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ABSTRACT OF THE DISSERTATION

Interference Alignment : Beyond Generic Channels

By

Sundar Rajan Krishnamurthy

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2014

Professor Syed Ali Jafar, Chair

Capacity characterization of communication networks is the most fundamental problem in Infor-

mation Theory, that underlies the design of various wireless and wired networks. The radical idea

of “Interference alignment” has enabled Capacity or Degrees of Freedom characterization (DoF, a

first order approximation) for many interference networks. Various alignment schemes developed

have provided new and fundamental insights into the number of accessible signal dimensions in

communication networks where the output signals are linear functions of the input signals. Most

of the prior art deal with generic channels wherein the channel coefficients are assumed to be inde-

pendent and drawn from a continuous distribution, continuous alphabet with infinite diversity, and

the network is often single-hop. These assumptions are challenged due to the following reasons

: 1) In MIMO systems, poor scattering environment and network topology lead to spatial depen-

dencies that are manifested as rank deficient channels, 2) Multi-hop dependencies arise due to the

presence of relays, and 3) Linear network coding applications (as in wired networks) act as finite

field counterparts of wireless networks, with limited diversity.

In this thesis, Capacity / DoF of linear communication networks are characterized for “Non-generic

channels”. One of the significant problems considered is the DoF of the K-user MIMO rank defi-

cient interference channel, with different ranks for the direct and the cross channels. For this rank

deficient interference channel, it is shown that the rank deficiency of direct channels does not help

xi



DoF and the rank-deficiency of cross-channels does not hurt DoF. The main challenge is to account

for the spatial dependencies introduced by rank deficiencies in the interference alignment schemes

that typically rely on the independence of channel coefficients. Another interesting problem is the

DoF of Two-hop MIMO rank deficient interference channel with different channel ranks in the first

and the second hops, for which a rank-matching principle is identified reminiscent of impedance

matching in circuit theory. For this channel, the DoF loss is shown to be the rank-mismatch be-

tween the two hops. Finally, capacity results for the finite field counterparts of wireless networks

are presented, exploring the implications of channels being from a finite alphabet with limited

diversity. By characterizing the capacity of constant finite field channels over Fpn for 2-user X

channel and 3-user interference channel, interesting parallels are drawn between p and SNR, and

n and Channel Diversity.
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Chapter 1

Introduction

Capacity characterization of communication networks is the central problem in network informa-

tion theory. While exact capacity characterizations remain open for several multi-user interference

networks, Interference alignment has enabled characterization of the Degrees of Freedom (DoF,

a first order approximation of capacity) for a broad array of wireless and wired communication

networks. The idea of interference alignment originated out of the studies of the index coding

problem [4] and the degrees of freedom (DoF) of X channels [35, 28] and K-user interference

channels [9]. The rationale behind interference alignment is to consolidate the interference into a

smaller subspace at all receivers, while keeping the desired signals separable from interference so

that they can be recovered free of interference. For example, in the case of interference channel,

interference is aligned at every receiver within one half of the total signal space available at that

receiver, leaving the other half interference-free for the desired signals (Half the cake result of [9]).

Signal space alignment based on linear precoding (beamforming) schemes is the simplest form of

alignment, and is called Linear interference alignment. Such alignment could be performed over

different signal dimensions - time / frequency / space. The use of multiple antennas is widely

known to provide higher throughput in wireless networks. Alignment through spatial precoding /

1



multiplexing is significant since it combines the benefits of both interference alignment and MIMO

(Multiple Input Multiple Output). Hence, extensive research efforts have been dedicated to the

study of Interference Alignment over MIMO interference networks.

We will now briefly discuss the relevant prior art.

1.1 Prior Art

Linear alignment schemes may be broadly classified into non-asymptotic and asymptotic schemes,

based on whether the size of the linear precoding vector space required to approach the optimal

DoF value is finite or infinite, respectively. Non-asymptotic schemes typically suffice for under-

constrained systems, where the number of spatial dimensions (antennas) is sufficiently large rela-

tive to the number of alignment constraints (users). This is the case, e.g., in the 2-user and 3-user

MIMO interference channels, studied in [27] and [55], respectively. Asymptotic schemes, based

on a construction proposed by Cadambe and Jafar in [9] for the K-user interference channel with

time-varying/frequency-selective channel coefficients (CJ scheme), are typically needed when the

number of alignment constraints (users) dominates the number of spatial dimensions (antennas).

1.1.1 Non-asymptotic schemes

2-user and 3-user Interference Channels

The DoF of the 2-user MIMO interference channel with arbitrary number of antennas at each node

are characterized in [27]. The DoF of the 3-user MIMO interference channel where all nodes have

the same number of antennas are characterized by Cadambe and Jafar in [9]. The DoF of 3-user

MIMO interference channel with M antennas at each transmitter and N antennas at each receiver

are characterized in parallel works by Wang et al. in [55] and by Bresler et al. in [5].

2



X Channel

The DoF of the 2-user X channel were characterized in [35, 28], for a system with two transmitters,

two receivers, each equipped with multiple antennas, wherein independent messages are sent from

each transmitter to each receiver. When each node has M antennas, sum DoF was found to be 4M
3

.

To this end, signal spaces are aligned at receivers where they constitute interference while they are

separable at receivers where they are desired.

2-hop Interference Channel

The 2 × 2 × 2 interference channel, which is a layered network comprised of two source nodes,

two relay nodes and two destination nodes, is an elemental model for the study of the information

theoretic foundations of multihop multiflow networks. Many of the key ideas behind multihop

multiflow networks, such as interference neutralization [39], aligned interference neutralization

[22], aligned interference diagonalization [48], opportunistic scheduling [1], network condensa-

tion and manageable interference [49, 54] have been discovered through the degrees of freedom

(DoF) studies of the 2 × 2 × 2 interference channel and its natural extensions to more than 2

sources/relays/destinations/hops, arbitrary topologies, and even non-layered settings [23].

1.1.2 Asymptotic schemes

K-user Interference Channel

The CJ scheme introduced by Cadambe and Jafar in [9] showed that the K user interference chan-

nel with a single antenna at each node (SISO setting) has a total of K
2

DoF almost surely. The

key to this result was aligning interference almost perfectly in half of the received signal space by

precoding over an asymptotically large number of channel uses, over independently time-varying

3



or frequency-selective channels. Achieving DoF of 1
2

per user (Half the cake) is a remarkable

improvement over orthogonalization approaches for which DoF are 1
K

per user (cake-cutting), es-

pecially for large number of users. When there are M antennas at each node, DoF per user are

known to be M
2

, achievable by decomposition of the antennas at all transmitters and receivers

(treat as separate nodes). The CJ scheme forms the basis of many, if not most, asymptotic schemes

encountered in a variety of settings ranging from X networks [10], cooperative and cognitive com-

munications [53, 56, 57], to distributed storage exact repair [13] and multiple unicast network

coding [37], and translates, quite remarkably, into the rational dimensions framework for constant

channels as well [40, 31].

M,N -user X Channel

The DoF of M ×N user X networks were found by Cadambe and Jafar in [10]. Here, there are M

transmitters, N receivers and each transmitter has an independent message for every receiver. For

the SISO channel, when all channel coefficients vary in time or frequency, sum DoF was shown

to be MN
M+N−1

per signal dimension. Achievability was shown using an aymptotic interference

alignment scheme similar to [9], wherein interference is aligned within a N − 1 dimensional space

at each receiver and desired signals of M dimensions are decoded. Later, Sun et al. showed in [51]

that the sum DoF to be A MN
M+N−1

for similar network with A antennas at each node. This resolved

a discrepancy between the spatial scale invariance conjecture (scaling number of antennas at each

node by a constant factor will scale total DoF by the same factor - [55]) and a decomposability

property of overconstrained networks. The new insight was that the MIMO X network is only

one-sided decomposable without loss of DoF.
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1.2 Non-generic channels : Overview

Most of the prior art assume that the channels are generic. With few exceptions, the studies of

interference alignment schemes assume that the

• Channels are drawn from a continuous distribution with some form of independence (linear,

probabilistic, algebraic, rational) of channel realizations (e.g., i.i.d.)

• Network is single-hop

• Channels are drawn from a continuous alphabet with infinite diversity

We consider the above 3 characteristics to be representative of generic channels. These charac-

teristics of generic channels are challenged due to the presence of some form of dependencies or

diversity constraints, resulting in non-generic channels. Understanding the implications of such

non-generic channels on the signal dimensions of interference networks is a significant and chal-

lenging problem. To study non-generic channels, we assume that each of the above 3 generic

channel characteristics fail to hold, in the following manner.

• Channels are algebraically dependent, due to the presence of rank deficiencies

• Network dependencies arise due to a multi-hop topology

• Channels belong to a finite alphabet with limited diversity

Above 3 aspects of non-generic channels and their impact on signaling dimensions of interference

networks can be understood through the study of the following categories of non-generic channels,

respectively.

1. Single-hop rank deficient interference channels

5



2. Multi-hop rank deficient interference channels

3. Finite field channels over Fpn

We study the impact of channel dependencies by considering rank-deficient channels in MIMO

interference networks. Rank deficient channels are frequently encountered in MIMO networks,

due to poor scattering, presence of single or very few paths, insufficient antenna-spacing, keyhole

effects and network topology. While the implications of rank deficient channels are well under-

stood for the single user point to point setting, much less is known for interference networks. In

order to understand the impact of additional network dependencies, we consider relay networks

with MIMO, modeled through multi-hop rank-deficient channels wherein the channel ranks in the

various hops are different. Interference networks with backhaul links of different capacities can

also be modeled as multi-hop rank-deficient channels. Finite field channels arise in linear network

coding applications in wired networks wherein the intermediate nodes perform arbitrary linear op-

erations and the intelligence resides mainly at the sources and the destinations. Overview of the

DoF or capacity results is provided in Table 1.1.

Table 1.1: Results Overview

Channel Parameters DoF / Capacity
Single-hop rank deficient interference channel

2-user channel Mi, Nj , Dji DoF = min(D11 +D22,M1 +N2−D21,M2 +N1−D12)

3-user channel M,D0, D1, D2 DoF = 3min

(
D0,M − min(M,D1+D2)

2

)

K-user channel M,D0, D DoF = Kmin

(
D0,M − min(M,(K−1)D)

2

)

Multi-hop rank deficient interference channel

2-hop channel M,D1, D2 DoF = min(4D1, 4D2, 2M − |D1 −D2|)
Constant Finite field channels over Fpn

2-user X channel h Capacity, C = Clinear =
4
3 , h /∈ Fp

3-user interference
channel

h,h11,h22,h33 Linear-scheme Capacity, Clinear = 3l+1
2l+1 , n = 2l + 1
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In Section 2, DoF results are presented for single-hop rank deficient MIMO interference channels,

with different direct and cross channel ranks. It is shown that the direct channel rank deficiencies

cannot help DoF and could only hurt, while the cross channel rank deficiencies cannot hurt DoF

and could improve. In Section 3, we discuss the DoF results for 2-hop rank deficient MIMO

interference channel with different channel ranks in 2 hops. A rank matching principle is identified

similar to impedance matching in circuit theory, where the goal is to match channel ranks over the

2 hops. Under moderate rank deficiencies, DoF loss is found to be rank mismatch between the

two hops. Section 4 explains the capacity results for 2-user finite field X channel and 3-user finite

field interference channel with constant channels from Fpn . Scalar SISO Fpn channels are noted

to be equivalent to n × n MIMO channels over Fp, using which DoF optimal results of wireless

networks are translated to capacity or linear-scheme capacity optimal results for their finite field

counterparts. Through the study of finite field channel Fpn , interesting parallels are drawn between

p and SNR, and n and diversity.

1.3 Notation

Z+ denotes the set of positive integers, and C denotes the set of complex numbers. For the matrix

H,H(i, :) and H(:, j) denote its ith row and jth column vector, respectively. When dealing with

Hk(k+1) and Hk(k−1), indexing is interpreted in a circular wrap-around manner, modulo the number

of users, e.g., the k-th user is same as the 0-th user. We use the notation o(x) to represent any

function f(x) such that limx→∞
f(x)
x

= 0. We denote the number of columns of matrix V as |V|,

and V† is used to denote the conjugate transpose of matrix V. The term nullspace refers to the

right nullspace, unless otherwise explicitly mentioned. (x)+ indicates max(0, x). IM denotes the

M ×M identity matrix and ⊗ denotes the Kronecker product. Matrices are notated using bold

font while vectors are denoted with normal font.
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Chapter 2

Single-hop Rank-deficient Interference

Channels

2.1 Motivations

In this section, we study the degrees of freedom (DoF) of rank-deficient MIMO interference net-

works. To isolate the impact of spatial dependencies, we allow channels to vary independently

across time and frequency. This also allows us to exploit the well-developed machinery of linear

interference alignment schemes, which are appealing not only for their simplicity and robustness,

but also because they tend to be DoF-optimal for time-varying channels.

2.1.1 Background

Our study of non-asymptotic schemes will focus on 2-user and 3-user MIMO interference chan-

nels, whereas asymptotic schemes will be studied through the K-user MIMO interference channel

setting. The relevant background is summarized in this section.
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Non-asymptotic schemes: 3-user MIMO Interference Channels

The DoF of 3-user MIMO interference channel with M antennas at each transmitter and N an-

tennas at each receiver are characterized in parallel works by Wang et al. in [55] and by Bresler

et al. in [5]. While the achievability results are the same in the two works, the outer bounds pre-

sented by Wang et al. are strictly stronger. The outer bounds of Bresler et al. are restricted to the

linear feasibility of [19, 60] where only linear precoding schemes are considered, and precoding

across multiple channel uses is not allowed. However, Wang et al. present information theo-

retic outer bounds that are also applicable to non-linear schemes, arbitrary channel extensions, and

time-varying channels. Remarkably, inspite of the more general setting, the information theoretic

bounds of [55] match the linear outer bounds of [5]. Since information theoretic bounds directly

imply linear outer bounds, the linear outer bounds of Bresler et al. are immediately recovered as

special cases of the information theoretic outer bounds of Wang et al. Comparing achievability

and outer bounds, the two coincide in the sense of a spatially normalized DoF metric. Whether

the achievability matches the outer bound without the spatial normalization is subject to the va-

lidity of the spatial invariance conjecture of Wang et al. [55], which essentially states that time,

frequency and space dimensions are equivalent from a DoF perspective (so that there is no loss of

generality in a spatial normalization). Remarkably, with the exception of the single-antenna set-

ting, only non-asymptotic interference alignment schemes are used in [55, 5] to achieve the DoF

outer bounds.

Asymptotic schemes

Originally proposed for the SISO setting, the CJ scheme was directly extended to the K user

MIMO interference channel in [9] by a decomposition approach, viewing a K user interference

channel where each node has M antennas, as a KM user interference channel where each node

has a single antenna. The decomposition approach achieves the optimal DoF value of KM
2

for this

9



network. Applying the CJ scheme to the SISO setting obtained by the decomposition of a MIMO

interference channel, is also shown to be a DoF optimal strategy in [18, 58] for K user MIMO

interference networks where each transmitter has M antennas and each receiver has N antennas,

provided that the number of users exceeds a threshold that depends on M,N . The need for a SISO

decomposition for the CJ scheme can be understood as follows: The CJ scheme requires commu-

tativity of matrix multiplication, which is not satisfied by the generic channel matrices in MIMO

networks (which produce non-commuting block diagonal channels). However, decomposing the

MIMO network into a SISO network and allowing channel extensions over time/frequency creates

diagonal channel matrices, which satisfy the commutative property. While at first, the limitation of

having to decompose MIMO channels, may appear to be a limitation of the CJ scheme, it is remark-

able that the CJ scheme remains DoF optimal in spite of the decomposition. The decomposability

property is further discussed in [51, 58, 50].

Rank-Deficient MIMO Interference Networks

For rank deficient MIMO interference networks, much less is known. A study of achievable DoF is

initiated by Chae et al. in [15] under the assumption that there are M antennas at each transmitter,

N antennas at each receiver, and that the N ×M channel matrix from each transmitter to each

receiver is of rank D. However, in the absence of outer bounds for rank-deficient channels, the

optimality of the achieved DoF is not settled. Following the preliminary version of this work [33],

Zeng et al. have found the DoF for the 3-user rank deficient interference channel independently

and in parallel work [62], withMT antennas at all transmitters andMR antennas at all receivers and

with channel matrices of rank Di, i ∈ {1, 2, 3}. Other studies of rank-deficient wireless networks

include the DoF characterization of 2-user rank deficient MIMOX channel under arbitrary antenna

configurations by Agustin and Vidal in [2].
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2.2 Summary of Contributions

First, let us consider settings that correspond to non-asymptotic schemes. Interference alignment

and zero-forcing through spatial beamforming are the core principles of non-asymptotic linear in-

terference management schemes. Interestingly, rank-deficiencies impact the two in opposite ways,

favoring one and limiting the other. Rank-deficiencies create more opportunity for zero-forcing be-

cause the channel null-space size is increased. However, there is less opportunity for interference

alignment because reduced range spaces imply reduced overlaps between range spaces. Given the

contrasting effects on alignment and zero-forcing, it is not clear a-priori whether the overall impact

of rank-deficiencies should be positive or negative. Our results for rank-deficient 2-user and 3-user

MIMO interference channels shed light on this tradeoff. For both 2-user and 3-user rank deficient

MIMO interference channels, our focus is mainly on achievable schemes for constant channels,

which can also be used for time-varying channels. For the 2-user rank deficient MIMO interfer-

ence channel, we (i) provide a tight outer bound to show that the previously known achievable DoF

found by Chae et al. in [15] in the symmetric case are optimal, and (ii) we generalize the result to

fully asymmetric settings. For the 3-user rank deficient MIMO channel, we characterize the DoF

of a cyclically symmetric setting where all nodes have the same number of antennas (M ). Our DoF

results for the 3-user case are consistent with those derived in parallel work by Zeng et al. if we set

MT = MR in [62], however while the achievable scheme of [62] requires asymptotic number of

symbol extensions when MT = MR, we present a non-asymptotic achievable scheme that requires

at most two symbol extensions.

Next, let us consider asymptotic schemes, and in particular, the idea of decomposing the MIMO

network into a SISO network where the CJ scheme is applicable. If the MIMO channels were

comprised of independent channel coefficients, then the decomposition of the MIMO network into

a SISO network preserves the channel independence requirements of the CJ scheme. With rank-

deficiencies, however, this is no longer the case. The direct and cross channels are dependent in

the decomposed SISO network and it is easy to see that the basic requirements of the CJ scheme

11



are violated. If the CJ scheme is directly applied there must be a loss of DoF due to the channel

dependencies. This observation is particularly ominous given that viable alternatives to the CJ

scheme are not known for over-constrained interference networks. Our results for rank-deficient

K-user MIMO interference channels shed light on this conundrum. For K-user rank deficient

MIMO interference channel, we study achievable schemes for time-varying channels, which often

serve as stepping stones to translate DoF results to constant channels. In particular, we show that

for the K-user rank deficient interference channel, when all nodes have M antennas, all direct

channels have rank D0, all cross channels are of rank D, and the channels are otherwise generic,

the optimal DoF value per user is min(D0,M − min(M,(K−1)D)
2

). Our result improves upon the best

known achievable DoF from prior work, and we present a tight outer bound to prove its optimality.

Remarkably, our results indicate that for interference channels, the rank-deficiency of direct chan-

nels does not help and the rank-deficiency of cross-channels does not hurt. The main technical

challenge in the paper is to account for the spatial dependencies introduced by rank deficiencies in

the interference alignment schemes that typically rely on the independence of channel coefficients.

We start with a general system model which will be specialized in later sections for different

settings.

2.3 System Model

The K-user MIMO interference channel is comprised of K transmitters, K receivers, and K inde-

pendent messages. Transmitter k denoted as Tk, is equipped with Mk antennas and has message

Wk intended for its corresponding receiver, Receiver k denoted as Rk, which is equipped with Nk

antennas. At time index t ∈ Z+, Receiver j observes the vector Yj(t) ∈ CNj×1 given by

Yj(t) =
K∑

i=1

Hji(t)Xi(t) + Zj(t) (2.1)
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wherein Xi(t) ∈ CMi×1 is the vector sent from Transmitter i, Hji(t) ∈ CNj×Mi is the channel ma-

trix between Transmitter i and Receiver j and Zj(t) ∈ CNj×1 is the i.i.d. zero mean unit variance

circularly symmetric complex additive white gaussian noise (AWGN) vector. Each transmitter

must satisfy an average power constraint E(||Xi(t)||2) ≤ ρ, where ρ is referred to as the Signal-to-

Noise Power Ratio, or the SNR. Global channel knowledge is assumed to be perfectly available at

all nodes, and the transmitters are assumed to know the channels instantaneously.

M1

M2

M3

MK

N1

N2

N3

NK

D11

D21

D31

DK1

DK3

D1K

D3K

T1

T2

T3

TK RK

R3

R2

R1

Figure 2.1: K User MIMO Interference Network with Rank Deficient Channels

The most important aspect of the system model for this work is the assumption that channels

matrices are rank-constrained, so that the channel matrix Hji(t) has rank Dji almost surely. Aside

from the rank-constraint, the channel matrices are generic, i.e., they possess no special structure.

Mathematically, an Nj ×Mi generic matrix subject to a rank-constraint Dji may be defined as the

product of a pair of independently generated matrices of dimensions Nj ×Dji and Dji×Mi, each

of which has its elements drawn from a continuous distribution with support bounded away from

zero and infinity.

Achievable rates, capacity region, and DoF are defined in the standard sense (see, e.g., [9]). In

this work we are primarily interested in the sum-DoF value for almost all channel realizations,

defined as dΣ = limρ→∞RΣ(ρ)/ log(ρ), wherein RΣ(ρ) is the maximum sum rate of the channel

at Signal-to-noise ratio, ρ. We also denote the sum DoF as DoFΣ(Mi, Nj, Dji), and the sum DoF
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normalized by the spatial dimension as

DoFΣ(Mi, Nj, Dji) = max
q∈Z+

DoFΣ(qMi, qNj, qDji)

q
(2.2)

2.4 2-user channel

The DoF of the 2-user rank deficient interference channel is presented in the following theorem.

THEOREM 2.1. For the 2-user rank deficient MIMO interference channel, the sum-DoF value is

given by

DoFΣ = min{D11 +D22,M1 +N2 −D21,M2 +N1 −D12} (2.3)

Placing the result in perspective with prior work, recall that in [15] Chae et al. have considered a

symmetric version of the 2-user MIMO interference channel, for which they have established an

achievable DoF value. Theorem 2.1 shows that the achievable DoF value of Chae et al. is optimal

in the symmetric setting, and generalizes the result to arbitrary antenna configurations and arbitrary

rank-constraints, shown in Figure 2.2. Above DoF result holds for both time-varying and constant

channel coefficients.

Note that rank-deficiency of direct channels does not help the DoF and the rank-deficiency of cross-

channels does not hurt. Since interference-alignment is not a possibility, the achievability is based

on simple zero-forcing, which benefits from the increased null-space of cross channel matrices.
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Figure 2.2: 2-user Rank Deficient Interference Channel

2.4.1 Theorem 2.1: Proof of Achievability

Since the proof is similar to that of the 2-user full rank interference channel [27], we do not repeat

all the details. Transmitter i has Mi antennas, Receiver j has Nj antennas and the channel between

Transmitter i and Receiver j is of rank Dji. Figure 2.3 illustrates the proof setting with an example

where M1 = 5, M2 = 4, N1 = 4, N2 = 4, D11 = 3, D22 = 3, D12 = 2 and D21 = 4, where a total of 5

DoF are achieved.

