the sign of

φ(x) differentiates between solid material and void regions. The level set function is defined as:

φ(x) =


0 on the material boundary,

< 0 inside the material (solid region),

> 0 outside the material (void region).

(2.4)

Ersatz material model is used to apply the level set field on a fixed analysis mesh where

each element’s material density is interpolated based on the area fraction of the element that

lies within the solid region. For elements fully within the solid region (φ(x)< 0), the volume

fraction ρ(x) is set to 1, while for elements fully in the void region (φ(x) > 0), ρ(x) is close

to zero. For elements intersecting the boundary (φ(x) = 0), an intermediate volume fraction is

computed, [40]. This volume fraction ρ(x) is then used to define the elasticity tensor at any point

in the domain supporting partial densities and enabling smooth transitions across boundaries:

C(θ ,φ(x)) = Cmin +ρ(φ(x))(C(θ)0 −Cmin), (2.5)

where:

• Cmin is the elasticity tensor in void regions,

• C(θ)0 is the homogenized elasticity tensor for fully solid material in orientation θ ,

• ρ(x) interpolates material properties based on φ(x).

2.1.2 Optimization problem Formulation

The minimum compliance volume constrained multi-scale topology optimization problem

for fiber composite accounting for fiber orientation can now be formulated as:
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
min

φ
J(φ ,θ) =

∫
Ω

uT K(ρ(x),θ)udΩ

subject to:
∫

Ω

ρ(x)dΩ ≤V ∗,

(2.6a)

(2.6b)

where J(ρ,θ) is the compliance (or strain energy), K(ρ,θ) is the global stiffness matrix depen-

dent on the material distribution and orientation θ , and V ∗ is the volume constraint.

The level set boundary evolves over time according to the Hamilton–Jacobi equation,

which tracks the boundary motion:

∂φ(x, t)
∂ t

+ v(x, t)|∇φ(x, t)|= 0, (2.7)

where v(x, t) is the normal velocity field, computed from the sensitivity of the objective

function guiding the boundary toward optimal configurations under prescribed constraints.

2.1.3 Orientation update

Material properties of composite materials reinforced with fibers can be improved for a

specific application tailoring fiber orientation [17]. Gibiansky and Cherkaev [25] and Suzuki

and Kikuchi [47] showed that the optimal orientation of orthotropic material could be where it is

co-aligned along its major principal stress direction. Gea in his paper [24], showed that optimal

orientation of both shear “weak” and some shear “strong” orthotropic materials may coincide

with the major principal stress direction in the stress-based method.

In this work, an iterative procedure was implemented to achieved coaxiality between

the principal stress and strain tensors in a two-dimensional (2D) framework, aiming to achieve

an optimal fiber orientation that minimize the strain energy. The process starts with an initial

stress tensor σσσ (0) and an elasticity tensor C(0), alongside a known strain tensor εεε derived from

the material’s deformation state. At each iteration n, the eigenvalues λ
(n)
i and corresponding

eigenvectors v(n)i of the stress tensor σσσ (n) were computed by solving the eigenvalue problem:
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σσσ
(n)V(n) = V(n)

ΛΛΛ
(n), (2.8)

where

V(n) =

[
v(n)1 v(n)2

]
and ΛΛΛ

(n) =

λ
(n)
1 0

0 λ
(n)
2

 . (2.9)

The eigenvector v(n)max associated with the maximum absolute principal stress

λ
(n)
max = max

(∣∣∣λ (n)
1

∣∣∣ , ∣∣∣λ (n)
2

∣∣∣) was identified to determine the principal direction of highest stress

magnitude. The fiber orientation θ (n+1) is then updated to align with v(n)max:

θ
(n+1) = arctan2

(
v(n)max,y, v(n)max,x

)
. (2.10)

A fourth-order rotation matrix, transformed to a two-dimensional one, T(n), by means of [9], was

subsequently constructed to align the elasticity tensor with v(n)max, facilitating the transformation

of the elasticity tensor as follows:

C(n+1) = T(n+1)C(n)T(n+1)⊤. (2.11)

This rotated elasticity tensor C(n+1) was then utilized to compute the updated stress tensor σσσ (n+1)

through the constitutive relation:

σσσ
(n+1) = C(n+1) : εεε. (2.12)

The principal stresses and their corresponding directions were recalculated for σσσ (n+1), and

the alignment process was repeated iteratively. The convergence of the iterative procedure is

evaluated by computing the difference between the fiber orientations of successive iterations:
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∆θ
(n) =

∣∣∣θ (n)−θ
(n−1)

∣∣∣< ε. (2.13)

When ∆θ (n) falls below a predetermined tolerance ε , the iterative process is considered to have

converged.

2.2 Multi-scale Level set Topology Optimization: Robust
Case

In this work, material uncertainties (UQ) at the micro-scale are considered. The un-

certainty quantification of the homogenized elastic tensor entries, of the composite material,

is derived by considering the uncertainties in one or more quantities of interest, specifically

the material properties, of the fibers, the matrix, or both. Solving the UQ problem involves

computing the statistical moments of each QOI, specifically the mean and the variance of uncer-

tain elastic tensor entries. Monte Carlo simulation serves as the most general approach for this

analysis leading to a high uncertainty estimation accuracy while considering a large number of

high-fidelity samples.

Considering the multi-scale topology optimization for fiber composite problems, uncer-

tainty quantification occurs at both the microscale and macroscale levels. At the microscale, the

UQ problem is addressed by determining the statistical moments for each homogenized element

of the constitutive tensor, for different fiber orientations. Subsequently, the design boundaries

are updated based on the sensitivity analysis of these statistical moments of structural compli-

ance. Employing Monte Carlo simulation with high-fidelity models for UQ in this multi-scale

procedure is computationally expensive. Jaeyub et al. [30] proposed an efficient procedure for

minimum compliance volume-constrained robust topology optimization accounting for material

single using multi-fidelity Monte Carlo (MFMC).

In this work, an updated version of MFMC is developed to account for single or multiple

QOI. MFMC works as a sub-optimization routine, taking advantage of low-fidelity models and
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allocating tailored computational resources for model, reducing the computational cost without

compromising the accuracy of the UQ compared to high fidelity Monte Carlo analysis. [30]

2.2.1 Optimization problem formulation

By accounting for the mirco scale uncertainty and deriving the mean and the variance

of the homogenized material properties, the deterministic topology optimization framework

proposed in section 2.1 is extended to account for these uncertainties. Consequently, a robust

topology optimization formulation is formulated as follows:


min

φ
J(φ ,Z) = η · ln(E [ f (ρ,Z)])+(1−η) · ln

(√
Var [ f (ρ,Z)]

)
subject to:

∫
Ω

ρ(x)dΩ ≤V ∗,

(2.14a)

(2.14b)

where the objective function J(ρ,Z) is a weighted combination of the expected value of the

structural compliance E [ f (ρ,Z)] and its variance Var [ f (ρ,Z)], controlled by the weighting

parameter η ∈ [0,1], and subjected to a volume constraint V ∗. The potentially large difference in

the magnitudes of the mean and variance is accounted for by applying a logarithmic scaling to

both preventing one term from disproportionately dominating the objective function by effectively

scaling down both terms, while the parameter η balances the trade-off between optimizing for

performance (mean) and robustness (variance), where:

• η = 1: The objective function exclusively focuses on minimizing the mean of the compli-

ance.

• η = 0: The objective function solely targets the minimization of the standard deviation

(or variance) of the compliance focusing on the robustness of the design by reducing its

sensitivity to uncertainties.

• 0 < η < 1: The optimization function seeks designs that are optimal on average and exhibit
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controlled behavior to uncertainties.