Step 1: We consider a singular value decomposition (SVD) of the interference channels H12 =

U1Λ12V
†
1 and H21 = U2Λ21V

†
2 wherein U1,U2,V1,V2 are N1 ×N1, N2 ×N2,M2 ×M2,M1 ×

M1 unitary matrices, respectively. Λ12 and Λ21 are N1 ×M2, N2 ×M1 diagonal matrices with

singular values of H12,H21 respectively on the main diagonal and zeros elsewhere. Using the

standard MIMO SVD diagonalization approach as in [27], we absorb the unitary matrices into the

corresponding input and output vectors as:

Ȳ1 = H̄11X̄1 + Λ12X̄2 + Z̄1 (2.4)

Ȳ2 = H̄22X̄2 + Λ21X̄1 + Z̄2 (2.5)

where Ȳ1 = U†1Y1, Ȳ2 = U†2Y2, X̄1 = V†2X1, X̄2 = V†1X2, Z̄1 = U†1Z1, Z̄2 = U†2Z2,

H̄11 = U†1H11V2 and H̄22 = U†2H22V1. Here, Ȳj, Z̄j,∀j ∈ {1, 2} are Nj × 1 vectors and
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M1 = 5 N1 = 4

N2 = 4M2 = 4 D22 = 3

D11 = 3

D21 = 4

D12 = 2

T1

T2 R2

R1

M ′
1 = M1 − D11 = 2

N ′
1 = N1 − D11 = 1

D12 − N ′
1 = 1 D21 − M ′

1 = 2

M2 + N1 − D11 − D12 = 3
M1 + N2 − D11 − D21 = 2

min(M1 + N2 − D11 − D21, M2 + N1 − D11 − D12, D22) = 2

Discarded
antennas

Used
antennas

Diagonalized
channel

Figure 2.3: Achievability for 2-user Rank deficient channel

X̄i, ∀i ∈ {1, 2} are Mi × 1 vectors. Element m (m-th row) of X̄i, Ȳi are represented as X̄m
i , Ȳ

m
i ,

respectively. Since first D12 columns of Λ12 have nonzero values on the diagonal and other

columns are zeros, only X̄1
2 , X̄

2
2 , ..., X̄

D12
2 present interference from T2 at R1. Similarly only

X̄1
1 , X̄

2
1 , ..., X̄

D21
1 present interference from T1 at R2. Thick lines in Figure 2.3 represent inter-

ference links after diagonalization, and there are 2 parallel paths from T2 to R1 and 4 parallel paths

from T1 to R2.

Step 2: At Transmitter T1, inputs X̄1
1 , X̄

2
1 , ..., X̄

(M1−D11)
1 are set to zero, i.e., we do not transmit on

these inputs, denoted as M ′
1 = M1−D11. This leaves D11 available inputs, X̄(M1−D11+1)

1 , ...., X̄M1
1

at T1. In Figure 2.3, 2 transmit antennas have inputs set to zero (white circles) and remaining 3

dark circles indicate the available inputs at T1.

Step 3: At Receiver R1, D11 = 3 is the dimension of desired signal received from T1. Hence we

consider only outputs Ȳ 1
1 , Ȳ

2
1 , ..., Ȳ

D11
1 and discard remaining outputs Ȳ (D11+1)

1 , ...., Ȳ N1
1 marked in

white circles. Receiver R1 uses D11 dimensions for its desired signal since its desired channel rank

is D11. Hence N ′1 = N1 −D11 is the number of tolerable interference dimensions at R1. Receiver
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R1 is exposed to D12 dimensions from the M2 dimensional space available to Transmitter T2 since

the channel between T2 and R1 is of rank D12. Since R1 can tolerate only N ′1 dimensions of

interference, T2 uses only N ′1 of these D12 dimensions, transmitting nothing on (zero forcing) the

remainingD12−N ′1 dimensions. In addition, T2 is free to transmit on theM2−D12 dimensions that

are not seen byR1. Thus, T2 transmits its message usingM2−D12 +N ′1 = M2−(D11 +D12−N1)

dimensions. Figure 2.3 illustrates such an example.

Step 4: Discarding (D12 + D11 − N1) inputs at T2 ensures that at Receiver R1, interference is

eliminated and R1 can decode the message from Transmitter T1 to achieve D11 DoF.

Step 5: Receiver R2 receives interference from Transmitter T1 over channel of rank D21. In Step

2, M ′
1 inputs have been set to zero, hence remaining (D21 −M ′

1)+ inputs cause interference at R2.

In order to eliminate interference from T1, Receiver R2 discards (D21 −M ′
1)+ outputs. Therefore,

R2 receives signal from T2 only on its N2 − (D21 − M ′
1)+ remaining outputs. In Figure 2.3,

Transmitter T1 sets M ′
1 = 2 of its inputs to zero, and Receiver R2 discards (D21 − M ′

1)+ = 2

outputs. R2 decodes its signal using remaining N2 − (D21 −M ′
1)+ = 2 outputs.

Step 6: From step 3, we have M2− (D11 +D12−N1) inputs available at T2 so that no interference

is caused at R1. From step 5, we have N2 − (D11 + D21 −M1)+ outputs available at R2 that are

interference-free. Channel between T2 and R2 is of rank D22. Hence communication between T2

and R2 takes place with DoF of min(M2 − (D11 +D12 −N1), N2 − (D11 +D21 −M1)+, D22).

Combining Steps 4 and 6, we have established achievability of D11 + min(M2 − (D11 + D12 −

N1), N2−(D11 +D21−M1)+, D22) total DoF for 2-user channel. This expression can be evaluated

to be equal to min{D11 +D22,M1 +N2−D21,M2 +N1−D12}. Setting inputs or outputs to zero

is equivalent to performing zero-forcing at transmitter or receiver.
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2.4.2 Theorem 2.1: Proof of Outer Bound

Trivial outer bound on total DoF ofD11 +D22 is known for this channel. Following converse proof

is similar to that of full rank channels (refer Theorem 1 in [27]), and so, we only present a proof

sketch for rank-deficient channels.

For sum capacity of this channel to be bounded above by 2 constituent MAC channels, each re-

ceiver must be able to decode messages from both transmitters. For this, receiver must have access

to the full interference signal space, i.e., it does not get zero-forced at the transmitters. Similar to

Theorem 1 in [27], we replace the original additive noise at one receiver, say R1, with noise having

different statistics. Note that this does not make the capacity region smaller since the original noise

statistics can be obtained by locally generating and adding noise atR1. Hence, ifR1 was originally

able to decode its intended message, it is still capable of decoding its message with modified noise

statistics. In this sense, noise is modified at Receiver R1, if needed, so that it sees a better channel

than Receiver R2, and message intended for Receiver R2 becomes decodable at Receiver R1.

In the 2-user rank deficient MIMO interference channel, ReceiverR1 can access only aD12 dimen-

sional signal space of Transmitter T2 in its M2 dimensional space. This implies, T2 can zero-force

part of its signal to R1 and R1 cannot decode message from T2 by reducing noise. Hence only

through additional antennas at R1 can it access full signal space of T2. Additional receiver anten-

nas cannot hurt, so the converse argument is not violated. To this end, we add M2 −D12 antennas

atR1. Since channel coefficients corresponding to new antennas are drawn i.i.d. from a continuous

distribution, interference channel between T2 and R1, now a matrix of size (N1 +M2−D12)×M2,

will be full rank. With this, R1 can obtain a stronger channel to input of T2, so that if R2 can

decode the message of T2, so can R1. R1 can locally generate noise and add to its received signal

which is statistically equivalent noise signal as seen by R2. R1 has less noisy channel to T2 and

can decode the message sent by T2. Similarly, additional antennas are added at Receiver R2, so

that it can access full signal space of Transmitter T1. Interference channel between T1 and R2, a
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matrix of size (N2 +M1 −D21)×M1, is full rank. With this, R2 can obtain a stronger channel to

input of T1, so that if R1 can decode the message of T1, so can R2. R2 can locally generate noise

and add to its received signal which is statistically equivalent noise signal as seen by R1. R2 has

less noisy channel to T1 and can decode the message sent by T1.

Now, we argue that the sum capacity is bounded above by corresponding MAC channels (M1,M2, N1+

M2−D12) and (M1,M2, N2+M1−D21) with modified additive noise. Since (N2+M1−D21) ≥M1

and (N1 + M2 − D12) ≥ M2, it can be seen that Theorem 1 in [27] holds true for above ar-

gument with N1 modified as N1 + M2 − D12 and N2 modified as N2 + M1 − D21. R1 can

decode its message and subtract from its received signal vector, and we assume a genie provides

X1 to R2, so that R2 can subtract out interference from T1. While initial output vectors Y1 and

Y2 are of size (N1 + M2 − D12) × 1 and (N2 + M1 − D21) × 1 respectively, after noise reduc-

tion and SVD operations, output vectors Y1new and Y2new are both of size M2 × 1. With these

changes, R1 and R2 would be able to decode both messages. Hence, total DoF is upper-bounded

as DoF ≤ min(D11 + D22, N2 + M1 −D21) and DoF ≤ min(D11 + D22, N1 + M2 −D12). This

is because DoF expressions of 2 rank-deficient MAC channels have sum of channel ranks instead

of that of number of transmit antennas. Combining these 2 bounds, we get the converse result of

Theorem 2.1.

Remark 1: Reciprocity holds true for rank deficient channels similar to full rank channels, i.e.,

DoF is unaffected if M1 and M2 are switched with N1 and N2 respectively.

Remark 2: For the symmetric special case, i.e., the (M,N,D) MIMO interference channel where

each transmitter has M antennas, each receiver has N antennas and all channel matrices are of

rank D, optimal DoF can be calculated as min(M + N − D, 2D), which is same the achievable

DoF value established by Chae et al. [15], now proved to be optimal.
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2.5 3-user channel

To avoid an explosion of parameters when considering more than 2 users, we impose certain as-

sumptions of symmetry. For the 3-user rank deficient interference channel, we assume that all

transmitters and receivers have M antennas, and channels H(j+k)j are of rank Dk, k ∈ {0, 1, 2}.

Thus, at each receiver, the desired signal arrives through a channel of rank D0, interference from

the ‘previous’ transmitter arrives through a channel of rank D1 and the interference from the ‘next’

transmitter arrives through a channel of rank D2, where transmitter and receiver indices are circu-

larly wrapped around modulo 3. Under this assumption of symmetry, the DoF result is presented

in the following theorem.

THEOREM 2.2. For the 3-user rank deficient MIMO interference channel with M antennas at

each node, and channels H(j+k)j restricted to rank Dk, j, k ∈ {0, 1, 2}, the spatially normalized

DoF value per user is given by

DoFΣ

3
= min

{
D0,M −

min(M,D1 +D2)

2

}
(2.6)

Placing the result into perspective, we note that the DoF value in Theorem 2.2 represents a strict

improvement over the achievable DoF previously established by Chae et al. in [15], and matches

the achievable DoF value established in parallel work by Zeng et al. in [62]. Although the results

are consistent with those of [62], our achievable scheme requires atmost 2 symbol extensions

while [62] involves large number of symbol extensions for the symmetric MT = MR case. We

also present a tight information theoretic outer bound that establishes the optimality of this DoF

value.

The spatially normalized DoF result holds for both time-varying and constant channel coefficients.

This follows similar to Theorem 1 of [55], by scaling the number of antennas by q = 2, when DoF

is non-integer. For channel with time-varying coefficients, Theorem 2.2 is also the DoF value,
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achievable with symbol extensions. Based on the spatial-scale invariance property [55], which is

consistent for a wide variety of networks, we conjecture that the result is also the DoF for the

3-user rank-deficient channel with constant coefficients.

The result of Theorem 2.2 is consistent with the observation that the rank-deficiency of cross-

channels does not hurt and the rank-deficiency of direct channels does not help. Since the rank-

deficiency of cross-channels increases opportunities for zero-forcing and reduces the opportunities

for interference alignment, it is evident that the gain from increased zero-forcing more than off-

sets the loss from reduced interference alignment. Compared to the full-rank case where everyone

achieves half the cake, it is remarkable that half-the-cake (i.e., M/2 DoF per user) remains achiev-

able as long as the direct channels support it.

We consider the setting shown in Figure 2.4.

D0

D1 D2

D0

D0

D1

D1

D2

D2

M

M

M M

M

M

Figure 2.4: 3-user Rank Deficient Interference Channel

2.5.1 Theorem 2.2: Proof of Achievability

Achievability proof for 3-user rank deficient interference channel is first presented for cases where

direct channels are full rank. Later, achievability with rank deficient direct channels is discussed.

We categorize beamforming vectors used at Transmitter k to 4 types:
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VZa
k - Zero-forcing vectors in the nullspace of H(k−1)k, maximum number of linearly independent

vectors chosen can beM−D1. Vectors used at Transmitter k will not cause interference at Receiver

k − 1.

VZb
k - Zero-forcing vectors in the nullspace of H(k+1)k, maximum number of linearly independent

vectors chosen can beM−D2. Vectors used at Transmitter k will not cause interference at Receiver

k + 1.

VZc
k - Zero-forcing vectors in the common nullspace of H(k−1)k and H(k+1)k (overlapping di-

mensions in the 2 nullspaces). Maximum number of linearly independent vectors chosen can be

M−D1−D2 sinceM−D1 andM−D2 dimensional generic nullspaces overlap in aM−D1−D2

dimensional space at each transmitter. Vectors chosen in these overlapping dimensions do not

cause interference at either of the 2 unintended receivers.

VA
k - Alignment vectors that align signal at a receiver in the span of interference from other unin-

tended transmitter. Maximum number of linearly independent vectors chosen can beD1 +D2−M

since D1 and D2 dimensional generic interference subspaces overlap in D1 +D2−M dimensional

space at each receiver.

Different cardinalities are chosen for these 4 types of beamforming vectors to form the transmit

beamforming matrix. The beamforming matrix at each transmitter is then of the form Vk =

[VZa
k VZb

k VZc
k VA

k ]. We now discuss achievability by analyzing the beamforming vector cardi-

nalities listed in Table I and by using linear dimension counting arguments.

Using Table 2.1, we first analyze the setting in which direct channels are full rank and cross chan-

nels are rank deficient. First 2 cases correspond to zero-forcing based achievability schemes, and

last case involves interference alignment. For convenience, only sum cardinality of the chosen

zero-forcing vectors VZa
k and VZb

k is specified, i.e., |VZa
k | + |VZb

k |. This is because each of these

vectors chosen at a transmitter helps in cancelling interference at one receiver but causes inter-

ference at another receiver. Since we have 2 unintended transmitters causing interference, these
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Table 2.1: Achievable DoF in 3-user channel for different D1, D2 with D0 = M

Case D1 + D2 |VZa
k |+ |VZb

k | |VZc
k | |VA

k | dim(Int) dim(Des) Total

1 0 < D1 +D2 ≤M D1+D2

2

M −
(D1 +
D2)

0 D1+D2

2

M −
D1+D2

2

M

2 M < D1 + D2 ≤
3M
2

M
2 0 0 M

2
M
2 M

3
3M
2 < D1 + D2 ≤

2M
2M − D1 −
D2

0 D1 + D2 −
3M
2

M
2

M
2 M

zero-forcing vectors can be treated in same manner. dim(Desired) and dim(Interference) are the

number of desired and interference signal dimensions seen at each receiver respectively. Then we

have,

dim(Desired) = |VZa
k |+ |VZb

k |+ |VZc
k |+ |VA

k |

dim(Interference) = |VZa
k |+ |VZb

k |+ |VA
k |

While the first relation is trivial, the second one can be explained as follows: VZc
k at Transmit-

ter k do not cause interference at both unintended receivers. Therefore dim(Interference) does

not contain that term. Further, both zero-forcing (using non-overlapping nullspace) and interfer-

ence alignment are similar in the sense that, vector chosen for zero-forcing one receiver causes

interference at other receiver, and vector chosen for aligning interference at one receiver causes

interference at another. Hence at each receiver, dim(Interference) is the sum of the number of

zero-forcing vectors (using non-overlapping nullspace) and the number of Interference alignment

vectors.

For the first case of Table I, |VA
k | = 0 since interference alignment is not possible (D1 + D2 ≤

M ). |VZc
k | is chosen to be the maximum possible overlapping nullspace dimensions. Remaining

vectors are chosen from the non-overlapping nullspace and chosen number of vectors |VZa
k | +
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Overlapping nullspaces at transmitter
- Only zero-forcing possible

Overlapping interference at receiver
- Alignment possible

M > D1 + D2 M ≤ D1 + D2

D1 D2

M − D1

M − D2

D1

D2

M − D1 M − D2D1 + D2 − MM − D1 − D2

Figure 2.5: M -dimensional signal space in 3-user interference channel

|VZb
k | < D1 +D2, maximum number of non-overlapping nullspace dimensions. At each receiver,

interference occupies |VZa
k |+ |VZb

k | dimensions.

For the second and third cases, |VZc
k | = 0 since there are no overlapping nullspace dimensions at

the transmitters (D1 + D2 > M ). For case 2, though alignment is possible, beamforming matrix

can be formed with the zero-forcing vectors only, i.e., |VZa
k |+ |VZb

k | can be chosen as M
2

. This is

because M
2
≤ 2M −D1 −D2, dimensions in the nullspaces of H(k−1)k and H(k+1)k.

Case 3 involves both zero forcing and interference alignment. At Transmitter k ∈ {1, 2, 3},M−D1

symbols are sent along the M −D1 dimensional null space of the channel to Receiver k − 1 and

M−D2 symbols are sent along theM−D2 dimensional null space of the channel to Receiver k+1.

This is performed by choosing columns of a full rank linear transformation Tk to be beamforming

vectors VZa
k of size M −D1 and VZb

k of size M −D2.

H(k−1)kV
Za
k = 0, H(k+1)kV

Zb
k = 0 k ∈ {1, 2, 3} (2.7)

The remainingD1+D2−M dimensional space at the transmitter will be used to send the remaining

M/2−(M−D1)−(M−D2) = D1+D2−3M/2 symbols that participate in interference alignment.

Since the cross channel matrices are rank-deficient, eigen vector solution of [9] cannnot be used

directly, since inverse of the matrices do not exist. Hence, one of the challenging aspects is to align
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vectors using rank deficient channel matrices. We will now show that using appropriate linear

transformations at the transmitters and the receivers, interference alignment can be performed.

Within theM dimensions available to Receiver k, theD1 dimensional signal space accessible from

Transmitter k−1 overlaps with the D2 dimensional signal space accessible from Transmitter k+1

in a M × (D1 + D2 − M) dimensional subspace. If these overlapping spaces can be accessed

at all the transmitters and the receivers, interference alignment can be performed. Note that at the

transmitters, we consider both zero-forcing and alignment vectors to access theM×D1 orM×D2

dimensional subspaces.

At the 3 receivers, matrices R̂k, k ∈ {1, 2, 3} of size M × (D1 + D2 − M) are constructed,

that represent the signal space overlap of M × D1 or M × D2 dimensional subspaces seen from

Transmitter k − 1 and k + 1 respectively.

R̂k = Hk(k−1) ∩ Hk(k+1) k ∈ {1, 2, 3} (2.8)

wherein A∩B denotes the intersection of A and B, which can be identified asN (N (A)∪N (B)),

and N (X) denotes the nullspace of X . Interference will be aligned in these receiver signal spaces

R̂k. These overlapping signal spaces R̂k, are projected back to the transmitters, such that the

following equations are satisfied.

H(k+1)kT̃
1
k = R̂k+1 & H(k−1)kT̃

2
k = R̂k−1 k ∈ {1, 2, 3} (2.9)

wherein the matrices T̃1
k, T̃

2
k are of size M × (D1 +D2−M), and do not include vectors from the

nullspaces of channels H(k+1)k and H(k−1)k, respectively. After projecting back the signal spaces,

they are combined with zero-forcing vectors to identify the signal space seen from Transmitter k

at the receivers k − 1 and k + 1. With this, Transmitter k has M × D1 dimensional space seen

at Receiver k + 1 and M × D2 dimensional space seen at Receiver k − 1, which overlap in a
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M × (D1 +D2 −M) dimensional space , denoted as T̂k.

T̂k = [T̃1
k VZb

k ] ∩ [T̃2
k VZa

k ] k ∈ {1, 2, 3} (2.10)

In order to align interference, above M × (D1 +D2−M) submatrix, T̂k will be constructed, such

that the same space is seen at both unintended receivers k − 1 and k + 1. Linear transformations

T̂k, R̂k represent the signal space overlap at the transmitters and the receivers, identification of

which enables us to perform one-one alignment of vectors, as follows.

Transmitter k uses the following M ×M linear transformation Tk using the signal space overlap

matrix, T̂k and zero-forcing vectors.

Tk =

[
VZa
k T̂k VZb

k

]
k ∈ {1, 2, 3} (2.11)

Receiver k seesM−D1 dimensional interference from Transmitter k−1 andM−D2 dimensional

interference from Transmitter k+ 1. These (M −D1) + (M −D2) interference symbols are zero-

forced by projecting the M dimensional received space into the M − (M − D1) − (M − D2)

dimensional space that is orthogonal to the interference symbols. This is performed using full-

rank linear transformation Rk of size (D1 +D2 −M)×M at Receiver k.

Rk[Hk(k−1)V
Za
k−1 Hk(k+1)V

Zb
k+1] = 0, k ∈ {1, 2, 3} (2.12)

With this, residual interference at Receiver k due to zero-forcing beamforming vectors chosen at

all transmitters are zero-forced. For the remaining symbols, i.e., for the remaining interference

alignment problem, the zero forcing operations at the transmitters and receivers, described thus far

leave us with a 3-user MIMO interference channel with D1 + D2 −M input dimensions at each

transmitter and D1 + D2 −M dimensions at each receiver, with the following channel matrices.
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This is illustrated in Figure 2.6.

H̄kj = RkHkjTj (2.13)

We have constructed H̄′ji by considering D1 + D2 −M columns of matrix H̄ji after excluding

first M − D1 and last M − D2 columns. Since D1 + D2 −M is not larger than D1, D2, these

channels are full rank, generic channels over which the eigenvectors-based interference alignment

solution of [9] can be directly applied to send the remaining D1 +D2 − 3M/2 symbols (Note that

2 channel uses are needed for the aligned symbols if M is an odd number, each corresponding to

a new set of zero-forcing symbols). Thus, the effective receiver sees a D1 +D2 −M dimensional

generic space within which D1 + D2 − 3M/2 aligned interference dimensions and (M − D1) +

(M −D2) + (D1 +D2 − 3M/2) desired dimensions are resolved.

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

M − D1

M − D2

M − D1

M − D2

M − D1

M − D2

D1 + D2 − M

D1 + D2 − M

D1 + D2 − M

D0

D1

D2

M − D1

M − D2

M − D1

M − D2

M − D1

M − D2

D1

D0

D2

D2

D1

D0

Channel - Hji Channel H̄ ′
ji − RjHjiTi

Figure 2.6: Alignment in 3-user interference channel
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The beamforming matrices V̄k have (M −D1) + (M −D2) columns of the identity matrix, shown

on the leftmost and the rightmost column in the example below. Remaining columns of V̄k are

based on the eigen-vector solution of dimension D1 +D2−M and rows of zeros above and below.

Suppose M = 6 and D1 = D2 = 5, V̄k constructed with 2 zero-forcing vectors and 1 alignment

vector, have the following structure.

V̄k =




1 0 0

0 vak1 0

0 vak2 0

0 vak3 0

0 vak4 0

0 0 1




wherein V̄A
k = [vak1 v

a
k2 v

a
k3 v

a
k4]T is the interference alignment vector constructed as in [9], which

is then extended with M −D1 rows of zeros above and M −D2 rows of zeros below to form VA
k .

Due to the construction of Tk using the signal space overlap T̂k, vectors V̄A
k align one-one at the

receivers. The resultant beamforming matrix Vk used at Transmitter k is then

Vk = TkV̄k = [VZa
k VA

k VZb
k ] (2.14)

Linear transformations at all transmitters and receivers Tk,Rk are full rank matrices based on

construction described. It can be noted that matrices V̄k and Vk are full rank since columns are

linearly independent due to orthogonal construction of V̄k. Note that desired channels are not used

in the design of precoding vectors, which maintains their generic character and thereby the linear

independence of desired signal vectors from the interference. We also note that a similar layered

precoding approach is presented in [62] as well.
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When direct channels are rank deficient, no more than D0 vectors can be used for beamforming.

For all values of D0 such that D0 ≥ M − min(M,D1+D2)
2

, same DoF can be obtained as in Table I

by choosing specified number of beamforming vectors. When D0 < M − min(M,D1+D2)
2

, we send

only D0 beamforming vectors corresponding to all 3 cases, choosing first the zero-forcing vectors

and then the alignment vectors as needed. In all cases, dim(Interference)+dim(Desired)≤M since

both desired and interference dimensions reduce with these changes.

Combining the DoF results for the 3 cases of Table I, achievability of min(D0,M − min(M,D1+D2)
2

)

DoF per user has been proved.

2.5.2 Theorem 2.2: Proof of Outer Bound

Converse proofs are described separately for two cases: D1 + D2 > M and D1 + D2 ≤ M . For

both cases, we first present the change of basis operations similar to [55], and then discuss the

genie-aided outer bounds. We first present a lemma which is used for proving the outer bounds.

Lemma 1. For the K-user rank deficient interference channel, if a genie provides a subset of

the noisy transmitted signals, denoted as G, to Receiver k, such that it can decode all K mes-

sages from the observation (Y n
k ,G), then we can always outer bound the mutual information term

I(W1,W2, · · · ,WK ;Y n
k ,G) as follows:

I(W1,W2, · · · ,WK ;Y n
k ,G) = I(W1,W2, · · · ,WK ;Y n

k ) + I(W1,W2, · · · ,WK ;G|Y n
k )(2.15)

≤ Mn log ρ+ I(W1,W2, · · · ,WK ;G|Y n
k ) + n o(log ρ) (2.16)

≤ Mn log ρ+ h(G|Y n
k )h(G|W1,W2, · · · ,WK , Y

n
k ) + n o(log ρ)

(2.17)

= Mn log ρ+ h(G|Y n
k ) + n o(log ρ) + o(n) (2.18)
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Proof: In the derivations above, (2.15) follows from the mutual information chain rule. (2.16)

is obtained because Receiver k has only M antennas. (2.17) follows from the entropy chain rule,

and (2.18) is obtained from Lemma 3 since given all K messages, we can reconstruct the genie

signals G subject to noise distortion.

Outer bound when D1 +D2 > M

Change of Basis:

Step 1: For each receiver, a linear transformation Rk is designed such that the firstM−D2 antennas

of Receiver k do not hear Transmitter k−1 (left nullspace of Hk(k−1)) and the lastM−D1 antennas

of Receiver k do not hear Transmitter k+1 (left nullspace of Hk(k+1)). Corresponding signals seen

at Receiver k are denoted as Ska and Skc, respectively. This is possible since rank(Hk(k+1))=D1

and rank(Hk(k−1))=D2.

Step 2: In the M -dimensional space at Transmitter k, there is a D1-dimensional subspace orthog-

onal to M −D1 receiver antennas (k − 1)a and D2-dimensional subspace orthogonal to M −D2

receiver antennas (k + 1)c. These two subspaces overlap in I = D1 +D2 −M dimensions within

the M -dimensional space seen by the transmitter, and these I columns are chosen for matrix Tk at

the transmitter, and the signal transmitted is denoted as Xkb. Other columns of Tk are chosen such

that the first M − D2 antennas of Transmitter k are not heard by Receiver k + 1 (right nullspace

of Hk(k−1)) and the last M −D1 antennas of Transmitter k are not heard by Receiver k − 1 (right

nullspace of Hk(k+1)). Corresponding signals sent by Transmitter k are denoted as Xka and Xkc,

respectively.

Step 3: Remaining D1 + D2 −M rows for linear transformation Rk are chosen so that they are

linearly independent of other rows. Corresponding received signal is denoted as Skb. Resulting

network connectivity is shown in Figure 2.7.

Outer bound proof:
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|X1a| = M − D2 ◦
|X1b| = D1 + D2 − M > 0 ◦

|X1c| = M − D1 ◦

◦ S1a(X2a) |S1a| = M − D2

◦ S1b(X2a, X2b, X3b, X3c) |S1b| = D1 + D2 − M > 0
◦ S1c(X3c) |S1c| = M − D1

|X2a| = M − D2 ◦
|X2b| = D1 + D2 − M > 0 ◦

|X2c| = M − D1 ◦

◦ S2a(X3a) |S2a| = M − D2

◦ S2b(X3a, X3b, X1b, X1c) |S2b| = D1 + D2 − M > 0
◦ S2c(X1c) |S2c| = M − D1

|X3a| = M − D2 ◦
|X3b| = D1 + D2 − M > 0 ◦

|X3c| = M − D1 ◦

◦ S3a(X1a) |S3a| = M − D2

◦ S3b(X1a, X1b, X2b, X2c) |S3b| = D1 + D2 − M > 0
◦ S3c(X2c) |S3c| = M − D1

Figure 2.7: Basis change for 3-user channel: D1 +D2 > M

Desired signal is assumed to be decodable and can be removed. Genie information to be given to

Receiver 1 should include 2M − (D1 +D2) dimensions - Xn
2c, X

n
3a which are not heard by receiver

1. Receiver 1 has M equations with D1 +D2 unknowns. Hence only if genie information includes

another D1 +D2 −M dimensions, then at Receiver 1, there will be M equations resolvable using

M unknowns.

Hence a genie provides G1 = {Xn
2b, X

n
2c, X

n
3a} to Receiver 1. Number of dimensions available

to Receiver 1 is M + |G1| = 2M . With 2M dimensions, Receiver 1 will be able to resolve

both interfering signals and can decode all three messages. Over n channel uses, sum rate can be

bounded as follows.

nR∑ ≤ Mn log ρ+ h(Xn
2b, X

n
2c, X

n
3a|Ȳ n

1 ) + n o(log ρ) + o(n) (2.19)

≤ Mn log ρ+ h(Xn
3a|Ȳ n

1 ) + h(Xn
2b|Ȳ n

1 ) + h(Xn
2c|Ȳ n

1 , X
n
2b, X

n
3a) + n o(log ρ) + o(n)

(2.20)

≤ Mn log ρ+ h(Xn
3a) + h(Xn

2b|Xn
2a) + h(Xn

2c|Xn
2a, X

n
2b) + n o(log ρ) + o(n) (2.21)

= Mn log ρ+ h(Xn
3a) + nR2 − h(Xn

2a) + n o(log ρ) + o(n) (2.22)
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where (2.19) follows from Fano’s inequality and Lemma 1. (2.20) follows from applying the chain

rule. (2.21) follows since dropping condition terms cannot decrease differential entropy. Thus, we

only keep Sn1a as the condition term which isXn
2a. (2.22) is obtained because from the observations

of (Xn
2a, X

n
2b, X

n
2c) we can decode W2 subject to the noise distortion. By advancing user indices,

we have:

3nR ≤Mn log ρ+ nR + n o(log ρ) + o(n) (2.23)

which implies that d ≤ M
2

. Since D0 is a known outer bound, we get DoF
K
≤ min(D0,

M
2

).

Outer bound when D1 +D2 ≤M

Change of Basis:

Step 1: For each receiver, a linear transformation Rk is designed such that the first D1 antennas of

Receiver k do not hear Transmitter k − 1 (left nullspace of Hk(k−1)) and the last D2 antennas of

Receiver k do not hear Transmitter k + 1 (left nullspace of Hk(k+1)). Corresponding signals seen

at Receiver k are denoted as Ska and Skc, respectively. This is possible since rank(Hk(k+1))=D1

and rank(Hk(k−1))=D2.

Step 2: In the M -dimensional space at Transmitter k, there is a M − D1 dimensional subspace

orthogonal toD1 receiver antennas (k−1)a and anotherM−D2 dimensional subspace orthogonal

toD2 receiver antennas (k+1)c. These two subspaces have I = M−(D1 +D2) dimensional inter-

section at the transmitter, wherein I columns are chosen for matrix Tk, and the signal transmitted

is denoted as Xkb. Then, we choose other columns of Tk such that D1 antennas of Transmitter

k are not heard by Receiver k + 1 (right nullspace of Hk(k−1)) and D2 antennas of Transmitter

k are not heard by Receiver k − 1 (right nullspace of Hk(k+1)). Corresponding signals sent by

Transmitter k are denoted as Xka and Xkc, respectively.
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Step 3: We consider only D1 + D2 antennas at each receiver, remaining antennas are discarded

since no signal is received (denoted as Skb). Resulting network connectivity is shown in Figure

2.8.

|X1a| = D1 ◦
|X1b| = M − (D1 + D2) ≥ 0 ◦

|X1c| = D2 ◦

◦ S1a(X2a) |S1a| = D1

◦ S1b() |S1b| = M − (D1 + D2) ≥ 0
◦ S1c(X3c) |S1c| = D2

|X2a| = D1 ◦
|X2b| = M − (D1 + D2) ≥ 0 ◦

|X2c| = D2 ◦

◦ S2a(X3a) |S2a| = D1

◦ S2b() |S2b| = M − (D1 + D2) ≥ 0
◦ S2c(X1c) |S2c| = D2

|X3a| = D1 ◦
|X3b| = M − (D1 + D2) ≥ 0 ◦

|X3c| = D2 ◦

◦ S3a(X1a) |S3a| = D1

◦ S3b() |S3b| = M − (D1 + D2) ≥ 0
◦ S3c(X2c) |S3c| = D2

Figure 2.8: Basis change for 3-user channel: D1 +D2 ≤M

Outer bound proof:

Desired signal is assumed to be decodable and can be removed. Genie information to be given to

Receiver 1 should include 2M−(D1+D2) dimensions -Xn
2b, X

n
2c, X

n
3a, X

n
3b which are not heard by

Receiver 1. Receiver 1 has M equations with D1 +D2 unknowns. Since D1 +D2 < M , choosing

signal from only D1 +D2 antennas results in D1 +D2 equations becoming resolvable.

Hence a genie provides G1 = {Xn
2b, X

n
2c, X

n
3a, X

n
3b} to Receiver 1. Since Receiver 1 considers only

D1 +D2 antennas, number of dimensions available to Receiver 1 is D1 +D2 + |G1| = 2M . With

2M dimensions, Receiver 1 will be able to resolve both interfering signals and can decode all three
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messages.

nR∑ ≤ Mn log ρ+ h(Xn
2b, X

n
2c, X

n
3a, X

n
3b|Ȳ n

1 ) + no(log ρ) + o(n) (2.24)

≤ Mn log ρ+ h(Xn
3a|Ȳ n

1 ) + h(Xn
3b|Ȳ n

1 ) + h(Xn
2b, X

n
2c|Ȳ n

1 , X
n
3a, X

n
3b) + no(log ρ) + o(n)

(2.25)

≤ Mn log ρ+ h(Xn
3a) + h(Xn

3b) + h(Xn
2b, X

n
2c|Xn

2a) + no(log ρ) + o(n) (2.26)

= Mn log ρ+ h(Xn
3a) + h(Xn

3b) + nR2 − h(Xn
2a) + no(log ρ) + o(n) (2.27)

≤ (2M − (D1 +D2))n log ρ+ h(Xn
3a) + nR2 − h(Xn

2a) + no(log ρ) + o(n) (2.28)

where (2.24) follows from Fano’s inequality and Lemma 1. (2.25) follows from applying the

chain rule. (2.26) follows since dropping condition terms cannot decrease differential entropy.

Thus, we only keep Sn1a as the condition term which is Xn
2a. (2.27) is obtained because from the

observations of (Xn
2a, X

n
2b, X

n
2c) we can decode W2 subject to the noise distortion, (2.28) follows

since the entropy of Xn
3b is constrained by M − (D1 +D2) antennas. By advancing user indices:

3nR ≤ (2M − (D1 +D2))n log ρ+ nR + no(log ρ) + o(n) (2.29)

which implies that d ≤ 2M−(D1+D2)
2

. SinceD0 is known outer bound, we get DoF
K
≤ min(D0,M−

D1+D2

2
). Converse result of Theorem 2.2 follows from two cases described above.

2.6 K-user channel

For the K-user rank deficient interference channel, we assume all transmitters and receivers have

M antennas, all direct channels have rank D0 and all cross channels have rank D. The DoF result

is presented in the following theorem for time-varying channels.
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THEOREM 2.3. For the K-user rank deficient MIMO interference channel with M antennas at

each node, where the direct channels have rank D0, cross channels have rank D with time-varying

channel coefficients, the DoF value per user is given by

DoFΣ

K
= min

{
D0,M −

min(M, (K − 1)D)

2

}
(2.30)

Similar to the 3-user rank deficient interference channel, we note that for the K-user rank deficient

interference channel, the rank-deficiency of direct channels does not help and the rank-deficiency

of cross-channels does not hurt. Half-the-cake remains achievable as long as the direct channels

support it.
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Figure 2.9: DoF of K-user Rank Deficient Interference Channel with M = 10 : Comparison with
result of Chae at al. in [15]
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In Figure 2.9, the optimal DoF value presented in Theorem 2.3 are compared with the achievable

DoF established by Chae et al. in [15], assuming that each node has M = 10 antennas and all

direct and cross channels are of rank D. The green line corresponds to the optimal DoF while

various dotted lines represent achievable DoF of [15] for different K. It can be noted that for this

setting, optimal DoF per user being min(D, M
2

) indicates that there is no DoF loss as number of

users (K) increases, which is not true for the result in [15].

Figure 2.10: DoF of K-user Rank Deficient Interference Channel

In Figure 2.10, optimal DoF per user are plotted against the cross channel rank D. When the direct

channels are full rank, there are significant DoF gains above M
2

due to zero-forcing. Zero-forcing

helps improve DoF either if the number of users, K, is small or if the cross channels are severely

rank deficient. As the number of users, K, become large, DoF becomes M
2

for almost all cross

channel ranks.

While the nature of the DoF result remains consistent across rank-deficient 2-user, 3-user and

K-user MIMO settings, the increasing complexity of achievable schemes requires increasingly
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sophisticated arguments to counter channel dependencies. The details of these arguments as well

as the corresponding outer bounds are provided in the remainder of this work.

2.6.1 Alignment with Spatial dependencies

When all MIMO channels are full rank, K-user MIMO channel can simply be decomposed to

a KM user SISO interference channel as shown in Figure 2.11. However, in the presence of

rank deficiencies, there are spatial dependencies between some of the channels, due to which

decomposition of the channel does not benefit and CJ scheme cannot be used directly. Hence,

we perform one-sided decomposition of antennas at the transmitters, as in [51], while allowing

joint processing at the receivers. We first discuss the CJ scheme tailored for channels with spatial

dependencies and show that the DoF can be made arbitrarily close to half per user. Then we use the

presented scheme for theK-user rank deficient channel with one-sided decomposition, to establish

achievable DoF.

M M

M M

M M

M M

1 1

1 1

1 1

1 1

K user MIMO channel KM user SISO channel

Figure 2.11: K-user interference channel: Decomposition

Let us consider the CJ scheme for K-user SISO channel Mk = Nk = 1, k ∈ {1, . . . , K}, with

symbol extended channel over n channel uses, such that all channel matrices Hji are diagonal.

We consider physical channels wherein the spatial dependencies do not change over time. There-

fore, a spatial dependency which relates a set of channels, through an expression involving few
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generic channel variables, holds for all realizations of those generic channel variables. We denote

the N = K(K − 1) linear transformations corresponding to the cross channels Hji, i 6= j as

T1,T2, . . . ,TN . Due to presence of rank deficient channels in the original network, there could

be spatial dependencies between few of the cross channels. This could result in precoding matrix

Vn not being full rank. In this section, we will show that spatial dependencies involving cross

channels do not affect the achievable DoF adversely.

Interference Alignment

Let us denote the precoding matrix used at each transmitter in the original scheme as Vn, and

that used at each transmitter in presence of spatial dependencies by V̄ or V̄n. Similar to con-

struction in [26], we construct a precoding matrix V̄ such that it is invariant to the scaling factors

T1,T2, . . . ,TN . Note that the commutative property of linear transformations Ti holds even in

presence of spatial dependencies, which is necessary for aligning interference. This is because all

Ti are diagonal channels resulting from symbol extensions.

We will now construct the precoding matrix V̄n by just removing dependent columns of Vn.

Similar to V̄n,Vn, we will use Īn,In to denote interference space at the receivers, with and

without linearly dependent columns removed, respectively. Similar to [26], all transmitters use the

same set of signaling vectors V̄n and all receivers approximately set aside the same subspace Īn

for interference.

Vn =

{
(T1)α1(T2)α2 . . . (TN)αN1 s.t.

N∑

i=1

αi ≤ n, α1, α2, . . . , αN ∈ Z+ ∪ {0}
}

V̄n = Linearly independent columns of Vn (Reordered) (2.31)

wherein 1 refers to all-one column vector, and we choose In = Vn+1, and Īn = V̄n+1.
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In order to choose linearly independent columns, we first impose a lexicographic order on the

columns of Vn and In, similar to that in [51]. All columns are arranged from left to right in

increasing order of α1. Then columns corresponding to same order of α1 are arranged in increasing

order of α2, and so on till αN . This ordering has the property that a tuple (α1, α2, . . . , αN) appears

before the tuple (β1, β2, . . . , βN), if and only if the first αi, which is different from βi, is smaller

than βi. After reordering the columns in Vn and In, each column is added sequentially starting

from left to right, to V̄n and Īn, only if they are linearly independent with the columns that have

been added already, in V̄n and Īn. Note that above reordering is only an exemplary choice for

choosing linearly independent columns, and other choices exist.

Since we have removed only the dependent columns from Vn,In to form V̄n, Īn, the column

spans of the precoding matrices remain the same.

span(V̄n) = span(Vn) (2.32)

span(Īn) = span(In) (2.33)

Construction of precoding matrices Vn,In similar to that in [9, 26] ensures that

span(TiVn) ⊆ span(In) (2.34)

span(TiV̄n) = span(TiVn) (2.35)

Thus, we have aligned interference from all unintended transmitters at the receivers in space Īn,

span(TiV̄n) = span(TiVn) ⊆ span(In) = span(Īn) (2.36)

In the original construction, number of precoding vectors was given by |Vn| =
(
n+N
N

)
and |In| =

(
n+N+1

N

)
. While we do not specify the number of precoding vectors in V̄n, Īn, we know that

|V̄n| < |Īn| = |V̄n+1|.
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We have so far shown that all interference signals align in the span of Īn at the receivers, in

the presence of spatial dependencies. Note that this is possible because we assume all spatial

dependencies to involve only the cross channels. Now we will show that desired and interference

signal spaces can occupy half the dimensions each at all receivers, almost surely.

Half the cake

In following proofs, we use limit infimum as defined below, since for sequences whose conver-

gence is not guaranteed, limits may not exist. Also, sequences considered are bounded, since the

number of columns in precoding matrices are finite.

Definition: Limit infimum

The limit infimum (lim inf) of a sequence xn is the largest real number b that, for any positive real

number ε, there exists a natural number N such that xn > b− ε for all n > N .

Property: For sequence xn, if a > lim inf xn, then there is an infinite subsequence xnk
of xn such

that a > xnk
∀k.

Lemma 2. For theK-user interference channel with spatial dependencies, and precoding matrices

with linearly independent columns, denoted as V̄n and Īn = V̄n+1,

i. lim inf
n→∞

|V̄n+1| − |V̄n|
|V̄n|

= 0 (2.37)

ii. There exist a subsequence of n such that
|V̄n|

|V̄n|+ |Īn|
can be made arbitrarily close to

1

2

(2.38)
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Proof: i. We will prove this by contradiction. Suppose the contrary is true, i.e., there exists a

positive number ε > 0 such that

lim inf
n→∞

|V̄n+1| − |V̄n|
|V̄n|

> ε (2.39)

which can be written as

lim inf
n→∞

|V̄n+1|
|V̄n|

> (1 + ε) (2.40)

Considering the definition of limit infimum, above relation implies that there exists a positive

integer n0 such that for all n > n0, following holds.

|V̄n+1|
|V̄n0|

> (1 + ε)n+1−n0 (2.41)

Above is a recursive relation that holds for all positive integers n. Therefore we deduce

|V̄n| > (1 + ε)n−n0|V̄n0| (2.42)

Based on construction of precoding vectors in the CJ scheme, we know that

|V̄n+1| ≤
(
n+N + 1

N

)
(2.43)

Hence, we have the following

|V̄n+1|
|V̄n|

≤
(
n+N+1

N

)

(1 + ε)n−n0V̄n0

(2.44)

It can be seen that for large n, term on right goes to zero since it is a ratio of a polynomial over an

exponential in n. However, this cannot be true since |V̄n| ≤ |V̄n+1|, leading to a contradiction.
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Hence the assumption in (2.39) cannot hold, and we have proved (2.37), i.e., growth rate of size of

precoding matrix after removing the dependent columns, reaches zero asymptotically for large n.

In other words, V̄n+1 and V̄n are “almost” of the same size.

ii. From i., note that

lim inf
n→∞

|V̄n+1|
|V̄n|

= 1 (2.45)

Also, for sequence xn, if a > lim inf xn, then there is an infinite subsequence xnk
of xn such that

a > xnk
∀k. Using this, we can choose n, δ such that following holds

|V̄n+1|
|V̄n|

< 1 + δ (2.46)

From above relation, we can deduce the best value of

|V̄n|
|V̄n|+ |Īn|

=
|V̄n|

|V̄n+1|+ |V̄n|
≈ 1

1 + (1 + δ)
=

1

2 + δ
(2.47)

Hence with appropriate choice for δ, ratio of desired signal dimensions and total signal dimensions

can be made arbitrarily close to 1
2

for large n.

We will now use above lemma to show achievable DoF for K-user rank deficient interference

channel.

2.6.2 Theorem 2.3: Proof of Achievability

Achievability proofs for K-user rank deficient channel with time-varying channel coefficients, are

presented separately for two regions -

• Sum of cross channel ranks, (K − 1)D ≤ Number of antennas, M
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• Sum of cross channel ranks, (K − 1)D > Number of antennas, M

Achievable scheme involves only zero-forcing when (K − 1)D ≤M (Region 1) and CJ scheme

with one-sided decomposition is involved when (K − 1)D > M (Region 2).