2.3 Uncertainty quantification method using multi-fidelity

Monte Carlo estimator

The MC method estimates the mean, ŝ, and variance, v̂, of a quantity of interest (QoI), f ,

given m samples as follows

ŝm =
1
m

m

∑
r=1

fr, (2.15)

v̂m =
1

m−1

m

∑
r=1

( fr − ŝm)
2, (2.16)

where ŝm is the MC mean estimator or the estimated mean obtained from m samples, and fr

represents an individual sample of the QoI for a specific random input. The variance, v̂m, is also

estimated using the same m samples. An alternative approach to estimating the variance involves

using an auxiliary variable, which allows for the computation of additional statistical metrics

such as correlation coefficients. This auxiliary variable, denoted as br, is chosen such that its

mean matches the variance estimate, i.e., E [bm] = v̂m, and is computed using

br =
m

m−1
( fr − ŝm)

2 (2.17)

This method is relatively simple and easy to implement. However, the mean-squared error (MSE)

of the MC method is inversely proportional to the number of samples, making it computationally

infeasible for expensive-to-evaluate models like high-fidelity battery simulations. To address this

limitation, the multifidelity Monte Carlo (MFMC) method [43] emerges by leveraging the speed

of lower-fidelity models while maintaining or improving accuracy compared to standard MC

methods. The core concept of MFMC is to combine multiple levels of model fidelity to achieve

a target MSE while accelerating the computation of statistical moments for QoIs. The number of

samples drawn from each model depends on its computational cost and correlation in terms of
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QoIs with the highest-fidelity model. This approach accommodates various distributions and

models including data such as results from experiments or sensor measurements [43].

Multifidelity Monte Carlo problem formulation

The aim of the MFMC method is to provide an unbiased estimator that can optimally

exploit lower fidelity models to estimate the mean and variance of the QoIs of the highest fidelity

with a given computational budget and that provides a lower MSE than MC estimator, [43].

Consider k models F1, . . . ,Fk with F1 being the high-fidelity model and F2 to Fk as the

k−1 lower-fidelity models ordered in descending order of Pearson correlation with respect to

the high-fidelity model and each model outputs N quantities of interest (QOI). We only use a

lower fidelity model j in the MFMC setup if the cost w j ∈ R of evaluating the model is lower

than the cost w j−1 of evaluating the model j−1. If the models satisfy the above two conditions,

then the vector of sample sizes, mmm = {m1, . . . ,mk}, for the different models are ordered such that

0 < m1 ≤ . . .≤ mk. Now let zzz1, . . . ,zzzmk be mk realizations of the random variable ZZZ. Then the

MFMC mean ŝ(l)MF and the MFMC variance v̂(l)MF estimators for each mechanical property, l, are

ŝ(l)MF = ŝ(l)1,m1
+

k

∑
j=2

α
(l)
j

(
ŝ(l)j,m j

− ŝ(l)j,m j−1

)
, (2.18)

v̂(l)MF = v̂(l)1,m1
+

k

∑
j=2

β
(l)
j

(
v̂(l)j,m j

− v̂(l)j,m j−1

)
. (2.19)

The superscripts indicate QoI, the subscript indicates first the model fidelity and second

the number of evaluations used to compute that quantity, m j. The control variate coefficients

for the mean, ŝ, and variance, v̂, for all QOI and for each fidelity are α
(l)
j and β

(l)
j , respectively.

These coefficients are a function of the correlation coefficient and the variance. These control

variates determine the influence of lower fidelity models on the MFMC estimator. Now, our

objective is to quantify uncertainty by bounding the Mean Squared Error (MSE) across all

quantities of interest MSE(l) in a single MFMC run. The MSE is the sum of individual MSEs for
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each QoI, scaled by a variable δ (l) to assign equal importance to all QoIs.

J =
N

∑
l=1

δ
(l)MSE(l) (2.20)

The total MSE for each quantity of interest is defined as

MSE(l) = MSE
(

f (l)
)
+ξ

(l)MSE
(

b(l)
)
, (2.21)

and ξ (l) is the scaling factor between mean and variance MSEs for each QOI and has

a similar function to δ (l). If the MFMC estimator is unbiased and the variance is finite, it is

possible to rewrite the MSE as,

MSE(l) = Var
(

ŝ(l)MF

)
+ξ

(l)Var
(

v̂(l)MF

)
, (2.22)

δ (l) is calculated as the ratio of the maximum mean to the mean of each QoI calculated

from the model with highest fidelity, and ξ (l) is the absolute value of the ratio of the mean to the

variance of the auxiliary variable for each QoI calculated from each fidelity.

δ
(l) =

∣∣∣∣∣∣
max

(
E
[

f (l)1,ninit

])
E
[

f (l)1,ninit

]
∣∣∣∣∣∣ , ξ

(l) =

∣∣∣∣∣∣
E
[

f (l)1,ninit

]
E
[
b(l)1,ninit

]
∣∣∣∣∣∣ . (2.23)

Lastly, according to Lemma 3.3 in [43], the variance for the MFMC estimator can be

written as,

Var
(

ŝ(l)MF

)
=

σ
(l)2

1
m1

+
k

∑
j=1

(
1

m j−1
− 1

m j

)(
α
(l)2

j σ
(l)2

j −2α
(l)
j ρ

(l)
1, jσ

(l)
1 σ

(l)
j

)
(2.24)

Var
(

v̂(l)MF

)
=

τ
(l)2

1
m1

+
k

∑
j=2

(
1

m j−1
− 1

m j

)(
β
(l)2

j τ
(l)2

j −2β
(l)
j q(l)1, jτ

(l)
1 τ

(l)
j

)
(2.25)

As a result of equations (2.24) and (2.25), the MSE for each QoI can be rewritten as,
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MSE(l) =
σ
(l)2

1
m1

+
k

∑
j=1

(
1

m j−1
− 1

m j

)(
α
(l)2

j σ
(l)2

j −2α
(l)
j ρ

(l)
1, jσ

(l)
1 σ

(l)
j

)
+ξ

(l)

(
τ
(l)2

1
m1

+
k

∑
j=2

(
1

m j−1
− 1

m j

)(
β
(l)2

j τ
(l)2

j −2β
(l)
j q(l)1, jτ

(l)
1 τ

(l)
j

))
(2.26)

We then formulate the minimization problem of the MSE to find the optimal control

variate coefficients and sampling size, leading to a closed-form solution involving the CPU time,

w j, the Pearson correlation coefficients, ρ
(l)
1, j and q(l)1, j (for ŝ(l)MF and v̂(l)MF , respectively), and the

variances σ
(l)
j

2
and τ

(l)
j

2
. For a full derivation, see [14].

min J (mmm,α
(1)
1 , . . . ,α

(1)
k , . . . ,α

(N)
k ,β

(1)
1 , . . . ,β

(1)
k , . . . ,β

(N)
k ) (2.27)

s.t: m j−1 −m j ≤ 0

−m1 ≤ 0

wwwTTT mmm = p.

Optimization problem solution

The first step towards solving this optimization problem is to formulate the augmented

Lagrangian objective function, which is a function of the same variables as our original objective

function plus the Lagrange multipliers.

L
(

m,α(l),β (l)
)
=

QoI

∑
l=1

δ
(l)MSE(l)+λ

(
ω

⊤m− p
)
−µ1m1 +

k

∑
j=1

µ j
(
m j−1 −m j

)
(2.28)

The optimal control variate coefficients come from the partial derivatives of the La-

grangian function with respect to the control variate coefficients.
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∂L

∂α
(l)
j

= 2α
(l)
j σ

(l)2

j −2ρ
(l)
1, jσ

(l)
1 σ

(l)
j = 0 (2.29)

∂L

∂β
(l)
j

= 2β
(l)
j τ

(l)2

j −2q(l)1, jτ
(l)
1 τ

(l)
j = 0 (2.30)

This leads to the solution for the optimal control variate coefficient, denoted by ∗ and is

expressed as,

α
(l)
j

∗
= ρ

(l)
1, j

σ
(l)
1

σ
(l)
j

, (2.31)

β
(i)
j

∗
= q(i)1, j

τ
(i)
1

τ
(i)
j

, (2.32)

The optimal control variate coefficients expressions make it possible to simplify the

equation for the MSE, (2.26), which enables rewriting it as,

MSE(l) =
σ
(l)2

1 +ξ (l)τ
(l)2

1
m1

−
k

∑
j=1

(
1

m j−1
− 1

m j

)(
ρ
(l)2

1, j σ
(l)2

1 +ξ
(l)q(l)

2

1, j τ
(l)2

1

)
. (2.33)

From KKT conditions primal feasibility, dual feasibility, and complementary slackness

properties, i.e., m j−1 −m j ≤ 0, µ j ≥ 0 and µ j (m j−1 −m j) = 0, we obtain µ j = 0, ∀ j ≥ 2.

Similarly, for µ1, from the relationship between the sampling size and computational cost

wwwTTT mmm = p, we get that m1 must be positive, thus µ1 = 0. Therefore, the augmented Lagrangian

equation reduces to,

L
(

m,α(l),β (l)
)
=

QoI

∑
l=1

δ
(l)MSE(l)+λ

(
ωωω

⊤mmm− p
)

(2.34)

The value of λ comes from the derivative of the Lagrangian augmented function with
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respect to m1

∂L

∂m1
=

∂

∂m1

N

∑
l=1

δl MSE(l)+λω1 = 0 (2.35)

From equation (2.35) we obtain λ as a function of the MSE for each QoI and the scaling

factor, δ (l). We can replace the value of the MSE for each QoI by the expression in equation

(2.33). To obtain the value of the Lagrange multiplier as a function of the sampling size, the

variance of the QoI and the auxiliary variables and the correlation between fidelity models.

λ =− 1
ω1

N

∑
l=1

δ
(l)∂ MSE(l)

∂m1

λ =
1

ω1

N

∑
l=1

δ
(l)

(
σ
(l)2

1 +ξ (l)τ
(l)2

1
m2

1
− 1

m2
1

(
ρ
(l)2

1,2 σ
(l)2

1 +ξ
(l)q(l)

2

1,2 τ
(l)2

1

))
(2.36)

From the equation above it is possible to factor out m1, which we will later use to obtain

the sampling ratios.

λ =
1

ω1m2
1

N

∑
l=1

δ
(l
[
σ
(l)2

1

(
1−ρ

(l)2

1,2

)
+ξ

(2)
τ
(l)2

1

(
1−q(l)

2

1,2

)]
(2.37)

Up to this point in the optimization we have obtained the optimal values of the control

variate coefficients and we have calculated the optimal value for the Lagrange multipliers. The

only remaining unknown is the optimal sampling sizes for each fidelity model. To obtain these

variables we take the derivative of the Lagrangian function with respect to the sampling size

variables, m j ∀ j ≥ 2.

∂L

∂m j
=

∂

∂m j

Q

∑
l=1

δ
(l)MSE(l)+λω j = 0. (2.38)

Expanding the equation above using equation (2.33) and taking the derivative with respect m j

we get,
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N

∑
l=1

δ (l)

m2
j

[
−ρ

(l)2

1, j σ
(l)2

1 −ξ
(l)q(l)1, jτ

(l)2

1 +ρ
(l)2

1, j+1σ
(l)2

j +ξ
(l)q(l)1, j+1τ

(l)2

j

]
+λω j = 0. (2.39)

The last step to get the expression for the optimal sampling ratios is to substitute the value of λ

from equation (2.37).

N

∑
l=1

δ (l)

m2
j

[
−ρ

(l)2

1, j σ
(l)2

1 −ξ
(l)q(l)1, jτ

(l)2

1 +ρ
(l)2

1, j+1σ
(l)2

j +ξ
(l)q(l)1, j+1τ

(l)2

j

]
+

ω j

ω1m2
1

N

∑
l=1

δ
(l
[
σ
(l)2

1

(
1−ρ

(l)2

1,2

)
+ξ

(2)
τ
(l)2

1

(
1−q(l)

2

1,2

)]
. (2.40)

Finally, by expressing the quotient of sampling size for fidelity j over the sampling size for the

highest fidelity, we obtain the optimal sampling ratios r j, which depend only on statistical and

known quantities.

r2
j
∗
=

m2
j
∗

m2
1
∗ =

ω1

ω j

∑
N
l=1 δ (l)

[
σ
(l)2

1

(
ρ
(l)2

1, j −ρ
(l)2

1, j+1

)
+ξ (l)τ

(l)2

1

(
q(l)

2

1, j −q(l)
2

1, j+1

)]
∑

N
l=1 δ (l)

[
ξ (l)

(
1−ρ

(l)2

1,2

)
+ξ (l)τ

(l)2

j

(
1−q(l)

2

1,2

)] (2.41)

Once the optimal sampling ratio is obtained, the only unknown variable is m1 which is

obtained through the equation for the budget and the optimal sampling ratio concept.

ωωω
⊤mmm = p ⇒ ωωω

⊤rrrm1 − p = 0 (2.42)

Thus, the optimal sampling size for the highest fidelity model is a function of the

computational budget, the computational cost and the optimal sampling ratio.
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m∗
1 =

p
ωωω⊤rrr∗

(2.43)

m j = m1r j (2.44)

Once we have obtained all the arguments that minimize the MSE we can recompute it by

just plugging back the optimal arguments’ values into equation (2.20).

A(l) = σ
(l)
1

2
+ξ

(l)
τ
(l)
1

2
+

k

∑
j=2

(
1
r∗j

− 1
r∗j−1

)(
ρ
(l)
1, j

2
σ
(l)
1

2
+ξ

(l)q(l)1,i
2
τ
(l)
1

2
)

(2.45)

preq =
wwwT rrr∗

J

N

∑
l=1

δ
(l)T

A(l). (2.46)

The variable A(l) contains the dependencies with respect to the correlation coefficients and

variances. It is included for clarity purposes.

Finally, the scaling factor δ (l) is a heuristic problem-dependent parameter. This formula-

tion recovers automatically the one QoI case by setting δ to the scalar value of one.

This procedure shows the derivation of optimal MFMC arguments to minimize the MSE

given a computational budget. However, it is also possible to solve for computational budget

minimization subject to a given MSE. In both cases, the solutions are the same and the only

change occurs in equation (2.46) where we swap places between preq and J .

Model selection

The model selection is an algorithm that enables choosing the set of fidelity models

that provide the minimum computational budget given an MSE constraint or vice-versa. This

algorithm follows the one in [43] and it is adapted to this method extension.

The MFMC method works based on the assumption that the models are ordered in

descending absolute correlation. Chaudhuri [14] modified this criterion to include the correlation
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of the auxiliary variable as |ρ1,1|+ |q1,1|> · · ·> |ρ1,k|+ |q1,k|. For this problem, we follow this

criterion using the correlation of the largest QoI as for the micromechanics problem gave the

smallest computational budget.