Region 1: Interference spans part of the receiver signal space: (K − 1)D ≤M

We will first consider all direct channels to be full rank, and show that zero-forcing is sufficient to

achieve DoF of M − (K−1)D
2

per user.

Since all cross channels are of rank D, common nullspace of all cross channels at each transmitter

has M − (K − 1)D dimensions. Hence, each transmitter can choose M − (K − 1)D zero-forcing

beamforming vectors from the common nullspace such that these vectors do not cause interference

at any of the K − 1 unintended receivers. For example, Transmitter 1 chooses M − (K − 1)D

vectors from the following nullspace so that no interference is caused at the receivers 2, 3, . . . , K.

null([H21 H31 · · · HK1])

Additionally, (K−1)D
2

vectors can be chosen from the common nullspaces of K − 2 cross channels.

This is possible because apart from M − (K − 1)D dimensions already chosen, there are (K −

1)D dimensions in the set of common nullspaces of K − 2 cross channels at each transmitter.

For example, Transmitter 1 chooses (K−1)D
2

vectors, with D
2

vectors from each of the following

nullspaces.

null([H31 H41 · · · HK1])

null([H21 H41 · · · HK1])

...

null([H21 H31 · · · H(K−1)1])
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Hence at each transmitter, we choose M − (K − 1)D beamforming vectors such that any receiver

does not see interference and another (K−1)D
2

vectors are chosen such that each receiver sees only

(K−1)D
2

dimensions of interference from all unintended transmitters.

Since each unintended receiver sees only D signal dimensions from a transmitter which do not

overlap, D
2

vectors are chosen from signal space seen by each of the K − 1 unintended receivers.

As a result, each receiver sees interference of only (K−1)D
2

dimensions, and so desired symbols are

resolvable since the number of signal dimensions are given as

dim(Desired) = M − (K − 1)D

2
dim(Interference) =

(K − 1)D

2

As an illustrative example, let us consider 4-user rank deficient interference channel to describe

                           1 1 4

NS1

NS2

NS3

NS4

NSk → null([H(k+1)k H(k+2)k H(k+3)k])

10

10

10

10 10

10

10

10

10

1

1
1

1

11

                           1 1 17

Desired Interference

                           1 1 17

                           1 1 17

                           1 1 17

1

→ null([H(k+1)k H(k+2)k])

                           1 1 41

                           1 1 41

                           1 1 41

→ null([H(k+3)k H(k+1)k])

→ null([H(k+2)k H(k+3)k])

Figure 2.12: Example setting for (K − 1)D ≤M

the beamforming vector choices, as shown in Figure 2.12. In this example, each node has M = 10

antennas with all direct channels of rank D0 = M , and all cross channels of rank D = 2, so that
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(K − 1)D = 6 < M . 4 beamforming vectors can be chosen from common nullspace of all 3 cross

channels at each transmitter, denoted asNSk. Another 3 dimensions are chosen at Transmitter 1 as

follows : Common nullspace of channels H21,H31 has 2 dimensions (vectors linearly independent

from 4 chosen earlier), and we choose one vector from this space. Common nullspace of chan-

nels H31,H41 has 2 dimensions, and we choose one vector from this space. Common nullspace

of channels H21,H41 has 2 dimensions, and we choose one vector from this space. Similarly 3

vectors can be chosen at transmitters 2, 3, 4 from corresponding common nullspaces. Hence at

each transmitter, we choose 4 beamforming vectors such that they will not cause interference at

any receiver, and 3 beamforming vectors are chosen so that each receiver sees only 3-dimensional

interference. Hence desired signal occupying 7 dimensions is resolvable from 3-dimensional in-

terference at all receivers. When D is odd, 2 symbol extensions of the channel are considered to

achieve DoF of M − (K−1)D
2

.

Note that the above result holds for other direct channel ranks when D0 ≥ M − (K−1)D
2

. When

direct channels are of rankD0 < M− (K−1)D
2

, it can be shown thatD0 DoF per user are achievable.

Hence for the region (K − 1)D ≤M , min
(
D0,M − (K−1)D

2

)
DoF per user are achievable.

Region 2: Interference spans the full receiver signal space: (K − 1)D > M

Ergodic Interference Alignment

For the region (K−1)D > M , we first discuss the achievable scheme through ergodic interference

alignment with time-varying channel coefficients, similar to the scheme in [29]. All symbols are

repeated by the K transmitters over 2 channel uses t1 and t2, where all cross-channels remain

the same Hji(t1) = Hji(t2), i 6= j, but all direct channels are different Hii(t1) 6= Hii(t2). All

receivers subtract the symbols received at channel use t1 from the symbols received at channel use

t2. Interference is eliminated since it was the same during both channel uses t1 and t2. Desired

signals remain because direct channels changed into new generic channels between the 2 channel
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uses. Note that the ranks of the cross channels do not impact this achievable scheme. Thus, M

independent equations in M desired variables are obtained over 2 channel uses, achieving M
2

DoF

per user, when direct channel rankD0 ≥ M
2

. This scheme is similar to coding over a channel matrix

and its complement, like in ergodic interference alignment of [41], but is more general since there

are no assumptions on the channel phase. It is straightforward to extend the scheme to other direct

channel ranks, i.e., when D0 <
M
2

, and show that achievable DoF per user is min
(
D0,

M
2

)
.

While the ergodic interference alignment scheme helps in establishing DoF of the rank deficient

channel, it does so only for channel coefficients exhibiting the ergodic nature, which stem from the

requirement for all cross channel coefficients to repeat. Hence, we avoid making such restrictive

assumptions and consider channels without the ergodic nature, since in practice, channel fading

distribution could change over time. With this premise, henceforth, we prove the same DoF result

using asymptotic interference alignment (CJ) scheme. Further, asymptotic schemes often serve as

stepping stones to translate DoF results obtained for time-varying channels to constant channels,

using real alignment schemes, as described in [40, 61].

Asymptotic Interference Alignment

We now discuss CJ scheme over symbol extended channel with time-varying channel coefficients,

by performing decomposition of antennas only at the transmitters (i.e., no joint processing) for the

region (K − 1)D > M . The idea of one-sided decomposability was earlier used by Sun et al. in

[51] for X channel to prove linear independence of desired and interfering signals at the receivers.

From Section 2.6.1, we infer that the precoding matrix V̄n could be made full rank, by discarding

the linearly dependent columns of Vn. Also, Lemma 2 implies that the ratio of desired signal

dimensions over total signaling dimensions can be made arbitrarily close to 1
2
, after discarding the

linearly dependent columns.

To establish achievable DoF, we also need to show that the desired and interfering signals are

linearly independent at all receivers, i.e., we need to show [HkkV̄n HkjV̄n] is full rank for all
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k, j ∈ {1, . . . , KM}, j 6= k wherein Hkj represents the channel between Transmitter j and Re-

ceiver k. Decomposition of antennas at all nodes would not help if direct channels are rank defi-

cient, since there are dependencies between the direct and the cross channels. Hence, we perform

one-sided decomposition of the channel, wherein we treat antennas of each transmitter node sep-

arately while allowing joint processing at the receivers. We first consider all direct channels to

be of rank D0 ≥ M
2

, and show that DoF of M
2

per user can be achieved. When D0 <
M
2

, it can

be shown that DoF of D0 per user can be achieved, establishing that the achievable DoF per user

is min(D0,
M
2

) for the region (K − 1)D > M . We describe the proofs for even M , and symbol

extensions are used if necessary, for odd M or other cases.

Let us consider the K-user rank deficient interference channel wherein all direct channels are of

rank D0 ≥ M
2

. With one-sided decomposition of the channel, there are MK transmitters each

with single antenna, sending messages to K receivers each with M antennas. Consider n symbol

extension of the original channel so that each transmitter sees an n-dimensional signal space while

each receiver has nM dimensional signal space. The value of n will be specified later. The input-

output relationship of the symbol-extended channel is

Y [j](κ) =
MK∑

i=1

H[ji](κ)X [i](κ)+Z [j](κ) =
MK∑

i=1




H̃
[ji]
1 (κ)

...

H̃
[ji]
M (κ)



X [i](κ)+Z [j](κ), j ∈ {1, 2, . . . , K}

where X [i](κ) ∈ Cn×1 is the signal vector sent by the ith transmitter and Y [j](κ) ∈ CnM×1 is

the received signal vector at Receiver j over extended channel-use index κ. H̃
[ji]
m (κ) ∈ Cn×n

represents the diagonal channel matrix from Transmitter i to the mth receive antenna of Receiver
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j where m ∈ {1, . . . ,M}, i.e.,

H̃[ji]
m (κ) =




H
[ji]
m (n(κ− 1) + 1) 0 . . . 0

0 H
[ji]
m (n(κ− 1) + 2) . . . 0

... · · · . . . ...

0 0 · · · H
[ji]
m (nκ)



. (2.48)

The channel-use index is suppressed for compactness. Each transmitter selects the same beam-

forming matrix V to precode its message for Receiver j ∈ {1, . . . , K}. Specifically, X[i] =

Vx[i], i ∈ {1, . . . ,MK}, where V is the n ×
(
n+N
N

)
precoding matrix and x[i] is the |V| × 1

data stream vector from Transmitter i. In order to consolidate the interference caused by V at

all receivers j ∈ {1, . . . , K} as much as possible, we set the interference space brought by V at

receivers 1, . . . , K to roughly V × · · · ×V︸ ︷︷ ︸
M times

, in which interference will be aligned

span
[
H̃[ji]V

]
= span




H̃
[ji]
1 V

H̃
[ji]
2 V

...

H̃
[ji]
M V




⊂≈ span




V 0 · · · 0

0 V · · · 0

...
... . . . ...

0 0 · · · V



nM×|V|M

i ∈ {1, . . . ,MK}, j ∈ {1, . . . , K}, j 6=
⌊
i−1
M
c+ 1

(2.49)

All of the above conditions can be written as

V ≈ H̃[ji]
m V, i ∈ {1, . . . ,MK}, j ∈ {1, . . . , K}, j 6=

⌊
i−1
M
c+ 1,m ∈ {1, . . . ,M} (2.50)

where
⊂≈,≈ are used to denote that V is approximately invariant to the scaling factors H̃

[ji]
m . To

paraphrase, messages for Receiver j are sent along the same signal space V and aligned into

V × · · · ×V space at all receivers l ∈ {1, . . . , j − 1, j + 1, . . . , K}.
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Let us define I = span
(⋃

i,l,m span(H̃
[li]
m V)

)
, which is the span of union of interference terms

caused by V on antenna m at all receivers other than the intended receiver, and condition (2.50)

becomes V ≈ I which essentially states that V scales invariantly by the interference-carrying

links. It can be satisfied simultaneously with the CJ scheme using beamforming vectors:

V =

{( ∏

i,j,m

(H̃[ji]
m )α

[ji]
m

)
1, s. t.

∑

i,j,m

α[ji]
m ≤ n, α[ji]

m ∈ {0} ∪ Z+,

i ∈ {1, . . . ,MK}, j ∈ {1, . . . , K}, j 6=
⌊
i−1
M
c+ 1,m ∈ {1, . . . ,M}

}
(2.51)

I =

{( ∏

i,j,m

(H̃[ji]
m )α

[ji]
m

)
1, s. t.

∑

i,j,m

α[ji]
m ≤ n+ 1, α[ji]

m ∈ {0} ∪ Z+,

i ∈ {1, . . . ,MK}, j ∈ {1, . . . , K}, j 6=
⌊
i−1
M
c+ 1,m ∈ {1, . . . ,M}

}
(2.52)

where 1 is the n× 1 all ones column vector.

Thus V contains product terms up to degree n and interference term I contains product terms up

to degree n+1. Note that the original network had rank deficient channels which introduces spatial

dependencies, however, we discard all linearly dependent columns of V and I after reordering the

columns in a lexicographic order, as discussed in Section 2.6.1. We represent the resultant matrices

after discarding all linearly dependent columns, as V̄ and Ī . Unlike in Section 2.6.1, some of the

cross channels are not included in the construction of precoding matrix above, which is beneficial

for the linear independence proofs. However, this does not violate the result of Lemma 2.

At each receiver, desired signals occupyM |V̄| dimensions and aligned interference occupiesM |Ī|

dimensions. To accommodate both desired signals and interference, the size of receive signal

space, nM , should be as big as the sum of the dimensions of desired signals and interference.

Therefore, we set nM = M |V̄| + M |Ī|, i.e., n = |V̄| + |Ī|. To ensure decodability, we should

guarantee the linear independence of the desired signals from interference.
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Due to symmetry, we only prove linear independence of signals at Receiver 1. Let us define

D[1]
m =

[
H̃

[11]
m V̄ H̃

[12]
m V̄ · · · H̃

[1M ]
m V̄

]
, m ∈ {1, . . . ,M} (2.53)

which corresponds to the desired signal at the mth antenna of Receiver 1. Then the desired signal

at Receiver 1 correspond to the columns of D[1].

D[1] =




D
[1]
1

D
[1]
2

...

D
[1]
M




=




H̃
[11]
1 V̄ H̃

[12]
1 V̄ · · · H̃

[1M ]
1 V̄

H̃
[11]
2 V̄ H̃

[12]
2 V̄ · · · H̃

[1M ]
2 V̄

...
...

...

H̃
[11]
M V̄ H̃

[12]
M V̄ · · · H̃

[1M ]
M V̄




(2.54)

At Receiver 1, interference from transmitters j ∈ {2, . . . , K}, are aligned in the column span of

E[1] =




Ī 0 · · · 0

0 Ī · · · 0

...
... . . . ...

0 0 · · · Ī




= IM ⊗ Ī (2.55)

We need to show that the nM × nM matrix F[1] = [D[1] E[1]] has full rank almost surely. We will

first show that the desired signals are linearly independent among themselves and then prove that

the desired signal space does not overlap with the interference space.

Step 1: We first prove that the desired signals are linearly independent, i.e., the nM×|V̄|M matrix

D[1] has full rank, almost surely. To do this, it is sufficient to prove the following M |V̄| ×M |V̄|

submatrix of D[1] is full rank.

D̄[1] =




D̄
[1]
a

D̄
[1]
b



M |V̄|×M |V̄|

(2.56)
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where

D̄[1]
a has the top |V̄| rows of each D[1]

m ,m ∈ {1, . . . ,
M

2
} (2.57)

D̄
[1]
b has the bottom |V̄| rows of each D[1]

m ,m ∈ {
M

2
+ 1, . . . ,M} (2.58)

and so, D̄[1] can be written as

D̄[1] =




H̃
[11]
1a V̄a H̃

[12]
1a V̄a · · · H̃

[1M ]
1a V̄a

...
...

...

H̃
[11]
M
2
a
V̄a H̃

[12]
M
2
a
V̄a · · · H̃

[1M ]
M
2
a

V̄a

H̃
[11]

(M
2

+1)b
V̄b H̃

[12]

(M
2

+1)b
V̄b · · · H̃

[1M ]

(M
2

+1)b
V̄b

...
...

...

H̃
[11]
MbV̄b H̃

[12]
MbV̄b · · · H̃

[1M ]
Mb V̄b




(2.59)

wherein H̄
[1i]
ma is a diagonal square matrix of dimension |V̄| × |V̄| obtained from the first |V̄| rows

and columns of matrix H
[1i]
m , H̄

[1i]
mb is a diagonal square matrix of dimension |V̄| × |V̄| obtained

from the last |V̄| rows and columns of matrix H
[1i]
m . V̄a is the |V̄| × |V̄| matrix obtained from

the first |V̄| rows of matrix V̄ and V̄b is the |V̄| × |V̄| matrix obtained from the last |V̄| rows

of matrix V̄. Note that D̄[1] has M |V̄| rows corresponding to M receiver antennas and M |V̄|

columns corresponding to the desired signals from M transmitters.

We will prove that det(D̄[1]) 6= 0 almost surely. The determinant of the matrix D̄[1] is a polyno-

mial function of its entries. This polynomial is either identically a zero polynomial i.e., zero for

all realizations, such as x− x, or it is not identically a zero polynomial, i.e., there exist some real-

izations for which the polynomial takes non-zero values. If a polynomial is not identically a zero

polynomial, then it is not equal to zero almost surely for randomly generated channel coefficients,

see e.g., the Schwartz Zippel Lemma [47, 63, 53]. Therefore, in order to show that a polynomial is

almost surely non-zero for random realizations it suffices to show that it is not identically a zero-
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polynomial, i.e., that it is non-zero for at least one realization. So we show that the polynomial is

not a zero polynomial by finding one specific set of channel coefficients such that the polynomial

is not equal to zero.

We will set the channel coefficients such that D̄[1] becomes a block diagonal matrix with M full

rank blocks, which implies that D̄[1] is full rank, almost surely.

D̄[1] =




H̃
[11]
1a V̄a · · · 0 · · · 0

... . . . ... . . . ...

0 · · · H̃
[1M

2
]

M
2
a

V̄a · · · 0

... . . . ... . . . ...

0 · · · 0 · · · H̃
[1M ]
Mb V̄b




(2.60)

D̄[1] corresponds to the desired signal from transmitters 1, · · · ,M to Receiver 1. We set all rows

except rows (i−1)|V̄|+1, · · · , i|V̄| of D̄[1] to zero by choosing corresponding channel coefficients

in the matrices H̄
[1k]
ma , H̄

[1k]
mb ,m 6= k to zero. Choosing these channel coefficients to be zero does

not violate the rank constraints in the original network since D0 ≥ M
2

. It is for this reason that

we choose top |V̄| rows for first M
2

antennas and last |V̄| rows for last M
2

antennas, corresponding

to different timeslots. Note that this can be done because V̄ does not contain the desired channel

coefficients associated with Receiver 1. We have converted D̄[1] into a block diagonal matrix

wherein each block is of size |V̄| × |V̄|. We now show that each block is full rank almost surely.

From the construction of V̄a and V̄b, note that they are full rank matrices since linearly dependent

columns have been discarded in V̄, as in Section 2.6.1, and various rows correspond to cross

channel coefficients of different timeslots. Further, since H̄
[1i]
m ,m ∈ {1, · · · ,M} are all full rank

diagonal matrices with elements independent of V̄a and V̄b, and so, each block matrix is full rank.

Therefore, the desired signal matrix D̄[1] is full rank almost surely. Similarly, it can be shown that

desired signal matrices D̄[k] are full rank, almost surely, at other receivers k ∈ {2, . . . , K}.
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Step 2: We will now prove that the interference space does not overlap with the desired signal

space at the receivers. To this end, we first reorder the rows of matrix F[1] = [D[1] E[1]], arranging

them according to the channel use slots. Desired signal received at channel index κ is given by

D[1](κ) =




H
[11]
1 (κ) H

[12]
1 (κ) · · · H

[1M ]
1 (κ)

H
[11]
2 (κ) H

[12]
2 (κ) · · · H

[1M ]
2 (κ)

...
...

...
...

H
[11]
M (κ) H

[12]
M (κ) · · · H

[1M ]
M (κ)



⊗ V̄(κ, :) (2.61)

At Receiver 1, interference caused by signals intended for receivers j = 2, . . . , K at channel index

κ, is given as

E[1](κ) = IM ⊗ Ī(κ, :) (2.62)

As a result, signals received at channel use index κ is

F[1](κ) =

[
D[1](κ) E[1](κ)

]
(2.63)

After rearranging the rows of F[1] as above, it can be written as

F[1] =




F[1](1)

...

F[1](n)




(2.64)

We now describe the proofs for the matrix F[1] containing desired and interference signals being

full rank, first for M = 2, followed by that for arbitrary M .

A. Linear independence proof for M = 2
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Consider the signal space at Receiver 1, represented by matrix F[1] of size 2n × 2n, wherein

n = |V̄|+ |Ī|. In this matrix, the first 2|V̄| columns correspond to the desired signal, and the last

2|Ī| columns correspond to the interference signal.

F[1] =

[
D[1] E[1]

]

2n×2n

(2.65)

wherein the columns corresponding to the desired signals are represented using D[1]

D[1] =




D[1](1)

D[1](2)

...

D[1](n)




2n×2|V̄|

(2.66)

D[1](κ) = H11(κ)⊗ V̄(κ, :) =


 H̄

[11]
1 (κ)V̄(κ, :) H̄

[12]
1 (κ)V̄(κ, :)

H̄
[11]
2 (κ)V̄(κ, :) H̄

[12]
2 (κ)V̄(κ, :)




2×2|V̄|

(2.67)

and the columns corresponding to the interference signals are represented using E[1]

E[1] =




Ī(1, 1) Ī(1, 2) · · · Ī(1, |Ī|) 0 0 · · · 0

0 0 · · · 0 Ī(1, 1) Ī(1, 2) · · · Ī(1, |Ī|)

Ī(2, 1) Ī(2, 2) · · · Ī(2, |Ī|) 0 0 · · · 0

0 0 · · · 0 Ī(2, 1) Ī(2, 2) · · · Ī(2, |Ī|)
...

...
...

...
...

...
...

...

Ī(|V̄|, 1) Ī(|V̄|, 2) · · · Ī(|V̄|, |Ī|) 0 0 · · · 0

0 · · · 0 0 Ī(|V̄|, 1) Ī(|V̄|, 2) · · · Ī(|V̄|, |Ī|)
...

...
...

...
...

...
...

...

Ī(n, 1) Ī(n, 2) · · · Ī(n, |Ī|) 0 0 · · · 0

0 · · · 0 0 Ī(n, 1) Ī(n, 2) · · · Ī(n, |Ī|)




2n×2|Ī|

(2.68)

where V̄(κ, :) denotes κ-th row of V̄, and Ī(k, l) denotes the element in the k-th row and l-th

column of Ī . Note that 2 consecutive rows correspond to same timeslot, and signals correspond to

n timeslots.
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V̄

V̄

V̄

V̄

V̄

V̄

R1

R2

RK

M = 2, D = 1

[
H

[11]
1 V̄ H

[12]
1 V̄

H
[11]
2 V̄ H

[12]
2 V̄

]

[
H

[23]
1 V̄ H

[24]
1 V̄

H
[23]
2 V̄ H

[24]
2 V̄

]

[
H

[K(2K−1)]
1 V̄ H

[K(2K)]
1 V̄

H
[K(2K−1)]
2 V̄ H

[K(2K)]
2 V̄

]

DesiredInterference

2|V̄| dimensions

n = |V̄| + |Ī| dimensions

Each receiver has 2n = 2(|V̄| + |Ī|) dimensions

[
Ī 0
0 Ī

]

[
Ī 0
0 Ī

]

[
Ī 0
0 Ī

]

2|Ī| dimensions

Figure 2.13: Asymptotic alignment for K-user rank deficient channel with M = 2

Suppose the 2× 2 direct channel between Transmitter 1 and Receiver 1 is of rank 1, then without

loss of generality, the desired signal matrix corresponding to channel use index κ, D[1](κ) can be

written as

D[1](κ) = H11(κ)⊗ V̄(κ, :) =


 H̄

[11]
1 (κ)V̄(κ, :) H̄

[12]
1 (κ)V̄(κ, :)

ακH̄
[11]
1 (κ)V̄(κ, :) ακH̄

[12]
1 (κ)V̄(κ, :)




2×2|V̄|

(2.69)

We will now show that the determinant of matrix F[1] has a unique monomial which implies that

det(F[1]) 6= 0, almost surely. Expanding the determinant of F[1] along the interference signal

columns corresponding to E1, it can be noted that det(F[1]) contains the polynomial IP det(X)
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with IP = IAIB and

IA =



|V̄|∏

i=1

Īi(i)


×




|Ī|∏

i=|V̄|+1

Īi−|V̄|(i)


 (2.70)

IB =
n∏

i=|V̄|+1

Īi−|V̄|(i) (2.71)

wherein IA is the product of interference terms from even rows of F[1], IB is the product of

interference terms from odd rows of F[1], IP = IAIB represents the product of interference terms

from the columns of E[1] described above, and the matrix X is given as

X =




α1H̄
[11]
1 (1)V̄(1, :) α1H̄

[12]
1 (1)V̄(1, :)

α2H̄
[11]
1 (2)V̄(2, :) α2H̄

[12]
1 (2)V̄(2, :)

...
...