Once the models are ordered by correlation we delete any model with a lower correlation

that has higher computational cost to reduce the number of model combination to evaluate as the

combinatorial problem scales with, 2k. Then we proceed to evaluate the computational budget,

according to equation (2.46), of all remaining fidelities combinations and checking for each of

them that they meet the condition of minimizing the computational budget or MSE, depending on

how we formulated the problem. This condition is based on the problem constrain m j−1−m j ≤ 0

and m1 ≥ 0 which using equation (2.41) becomes,

w j−1

w j
>

∑
N
l=1 δ (l)

[
σ
(l)2

1

(
ρ
(l)2

1, j−1 −ρ
(l)2

1, j

)
+ξ (l)τ

(l)2

1

(
q(l)

2

1, j−1 −q(l)
2

1, j

)]
∑

N
l=1 δ (l)

[
σ
(l)2

1

(
ρ
(l)2

1, j −ρ
(l)2

1, j+1

)
+ξ (l)τ

(l)2

1

(
q(l)

2

1, j −q(l)
2

1, j+1

)] (2.47)

Here we present an algorithm that summarizes all the steps and checks in order to

implement MFMC.
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Algorithm 1. MFMC algorithm
1: Build F1, . . . , Fk.

2: Define the RVs, ZZZ, and sample ninit times using a truncated normal distribution (number of

samples heuristically chosen and problem dependent)

3: Run models, F1, . . . , Fk, for each ninit samples (total runs = number of samples × number

of models) to obtain the quantities of interest, QoI, f (i)j,r and its sensitivity
d f (i)j,r
dd j

.

4: Compute the auxiliary variable b(l)j,r with equation (2.17)

5: Compute σ
(l)
j , and ρ

(l)
1, j, τ

(l)
j , and q(l)1, j, based on f (l)j,r and b(l)j,r, from those ninit initial samples.

6: Order the models in descending order of correlation coefficient for the first QoI as, |ρ1,1|+

|q1,1|> · · ·> |ρ1, j|+ |q1, j| and delete the models with a higher computational budget than a

higher fidelity one.

7: Evaluate equations (2.41), and (2.46) for all remaining models’ combination and choose the

one with smallest budget, preq if it satisfies equation (2.47).

8: Compute α
(l)
j and β

(l)
j using equations (2.31), (2.32)

9: Compute the optimal sampling size using equations (2.43), (2.44)

10: Run all fidelities according to m∗ from previous step.

11: Calculate the QoIs mean and variance using equations (2.18) and (2.19), respectively

Chapter 2, in part is currently being prepared for submission for publication of the

material. Diaz-Flores Caminero, Alvaro; Ismail, Hussein; Chadhuri, Anirban; Kim, H. Alicia.

The thesis author was the primary investigator and author of this material.
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Chapter 3

Numerical implementation

3.1 Multi-fidelity Monte Carlo for micromechanics

In this study, we utilize the Multi-Fidelity Monte Carlo (MFMC) method to quantify

uncertainties in the homogenized elastic tensor CCC∗ derived from micromechanical models. The

entries of the elastic tensor, referred to as QoIs, including the diagonal terms C11, C22, C66

representing the direct stiffness in the xx-, yy-, and shear directions, and the off-diagonal term

C12, C16, C26 describing the coupling effects between stresses and strains in orthogonal directions,

and between normal stresses and shear strains, respectively.

We consider two primary random variables (RVs) representing the material properties of

the constituents: the longitudinal Young’s modulus of the fiber E( f )
11 , and the Young’s modulus of

the isotropic matrix E(m). Each RV is modeled using a truncated normal distribution characterized

by a mean µ , a standard deviation σ = γµ where γ denotes the coefficient of variation, noting

that we are not limited to this RV selection and probability distribution type.

Two micromechanical models of differing fidelities are used: a high-fidelity model (F1)

utilizing the High-Fidelity Generalized Method of Cells (HFGMC) with a detailed discretization

of the Representative Unit Cell (RUC), and a low-fidelity model (F2) employing the Generalized

Method of Cells (GMC) with a coarser discretization.

The effective constitutive tensor CCC∗ obtained from the micromechanical models is initially

aligned with the fiber’s local coordinate system. To integrate this tensor into the global coordinate
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system, we perform a rotation using a transformation matrix TTT θθθ that accounts for the fiber

orientation angle θ . Following the rotation, the mean and variance of the QoIs are calculated

from the rotated constitutive tensor for a RUC with the fiber oriented at angle θ .

E[CCC∗
θ ] = E[TTT θθθCCC∗

x′y′z′TTT
T
θθθ
], (3.1)

Var[CCC∗
θ ] = Var[TTT θθθCCC∗

x′y′z′TTT
T
θθθ
]. (3.2)

This framework allows computations to be executed on-demand for specific angles or by

utilizing a discretized set of θ values that are precomputed and stored as database of mean and

variance of each QoIs for the set of orientation angles for a subsequent analyses.

Algorithm 2. MFMC for Micromechanics
1: Build micromechanical fidelity models F1, F2 with different discretizations.

2: Define random variables for material properties (e.g., E( f )
11 , E(m)) and sample them using a

truncated normal distribution.

3: Run models F1, F2, etc., for each sample to obtain the homogenized elastic tensor CCC∗,

according to Algortihm 1.

4: Compute mean E[CCC∗
θ ] and variance Var[CCC∗

θ ] using MFMC estimators (Eqs.(2.18), (2.19)).

5: Store the computed statistical moments for each orientation θ .

Figure 3.1. mfRTO workflow.
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3.1.1 Compliance MFMC

In this section, we utilize the Multi-Fidelity Monte Carlo (MFMC) method to quantify

uncertainties for the structural compliance f , our primary Quantity of Interest, arising from

uncertainties in material properties.

Consider multiple finite element models with different levels of fidelity, such that the

high-fidelity model (F1) uses a finely discretized finite element mesh to provide accurate results

at a higher computational cost, and lower-fidelity models (F2,F3, . . .) use coarser meshes that

are computationally cheaper but less accurate.

Different fidelity levels are created based on the high-fidelity model by implementing a

blurring (mapping) procedure for the volume fraction ρ and the fiber orientation θ , similar to

the mapping approach described in [30]. The lower-fidelity design variables are computed by

mapping from the high-fidelity design using a convolutional smoothing approach:

ρρρ
(i) = HHH(i)

(1)ρρρ
(1), θθθ

(i) = HHH(i)
(1)θθθ

(1). (3.3)

where HHH(i)
(1) is a mapping matrix defined as:

Hmn =
wmn

∑
N(1)

n=1 wmn
, wmn =


1, if ∥xxx(i)m − xxx(1)n ∥ ≤ r,

0, otherwise,
(3.4)

where xxx(1)n and xxx(i)m represent the centroids of elements in the high-fidelity and i-th fidelity

models, respectively, and r is the influence radius. Figure 3.2 illustrates the mapping algorithm,

showing the interaction between two overlapping meshes: the high-fidelity mesh (dashed red)

and the low-fidelity mesh (solid blue). The centroids of the high-fidelity elements are labeled as

A1 to A16 (with A17 to A64 omitted for clarity), while the centroids of the low-fidelity elements

are labeled as B1 to B4. The neighborhood of influence for the centroid B1 is represented by the

yellow circle, covering all high-fidelity centroids within the specified radius r.
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Figure 3.2. Convolutional smoothing mapping representation.

In Fig.(3.2), there are two overlapping meshes: the high-fidelity dashed red mesh whose

elements centroids are A1-A16 (A17-A64 are not represented), and the low-fidelity solid blue

mesh whose elements centroids are B1-B4. Finally, the golden circle shows the neighborhood of

influence around centroid B1.

The components of the effective constitutive tensor CCC∗
(θ) are used as random variables

representing, to model material uncertainties, with each unique fiber orientation θ treated

as a distinct material. Fiber orientations across different fidelities are collected into a set

{θ1,θ2, . . . ,θt}, where t denotes the total number of unique orientations, determining the number

of material tensors constributing to the total random variables in the problem.

For each orientation θ , the mean E[CCC∗(θ)] and variance Var[CCC∗(θ)] of the effective

constitutive tensor are required to define the stochastic properties. If the statistical moments

for a specific orientation are precomputed, they are used directly. For orientations without

precomputed data, MFMC simulations at the micromechanical level are used to determine the

required statistical moments as described in section 3.1. These moments are then used to define

the effective material properties for the corresponding orientation.

Let ZZZθθθ be the vector containing input random variables for a specific fiber orientation

in element e, such that ZZZθ =
[
Cθ ,11,Cθ ,22,Cθ ,12,Cθ ,13,Cθ ,23,Cθ ,33

]
represent the six random
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variables of the effective constitutive tensor sampled from a corresponding distribution. Each

input random variable has a set of m j samples used to evaluate fidelity model j. We evaluate our

model for each set of samples for each angle we have:

zzzr =
[
Cθ ,11,Cθ ,22,Cθ ,12,Cθ ,13,Cθ ,23,Cθ ,33

]
r for r = 1,2, . . . ,m j.

The global stiffness matrix KKK j,r for each fidelity model is constructed by assembling the

element stiffness matrices (KKKe) j,r, where:

(KKKe) j,r =
∫

Ωe

BBBT (CCCθθθ )rBBBdΩe, (3.5)

Here, BBB is the strain-displacement matrix, and (CCCθθθ )r is the constitutive tensor correspond-

ing to θ for sample r. The structural compliance for each fidelity model and sample is computed

as:

f j,r =UUU j,r
T FFF j,r, (3.6)

where UUU j,r is the displacement vector obtained by solving:

KKK j,rUUU j,r = FFF j,r. (3.7)

Using control variate coefficients in equations (2.31) and (2.32), the compliance results

from all fidelity models are combined to estimate the mean E[ f ] in equation (2.18) and variance

Var[ f ] in equation (2.19).
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Figure 3.3. Models with varying fidelity for FEA analysis.

By utilizing the MFMC method within the topology optimization framework, the mean

and variance of material properties at the microscale and macroscale are quantified, enabling

the propagation of material uncertainties from the microscale to the uncertainty quantification

of structural compliance at the macroscale. In the same time, fiber orientations are iteratively

aligned with principal stress directions to minimize the strain energy. The workflow of the RTO

algorithm, shown in Figure 3.4, connects these components, with more detailed algorithmic steps

outlined in Algorithm 3.
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Algorithm 3. Robust Multi-Scale Topology Optimization Algorithm

1: Define a set of fiber orientations {θ1,θ2, . . . ,θt}.

2: Apply MFMC to compute the mean E[CCC∗(θ)] and variance Var[CCC∗(θ)] of the homogenized

elastic tensor for each orientation θ (Algorithm 2).

3: Build high-fidelity model F1 and lower-fidelity models F2, ..., Fk by changing the mesh

discretization.

4: Initialize or update fiber orientations by aligning fibers with principal stress directions using

the iterative procedure for the high-fidelity model F1 (Section 2.1.3).

5: Map design variables and fiber orientations from F1 to lower fidelities using convolutional

smoothing (Eq. (3.3)).

6: Define the set of unique orientations and random variables ZZZ representing uncertainties in

material properties and sample them (use the stored data from 2, or run MFMC for needed

θ ).

7: Assign material properties to each element based on computed E[CCC∗(θ)] and Var[CCC∗(θ)].

8: Use MFMC to compute mean ŝMF and variance v̂MF of compliance (Section 3.1.1).

9: Compute sensitivities
dJ

dφφφ
(1)

required for optimization (Section 3.1.2).

10: Update design variables φφφ
(1) using an optimization algorithm (e.g., gradient-based method).

11: Return to step 4 until convergence criteria are met.
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Figure 3.4. mfRTO workflow.

In summary, the forward analysis involves creating multiple models with varying fidelity

levels based on mesh resolution. Each fidelity model is evaluated according to section 3.1.1,

and these evaluations are combined using the control variate coefficients, equations (2.31) and

(2.32), to estimate the mean and variance as given by equations (2.18) and (2.19). The next step

involves determining the procedure for updating the design in each iteration.

3.1.2 sensitivities

The shape sensitivities of the objective function ∂J
∂Ω

and the constraints ∂g
∂Ω

are needed for

solving the sub-optimization problem to obtain Vn,p at each iteration of the topology optimization.

These sensitivities are expressed using the chain rule, for example:

dJ
dΩp

=
Ne

∑
e=1

dJ
dρe

dρe

dΩp
,

dρe

dΩp
≈ ρe −ρ0

e
δp

, (3.8)
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where Ne is the number of elements, dJ
dρe

is the sensitivity with respect to the volume fraction ρe,

and dρe
dΩp

is determined using a perturbation scheme. In this scheme, δp denotes a perturbation

in the normal direction at boundary point p, and ρ0
e is the volume fraction of the element after

perturbing the level-set function.

The sensitivity of the objective function (2.14a) with respect to the volume fraction is,

dJ
dρ1

=
(η)dŝMF

dρ1
+

(1−η)

2v̂MF

dv̂MF

dd1
. (3.9)

where the sensitivity of the MFMC mean and variance estimator is obtained through the derivative

of equations (2.18) and (2.19), such that H1, j =
dd j
dd1

is the mapping function from the highest

fidelity design variables to a lower fidelity j ones.

dŝMF

dρ1
=

dŝ1,m1

dρ1
+

k

∑
j=2

α j

(
dŝ j,m j

dρ j
−

dŝ j,m j−1

dρ j

)
H1, j, (3.10)

dv̂MF

dρ1
=

dv̂1,m1

dρ1
+

k

∑
j=2

β j

(
dv̂ j,m j

dρ j
−

dv̂ j,m j−1

dρ j

)
H1, j, (3.11)

For each fidelity, the sensitivity of the mean and variance of any fidelity with respect to that

fidelity’s design variable, computed with m j samples is:

dŝ j,m j

dρj
=

d
dρj

(
1

m j

m j

∑
r=1

fr j

)
=

1
m j

m j

∑
r=1

d fr j

dρj
= E

[
d fr j

dρj

]
(3.12)

and the variance sensitivity for any fidelity model is

dv̂m j

dρj
=

d
dρj

E[br j ] = E
[

d br j

dρj

]
(3.13)

where the sensitivity of the auxiliary variable is
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d br j

dρj
=

d
dρj

[
m j

m j −1
( fr j − ŝm j)

2
]
=

2m j

m j −1
( fr j − ŝm j)

(
d fr j

dρj
−

d ŝm j

dρj

)
(3.14)

Chapter 3, in part is currently being prepared for submission for publication of the

material. Diaz-Flores Caminero, Alvaro; Ismail, Hussein; Chadhuri, Anirban; Kim, H. Alicia.

The thesis author was the primary investigator and author of this material.
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Chapter 4

Results and discussion

4.1 Composite Materials Uncertainty Quantification Using
Multifidelity Monte Carlo

Mechanical properties of composite constituents exhibit inherent uncertainties. We

use the Multi-fidelity Monte Carlo (MFMC) method to accelerate the estimation of statistical

moments in this example and demonstrate the performance of MFMC in micromechanics

uncertainty quantification across multiple mechanical properties, highlighting significant speedup

over MC. We examine the influence of input variances on speedup, compare estimated mean

values with nominal and MC-based results, and evaluate the variance of the MFMC estimator

against the MC estimator. Additionally, for reproducibility, we present the mean and variance of

mechanical properties for selected fiber orientations.

Problem Definition

The composite material under study consists of IM7 fibers embedded in 8552 epoxy resin,

with a fiber volume fraction of 0.57. The fiber is modeled as a transversely isotropic material,

while the resin is treated as isotropic. Nominal mechanical property values are obtained from [2]

and summarized in Table 4.1.
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Table 4.1. Constituent Nominal Mechanical Properties. All units are in GPa.