α|V̄|H̄
[11]

1
(|V̄|)V̄(|V̄|, :) α|V̄|H̄

[12]
1 (|V̄|)V̄(|V̄|, :)

H̄
[11]
1 (|Ī|+ 1)V̄(|Ī|+ 1, :) H̄

[12]
1 (|Ī|+ 1)V̄(|Ī|+ 1, :)

...
...

H̄
[11]
1 (n)V̄(n, :) H̄

[12]
1 (n)V̄(n, :)




2|V̄|×2|V̄|

(2.72)

and det(X) =



|V̄|∏

i=1

αi


 det(X̄) (2.73)

wherein X̄ =




H̄
[11]
1 (1)V̄(1, :) H̄

[12]
1 (1)V̄(1, :)

H̄
[11]
1 (2)V̄(2, :) H̄

[12]
1 (2)V̄(2, :)

...
...

H̄
[11]
1 (|V̄|)V̄(|V̄|, :) H̄

[12]
1 (|V̄|)V̄(|V̄|, :)

H̄
[11]
1 (|Ī|+ 1)V̄(|Ī|+ 1, :) H̄

[12]
1 (|Ī|+ 1)V̄(|Ī|+ 1, :)

...
...

H̄
[11]
1 (n)V̄(n, :) H̄

[12]
1 (n)V̄(n, :)




2|V̄|×2|V̄|

(2.74)

Different choice for interference terms in IP (IP 6= IAIB), result in either a different matrix X̃

(instead of X) corresponding to rows from different timeslots, or another distinct product of αi

in the determinant expression of same X, instead of that in (2.73). Choosing a different row for
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each term Īk(κ) than from one above, results in either a different matrix X or a different product

of αi coefficients. Note that det(X) is a non-zero polynomial since rows correspond to different

timeslots, and elements can be chosen such that one instance of the determinant polynomial is

non-zero. Also, each element of matrix X has direct channels which are not present in all elements

of Ī . Elements of Ī are distinct powers of the cross channels with non-zero entries. Thus, we

have a unique non-zero polynomial IAIB det(X) in the determinant expression of F[1] and so the

determinant of F[1] is non-zero, almost surely. Similarly, we can show that all matrices F[k], k ∈

{2, . . . , K} are full rank, corresponding to signal space at different receivers. Suppose the 2 × 2

direct channel between Transmitter 1 and Receiver 1 is full rank, matrix F[1] can be similarly shown

to be full rank, almost surely.

Thus the desired signal is linearly independent from the interference at each receiver and therefore,

the total accessible DoF for Receiver j equals M 2|V̄|
2n

= M 2|V̄|
2|V̄|+2|Ī| → M

2
as n→∞, resulting in

DoF of M
2

per user, as desired.

B. Linear independence proof for arbitrary M

For arbitrary M , signal space containing desired signal and interference is represented as:

F[1] =

[
D[1] E[1]

]

nM×nM
(2.75)

wherein the columns corresponding to the desired signals are represented using D[1]
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D[1] =




D[1](1)

D[1](2)

...

D[1](n)



nM×M |V̄|

(2.76)

D[1](κ) = H11(κ)⊗ V̄(κ, :) =




H̄
[11]
1 (κ)V̄(κ, :) H̄

[12]
1 (κ)V̄(κ, :) · · · H̄

[1M ]
1 (κ)V̄(κ, :)

H̄
[11]
2 (κ)V̄(κ, :) H̄

[12]
2 (κ)V̄(κ, :) · · · H̄

[1M ]
2 (κ)V̄(κ, :)

...
...

. . .
...

H̄
[11]
M (κ)V̄(κ, :) H̄

[12]
M (κ)V̄(κ, :) · · · H̄

[1M ]
M (κ)V̄(κ, :)



M×M |V̄|

(2.77)

and the columns corresponding to the interference signals are represented using E[1]

E[1] =




Ī(1, 1) · · · Ī(1, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 Ī(1, 1) · · · Ī(1, |Ī|) 0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 0 · · · 0 0 · · · 0 Ī(1, 1) · · · Ī(1, |Ī|)
Ī(2, 1) · · · Ī(2, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 Ī(2, 1) · · · Ī(2, |Ī|) 0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 0 · · · 0 0 · · · 0 Ī(2, 1) · · · Ī(2, |Ī|)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|) 0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 0 · · · 0 0 · · · 0 Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

Ī(n, 1) · · · Ī(n, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 Ī(n, 1) · · · Ī(n, |Ī|) 0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 0 · · · 0 0 · · · 0 Ī(n, 1) · · · Ī(n, |Ī|)



nM×M |Ī|

(2.78)
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where V̄(κ, :) denotes κ-th row of V̄, and Ī(k, l) denotes the element in the k-th row and l-th

column of Ī . When desired channels are of rank D0 >
M
2

, above matrix can be written as

D[1](κ) = H11(κ)⊗ V̄(κ, :) =




a1 b1 c1 · · ·
...

...
...

...

aM
2

bM
2

cM
2

· · ·∑M
2
i=1 αiai

∑M
2
i=1 αibi

∑M
2
i=1 αici · · ·

...
...

... · · ·∑M
2
i=1 βiai

∑M
2
i=1 βibi

∑M
2
i=1 βici · · ·



M×M |V̄|

(2.79)

Expanding the determinant of F[1] along the columns carrying interference, note that the determi-

nant contains the polynomial IP det(X) with IP = IAIB and

IA = (

|V̄|∏

i=1

Ī
M
2
i (i))× (

|Ī|∏

i=|V̄|+1

Ī
M
2

i−|V̄|(i)) (2.80)

IB =
n∏

i=|V̄|+1

Ī
M
2

i−|V̄|(i) (2.81)

wherein IA is the product of interference terms from the middle M
2

rows of each M -row matrix

corresponding to same channel use, in F[1], IB is the product of interference terms from the top

dM
4
e and the bottom bM

4
c rows of each M -row matrix corresponding to same channel use, in F[1],

and the matrix X is given as:
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X =




X̃(1)

X̃(2)

...

X̃(|V̄|)

X′(|Ī|+ 1)

...

X′(n)



M |V̄|×M |V̄|

(2.82)

X̃(k) =




H̄
[11]
1 (k)V̄(k, :) H̄

[12]
1 (k)V̄(k, :) · · · H̄

[1M ]
1 (k)V̄(k, :)

...
...

. . .
...

H̄
[11]

dM
4
e(k)V̄(k, :) H̄

[12]

dM
4
e(k)V̄(k, :) · · · H̄

[1M ]

dM
4
e(k)V̄(k, :)

H̄
[11]

d 3M
4
e(k)V̄(k, :) H̄

[12]

d 3M
4
e(k)V̄(k, :) · · · H̄

[1M ]

d 3M
4
e(k)V̄(k, :)

...
...

. . .
...

H̄
[11]
M (k)V̄(k, :) H̄

[12]
M (k)V̄(k, :) · · · H̄

[1M ]
M (k)V̄(k, :)




(2.83)

X′(k) =




H̄
[11]

dM
4
e+1

(k)V̄(k, :) H̄
[12]

dM
4
e+1

(k)V̄(k, :) · · · H̄
[1M ]

dM
4
e+1

(k)V̄(k, :)

...
...

. . .
...

H̄
[11]

d 3M
4
e−1

(k)V̄(k, :) H̄
[12]

d 3M
4
e−1

(k)V̄(k, :) · · · H̄
[1M ]

d 3M
4
e−1

(k)V̄(k, :)


 (2.84)

When determinant of X is evaluated, we get terms of the form ak(
∑D0

i=1 βibi), k ∈ {1, · · · , D0}

when D0 >
M
2

corresponding to channel use κ, by considering (2.79). For obtaining same product

of interference terms in IA and IB by choosing different rows, different linear combinations of

ai, bi, i ∈ {1, . . . , D0} are involved. Choosing a different row for each term Īk(κ) in IP than

from one above, results in either a different matrix X or a different linear combination of ai, bi, i ∈

{1, . . . , D0}. Also, each element of matrix X has direct channels which are not present in all

elements of Ī . Thus we have a unique non-zero polynomial IAIB det(X) in the determinant of

F[1], since any other choices for interference terms cannot result in the same polynomial, and so,

det(F[1]) 6= 0, almost surely. Similarly, we can show that all matrices F[k], k ∈ {2, . . . , K} are full

rank, corresponding to signal space at different receivers.
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Hence the matrix F[k] is full rank and we have proved the linear independence of desired and

interfering signals, for all M . This implies that for the region (K− 1)D > M , achievable DoF per

user are min(D0,
M
2

).

2.6.3 Theorem 2.3: Proof of Outer Bound

We first prove that the DoF outer bound per user for region (K−1)D ≤M is given byM− (K−1)D
2

,

and then prove that M
2

is the DoF outer bound per user for regions (K − 2)D ≤M < (K − 1)D

and (K − 2)D > M .

K-user channel with (K− 1)D ≤M:

Change of Basis:

Step 1: For Receiver k, we design aM×M square matrix Rk. First, we determine (K−1)D rows

at Receiver k. The linear transformation is designed such that first D antennas of Receiver k hears

only Transmitter k + 1, next D antennas of Receiver k hears only Transmitter k + 2, and so on till

D antennas of Receiver k hears only Transmitter k + K − 1. This operation is guaranteed since

rank(Hk(k+i)) = D, i 6= 0, and vectors can be chosen from the corresponding common nullspaces.

For Receiver k, these are denoted as Ska1 , · · · , SkaK−1
. Remaining M − (K − 1)D rows are

chosen so that they do not hear all K − 1 interferers, denoted as Skc, which is also possible since

the common nullspace of K − 1 cross channels has M − (K − 1)D dimensions.

Step 2: Within the M -dimensional signal space at Transmitter k, there is M − (K − 1)D dimen-

sional subspace orthogonal to (K − 1)D receiver antennas (k − i)ai,∀i = {1, . . . , K − 1}. These

K − 1 subspaces have M − (K − 1)D dimensional intersection as seen by Transmitter k. We will

choose M − (K − 1)D columns of a M ×M matrix Tk at Transmitter k, from this intersection.

These will not be seen at any of unintended receivers, and are denoted as Xkc at Transmitter k.
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|X1a1 | = D X1a1 �
|X1a2 | = D X1a2 �

� � �
|X1aK�1 | = D X1aK�1 �

|X1c| = M � (K � 1)D � 0 X1c �

� S1a1(X2a1) |S1a1 | = D

� S1a2(X3a2) |S1a2 | = D

� � �
� S1aK�1(XKaK�1

) |S1aK�1 | = D

� S1c() |S1c| = M � (K � 1)D � 0

|X2a1 | = D X2a1 �
|X2a2 | = D X2a2 �

� � �
|X2aK�1 | = D X2aK�1 �

|X2c| = M � (K � 1)D � 0 X2c �

� S2a1(X3a1) |S2a1 | = D

� S2a2(X4a2) |S2a2 | = D

� � �
� S2aK�1(X1aK�1) |S2aK�1 | = D

� S2c() |S2c| = M � (K � 1)D � 0

|X3a1 | = D X3a1 �
|X3a2 | = D X3a2 �

� � �
|X3aK�1 | = D X3aK�1 �

|X3c| = M � (K � 1)D � 0 X3c �

� S3a1(X4a1) |S3a1 | = D

� S3a2(X5a2) |S3a2 | = D

� � �
� S3aK�1(X2aK�1) |S3aK�1 | = D

� S3c() |S3c| = M � (K � 1)D � 0
� �
� �

|XKa1 | = D XKa1 �
|XKa2 | = D XKa2 �

� � �
|XKaK�1

| = D XKaK�1
�

|XKc| = M � (K � 1)D � 0 XKc �

� SKa1(X1a1) |SKa1 | = D

� SKa2(X2a2) |SKa2 | = D

� � �
� SKaK�1

(X(K�1)aK�1
) |SKaK�1

| = D

� SKc() |SKc| = M � (K � 1)D � 0

nR⌃  Mn log ⇢ + h(Xn
Ka1

|Ȳ n
1 ) + . . . + h(Xn

KaK�2
|Ȳ n

1 ) + h(Xn
Kc|Ȳ n

1 ) +

h(Xn
2a2

, . . . , Xn
2aK�1

, Xn
2c|Ȳ n

1 ) + h(Xn
3a1

, Xn
3a3

, . . . , Xn
3aK�1

, Xn
3c|Ȳ n

1 ) + . . . +

h(Xn
(K�1)a1

, . . . , Xn
(K�1)aK�3

, Xn
(K�1)aK�1

, Xn
(K�1)c|Ȳ n

1 ) + n o(log ⇢) + o(n) (86)

 Mn log ⇢ + h(Xn
Ka1

) + . . . + h(Xn
KaK�2

) + h(Xn
Kc) + h(Xn

2a2
, . . . , Xn

2aK�1
, Xn

2c|Xn
2a1

) +

h(Xn
3a1

, Xn
3a3

, . . . , Xn
3aK�1

, Xn
3c|Xn

3a2
) + . . . +

h(Xn
(K�1)a1

, . . . , Xn
(K�1)aK�3

, Xn
(K�1)aK�1

, Xn
(K�1)c|Xn

(K�1)aK�2
) + n o(log ⇢) + o(n) (87)

= Mn log ⇢ + h(Xn
Ka1

) + . . . + h(Xn
KaK�2

) + h(Xn
Kc) + nR2 � h(Xn

2a1
) + nR3 � h(Xn

3a2
) +

. . . + nRK�1 � h(Xn
(K�1)aK�2

) + n o(log ⇢) + o(n) (88)

 Mn log ⇢ + h(Xn
Ka1

) + . . . + h(Xn
KaK�2

) + (M � (K � 1)D)n log ⇢ + nR2 � h(Xn
2a1

) +

nR3 � h(Xn
3a2

) + . . . + nRK�1 � h(Xn
(K�1)aK�2

) + n o(log ⇢) + o(n) (89)

where (85) follows from Fano’s inequality and Lemma 3 in [7]. (86) follows from applying
chain rule and dropping some condition terms. (87) follows from the fact that dropping condition
terms cannot decrease the di↵erential entropy. Thus, we only keep Sn

1a1
, Sn

1a2
, . . . Sn

1aK�1
as the

condition terms which are Xn
2a1

, Xn
3a2

, . . . , Xn
KaK�1

respectively. (88) is obtained because from the

observations of (Xn
ka1

, Xn
ka2

, Xn
ka3

, Xn
kc) we can decode Wk, 8k 2 {1, . . . , K} subject to the noise
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Figure 2.14: Outer bound: K-user rank deficient interference channel, (K − 1)D < M

Step 3: Then, we choose other columns of Tk such that D antennas of Transmitter k are heard

only by receiver antennas (k − i)ai,∀i = {1, . . . , K − 1}. This operation is guaranteed since

rank(Hk(k+i)) = D, i 6= 0, and we can choose vectors from the corresponding common nullspaces.

For Transmitter k, these are denoted as Xka1 , · · · , XkaK−1
. Note that invertibility of these linear

transformations is guaranteed. Resulting network connectivity after the change of basis operations

is shown in Figure 2.14.

Outer bound:

Genie information given to Receiver 1 should include (K − 1)(M −D) dimensions -

Xn
2a2
, .., Xn

2aK−1
, Xn

2c, X
n
3a1
, Xn

3a3
, .., Xn

3aK−1
, Xn

3c, X
n
Ka1

, .., Xn
KaK−2

, Xn
Kc which are not heard by
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Receiver 1. Receiver 1 has M equations with (K − 1)D unknowns. Since (K − 1)D ≤ M ,

by processing signal using (K − 1)D antennas, we can resolve (K − 1)D unknowns.

Hence a genie provides G1 = {Xn
2a2
, .., Xn

2aK−1
, Xn

2c, X
n
3a1
, Xn

3a3
, .., Xn

3aK−1
, Xn

3c, X
n
Ka1

, .., Xn
KaK−2

, Xn
Kc}

to Receiver 1. Receiver 1 processes signal only from the first (K − 1)D antennas. Then the total

number of dimensions available to Receiver 1 (including those provided by the genie) is equal to:

(K − 1)D + |G1| = (K − 1)D + (K − 1)(M −D) = (K − 1)M (2.85)

With these (K−1)M dimensions, Receiver 1 will be able to resolve allK−1 interfering signals and

can decode allK messages. For example, G1 = {Xn
2a2
, Xn

2a3
, Xn

2c, X
n
3a1
, Xn

3a3
, Xn

3c, X
n
4a1
, Xn

4a2
, Xn

4c}

for K = 4. Therefore, we have:

nRΣ ≤ Mn log ρ+ h(G1|Ȳ n
1 ) + n o(log ρ) + o(n) (2.86)

≤ Mn log ρ+ h(Xn
Ka1
|Ȳ n

1 ) + . . .+ h(Xn
KaK−2

|Ȳ n
1 ) + h(Xn

Kc|Ȳ n
1 ) +

h(Xn
2a2
, . . . , Xn

2aK−1
, Xn

2c|Ȳ n
1 ) + h(Xn

3a1
, Xn

3a3
, . . . , Xn

3aK−1
, Xn

3c|Ȳ n
1 ) + . . .+

h(Xn
(K−1)a1

, . . . , Xn
(K−1)aK−3

, Xn
(K−1)aK−1

, Xn
(K−1)c|Ȳ n

1 ) + n o(log ρ) + o(n) (2.87)

≤ Mn log ρ+ h(Xn
Ka1

) + . . .+ h(Xn
KaK−2

) + h(Xn
Kc) +

h(Xn
2a2
, . . . , Xn

2aK−1
, Xn

2c|Xn
2a1

) + h(Xn
3a1
, Xn

3a3
, . . . , Xn

3aK−1
, Xn

3c|Xn
3a2

) + . . .+

h(Xn
(K−1)a1

, . . . , Xn
(K−1)aK−3

, Xn
(K−1)aK−1

, Xn
(K−1)c|Xn

(K−1)aK−2
) + n o(log ρ) + o(n)(2.88)

= Mn log ρ+ h(Xn
Ka1

) + . . .+ h(Xn
KaK−2

) + h(Xn
Kc) + nR2 − h(Xn

2a1
) +

nR3 − h(Xn
3a2

) + . . .+ nRK−1 − h(Xn
(K−1)aK−2

) + n o(log ρ) + o(n) (2.89)

≤ Mn log ρ+ h(Xn
Ka1

) + . . .+ h(Xn
KaK−2

) + (M − (K − 1)D)n log ρ+ nR2 − h(Xn
2a1

) +

nR3 − h(Xn
3a2

) + . . .+ nRK−1 − h(Xn
(K−1)aK−2

) + n o(log ρ) + o(n) (2.90)
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where (2.86) follows from Fano’s inequality and Lemma 1. (2.87) follows from applying chain

rule and dropping some condition terms. (2.88) follows from the fact that dropping condition

terms cannot decrease the differential entropy. Thus, we only keep Sn1a1
, Sn1a2

, . . . Sn1aK−1
as the

condition terms which are Xn
2a1
, Xn

3a2
, . . . , Xn

KaK−1
respectively. (2.89) is obtained because from

the observations of (Xn
ka1
, Xn

ka2
, . . . , Xn

kaK−1
, Xn

kc) we can decode Wk,∀k ∈ {1, . . . , K} subject to

the noise distortion, (2.90) follows since entropy ofXn
Kc is constrained byM−(K−1)D antennas.

By advancing user indices considering all receivers, we have:

KnR ≤ (2M − (K − 1)D)n log ρ+ (K − 2)nR + n o(log ρ) + o(n). (2.91)

which implies that

d ≤M − (K − 1)D

2
(2.92)

Thus, DoF per user is outer bounded as d ≤M − (K−1)D
2

when D ≤ M
K−1

.

K-user channel with (K− 2)D ≤M < (K− 1)D:

Change of Basis:

Step 1: For Receiver k, we design aM×M square matrix Rk. First, we determine (K−2)D rows

at Receiver k. The linear transformation is designed such that first D antennas of Receiver k hears

only Transmitter k + 1, next D antennas of Receiver k hears only Transmitter k + 2, and so on till

D antennas of Receiver k hears only Transmitter k + K − 2. This operation is guaranteed since

rank(Hk(k+i)) = D, i 6= 0, and vectors can be chosen from corresponding common nullspaces. For

Receiver k, these are denoted as Ska1 , · · · , SkaK−2
. Remaining M − (K − 2)D rows are chosen
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so that they hear Transmitter k +K − 1 only, denoted as Skc, which is possible since the common

nullspace of K − 2 cross channels has M − (K − 2)D dimensions.

Step 2: Within the M -dimensional signal space at Transmitter k, there is M − (K − 2)D dimen-

sional subspace orthogonal to (K − 2)D receiver antennas (k − i)ai,∀i = {1, . . . , K − 2} These

K − 2 subspaces have M − (K − 2)D dimensional intersection as seen by Transmitter k. We will

choose M − (K − 2)D columns of a M ×M matrix Tk at Transmitter k from this intersection.