Material E11 E22 G12 ν12 ν23 Volume Fraction

Fiber IM7 262 11.8 18.9 0.17 0.21 0.57

Matrix 8552 4.67 4.67 1.61 0.45 0.45 0.43

To quantify uncertainty, variability is introduced in E11 for the fiber and E for the matrix.

These parameters are sampled from a truncated Gaussian distribution, ensuring non-negative

mechanical properties. The distribution parameters are detailed in Table 4.2, with nominal values

taken from Table 4.1.

Table 4.2. Distribution Definitions: Standard Deviation (STD), Lower Bound (LB), and Upper
Bound (UB) as Percentages of Mean Values.

Case 1 Case 2

Distribution Truncated Normal Truncated Normal

Mean Values from Table 4.1 Values from Table 4.1

STD 1% 5%

LB 80% 80%

UB 120% 120%

This study utilizes two fidelity models. The highest fidelity model, a 26×26 HFGMC

(High-Fidelity General Method of Cells), provides detailed micromechanical insights. The

lower fidelity model, a 2×2 GMC (General Method of Cells), offers a computationally efficient

alternative. Computational costs were averaged over 100 runs to quantify fidelity-specific

resource demands. To ensure accuracy, the target root mean square error (RMSE) was constrained

to 20% of the weighted sum of the initial samples’ mean values. The combined mean squared

error (MSE) target is expressed as:

Jtol = δδδ
T (0.2ŝssninit)

2,
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Results and discussion

To evaluate the efficiency of MFMC in micromechanics uncertainty quantification, we

analyzed fiber orientations for {0◦,45◦,90◦,135◦}. For each orientation, we calculated the mean

and variance of the constitutive tensor elements, incorporating input uncertainties with standard

deviations of 1% and 5%. Table 4.3 summarizes these results.
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Table 4.3. Constitutive tensor elements for different fiber angles (1% and 5% Standard Deviation).
Standard deviation results are given as a percentage of the mean.

Angle Metric C11 C12 C13 C22 C23 C33

0°

Mean 154910 2838 0 9627 0 4885

σσσ1% 1 0.38 0 0.34 0 0.73

σσσ5% 4.96 1.95 0 1.75 0 3.74

45°

Mean 47406 37636 -36286 47406 -36286 39680

σσσ1% 0.73 0.95 0.97 0.73 0.97 0.89

σσσ5% 4.08 5.11 5.29 4.08 5.29 4.83

90°

Mean 9628 2846 0 154920 0 4885

σσσ1% 0.34 0.36 0 1 0 0.73

σσσ5% 1.75 1.84 0 4.96 0 3.74

135°

Mean 47406 37636 36286 47406 36286 39680

σσσ1% 0.73 0.95 0.97 0.73 0.97 0.89

σσσ5% 4.08 5.11 5.29 4.08 5.29 4.83

In Table 4.3, the mean values align with the expected fourth-order tensor rotation behavior

described by equation (2.11). In contrast, variances exhibit nonlinear behavior, necessitating the

recalculation of statistical moments for each angle in the robust optimization loop. Notably, at

0◦ and 90◦, out-of-plane shear-traction coupling elements are zero, consistent with theoretical
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expectations.

Next, we next compare the efficiency of MFMC versus MC in terms of speedup while

maintaining an error bound. For each fiber angle, we calculate the number of high-fidelity

samples required to reach the target MSE with both MC and MFMC. The speedup achieved by

MFMC is determined by dividing the MC sample count by the MFMC sample count, and we

report the sample allocations for each fidelity level.

Table 4.4. MFMC Speedup and Sampling for 1% STD

Angle 0° 45° 90° 135°

MC equivalent

HF Samples
843 221 843 221

MFMC equivalent

HF Samples
23 21 23 21

Speedup using MFMC 36 11 36 11

HFGMC Samples 20 20 20 20

GMC Samples 856 255 862 255

The equivalent high-fidelity samples represent the required high-fidelity model samples

to achieve the target MSE. For MC, this is calculated by dividing the mean and auxiliary variable

variances by the target MSE according to equation

Jtol =
σ2

1 + τ2
1

m1
.

In the MFMC case, the equation includes contributions from lower-fidelity models, as

outlined in equation (2.46). The speedup is calculated by dividing the “MC Equivalent HF

Samples” by the “MFMC Equivalent HF Samples”, with the highest speedup observed at 0°
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and 90° angles. This variation in speedup across angles highlights the effects of tensor rotation,

which introduces nonlinear scaling in the MSE.

Increasing input variance to 5 % further amplifies the speedup, as shown in Table 4.5.

This is due to higher model evaluation requirements under increased uncertainty, which favor the

computational efficiency of the lower-fidelity model. In cases where the correlation coefficient

approaches one, nearly all samples are allocated to the lower-fidelity model, approaching the

theoretical speedup limit.

Table 4.5. Summary of MFMC Speedup and Sample Allocations for Micromechanics with 5%
STD.

Metric 0° 45° 90° 135°

MC HF Samples 21081 5504 21080 5504

MFMC

equivalent HF Samples
100 42 100 42

Speedup using MFMC 210 128 210 128

HFGMC Samples 20 20 20 20

GMC Samples 21268 6060 21277 6060

Tables 4.4 and 4.5 show that MFMC allocate nearly all samples to the lower-fidelity

model due to high correlation and significant CPU time savings, providing a substantial speedup.

This trend is observed when the correlation coefficient approaches one and lower fidelity models

are significantly faster, approaching the theoretical speedup limit. To illustrate this, let’s consider

the case of one mechanical property for simplicity.

Remark 1. Assume a bi-fidelity problem where the correlation coefficient for the QoI and the

auxiliary variable is ρ1,2, q1,2 → 1− ε and ε → 0. The optimal sampling ratio, Equation (2.41),
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becomes

r∗2 =
√

w1

w2
ε
−1/2.

This means that as ε approaches zero, the sampling becomes an MC analysis over the second

fidelity model. We can also assess this statement through the MSE expression. Equations (2.46)

and (2.43) can be combined to form the following expression:

Jtol =
1

m∗
1

σ2
1 +ξ τ2

1
r∗2

=
σ2

1 +ξ τ2
1

m∗
2

,

which is the expression for an MC simulation only using the second fidelity model. Therefore, if

the correlation of a cheaper-to-evaluate model is very close to one, the algorithm chooses to

evaluate that model all the time, and the method reduces to MC simulation of the lower fidelity

model while satisfying the MSE error constraint for the highest fidelity.

Remark 1 illustrates that while the MFMC algorithm prioritizes lower-fidelity models

under high correlation, high-fidelity models remain critical to address bias. For example, Table

4.1 highlights a significant difference in property G12 between the HFGMC and GMC models,

with a relative error of approximately 7.3%. In micromechanics problems involving more

complex fiber arrangements, such as hexagonal or random packing, this bias can exceed 28% [2].

Thus, high-fidelity models are indispensable for ensuring accuracy in uncertainty quantification

frameworks.
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Table 4.6. Comparison of GMC values to HFGMC

CCC11 CCC12 CCC22 CCC33

HFGMC 154962 2837.5 9626.8 4884.3

GMC 154909 2762.7 9413.9 4529.0

Relative error

(%)
0.03 2.64 2.21 7.27

Validation is performed in two stages: the estimation of mean values and the estimation

of variances to ensure the validity of the modifications and implementation of the MFMC method.

For a linear or quasi-linear problem, such as the homogenization problem studied here, inputs

sampled from Gaussian distributions result in Gaussian-distributed outputs. The output mean

corresponds to the model evaluated with the mean inputs [31]. This property allows us to validate

both MC and MFMC analyses by comparing their mean estimates with the deterministic results

obtained using nominal inputs. The estimates must lie within 3 RMSEs of the deterministic

values for the results to be considered valid.

To evaluate this criterion, we define the RMSE distance. This distance is the absolute

value of the difference between the estimator value (MC or MFMC) and the reference value

(deterministic case), normalized by the estimator’s RMSE:

dRMSE =
|valueestimator −valueref|

RMSE
(4.1)

Table 4.7 presents the mean values of the mechanical properties estimated by deterministic

analysis, MC, and MFMC, along with the RMSEs and RMSE distances. The deterministic

results are obtained using mean input values and the HFGMC theory, while MC and MFMC

use stochastic inputs, with MFMC incorporating both HFGMC (high fidelity) and GMC (low

fidelity) models.
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Table 4.7. Mean values of mechanical properties for deterministic case, MC analysis, and
MFMC analysis. RMSEs of MC and MFMC estimators and their distance to the deterministic
case proportional to their RMSE. Units are in MPa.

CCC11 CCC12 CCC22 CCC33

Deterministic 154962 2837.5 9626.8 4884.3

MC 154910 2837.6 9626.9 4884.5

MFMC 154910 2837.7 9627.2 4883.8

RMSE MC 19.79 0.17 0.50 0.55

dddMC
RMSE 2.65 0.60 0.20 0.37

RMSE MFMC 19.69 0.18 0.52 0.57

dddMFMC
RMSE 2.66 1.09 0.78 0.87

The results indicate that for all mechanical properties, both MC and MFMC estimates

are within 3 RMSEs of the deterministic values, satisfying the validation criterion for mean

estimation. This confirms the correct implementation of MC and the successful formulation and

application of MFMC for estimating mean values.

Having validated the MC analysis, we use its variance results as a reference to validate

the MFMC variance calculations. Variance estimates are less predictable than mean estimates,

and the RMSE distances can exceed 3 due to the inherent uncertainty in both MC and MFMC

estimates. Table 4.8 compares variance estimates from MC and MFMC and their relative RMSE

distances.
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Table 4.8. MC and MFMC variance estimations, MFMC RMSE for the variance, and relative
RMSE distance between MC and MFMC estimations.

MC MFMC RMSE MFMC
MFMC Distance

to Nominal

CCC11 2340000 2281500 40294 1.45

CCC12 119.7 121.3 3.14 0.49

CCC22 1108.3 1121.7 23.65 0.57

CCC33 1301.3 1322.1 31.65 0.66

The variance estimates from MC and MFMC are within three RMSE of each other,

indicating the correctness of the MFMC method for variance estimation in micromechanical

uncertainty quantification.

In conclusion, the MFMC method demonstrates substantial computational efficiency

gains over MC for micromechanics under uncertainty, particularly when input variance is high.

The variation in speedup based on fiber angle suggests that the constitutive tensor’s rotational

properties introduce nonlineary in the MSE computation, making MFMC advantageous in robust

optimization involving complex material orientations.

The MFMC method significantly improves computational efficiency over MC, particu-

larly for problems involving high input variance. The variation in speedup across fiber angles

reflects the influence of constitutive tensor rotation, which introduces nonlinear scaling in the

MSE.

While the algorithm prioritizes lower-fidelity models when correlation coefficients are

high, the inclusion of high-fidelity models remains critical to address potential biases. For

example, as shown in Table 4.1, the relative error between HFGMC and GMC results for

C33 is approximately 7.3%, and this error can be significantly higher for more complex fiber
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arrangements [2]. Thus, high-fidelity models are essential for ensuring accuracy in uncertainty

quantification frameworks.

The validation of the MFMC method confirms its ability to reliably estimate both mean

and variance of mechanical properties while achieving significant computational speedup. This

makes it a powerful tool for robust optimization and uncertainty quantification in micromechanics,

particularly for composite materials with complex material orientations and high input variability.

4.2 Multiscale robust topology optimization of MBB beam

The second example involves an MBB beam with a single domain. The objective

is to validate the multiscale multifidelity robust topology optimization (mfRTO) method for

unidirectional composite materials. Specifically, we compare deterministic and robust analyses

of the MBB beam to demonstrate that even for mean minimization (η = 1), the variance of

the robust solution is reduced compared to the deterministic case. Additionally, this example

validates the calculation of mean and variance during each topology optimization iteration, as

well as the correctness of the overall optimization process. Lastly, we compare the computational

efficiency (speedup) of mfRTO with a robust topology optimization (RTO) method using a

standard Monte Carlo approach.

Problem Definition

The geometry of the MBB beam is 240×40, with the left side simply supported and the

right side resting on a roller. A load is applied at the midpoint of the top edge.

For each finite element, the constitutive tensor elements are sampled using the online

approach described in Section 4.1. The target mean square error (MSE) is set to 2% of the

mean compliance. Fidelity levels are defined based on mesh resolution and the order of shape

functions, maintaining a 6:1 ratio between the number of elements in x and y directions. Table

4.9 outlines the mesh resolution for each fidelity model, while Figure 4.1 illustrates the geometry

and boundary conditions.
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Table 4.9. Mesh resolution and shape function order for each fidelity model.

F1 F2 F3 F4

Mesh Size 40×240 40×240 20×120 10×60

Shape Function Order 2 1 1 1

Figure 4.1. MBB beam geometry and boundary conditions.

Implementation

In the MBB problem, incorporating online material property evaluation significantly im-

pacts the required computational budget compared to using precomputed homogenized properties

and performing the rotation over the sampled properties. The precomputed approach achieves

correlation coefficients above 99% for both the quantity of interest (QoI) and the auxiliary

variable across all fidelity models. In contrast, the online approach exhibits lower correlation

coefficients in the first iteration, with approximately 0.8 for the QoI and 0.6 for the auxiliary

variable.

The reduced correlation impacts the sampling strategy, as fewer samples are allocated

to lower-fidelity models equation (2.41), necessitating a higher overall computational budget

to meet the user-defined MSE, equation (2.46). Furthermore, the higher nonlinearity in the
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constitutive tensor variance during the online approach, equation (3.2), demands additional initial

samples to accurately estimate compliance variance (σ1 and τ1). Insufficient sampling may result

in non-converged estimates for the mean and variance and potential failure of the algorithm due

to the control variate coefficient (β ) driving variance estimates to negative values.

Results and discussion

The first step in this analysis is to compare the deterministic topology optimization

approach to the robust one. For this comparison, we focus on mean compliance minimization by

setting η = 1. Despite this simplification, we expect the robust approach to yield designs with

improved robustness compared to the deterministic case.

Figure 4.2 compares the final topologies for the deterministic and robust cases. While

the overall designs appear similar, there are key differences. The deterministic case lacks certain

members that appear in the robust design, even though they are discontinuous in appearance.

This discontinuity is an artifact of visualization; the level-set function inherently prevents these

cuts. Another noticeable difference is the thicker central triangle in the robust design compared

to the deterministic one. This suggests that, for composite materials, robustness is achieved by

increasing member thickness rather than introducing additional members, as is often the case

with isotropic materials.

(a) Deterministic case.

(b) Robust case with multi-fidelity.

Figure 4.2. Final MBB beam topology for deterministic and robust cases.
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The optimization histories of the deterministic and robust cases are shown in Figure 4.3.

Both cases exhibit similar convergence trends, with some notable differences. The deterministic

case begins with a higher compliance value and converges to a final value approximately 4%

lower than the robust case. This indicates that the robust case may converge to a local minimum

when optimizing solely for compliance. However, this drawback is offset by the robust case’s

significant reduction in standard deviation, leading to a more reliable design under uncertainty.

Figure 4.3. Convergence history comparison for MBB deterministic case.