These are denoted as Xkc1 at Transmitter k.

|X1a1 | = D X1a1 �
� �

|X1aK�2
| = D X1aK�2

�
|X1c1 | = M � (K � 2)D X1c1 �

|X1c2
| = (K � 1)D � M � 0 X1c2

� S1a1(X2a1) |S1a1 | = D

� �
� S1aK�2(X(K�1)aK�2

) |S1aK�2 | = D

� S1c(XKc1 , XKc2) |S1c| = M � (K � 2)D

|X2a1 | = D X2a1 �
� �

|X2aK�2 | = D X2aK�2 �
|X2c1 | = M � (K � 2)D X2c1 �

|X2c2 | = (K � 1)D � M � 0 X2c2

� S2a1(X3a1) |S2a1 | = D

� �
� S2aK�2(XKaK�2

) |S2aK�2 | = D

� S2c(X1c1 , X1c2) |S2c| = M � (K � 2)D

|X3a1 | = D X3a1 �
� �

|X3aK�2 | = D X3aK�2 �
|X3c1 | = M � (K � 2)D X3c1 �

|X3c2 | = (K � 1)D � M � 0 X3c2

� S3a1(X4a1) |S3a1 | = D

� �
� S3aK�2(X1aK�2) |S3aK�2 | = D

� S3c(X2c1 , X2c2) |S3c| = M � (K � 2)D

� �
� �

|XKa1 | = D XKa1 �
� �

|XKaK�2
| = D XKaK�2

�
|XKc1 | = M � (K � 2)D XKc1 �

|XKc2 | = (K � 1)D � M � 0 XKc2

� SKa1(X1a1) |SKa1 | = D

� �
� SKaK�2

(X(K�2)aK�2
) |SKaK�2

| = D

� SKc(X(K�1)c1 , X(K�1)c2) |SKc| = M � (K � 2)D

With these (K � 1)M dimensions, receiver 1 will be able to resolve all K � 1 interfering signals
and can decode all K messages. Therefore, we have:

nR  I(Y1, G; W1) + n o(log ⇢) + o(n) (92)

 M � h(Y1|W1, XKc2) + n o(log ⇢) + o(n) (93)

 M � h(X2a1 , . . . , X(K�1)aK�2
, XKc1 |XKc2) + n o(log ⇢) + o(n) (94)

 M � h(X2a1) � . . . � h(X(K�1)aK�2
) � h(XKc1 |XKc2) + n o(log ⇢) + o(n) (95)

where (92) follows from Fano’s inequality, (93) follows by expressing mutual information as
entropies, (94) and (95) follows from the fact that dropping condition terms cannot decrease the
di↵erential entropy. Advancing user indices we have:

nR  M � h(Xa1) � . . . � h(XaK�2) � h(Xc1) + n o(log ⇢) + o(n) (96)

 M � nR + n o(log ⇢) + o(n) (97)

d  M

2
(98)

6.3.3 K user channel with (K � 2)D > M:

Here, DoF per user are outer bounded by M
2 since M

2 is the outer bound per user for similar channel
with only K � 1 users. This is because adding one user to the K � 1 user channel does not violate
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Figure 2.15: Outer bound: K-user rank deficient interference channel, (K−2)D ≤M < (K−1)D

Step 3: Other columns of Tk are chosen such that D antennas of Transmitter k are heard only by

receiver antennas (k− i)ai,∀i = {1, . . . , K−2}. This operation is guaranteed since rank(Hk(k+i))
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= D, i 6= 0, and we can choose vectors from corresponding common nullspaces. For Transmitter

k, these are denoted as Xka1 , · · · , XkaK−2
. Note that invertibility of these linear transformations is

guaranteed. Resulting network connectivity after the change of basis operations is shown in Figure

2.15.

In this setting, note that Xkc2 at all transmitters k do not represent actual antennas, but are just

linear combinations of Xka1 , . . . , XkaK−2
. While Xka1 , . . . , XkaK−2

dimensions are each seen by

one of the K − 2 unintended receivers, Xkc1 , Xkc2 with D dimensions, will be seen only by (K −

1)th unintended receiver.

Outer bound:

Genie information given to Receiver 1 should include signals not seen by Receiver 1, i.e., (K −

1)(M − D) dimensions. This is because Receiver 1 sees only D dimensions each from K − 1

unintended transmitters, nullspace of each has M −D dimensions. Additionally, (K − 1)D −M

dimensions corresponding toKc2 is also provided as part of Genie information to Receiver 1. Then

the total number of dimensions available to Receiver 1 (including those provided by the genie) is:

M + |G1| = M + ((K − 1)(M −D)) + ((K − 1)D −M) = (K − 1)M (2.93)

With these (K − 1)M dimensions, Receiver 1 will be able to resolve all K − 1 interfering signals

and can decode all K messages. Therefore, we have:

nR ≤ I(Y1, G;W1) + n o(log ρ) + o(n) (2.94)

≤M − h(Y1|W1, XKc2) + n o(log ρ) + o(n) (2.95)

≤M − h(X2a1 , . . . , X(K−1)aK−2
, XKc1|XKc2) + n o(log ρ) + o(n) (2.96)

≤M − h(X2a1)− . . .− h(X(K−1)aK−2
)− h(XKc1|XKc2) + n o(log ρ) + o(n) (2.97)
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where (2.94) follows from Fano’s inequality, (2.95) follows by expressing mutual information as

entropies, (2.96) and (2.97) follows from the fact that dropping condition terms cannot decrease

the differential entropy. Advancing user indices, we have:

nR ≤M − h(Xa1)− . . .− h(XaK−2
)− h(Xc1) + n o(log ρ) + o(n) (2.98)

≤M − nR + n o(log ρ) + o(n) (2.99)

d ≤ M

2
(2.100)

Thus, DoF per user is outer bounded as d ≤ M
2

when (K − 2)D ≤M < (K − 1)D.

K-user channel with (K− 2)D > M:

Here, DoF per user are outer bounded by M
2

since M
2

is the outer bound per user for similar channel

with only K − 1 users. This is because adding one user to the K − 1 user channel does not violate

the converse argument. This is a recursive proof, in the sense that 4-user channel uses the known

outer bound of M
2

for 3-user channel for the region 2D > M . Similarly, 5-user channel uses the

known outer bound of M
2

for 4-user channel for the region 3D > M and so on.

For example, let us consider the 4-user rank deficient channel in which sum of 3 cross channel

ranks 3D > 3M
2

. Within this channel, 3-user interference channel corresponding to first 3 users

have sum of cross channel ranks 2D > M , a region for which outer bound per user is known to be

M
2

. Adding the fourth user to this 3-user network does not violate the converse argument. Hence

M
2

is an outer bound for the 4-user rank deficient channel. Similar argument can be extended to K

user channels to show that M
2

is the DoF outer bound per user.

DoF
K
≤ min

(
D0,M −

min(M, (K − 1)D)

2

)
(2.101)
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Combining DoF outer bound results of all 3 regions along with min-cut bound ofD0 (direct channel

rank), we get above outer bound on DoF per user for K-user rank deficient interference channel,

as stated in Theorem 2.3.

2.7 Summary

Spatial dependencies often arise in MIMO interference networks, that impact their signaling di-

mensions. In this work, we studied spatial dependencies that are manifested as rank deficiencies

of the MIMO channel matrices. 2-user and 3-user interference channels were studied involving

non-asymptotic schemes for both constant and time-varying channels. While 2-user channel could

only involve zero forcing, 3-user channel involves both zero-forcing and interference alignment.

For 3-user channel with rank deficiencies, although there is more opportunity for zero-forcing and

less opportunity for interference alignment, the increased opportunity for zero-forcing more than

compensates for the lost opportunity in interference alignment.

More challenges are involved for the K-user interference channels with rank deficiencies. Both

asymptotic interference alignment (CJ) and ergodic alignment schemes were studied in the context

of K-user rank deficient interference channels with time-varying channel coefficients (K > 3).

For K-user interference channel with individual channels of size M × M being rank deficient,

optimal DoF per user was characterized as min
(
D0,M − min(M,(K−1)D)

2

)
where D0 is the rank

of direct channels, and (K − 1)D is the sum of ranks of cross channels at each receiver. When

using CJ scheme, one of the remarkable aspects is that rank deficiencies in cross channels lead

to columns of the precoding matrix being linearly dependent, however, by discarding those lin-

early dependent columns, DoF per user can be made arbitrarily close to 1
2
. We expect that the

insights presented in this work would serve as stepping stones to translating DoF result to K-user

rank deficient interference channels with constant channel coefficients. It could be noted that the

achievable scheme involves joint processing of signals (one-sided decomposition) at the receivers,
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for both ergodic and asymptotic interference alignment schemes. This is due to presence of spatial

dependencies involving certain direct channels and cross channels in the fully decomposed net-

work, because of rank deficient direct channels in the original network. While joint processing is

sufficient to achieve optimal DoF using either ergodic or CJ scheme, whether it is also necessary is

an intriguing open problem. Problem remains intriguing even if we consider single user (K = 1)

MIMO channel with rank deficient channel matrix of size M ×M with rank D.
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Chapter 3

Two-hop Rank-deficient Interference

Channels

3.1 Motivations

In this section, we explore a generalization of the 2 × 2 × 2 interference network to the multiple-

input-multiple-output (MIMO) setting with different channel ranks in the two hops. The goal is to

shed light on the information theoretic implications of the dimensionality constraints of the sub-

networks comprising a multihop multiflow network. Parameterizing the problem in terms of the

ranks of each of the constituent channels, allows us to go beyond the basic min-cut arguments to

identify an intriguing “rank matching” property, somewhat reminiscent of “impedance matching”

in circuit theory. It is well known that the maximum power transfer in a circuit is achieved not

for the maximum or minimum load impedance but for the load impedance that matches the source

impedance. Similarly, the maximum DoF in the elementary 2× 2× 2 MIMO interference network

is achieved not for the maximum or minimum ranks of the destination hop, but when the ranks of
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the destination hop match the ranks of the source hop. In fact, for mismatched settings of interest,

the loss in DoF turns out to be precisely equal to the rank-mismatch between the two hops.

M M M

M M M

W1 !

W2 ! ! Ŵ2

! Ŵ1
D1 D2

D1

D1

D1

D2

D2

D2

Figure 3.1: 2× 2× 2 MIMO interference channel with M antennas at each node where all channels in the
first hop have rank D1 and all channels in the second hop have rank D2.

As an example, consider the 2× 2× 2 MIMO interference channel illustrated in Fig. 3.1 where all

nodes are equipped with M antennas, all channels in the first hop have rank D1, and all channels

in the second hop have rank D2. Aside from the rank-constraints, the channels can take arbitrary

values. The min-cut max-flow bound for this network simply states that the sum-DoF, dΣ ≤

min(4D1, 4D2, 2M). However, as we show in this work, the rank-constraints enforce the following

rank-mismatch bound on the sum-DoF.

dΣ ≤ 2M −∆D (3.1)

where ∆D = |D1−D2| is the rank-mismatch term. Combined with the min-cut max-flow bounds,

this produces the tightest possible bound for the given rank-constraints,

dΣ ≤ min(4D1, 4D2, 2M −∆D) (3.2)

This is the tightest bound possible in the sense that 1) it holds for all channels that satisfy the given

rank-constraints, and 2) there exist channels that satisfy the given rank-constraints for which the

bound is tight. In fact, the bound is tight for almost all channels that satisfy the rank-constraints.

Remarkably, except for severely rank-deficient scenarios when the min-cut max-flow bounds are

active, for moderately rank-deficient settings that are of main interest, it is the rank-mismatch

71



bound that is active. Also note that the best possible outcome, dΣ = 2M , sometimes referred to as

“everyone gets the entire cake” [22, 1, 48], is possible only if ∆D = 0, i.e., ranks in the two hops

are matched.

The rank matching phenomenon persists even in further generalized settings with arbitrary antenna

configurations and/or redundant dimensions, i.e., when certain signal dimensions at a node may be

inaccessible to/from any other node.

3.2 System Model

The 2×2×2 MIMO interference channel is comprised of 3 layers and there are two nodes in each

layer. Layer 1 contains the two source nodes S1,S2, layer 2 contains the two relay nodes R1,R2,

and layer 3 contains the two destination nodes, D1,D2. All nodes are equipped with M antennas.

At time index t ∈ N, the various inputs and outputs are related as follows.

Yl+1
j (t) =

2∑

i=1

Hl
ji(t)X

l
i(t) + Zl+1

j (t), j ∈ {1, 2}, l ∈ {1, 2} (3.3)

where Yl+1
j (t) is the M × 1 received signal vector observed at node j in layer l + 1, Xl

i(t) is

the M × 1 transmitted signal vector sent by node i in layer l and Zl+1
j (t) is the M × 1 vector

of independent and identically distributed (i.i.d.) zero mean unit variance circularly symmetric

complex Gaussian noise terms, respectively. Hl
ji(t) is the M × M channel matrix from node i

in layer l to node j in layer l + 1. In other words, Hl
ji(t) is the channel matrix between node i

and node j over the l-th hop. All symbols are complex and noise processes are i.i.d over time. Si
has an independent message Wi for Di, i ∈ {1, 2}. Each transmitting node is subject to average

power constraint P . The encoding functions at the relays are assumed to be known everywhere.

The time index, t, will occasionally be suppressed for concise notation, when no ambiguity would
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be caused. The rank-constraints are stated as follows, ∀t ∈ N.

rank(H1
ji(t)) = D1 rank(H2

ji(t)) = D2 (3.4)

The channel coefficients can take arbitrary values and are also allowed to vary in time as long

as the rank-constraints are satisfied and the non-zero singular values of each channel matrix are

bounded away from zero and infinity. Unless stated explicitly, we do not require that the channels

be in general position. Perfect channel knowledge is assumed everywhere. Finally, the definitions

of codebooks, achievable rates, capacity, and degrees of freedom are all used in the standard sense.

3.3 Results

In this section we present our two main results — the rank mismatch outer bound, and a proof that

(along with the min-cut max-flow bound) it is tight, in this symmetric setting.

3.3.1 Rank-Mismatch Outer Bound

THEOREM 3.1. For the rank-constrained 2×2×2 MIMO interference channel defined in Section

3.2, the sum-DoF, dΣ, satisfy the following outer bound for all i, j ∈ {1, 2}.

dΣ ≤ min(4D1, 4D2, 2M − |D1 −D2|) (3.5)

Remark: Note that the bounds have a dual character, i.e., the same bounds hold for the reciprocal

network obtained by reversing the direction of communication.

Theorem 3.1 has profound implications in terms of the rank-matching phenomenon. However, we

note that the theorem is obtained based only on arguments that are fairly standard for DoF bounds,
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similar to, e.g., [39]. As such, this is a remarkable case of simple arguments leading to surprising

insights. The proof of Theorem 3.1 is presented in Section 3.4.1.

3.3.2 Tightness of Rank-Mismatch Outer Bounds

Having presented the rank-mismatch outer bounds in Theorem 3.1, we next consider the natural

question ‘How tight are these bounds?’. This seems to be a difficult question to answer in full

generality due to the abundance of parameters. Nevertheless, for the symmetric setting illustrated

in Fig. 3.1, where all channels in the first hop have rank D1 and all channels in the second hop

have rank D2, and all nodes have M antennas, we are able to prove that (combined with min-cut

max-flow bounds) the rank-mismatch bounds are the best possible bounds for the given rank-

constraints. By best possible we mean that 1) the bounds are satisfied by all channels that satisfy

the rank-constraints, and 2) there exist channels that satisfy the given rank-constraints for which

the bounds are tight. Not only that, but the bounds are tight for almost all channels that satisfy the

rank-constraints, i.e., they are tight almost surely for generic channels, where by generic channels

we mean that the channels are drawn according to a continuous distribution over the algebraic

variety defined by the rank-constraints. For instance, one may assume that each M ×M channel

over the l-th hop is a product of an M ×Dl channel matrix and a Dl ×M channel matrix, each of

which is generated randomly and independently of the others across space and time, according to

a continuous distribution. We state this result as the following theorem.

THEOREM 3.2. For the rank-constrained symmetric 2 × 2 × 2 MIMO interference channel il-

lustrated in Fig. 3.1 the sum-DoF outer bound dΣ ≤ min(4D1, 4D2, 2M − |D1 − D2|) is the

best possible for the given rank-constraints. For generic time-varying channels, the bound is tight

almost surely.

The proof is presented in Section 3.4.2.
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Note that the rank-mismatch bounds may no longer be tight if additional structure is imposed, e.g.,

through additional rank-constraints. However, subject only to the rank-constraints stated in (3.4),

these bounds appear to be the best possible. In fact, for all the cases that we have considered so

far, we have found these bounds to be the best possible when combined with min-cut max-flow

bounds.

3.4 Proofs

3.4.1 Theorem 3.1 : Proof of Outer Bound

Proof: We begin with a change of basis operation (an invertible linear transformation that

does not affect the DoF) along the lines of [55]. The subsequent genie-aided dimension counting

arguments used for information theoretic outer bounds are consistent with the frameworks devel-

oped in [55].

Change of basis operation

The outcome of the change of basis operation is illustrated in Fig. 3.2 for the case where Dl >
M
2

.

The change of basis for the case where Dl ≤ M
2

is trivial because there is no overlap between

the signal spaces accessed by channels from different nodes, so a complete orthogonalization of

all 4 channels is possible. Here we describe the change of basis operation for the first hop, where

D1 >
M
2

. The change of basis for the second hop is very similar, with D2 replacing D1, relays

replacing transmitters, and destinations replacing relays.

Step 1: At each relay, the received signal is rotated such that the first M −D1 antennas of relay k

(denoted by ka) do not hear Transmitter j, j 6= k and the last M −D1 antennas of relay k (denoted
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by kc) do not hear Transmitter k. This operation is guaranteed because of the rank-deficiency

assumptions. The remaining 2D1 −M antennas are denoted as kb.

Step 2: At transmitter k, k ∈ {1, 2}, there is a D1-dimensional transmit subspace orthogonal to

M − D1 relay antennas ka and another D1-dimensional subspace orthogonal to M − D1 relay

antennas jc, j 6= k. These two D1-dimensional subspaces have 2D1−M dimensional intersection

within the M -dimensional space seen from the transmitter. The change of basis at transmitter k

maps these 2D1−M dimensions to the 2D1−M antennas denoted as kb. Then, the first M −D1

antennas of transmitter k are mapped to the space that is not heard by Relay j, j 6= k and the last

M −D1 antennas of Transmitter k are mapped to the space not heard by Relay k. This operation

is guaranteed again because of the rank deficiency assumptions.

Outer Bound

Region 1: D1 >
M
2
,D2 >

M
2

(1.1) When D1 ≤ D2: Let a genie provide G1 = {Xn
2b, X

n
2c, R

n
2a} to Receiver 1, which has M

antennas. The total number of dimensions available to Receiver 1 (including genie) is:

M + |G1| = M + |Xn
2b|+ |Xn

2c|+ |Rn
2a| = 2M − (D2 −D1) (3.6)

Receiver 1 can decode its desired message W1 and can obtain Xn
1a, X

n
1b, X

n
1c. Using genie informa-

tion Xn
2b, X

n
2c, Receiver 1 can reconstruct the received signal at Relay 1 and obtain Rn

1a, R
n
1b, R

n
1c.

This enables receiver 1 to removeRn
1a, R

n
1b, R

n
1c from the received signal and decodeRn

2b, R
n
2c. With

additional genie information Rn
2a, Receiver 1 would be able to decode Xn

2a and as a result, decodes

message W2 (subject to noise distortion) sent from Transmitter 2. Hence, the sum DoF is bounded

as dΣ ≤M + |G1| = 2M − (D2 −D1).
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M −D1 X1a ◦
2D1 −M X1b ◦
M −D1 X1c ◦

◦ S1a(X1a) M −D1
◦ S1b(X1a, X1b, X2b, X2c) 2D1 −M
◦ S1c(X2c) M −D1

M −D2 R1a ◦
2D2 −M R1b ◦
M −D2 R1c ◦

◦ Y1a(R1a) M −D2
◦ Y1b(R1a, R1b, R2b, R2c) 2D2 −M
◦ Y1c(R2c) M −D2

M −D1 X2a ◦
2D1 −M X2b ◦
M −D1 X2c ◦

◦ S2a(X2a) M −D1
◦ S2b(X2a, X2b, X1b, X1c) 2D1 −M
◦ S2c(X1c) M −D1

M −D2 R2a ◦
2D2 −M R2b ◦
M −D2 R2c ◦

◦ Y2a(R2a) M −D2
◦ Y2b(R2a, R2b, R1b, R1c) 2D2 −M
◦ Y2c(R1c) M −D2

Figure 3.2: Change of Basis for Region 1. D1 >
M
2
, D2 >

M
2

(1.2) When D1 > D2: Let a genie provide G1 = {Xn
2c, R

n
2a, R

n
2b} to Receiver 1, which has M

antennas. The total number of dimensions at Receiver 1 (including genie) is:

M + |G1| = M + |Xn
2c|+ |Rn

2a|+ |Rn
2b| = 2M − (D1 −D2) (3.7)

Receiver 1 can decode its desired message W1 and can obtain Xn
1a, X

n
1b, X

n
1c. Receiver 1 can de-

code Rn
2c using M −D2 antennas. Using genie information Rn

2a, R
n
2b and decoded Rn

2c, Receiver 1

can reconstruct the received signal at Relay 2 and obtain Xn
2a, X

n
2b. With additional genie informa-

tion Xn
2c, Receiver 1 would be able to decode message W2 (subject to noise distortion) sent from

Transmitter 2. Hence, the sum DoF is bounded as dΣ ≤M + |G1| = 2M − (D1 −D2).

Combining bounds of (1.1) and (1.2), we get the bound:

dΣ ≤ 2M − |D1 −D2| (3.8)

Region 2: D1 ≤ M
2
,D2 >

M
2

Let a genie provide G1 = {Xn
2c, R

n
2a} to Receiver 1, which has M antennas. The total number of

dimensions at Receiver 1 (including genie) is:

M + |G1| = M + |Xn
2c|+ |Rn

2a| = 2M − (D2 −D1) (3.9)
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D1 X1a ◦
M − 2D1 X1b ◦

D1 X1c ◦

◦ S1a(X1a) D1

◦ S1b() M − 2D1

◦ S1c(X2c) D1

M −D2 R1a ◦
2D2 −M R1b ◦
M −D2 R1c ◦

◦ Y1a(R1a) M −D2

◦ Y1b(R1a, R1b, R2b, R2c) 2D2 −M
◦ Y1c(R2c) M −D2

D1 X2a ◦
M − 2D1 X2b ◦

D1 X2c ◦

◦ S2a(X2a) D1

◦ S2b() M − 2D1

◦ S2c(X1c) D1

M −D2 R2a ◦
2D2 −M R2b ◦
M −D2 R2c ◦

◦ Y2a(R2a) M −D2

◦ Y2b(R2a, R2b, R1b, R1c) 2D2 −M
◦ Y2c(R1c) M −D2

Figure 3.3: Change of Basis for Region 2. D1 ≤ M
2
, D2 >

M
2

Receiver 1 can decode its desired message W1 and can obtain Xn
1a, X

n
1b, X

n
1c. Using genie informa-

tion Xn
2c, Receiver 1 can reconstruct the received signal at Relay 1 and obtain Rn

1a, R
n
1b, R

n
1c. This

enables receiver 1 to remove Rn
1a, R

n
1b, R

n
1c from the received signal and decode Rn

2b, R
n
2c. With

additional genie information Rn
2a, Receiver 1 would be able to decode Xn

2a and as a result, decodes

message W2 (subject to noise distortion) sent from Transmitter 2. Hence, the sum DoF is bounded

as dΣ ≤M + |G1| = 2M − (D2 −D1).

When M > D1 + D2, outer bound on the sum DoF is the same as the cutset bound, dΣ ≤ 4D1.

Hence, outer bound on the sum DoF for Region 2, is:

dΣ ≤ min{4D1, 2M − (D2 −D1)} (3.10)

Region 3: D1 >
M
2
,D2 ≤ M

2

Let a genie provide G1 = {Xn
2c, R

n
2a, R

n
2b} to Receiver 1, which uses only 2D2 antennas. The total

number of dimensions (including genie):

2D2 + |G1| = 2D2 + |Xn
2c|+ |Rn

2a|+ |Rn
2b| = 2M − (D1 −D2) (3.11)

Receiver 1 can decode its desired message W1 and can obtain Xn
1a, X

n
1b, X

n
1c. Receiver 1 can

decode Rn
2c using D2 antennas. Using genie information Rn

2a, R
n
2b and known Rn

2c, Receiver 1

can decode the received signal at Relay 2 and obtain Xn
2a, X

n
2b. With additional genie information
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M −D1 X1a ◦
2D1 −M X1b ◦
M −D1 X1c ◦

◦ S1a(X1a) M −D1

◦ S1b(X1a, X1b, X2b, X2c) 2D1 −M
◦ S1c(X2c) M −D1

D2 R1a ◦
M − 2D2 R1b ◦

D2 R1c ◦

◦ Y1a(R1a) D2

◦ Y1b() M − 2D2

◦ Y1c(R2c) D2

M −D1 X2a ◦
2D1 −M X2b ◦
M −D1 X2c ◦

◦ S2a(X2a) M −D1

◦ S2b(X2a, X2b, X1b, X1c) 2D1 −M
◦ S2c(X1c) M −D1

D2 R2a ◦
M − 2D2 R2b ◦

D2 R2c ◦

◦ Y2a(R2a) D2

◦ Y2b() M − 2D2

◦ Y2c(R1c) D2

Figure 3.4: Change of Basis for Region 3. D1 >
M
2
, D2 ≤ M

2

Xn
2c, Receiver 1 can decode the message W2 (subject to noise distortion) sent from Transmitter 2.

Hence, the sum DoF is bounded as dΣ ≤M + |G1| = 2M − (D1 −D2).

When M > D1 + D2, outer bound on the sum DoF is the same as the cutset bound, dΣ ≤ 4D2.

Hence, outer bound on the sum DoF for Region 3, is :

dΣ ≤ min{4D2, 2M − (D1 −D2)} (3.12)

Region 4: D1 ≤ M
2
,D2 ≤ M

2

In this region, DoF outer bound is the same as the min-cut, dΣ ≤ min(4D1, 4D2).

3.4.2 Theorem 3.2 : Proof of Achievability

First, notice that the outer bound min(4D1, 4D2, 2M −|D1−D2|) is valid. The first two terms are

min-cut max- flow bounds and the last term follows from Theorem 3.1.

As we will use linear schemes, which satisfy duality, we may assume D1 ≤ D2 without any loss

of generality. In this case, the outer bound simplifies to min(4D1, 2M − (D2 −D1)).

For different configurations of M,D1, D2, both the outer bound and the channel constructed may

vary. As such, based on relationship between M,D1 and D2, we divide the total parameter space

into 4 disjoint regimes (see Fig. 3.5). We will first show for each regime, that there exist channels
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that satisfy all rank-constraints, for which the outer bound is tight. We will conclude with the

generalization that the bound is tight almost surely for generic channels.

2D1
3
2
D1 +

1
2
D2 D1 +D2 M !̀

Regime 1Regime 2Regime 3Regime 4

Outer bound
is 4D1

Outer bound
is 2M ` (D2 `D1)

Figure 3.5: 2-hop interference channel : 4 Regimes
The real axis is partitioned into 4 intervals,

(−∞, 2D1), (2D1,
3
2D1 +

1
2D2), (

3
2D1 +

1
2D2, D1 +D2), (D1 +D2,+∞). Depending on which interval

M falls into, we have 4 regimes. For Regimes 1 and 2, the outer bound is 4D1 and for Regimes 3 and 4, the
outer bound is 2M − (D2 −D1). Note that by the definition of rank, M ≥ D2 ≥ D1, so we only consider

those parameter regimes where this condition is true.

• Regime 1 (D1 + D2 ≤ M ): The constructed channel appears in Fig. 3.6. The connectivity

is simple. The sources are connected to the relays with 4 orthogonal links. The relays are

connected to the destinations with 4 orthogonal links and possibly a fully connected 2 × 2

subnetwork. For the channels that are shown as connected, one may choose the coefficients

to be generic, that is, each non-zero channel coefficient is drawn independently from some

continuous distribution bounded away from zero and infinity to avoid degenerate scenarios.

For example, the first D1 antennas of S1 are connected to the first D1 antennas of R1 with

a generic D1 × D1 (specifically, rank D1) MIMO channel. We keep this assumption that

every connected channel coefficient is generic for other regimes as well. Note that all rank

conditions are satisfied. Over such a channel, it is easy to achieve the outer bound, 4D1, as

min(D2,M −D2) ≥ D1 such that we can always route the messages over orthogonal links,

by standard point to point MIMO capacity achieving schemes.

• Regime 2 (3
2
D1 + 1

2
D2 ≤ M < D1 + D2): The channel we construct is shown in Fig. 3.7.

The connectivity is same as Fig. 3.6. The outer bound is still 4D1. In order to achieve

that, pure routing will not suffice as each orthogonal link on the second hop only has DoF
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First hop Second hop

M ` 2D1

D1

D1

M ` 2D1

D1

D1

max(0; 2D
2

`M)

min(D2; M `D2)

min(D2; M `D2)

max(0; 2D
2

`M)

min(D2; M `D2)

min(D2; M `D2)

Figure 3.6: Constructed channel for Regime 1
For clarity, the relay nodes are shown twice, one for the channels (receive side) of the first hop,

the other for the channels (transmit side) of the second hop.

M −D2, which can not support D1 DoF, as in this regime, D1 > M −D2. As a result, we

have to use the fully connected 2 × 2 subnetwork on the second hop. The new idea here is

viewing that as a 2 × 2 X network with 2D2 −M antennas at each node, whose sum-DoF

value is given by 4
3
(2D2 −M) [28]. Then as long as 4[D1 − (M −D2)], the total DoF that

we fail to route to desired destinations, is smaller than 4
3
(2D2 −M), we are able to utilize

the interference alignment scheme over X network to send the remaining 4[D1− (M −D2)]

DoF. We have

4[D1 − (M −D2)] ≤ 4

3
(2D2 −M)⇔ 2M ≥ 3D1 +D2 (3.13)

which is satisfied in Regime 2. Therefore the scheme works.

• Regime 3 (2D1 ≤ M < 3
2
D1 + 1

2
D2): The channel is same as that used in Regime 2 (see

Fig. 3.7). Here the outer bound is 2M − (D2−D1) < 4D1. Note that in Regime 2, we have

already saturated the fully connected 2× 2 subnetwork by employing it as an X network to

the most. It may seem impossible to get something more. But thanks to the outer bound,

we are not achieving 4D1 DoF, which means that the first hop has left capability. If we

send same information from a source to both relays, the second hop can be employed as

a broadcast channel (BC). Thus there exists a tradeoff, between employing the second hop
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First hop Second hop

M ` 2D1

D1

D1

M ` 2D1

D1

D1

M `D2
M `D2

2D2 `M

2D2 `M

M `D2
M `D2

Figure 3.7: Constructed channel for Regimes 2 and 3
The channel is almost the same that in Fig. 3.6, where the only difference is that M −D2 is

smaller instead of bigger than D1. To highlight such an important distinction which demands the
use of X scheme, we redraw the channel here.

as an X network or a BC. X scheme costs less on first hop but achieves fewer DoF on the

second hop, while broadcast scheme achieves more DoF on the second hop but consumes

more on the first hop. To determine the optimal ratio between them, we assume the second

hop uses the X scheme for fX fraction of time and the broadcast scheme for fBC fraction of

time. Naturally, we have

fX + fBC = 1. (3.14)

Note that for the fully connected 2× 2 subnetwork, broadcast scheme has 2(2D2−M) DoF

and X scheme has 4
3
(2D2 − M) DoF. Then by using X scheme fX fraction of time and

broadcast scheme fBC fraction of time, we need to have 2fBC(2D2−M) + 4
3
fX(2D2−M)

DoF to send at the relays, which are received from the first hop. The broadcast messages

need to be present at both relays and X messages need only be at one relay, so we need to

send a total of 4fBC(2D2 − M) + 4
3
fX(2D2 − M) DoF over the first hop, which should

equal its capability, 4D1 − 4(M −D2). Note that 4(M −D2) DoF are occupied for routing
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messages to be sent over orthogonal links on the second hop. Therefore, we have

4fBC(2D2 −M) +
4

3
fX(2D2 −M) = 4D1 − 4(M −D2). (3.15)

Combining (3.14)(3.15), we have

fX =
3
2
(D2 −D1)

2D2 −M
, fBC =

1
2
(3D1 +D2 − 2M)

2D2 −M
,

such that the DoF value achieved by X and broadcast schemes in total is

2fBC(2D2−M) +
4

3
fX(2D2−M) = 3D1 +D2− 2M + 2(D2−D1) = D1 + 3D2− 2M.

Adding up with 4(M −D2) routing DoF, we get 2M − (D2 −D1), as desired.

• Regime 4 (M < 2D1): The constructed channel appears in Fig. 3.8. We want to show that

the outer bound, 2M − (D2 −D1), is achievable. The new element here is that the first hop

itself contains a fully connected subnetwork. To utilize this, we pair it with the second hop

to get a 2× 2× 2 MIMO full rank interference channel with 2D1−M antennas everywhere.

By aligned interference neutralization (AIN), we achieve 2(2D1 −M) DoF [22]. Then the

fully connected subnetwork on the second hop is split into 2 parallel subnetworks. Similar as

before, we route 4(M−D2) DoF which saturates the orthogonal links on the second hop. We

are left to use the fully connected 2× 2 subnetwork with 2(D2 −D1) antennas at each node

on the second hop. The first hop has unused DoF 4(M −D1)− 4(M −D2) = 4(D2 −D1),

after AIN and routing. Here we also need to decide how to share the second hop with X and

broadcast schemes. Then following similar logic, we have

fX + fBC = 1 (3.16)

8

3
(D2 −D1)fX + 8(D2 −D1)fBC = 4(D2 −D1) (3.17)
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Table 3.1: DoF achieved by each scheme in different regimes

Regimes AIN BC X Routing Total DoF

D1 +D2 ≤M 0 0 0 4D1 4D1

3
2
D1 + 1

2
D2 ≤M < D1 +D2 0 0 4(D1 +D2 −M) 4(M −D2) 4D1

2D1 ≤M < 3
2
D1 + 1

2
D2 0 3D1 +D2 − 2M 2(D2 −D1) 4(M −D2) 2M − (D2 −D1)

M < 2D1 2(2D1 −M) D2 −D1 2(D2 −D1) 4(M −D2) 2M − (D2 −D1)

from which we can solve fX = 3
4
, fBC = 1

4
such that the DoF value achieved is D2 −D1 by

broadcast scheme and 2(D2−D1) byX scheme. Adding up with those achieved by AIN and

routing, we get 2(2D1−M) + 4(M −D2) + (D2−D1) + 2(D2−D1) = 2M − (D2−D1),

as desired.

First hop Second hop

M `D2
M `D2

M `D2
M `D2

2D1 `M

2D1 `M

2D2 ` 2D1

2D2 ` 2D1

2D1 `M

2D1 `M

M `D1

M `D1

M `D1

M `D1

Figure 3.8: Constructed channel for Regime 4.

As a summary, we list the achievable scheme used and corresponding DoF achieved in Table 3.1.

Finally, we consider fully generic channels, guided by insights from specific channel constructions

presented for each of the regimes. In particular, we will show that through proper precoding, we

can essentially create the specific channel constructed above such that the achievable scheme with

DoF allocation as specified in Table I obtains the outer bound. Similarly, we have 4 regimes.

• Regime 1 (D1 + D2 ≤ M ): We consider the first hop. Referring to Fig. 3.6, we want to

create 4 orthogonal links, one from each source to each relay. Towards this end, we will
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choose 4 M ×D1 precoding matrices, V1
ZF11, V1

ZF21, V1
ZF12 and V1

ZF22 as follows.

V1
ZF11 ⊆ N (H1

21),V1
ZF21 ⊆ N (H1

11) (3.18)

V1
ZF12 ⊆ N (H1

22),V1
ZF22 ⊆ N (H1

12) (3.19)

where N (A) denotes the right null space of matrix A. Note that V1
ZFji, i ∈ {1, 2}, j ∈

{1, 2} is used by Si, for Rj in the sense Rj̄ is zero forced. As the generic channel H1
ji has

rank D1 such that dim(N (H1
ji)) = M −D1 and 2D1 ≤ D1 + D2 ≤ M , such V1

ZFji exist.

Moreover, at Si, the precoding matrix [V1
ZF1i V

1
ZF2i] has full rank as the two components are

null spaces of generic channel matrices and the sum of their dimensions, 2D1 is smaller than

the total space size, M . AtRj , the receive signal space [H1
j1V

1
ZFj1 H1

j2V
1
ZFj2] also has full

rank as H1
jiV

1
ZFji is a subspace of H1

ji and the column spaces of two generic matrices H1
j1

and H1
j2 (with rank D1 each) do not intersect in an M dimensional space, since 2D1 ≤ M .

This process creates 4 orthogonal links.

The second hop is similar to the first hop. We choose precoding matrices at the relays such

that undesired destination is zero forced. The linear independence of vectors of precoding

matrix at the relay and receive signal space at the destination can be similarly proved. After

creating such orthogonal links as in Fig. 3.6, we can use routing to achieve the desired 4D1

DoF.

• Regime 2 (3
2
D1 + 1

2
D2 ≤ M < D1 + D2): The first hop is same as Regime 1, using null

spaces to create orthogonal links. On the second hop, Ri uses following precoding matrix
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V2
i of size M × 2D1.

V2
1 = [V2

ZF11 V2
ZF21 V2

X11 V2
X21] (3.20)

V2
2 = [V2

ZF12 V2
ZF22 V2

X12 V2
X22] (3.21)

dim(V2
ZFji) = M −D2 (3.22)

dim(V2
Xji) = D1 +D2 −M (3.23)

wherein V2
ZFji = N (H2

j̄i), and V2
Xji are chosen such that the following X network align-

ment conditions are satisfied.

H2
11V

2
X21 = −H2

12V
2
X22 ⊆ H2

11 ∩H2
12 (3.24)

H2
21V

2
X11 = −H2

22V
2
X12 ⊆ H2

21 ∩H2
22 (3.25)

Note that

dim(H2
11∩H2

12) = dim(H2
21∩H2

22) = 2D2−M ≥ D1 +D2 −M = dim(V2
Xji) (3.26)

then V2
Xji exist. With vectors chosen in this way, atRi, the precoding matrix V2

i has 2D1 ≤

M linear independent columns. The signal space matrix at D1 is given as

[H2
11V

2
1 H2

12V
2
2] = [H2

11V
2
ZF11 H2

12V
2
ZF12 H2

11V
2
X11 H2

12V
2
X12 H2

11V
2
X21](3.27)

which has 2(M −D2) + 3(D1 +D2 −M) = 3D1 +D2 −M ≤M vectors such that it has

full rank, since the transmitted vectors are independent and pass through channels that are

generic. Similarly, the signal space matrix at D2 also has full rank. We can now use the first

hop to transmit 4D1 DoF to the relays which then use a combination of zero forcing and X

scheme with precoding matrices as above to send these DoF to the destinations.
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• Regime 3 (2D1 ≤M < 3
2
D1+ 1

2
D2): The first hop is still the same and we have 4 orthogonal

links with sum-DoF 4D1. According to Table I, to each relay, we will send 3D1 +D2− 2M

DoF of common message, (D2−D1) DoF which will utilizeX scheme and 2(M−D2) DoF

which will be sent by zero forcing, over the second hop. This is possible since 2(3D1 +D2−

2M) + 2(D2 − D1) + 4(M − D2) = 4D1, which is supportable on the first hop. At each

relay, the zero forcing and X precoding vectors will be chosen the same as Regime 2. The

precoding vectors for broadcast scheme are the same as X , by noting that for the solution

of (3.24)(3.25), if we are transmitting the same message out, the interference caused to the

undesired destination is nulled (instead of aligned as in X network). At each destination,

the received signal consists of 2(M −D2) zero forcing vectors, 3
2
(D2−D1) X beamformed

vectors (2
3

of which are desired and the other 1
3

interfering) and 1
2
(3D1 +D2−2M) broadcast

vectors, for a total ofM . Linear independency at the relays and destinations follow similarly.

• Regime 4 (M < 2D1): On the first hop, in order to create the fully connected 2 × 2 sub-

network as in Fig. 3.8, we prove that there exist two M × (2D1−M) matrices U1
1,U

1
2 such

that

H1
11U

1
1 = H1

12U
1
2 (3.28)

H1
21U

1
1 = H1

22U
1
2 (3.29)

Note the difference with (3.24) (3.25) where the precoding vectors are different in the two

equations. For the solution of (3.28), the basis of U1
1 has rank D1, D1 −M of which will

have H1
11U

1
1 = 0 and the remaining 2D1−M will produce H1

11U
1
1 = H1

11 ∩H1
12. Similarly,

for the solution of (3.29), U1
1 has rank D1. These two D1 dimensional spaces will intersect

in a 2D1 −M dimensional space, which is the solution that we seek since it satisfies both

equations. Similar solution can be found for U1
2 as well. Thus, we have found two 2D1−M

dimensional spaces, one at each relay, that are accessible by the same space at each source.

This gives us a fully connected subnetwork. Inside such a 2D1 −M dimensional space, we
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design an AIN solution as proposed in [22], where S1 sends p , 2D1 −M symbols with p

precoding vectors v1
AIN1,1, · · · ,v1

AIN1,p and S2 sends 2D1 −M − 1 = p − 1 symbols with

p−1 precoding vectors v1
AIN2,1, · · · ,v1

AIN2,p−1. Each precoding vector has size M×1. The

alignment relationship is same as that used in [22] (see Table I of [22]). AtR1, we have

H1
11v

1
AIN1,q+1 = H1

12v
1
AIN2,q, q = 1, · · · , p− 1 (3.30)

and atR2

H1
21v

1
AIN1,q = H1

22v
1
AIN2,q, q = 1, · · · , p− 1 (3.31)

Here to find a solution, we will start from a random 1 dimensional subspace of U1
1 and set it

as v1
AIN1,1, then go through (3.30)(3.31) to find all other vectors. Note that as p = 2D1−M ,

we are guaranteed to find such independent vectors. By a similar aligned neutralization

design on the second hop (see Table II of [22]), we are able to send 2p−1 = 2(2D1−M)−1

DoF with AIN. By considering a k-symbol extension, we can send 2k(2D1−M)−1 symbols

over such symbol-extended network by AIN, resulting in 2(2D1 −M) DoF asymptotically.

All other symbols are sent by BC, X and routing (over zero forced orthogonal links) as

specified in Table I. The operations that create these equivalent channels are the same as

Regime 3. This completes the description of the achievable scheme for generic channels.

3.5 Summary

Rank-matching principle was identified for the 2-hop rank deficient interference channel, similar to

impedance matching, wherein 2M DoF are achievable when channel ranks across both hops are the

same. Under moderate rank deficiencies, DoF loss was found to be rank mismatch between the two

hops. Although the focus of this work is primarily on the 2-hop rank deficient interference channel,
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its fundamental nature leads to broad applicability in general multiflow multihop networks, as

evident from the various extensions considered in the previous section. Furthermore, note that

the rank-matching bounds are not limited to wireless networks. Indeed, as is the case with most

DoF results, the same bounds are applicable to the deterministic counterparts of wireless networks

over finite fields [34, 24, 30]. As such, they seem particularly useful to go beyond the Precoding-

Based-Network-Alignment (PBNA) paradigm considered in [43, 37]. In PBNA a multiple unicast

network is reduced to a single hop deterministic counterpart of a wireless interference network

by allowing only linear operations (e.g., random linear network coding) at intermediate nodes,

whereas all the intelligence lies at the source and destination nodes. As a step beyond PBNA

one could allow some intelligence at a subset of the intermediate relay nodes. For example, in a

2-unicast PBNA framework, (or a K-unicast setting which is reduced to 2-unicast by clustering

of nodes) one could select 2 MIMO relay nodes, either because these nodes exist as such or by

clustering, such that the network reduces to a 2×2×2 layered MIMO interference network. Since

the structure of the network is reflected in the rank deficiencies of the constituent channels, the

rank-matching bounds are applicable and may lead to new insights.
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Chapter 4

Constant Finite field channels over Fpn

4.1 Motivations

Precoding based network alignment (PBNA) is a network communication paradigm inspired by

linear network coding and interference alignment principles [43, 38, 16]. While intermediate nodes

only perform arbitrary linear network coding operations which transform the network into a one-

hop linear finite field network, all the intelligence resides at the source and destination nodes where

information theoretically optimal encoding (precoding) and decoding is performed to achieve the

capacity of the resulting linear network. The two restricting assumptions — restricting the intelli-

gence to the source and destination nodes, and restricting to linear operations at intermediate nodes

— are motivated by the reduced complexity of network optimization and also by the potential to

apply the insights and techniques developed for one-hop wireless networks. Indeed, the PBNA

paradigm gives rise to settings that are analogous to 1-hop wireless networks, albeit over finite

fields. To highlight this distinction, we simply refer to these networks as finite field networks.

There is a finite field counterpart to every 1-hop wireless network and vice versa. A number of in-

teresting interference alignment techniques have been developed for 1-hop wireless networks and

90



shown to be optimal from a degrees of freedom (DoF) perspective. Translating the DoF optimal

schemes for wireless networks into capacity optimal schemes for finite field networks is therefore

a promising research avenue. For example, the CJ scheme originally conceived for the K user

time-varying wireless interference channel in [9] is applied to the 3 unicast problem by Das et al.

in [43, 38, 16]. While the CJ scheme has also been applied successfully to the constant channel

setting in wireless networks by using the rational dimensions framework of Motahari et al. in

[40], the constant channel setting remains much less understood. In this work, we study constant

channel settings, but over the finite field Fpn .

The main contributions of this work are general insights into the correspondence between degrees

of freedom of wireless networks and capacity or linear capacity results for their finite field counter-

parts. In the wireless setting, constant scalar (SISO) channels are challenging because they lack the

diversity needed for linear interference alignment schemes. Constant finite-field channels over Fpn

however, can be naturally treated as non-trivial n× n MIMO channels. A single link over Fpn has

capacity n log(p), similar to n channels of capacity log(p) each. There is an immediate analogy to

n parallel wireless channels which would have a first order capacity ≈ n log(SNR), establishing a

correspondence between n and “diversity” (number of parallel channels) and between p and SNR.

Indeed, while scalar channels in Fpn can be treated as n × n MIMO channels over the base field

Fp, these channels exist in a space with diversity limited to n, i.e., any n+ 1 of these n×n channel

matrices are linearly dependent over Fp. Also, because of their special structure these channel ma-

trices satisfy the commutative property of multiplication (inherited from the commutative property

of multiplication in Fpn). Contrast this with generic n × n MIMO channels in Fp, which occupy

a space of diversity n2 and generally do not commute. The difference is consistent with the in-

terpretation of Fpn channels as similar to diagonal channels which have diversity only n, and are

also commutative. These insights are affirmed by translating the DoF results from fixed diversity

wireless networks to their Fpn counterparts. Especially in the 3 user interference channel, the role

of n as the channel diversity becomes clear.
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Figure 4.1: Wired network modeled as 2-user X channel

Other interesting aspects of this work are finer insights into linear interference alignment and the

techniques used to prove resolvability of desired signals from interference. Whereas in wireless

networks, linear interference alignment is feasible for either almost all channel realizations or

almost none of them and is relevant primarily to the slope of the capacity curve in the infinite SNR

(DoF) limit, in the finite field setting the fraction of channels where linear alignment is feasible can

be a non-trivial function of p, so that not only we have the p→∞ behavior which corresponds to

the wireless DoF results, but also we have an explicit dependence of linear alignment feasibility on

p for finite values of p. By analogy to finite SNR, this is intriguing for its potential implications,

even if the analogy is admittedly tenuous at this point. Since these finer insights are a priority in

this work, we will not rely only on p→∞ assumptions to establish the capacity of the finite field

networks. Instead, our goal will be to identify the capacity for all p as much as possible. Because

of this focus on constant channels and finite p, the linear independence arguments required to

show resolvability of desired and interfering signals, become a bit more challenging for finite p,

and require a different, somewhat novel approach. Finally, while we focus primarily on the X

channel and 3 user interference channel to reveal the key insights, the insights seem to be broadly

applicable and sufficient for extensions beyond these settings.