To evaluate the effectiveness of the robust analysis compared to the deterministic ap-

proach, we conducted a Monte Carlo (MC) analysis using 5,000 samples for the final topology in

both cases. Figure 4.4 shows the resulting compliance distributions. For the robust case (Figure

4.4b), the compliance mean is approximately 15 points higher than the deterministic case (Figure

4.4a). However, the yellow lines on the edges, representing two standard deviations, are much

closer to the mean for the robust case, 20 points compared to 35 points for the deterministic case,

indicating a significant reduction in variability.
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(a) Deterministic case.

(b) Robust case with multi-fidelity.

Figure 4.4. Compliance histograms for deterministic and robust cases over 5,000 Monte Carlo
samples. The edge yellow lines represent ±2 standard deviations.

To further quantify these observations, Table 4.10 compares the exact mean and standard

deviation values. While the robust case exhibits a slight 3.92% increase in compliance mean

relative to the deterministic case, it achieves a 41.4% reduction in standard deviation. These

results underscore the effectiveness of robust topology optimization in reducing variability and

ensuring more reliable performance under uncertainty.
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Table 4.10. Comparison of mean and standard deviation values for deterministic and robust
topology optimization.

Deterministic MFMC Robust Difference

Mean 2665 2679 +3.92%

Standard Deviation 15.7 11.1 -41.4%

These findings proof that the robust topology optimization approach, even when focused

solely on mean compliance minimization, offers substantial improvements in reliability by reduc-

ing variability, highlighting its advantage over deterministic designs in uncertain environments.

To validate the correctness of the multi-fidelity robust topology optimization (mfRTO)

framework, we compare its results to those obtained from a single-fidelity Monte Carlo (MC)

RTO analysis. This validation aims to ensure the accuracy of both the optimization process and

the mean and variance estimations provided by the MFMC framework.

The final topologies obtained using mfRTO and single-fidelity RTO are compared in

Figure 4.5. The results show that the two methods yield identical topologies, confirming that

the optimization process in the mfRTO framework accurately replicates the single-fidelity RTO

results.
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(a) mfRTO case.

(b) RTO case.

Figure 4.5. mfRTO VS RTO comparison for MBB example

To further validate the optimization process, we evaluate the mean and variance of

compliance over the iterations for both approaches. Figure 4.6 shows that the mean and variance

evolution graphs for mfRTO and single-fidelity RTO overlap, confirming consistency between

the methods. Table 4.11 compares the final values of mean and standard deviation, showing

negligible differences (< 0.1% for mean and < 0.01% for standard deviation).
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Figure 4.6. Mean and variance over the optimization process for MC and MFMC appraoches.

Table 4.11. Comparison between mean and standard deviation values for multi-fidelity RTO VS
single fidelity RTO from the optimization process

MFMC Robust MC Robust Difference

Mean 2678.5 2676 0.09%

Standard deviation 11.5 11.5 < 0.01%

These results confirm the correctness of the optimization process in the mfRTO frame-

work. The final step is to validate the accuracy of mean and variance calculations at each iteration.

To achieve this, we analyze the final topology using a Monte Carlo (MC) analysis with 5,000

samples and compute the mean and variance for the MFMC approach. The values obtained are

then compared with those estimated by the optimizer at the end of the optimization process to

quantify the differences between the MC and MFMC estimators.

Table 4.12 summarizes the results. The mean compliance values from both methods are
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nearly identical, with a difference of only 0.011 %. The standard deviation values also agree

closely, with a slightly larger difference of 3.60 %, which is within 3 RMSEs. These minimal

discrepancies confirm the reliability and accuracy of the MFMC framework in estimating mean

and variance during the optimization process.

Table 4.12. Comparison between mean and standard deviation values for multi-fidelity RTO VS
single fidelity RTO over final topology using a 5000 samples MC analysis

MFMC MC Difference

Mean 2678.5 2678.8 0.011%

Standard deviation 11.5 11.1 3.60%

The speedup of this calculation is summarized in figure 4.7, where the peak speedup

over an iteration is 1.87 times faster than MC analysis. The average speedup is 1.42 times faster

than MC analysis, which means we save almost 50 % of the computation time even when the

computational cost of the highest fidelity barely surpasses 1 second. For models where the

computational cost ratio is higher the speedup can be greatly enhanced as shown in [30]. This

cumulative speedup or average speedup is computed by the ratio between the total number,

over all the iterations, of equivalent high-fidelity samples of MFMC to high-fidelity samples

of MC. Hence, we have proven the effectiveness of the method for multiscale robust topology

optimization.
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Figure 4.7. MFMC speedup over MC for each topology optimization iteration.

From the MBB beam example, the following conclusions can be drawn: the mfRTO

framework produces results that are virtually identical to those of single-fidelity RTO, both in

terms of topology and optimization metrics. This validates the robustness and reliability of the

multi-fidelity approach. The multi-fidelity framework demonstrates a significant computational

advantage over single-fidelity RTO by leveraging lower-fidelity models while maintaining accu-

racy. This efficiency makes it suitable for large-scale robust optimization problems. Comparing

the final topology with 5,000 Monte Carlo samples confirms the consistency of the mfRTO

framework’s estimators. Differences between the MFMC and MC results for mean compliance

(0.011%) and standard deviation (3.6%) are within the expected error range, validating the

accuracy of the multi-fidelity estimators. The robust design reduces variability in compliance

while achieving comparable mean compliance to the deterministic design. This demonstrates the

effectiveness of robust topology optimization in delivering more reliable and predictable designs

under uncertainty.

Overall, the MBB beam example showcases that the mfRTO framework is both accurate

and computationally efficient, providing a strong foundation for robust optimization in complex
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engineering applications.

Chapter 4, in part is currently being prepared for submission for publication of the

material. Diaz-Flores Caminero, Alvaro; Ismail, Hussein; Chadhuri, Anirban; Kim, H. Alicia.

The thesis author was the primary investigator and author of this material.
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Chapter 5

Conclusions and future work

5.1 Conclusion

In this thesis, we enhanced the multi-fidelity Monte Carlo (MFMC) method to handle

multiple quantities of interest, enabling uncertainty quantification in homogenization problems.

The method’s performance was demonstrated using the High-Fidelity General Method of Cells

(HFGMC) and the General Method of Cells (GMC) with varying Repetitive Unit Cell dis-

cretizations, achieving over 200-fold speedup. We investigated the influence of input variance

on speedup and validated the framework and results through comparison with a Monte Carlo

analysis comprising 5,000 evaluations using HFGMC theory.

Additionally, we formulated a multiscale robust topology optimization problem for

distributing composite materials within the design domain while optimizing fiber orientation

to minimize strain energy. Customized angle sets were analyzed and compared to analytical

solutions to showcase the approach’s effectiveness.

Furthermore, the multiscale robust topology optimization framework was reformulated

to account for anisotropic material uncertainty, demonstrating variance reduction compared to

the deterministic approach. The updated method achieved a 1.42-fold speedup over the Monte

Carlo approach.
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5.2 Future work

This work establishes a robust framework for multiscale optimization under uncertainty;

however, several avenues for further research could extend and refine its capabilities.

At the material level, potential improvements include optimizing the distribution of fibers

and matrix at the constituents level to achieve better performance. Exploring optimal stacking

sequences for layered composites could also enhance material properties and design efficiency.

From a macroscale perspective, incorporating additional objectives such as minimizing

strain energy under stress constraints, performing thermo-mechanical analysis, or accounting for

nonlinear material behavior would add complexity and realism to the finite element analysis.

Lastly, comparing the computational results with experimental data would provide

a critical validation step, ensuring the framework’s applicability and accuracy in real-world

scenarios. These extensions would collectively elevate the fidelity and utility of the proposed

methods.

Chapter 5, in part is currently being prepared for submission for publication of the

material. Diaz-Flores Caminero, Alvaro; Ismail, Hussein; Chadhuri, Anirban; Kim, H. Alicia.

The thesis author was the primary investigator and author of this material.
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