We begin with the X channel.
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Figure 4.2: Normalization in X channel

4.2 X Channel

An X network is an all-unicast setting, i.e., there is an independent message from each source node

to each destination node. In this work we study an X network with 2 source nodes, 2 destination

nodes, and 4 independent messages as illustrated in Fig. 4.1, also known simply as the X channel.

4.2.1 Prior Work

The X channel, which contains broadcast, multiple access and interference channels as special

cases, is one of the simplest, and also one of the earliest settings for interference alignment in

wireless networks [35, 28]. With A antennas at each node, and constant channels, the achievability

of b4A
3
cDoF was shown by Maddah-Ali, Motahari and Khandani in [35]. Jafar and Shamai showed

in [28] that 4A
3

DoF were achievable when M > 1 for constant channels, and also proved that this

was the information theoretic outer bound for all M . For the scalar (SISO) case, i.e., M = 1, Jafar

and Shamai showed that 4
3

DoF were achievable when the channels were time-varying. The DoF

of the SISO case with constant and complex channels were settled in [12] by Cadambe, Jafar and

Wang, who introduced asymmetric complex signaling, also known as improper Gaussian signaling

and showed that it achieves the optimal value of 4
3

for the complex SISO X channel. The SISO

case with constant and real coefficients was shown to achieve the optimal value of 4
3

DoF in [40] by

Motahari, Gharan and Khandani, who introduced a real interference alignment framework based
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on rational-independence and diophantine approximation theory. Generalized degrees of freedom

(GDoF) results for a symmetric SISO real constant X channel were obtained in [25] by Huang,

Jafar and Cadambe, who also found a sufficient condition under which treating interference as

noise is capacity optimal in the fully asymmetric case. A capacity approximation for the real SISO

constant X channel within a constant gap, subject to a small outage set, was obtained by Niesen

and Maddah-Ali in [42] using a novel deterministic channel model. For X networks, i.e., with

arbitrary number (M ) of transmitters and arbitrary number (N ) of receivers, Cadambe and Jafar

show in [10] that the SISO setting with time-varying channel coefficients has MN
M+N−1

DoF. The

result is extended to the real constant SISO setting using the rational independence framework by

Motahari et al. in [40]. Partial characterizations of the DoF region are found by Wang in [59].

Cadambe and Jafar show in [14] that the DoF value remains unchanged when relays and feedback

are included. DoF of the time-varying MIMO X channel with A > 1 antennas at each node are

settled in [51] by Sun et al. who identify a one-sided decomposability property of X networks,

and show that the spatial scale invariance conjecture of Wang, Gou and Jafar [55] (that the DoF

scale with the number of antennas) holds in this case. The DoF of a layered multihop SISO X

channel with 2 source nodes and 2 destination nodes are characterized in [54] by Wang, Gou and

Jafar, who show that the DoF can only take the values 1, 4
3
, 3

2
, 5

3
, 2 and identify the networks that

correspond to each value. Note that all the DoF results mentioned above are meant in the ‘almost

surely’ sense, i.e., they hold for almost all channel realizations but in every case there are channels

for which the DoF remain unknown. The problem is particularly severe for rational alignment and

diophantine approximation based schemes for real constant channels, where while the DoF value

applicable to almost all channels is known, the DoF of any given channel realization is unknown

for almost all channel realizations.

For wired networks, if intermediate nodes are intelligent, i.e., operations at intermediate nodes

can be optimized, then the sum-capacity of an all-unicast network, i.e., an X network, has been

shown to be achievable by routing [54]. However, due to practical limitations, optimization of

intermediate nodes may not be possible. While the overhead and complexity of learning and
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optimizing individual coding coefficients at all intermediate nodes may be excessive, it is much

easier to learn only the end-to-end channel coefficients, e.g., through network tomography, with

no knowledge of the internal structure of the network or the individual coding coefficients at the

intermediate nodes. This is the setting that we explore in this work.

4.2.2 Finite Field X Channel Model

Consider the finite field X channel

ȳ1(t) = h11x̄1(t) + h12x̄2(t) (4.1)

ȳ2(t) = h22x̄2(t) + h21x̄1(t) (4.2)

where, over the tth channel use, x̄i(t) is the symbol sent by source i, hji represents the channel

coefficient between source i and destination j and ȳj represents the received symbol at destination

j. All symbols x̄i(t), hji, ȳj(t) and addition and multiplication operations are in a finite field Fpn .

The channel coefficients hji are constant and assumed to be perfectly known at all sources and

destinations. There are four independent messages, with Wji denoting the message that originates

at source i and is intended for destination j.

A coding scheme over T channel uses, that assigns to each message Wji a rate Rji, measured

in units of Fpn symbols per channel use, corresponds to an encoding function at each source i

that maps the messages originating at that source into a sequence of T transmitted symbols, and a

decoding function at each destination j that maps the sequence of T received symbols into decoded
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messages Ŵji.

Encoder 1: (W11,W21)→ x̄1(1)x̄1(2) · · · x̄1(T ) (4.3)

Encoder 2: (W12,W22)→ x̄2(1)x̄2(2) · · · x̄2(T ) (4.4)

Decoder 1: ȳ1(1)ȳ1(2) · · · ȳ1(T )→ (Ŵ11, Ŵ12) (4.5)

Decoder 2: ȳ2(1)ȳ2(2) · · · ȳ2(T )→ (Ŵ21, Ŵ22) (4.6)

Each message Wji is uniformly distributed over {1, 2, · · · , dpnTRjie}, ∀i, j ∈ {1, 2}. An error

occurs if (Ŵ11, Ŵ12, Ŵ21, Ŵ22) 6= (W11,W12,W21,W22). A rate tuple (R11, R12, R21, R22) is said

to be achievable if there exist encoders and decoders such that the probability of error can be made

arbitrarily small by choosing a sufficiently large T . The closure of all achievable rate pairs is the

capacity region and the maximum value of R11 +R12 +R21 +R22 across all rate tuples that belong

to the capacity region, is the sum-capacity, that we will refer to as simply the capacity, denoted

as C, for brevity. Since we are especially interested in linear interference alignment, we will also

define Clinear as the highest sum-rate possible through vector linear coding schemes (see, e.g., [36]),

also known as linear beamforming schemes, over the base field Fp.

4.2.3 Zero Channels

First, let us deal with trivial cases where some of the channel coefficients are zero.

THEOREM 4.1. If one or more of the channel coefficients hji is equal to zero, the capacity is given

as follows.

1. If h12 = h21 = 0 and h11, h22 6= 0, then C = Clinear = 2.

2. If h11 = h22 = 0 and h12, h21 6= 0, then C = Clinear = 2.

3. If h11 = h12 = h21 = h22 = 0, then C = Clinear = 0.
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4. In all other cases where at least one channel coefficient is zero, C = Clinear = 1.

Proof: Cases 1, 2, 3 are trivial. The resulting channel for Case 4 is a MAC, BC or Z channel.

MAC and BC have capacity 1 by min-cut max-flow theorem, and the proof for the Z channel

follows from the corresponding DoF result presented in [28] (Theorem 1, 2) for the wireless setting.

4.2.4 X Channel Normalization

Based on Theorem 4.1, henceforth we will assume that all channel coefficients are non-zero. With-

out loss of generality, let us normalize the channel coefficients at the sources and destinations as

shown in Fig. 4.2. Since these are invertible operations, they do not affect the channel capacity.

The normalized X channel is represented as

y1 = x1 + x2 (4.7)

y2 = hx1 + x2 (4.8)

wherein we have reduced the channel parameters to a single channel coefficient h, defined as

h =
h12h21

h11h22

(4.9)

4.2.5 Capacity of the Finite Field X Channel

As mentioned in the review of prior work, the multiple input multiple output (MIMO) wireless

X channel where each node is equipped with n antennas has 4n
3

DoF [28, 12]. For almost all

channel realizations in the wireless setting, the DoF are achieved through a linear vector space

interference alignment scheme. If n is a multiple of 3, no symbol extensions are needed and

spatial beamforming is sufficient. For example, if each node is equipped with 3 antennas, then it
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suffices to send 1 symbol per message, each along its assigned 3× 1 signal vector. The vectors are

chosen such that the two undesired symbols at each destination align in the same dimension leaving

the remaining 2 dimensions free to resolve the desired signals. If n is not a multiple of 3 then 3

symbol extensions (i.e., coding over 3 channel uses) are needed to create a vector space within

which a third of the dimensions are assigned to each message. When translating these insights into

the finite field X channel with only scalar inputs and scalar outputs (SISO) we are guided by the

main insight presented below.

Insight: MIMO interpretation

The main insight that forms the basis of this work is that a SISO network over Fpn is analogous to

a n×n MIMO network, albeit with a special structure imposed on the channel matrix due to finite

field arithmetic.

To appreciate this insight, let us briefly review the fundamentals. The finite field Fpn can be used

to generate an n-dimensional vector space as follows. Each element of Fpn can be represented in

the form

z = xn−1s
n−1 + xn−2s

n−2 + . . .+ x1s
1 + x0 (4.10)

wherein z ∈ Fpn , xi ∈ Fp.

As an example consider F33 which contains 27 elements {0, 1, . . . , 26} and each element a ∈ F33 is

of the form 32a2+3a1+a0, wherein a2, a1, a0 ∈ F3 with values from {0, 1, 2}. Hence every element

can be written in a vector notation with coefficients [a2; a1; a0], e.g., a = 22 can be written as

[2 ; 1 ; 1].

Next, let us see how multiplication with the channel coefficient h ∈ F33 is represented as a multi-

plication with a 3×3 matrix with elements in F3. Consider the monic irreducible cubic polynomial
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s3 + 2s + 1 which is treated as zero in the field. The field itself consists of all polynomials with

coefficients in F3, modulo s3 + 2s+ 1. Since s3 + 2s+ 1 = 0 in F33 , it follows that

s3 = −2s− 1 = (3− 2)s+ (3− 1) = s+ 2 (4.11)

s4 = s(s3) = s(s+ 2) = s2 + 2s (4.12)

Since h, x ∈ F33 they can be represented as h = h2s
2 + h1s + h0, x = x2s

2 + x1s + x0 where

hi, xi ∈ F33 . The product y = hx ∈ F33 can be written as

y = hx ≡ (h2s
2 + h1s+ h0)(x2s

2 + x1s+ x0)

= s4(h2x2) + s3(h2x1 + h1x2) + s2(h2x0 + h0x2 + h1x1) + s(h1x0 + h0x1) + (h0x0)

= s2(h2x2 + h2x0 + h0x2 + h1x1) + s(2h2x2 + h2x1 + h1x2 + h1x0 + h0x1)

+(h0x0 + 2h2x1 + 2h1x2)

Equivalently,

y = Hx =




h2 + h0 h1 h2

2h2 + h1 h2 + h0 h1

2h1 2h2 h0







x2

x1

x0




(4.13)

wherein x,y are 3×1 vector with entries from F3 and H is a 3×3 matrix with its 9 entries from F3.

Here the equivalence of SISO channel over F33 and MIMO channel over F3 is established through

the 3× 3 linear transformation, H. Note also the structure inherent in the matrix representation H.

While there are 39 possible 3×3 matrices over F3, there are only 27 valid H matrices, because F33

has only 27 elements. This leads us to the main challenge that remains.
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Table 4.1: Summary — 2-user X channel over finite fields

Finite field # Symbol exten-
sions

# Fp Input
symbols∗

Result

Fp3 1 1 Capacity = Linear capacity = 4
3
, for all p

Fpn 3 n Capacity = Linear capacity = 4
3
, for p > 2

Fp2 3 2 Capacity = Linear capacity = 4
3
, for all p

* — # Fp Input symbols denotes the number of input symbols from the field Fp, per message and
per extended channel use.

Challenge: Channel Structure

Given the main insight, the challenge that remains is dealing with the structural constraints on the

MIMO channels that arise due to finite field arithmetic. Structured channels are also encountered

in the wireless setting — channels obtained by symbol extensions have a block diagonal structure

[28], asymmetric complex signaling based schemes used for the SISO X channel have a unitary

matrix structure [12]. Channel structure can be destructive, e.g., loss of capacity in rank deficient

channels. However, channel structure can also be constructive, e.g., diagonal channel matrices

enable the CJ scheme in [9], and certain types of rank deficiencies have been shown to facilitate

simpler alternatives to interference alignment schemes [32]. On the one hand, the MIMO chan-

nels, which arise by viewing Fpn as an n dimensional vector space over Fp, have a structure that is

neither diagonal nor unitary. On the other hand, diagonal channel matrices, unitary channel matri-

ces, as well as the finite field channel matrices, all have the property that matrix multiplication is

commutative, which can be a very useful property for interference alignment schemes. The impact

of channel structure in the SISO constant finite field X channel setting is therefore an intriguing

question.

Main Result

The capacity result for the finite field X channel is presented in the following theorem.
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THEOREM 4.2. For the fully connected X channel over Fpn , with p > 2, if

h =
h12h21

h11h22

/∈ Fp (4.14)

then

C = Clinear =
4

3
(4.15)

in units of Fpn symbols per channel use. If h ∈ Fp, then Clinear = 1.

Proof: The information theoretic outer bound of 4
3

follows immediately from the DoF outer

bound for the wireless setting presented in [28] (Theorem 5, 6), a combination of the Z channel

bounds, with minor adjustments to account for finite field channels. The linear capacity bound of

1 when h ∈ Fp is also straightforward because in this case, regardless of the number of channel

extensions, all channel matrices are simply scaled identity matrices. Since the scaling factors are

irrelevant for vector spaces, i.e., beamforming schemes, the linear capacity is not changed if we

replace all channel gains with unity. But such a channel has only rank 1 (equivalently min-cut

value of 1) per channel use, so its sum-rate is bounded by 1, which is therefore also an outer bound

for linear capacity on the original channel. Achievability of rate 1 is trivial in a fully connected X

channel. So this leaves us only to prove that a sum rate of 4
3

is achievable through vector linear

schemes when h /∈ Fp. The achievability scheme is the simplest, i.e., no symbol extensions are

required and only scalar linear coding (one stream per message) is sufficient, when n is 3. Proof

of achievability involves showing that there exist choices for beamforming vectors such that the

desired signals are resolvable from interference at all destinations. Whereas in wireless setting the

resolvability of desired signals from interference is guaranteed “almost surely” due to the generic

properties of channels drawn from continuous distributions, in the finite field setting it needs an

explicit constructive proof. This is the main source of added difficulty in dealing with the finite

field counterparts of wireless networks. For ease of exposition, the achievability proof for this case,

101



i.e., for the X channel over Fp3 is presented first, in Section 4.2.7. The achievability proof over

Fp2 , which requires a slightly different approach, is presented in Appendix I. The proofs over Fp3

and Fp2 are not restricted to p > 2. The achievability proof for the remaining general case, over

Fpn , p > 2, is presented in Section 4.2.8. Note that the proof over Fpn is for p > 2 because of the

technique used, and we expect the same capacity result to hold for all p. The achievable scheme is

summarized in Table 4.1.

Remark 1. The setting where h ∈ Fp corresponds to the real constant SISO wireless X channel.

Linear DoF collapse in this setting because even with symbol extensions, the channel matrices are

simply scaled identity matrices so that the alignment of vector spaces is identical at both destina-

tions, making it impossible to have signals align at one destination where they are undesired and

remain resolvable at the other destination where they are desired. Since h ∈ Fp is the only excep-

tion where the capacity falls short of 4/3, it is evident from Theorem 4.2 that the capacity results

for the 2 user finite field constant X over Fpn closely mirror the corresponding DoF results for the

real MIMO X channel where each user has n antennas. Remarkably, even though the channels in

the finite field setting are highly structured, the structural constraints do not impact the capacity

result. The significance of channel structure will become transparent when we study the 3 user

interference channel later in this paper.

Remark 2. Note that there are pn − 1 possible non-zero values for h, out of which all but p − 1

have the capacity value of 4
3

which is achieved by linear beamforming. The fraction of degenerate

fully connected channel instances, for which Clinear = 1, is therefore as follows.

(p− 1)

(pn − 1)
=

1

1 + p+ p2 + · · ·+ pn−1
(4.16)

which approaches 0 as p → ∞. Note the similarity with the constant X channel in the wireless

setting for which Cadambe et al. have shown in [12] for the complex case and Motahari et al.

have shown in [40] for the real case, that interference alignment scheme achieves 4/3 DoF for

almost all channel realizations. Remarkably, in the finite field case the fraction of channels with
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Figure 4.3: An instance of the X channel over F33 and its capacity optimal solution represented in
scalar notation.

Figure 4.4: The same example and solution as Fig. 4.3, illustrated in vector notation.
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linear capacity 4/3 is non-trivial and still precisely computable. While a tangible connection seems

elusive, it is an intriguing thought, whether interpreting p and n in (4.16) as analogous to finite SNR

and finite diversity in the wireless setting might lead to finer insights there that are not available

directly from the coarse DoF metric.

4.2.6 Achievability over Fp2

Fp2 can be viewed as a 2-dimensional vector space over subfield Fp, much like the field of complex

numbers can be viewed as a 2-dimensional vector space over reals (R), which is also the essential

idea behind the asymmetric complex signaling scheme used in [12] to achieve 4/3 DoF for the

constant SISO wireless X channel with complex coefficients. We can represent each element of

Fp2 as

z = x+ y
√
c or x+ ys (4.17)

wherein z ∈ Fp2 , x, y ∈ Fp and c is a quadratic non-residue (an element that does not have a square

root in Fp) similar to −1 (which does not have a square root over reals) in the field of complex

numbers. (s =
√
c ≡ j).

For example, consider F32 with prime subfield F3 which has c = −1(mod 3) = 2 as the quadratic

non-residue, since
√

2 does not exist in F3. Field F32 contains 9 elements and every element a1s+a0

can be written in a vector notation with coefficients [a1; a0] wherein a1, a0 ∈ F3 = {0, 1, 2} and

assigned a scalar integer label {0, 1, . . . , 8} as 3a1 + ao. For example, the field element labeled

a = 7 can be represented as [2 ; 1] in vector notation, and as 2s+ 1 in polynomial notation. Here,

product with h can be represented using a 2 × 2 linear transformation (MIMO equivalent). Let

h = h1s+ h0, x = x1s+ x0 and hi, xi ∈ F3. Then the product y = hx ∈ F32 can be written as

y = hx = (h1s+ h0)(x1s+ x0) = s2(h1x1) + s(h1x0 + h0x1) + (h0x0) (4.18)
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and in vector notation as

y = Hx =



h0 2h1

h1 h0






x1

x0


 (4.19)

wherein x ∈ F2×1
3 and H ∈ F2×2

3 . It can be noted that above 2 × 2 linear transformation is

equivalent to complex multiplication and stacking the resulting real and imaginary parts in a 2× 1

vector.

Achievability for Fp2

Proof: Now we prove that sum rate of 4
3

is achievable (part of Theorem 4.2 proof) for 2-

user X-channel over Fp2 . We consider the X channel with 3 symbol extensions, wherein we can

represent the channel between source i and destination j as Hji = hjiI3 where I3 is the 3 × 3

identity matrix and hji is the scalar channel coefficient from Fp2 . The inputs xji are chosen from

Fp and outputs yj over Fp2 and three channel uses can be seen as a 6 dimensional vector space over

Fp within which 4 desired symbols and 4 interference symbols are present at each destination. In

order to achieve capacity, interference should be aligned within 2 dimensions at each destination.

Received symbols at the destinations, in vector notation, are given by

y1 = V11x11 + V12x12 + V22x22 + V21x21 (4.20)

y2 = V22x22 + H̄V21x21 + H̄V11x11 + V12x12 (4.21)

Here yj ∈ F6×1
p , Vji ∈ F6×2

p , and xji ∈ F2×1
p represents the symbols sent by source i for destina-

tion j. H̄ ∈ F6×6
p is the linear transformation which is equivalent to multiplication by h ∈ Fp2 .

Over 3 symbol extensions of the channel, linear transformation for p > 2, is given by H̄ =

[h0I3 ch1I3;h1I3 h0I3], wherein I3 is the 3× 3 identity matrix, and c is the quadratic non-residue

which exists for all p > 2. In order to achieve sum rate of 4
3
, interference should be aligned at both
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destinations, similar to Fpn . We choose beamforming vectors as

V22 = V21 =




1 1 1 0 1 1

0 0 1 0 1 1




T

(4.22)

V11 =




1 1 0 1 0 0

1 0 0 1 1 1




T

V12 = H̄V11 (4.23)

At each destination, signal space can be represented using 6× 6 matrices, S1 and S2.

S1 = [V11 V12 V21] = [V11 H̄V11 V21] (4.24)

S2 = [V22 H̄V21 V12] = [V21 H̄V21 H̄V11] (4.25)

Determinant polynomials of matrices S1 and S2 are given as: |S1| = ch2
1 and |S2| = h2

1(ch2
1 − h2

0).

Determinant of matrix S1 is non-zero since h1 6= 0 when h /∈ Fp, and a non-zero quadratic non-

residue exists for all p > 2. When considering determinant polynomial of matrix S2, since h2
1 6= 0

(h /∈ Fp), |S2| = 0 only if c =
h2

0

h2
1
. But this is clearly not possible since the quadratic non-residue,

c cannot be a square of any element in Fp (h0

h1
∈ Fp). Hence, columns of matrices S1 and S2 are

linearly independent over Fp, implying that the desired and interference signals do not overlap.

Note that F22 is a special case because there is no quadratic non-residue, where the scheme is

equivalent to having a 2 × 2 MIMO channel, but not to asymmetric complex signaling. For F22 ,

we are able to solve numerically using MATLAB by constructing beamforming matrices V11 and

V21. Thus, when h /∈ Fp, we have shown that the desired signals are resolvable, and sum rate of 4
3

is achievable for channels over Fp2 for all p.
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4.2.7 Achievability over Fp3

Proof: Consider the normalized X channel which can be characterized by single channel co-

efficient h = h12h21

h11h22
from Fp3 . We use superposition coding at the sources, wherein messages from

source 1, (W11,W21) are independently encoded into symbols x11, x21, respectively, and added to

obtain the transmitted symbol x1 = x11 + x21 and messages from source 2, (W12,W22) are simi-

larly encoded as x2 = x21 + x22. Symbols xji are from the subfield Fp. Field Fp3 can be split into

a 3-dimensional space over subfield Fp so that the output has 3 dimensions (each over Fp) within

which 2 desired symbols and 2 interference symbols are present at each destination. To achieve ca-

pacity, the 2 interference symbols should be aligned at each destination such that they occupy only

one dimension at that destination while remaining distinguishable at the other destination where

they are desired. To this end, we will assign a precoding “vector” vji ∈ Fp3 to each symbol xji.

Received symbols at the destinations are given as

y1 = v11x11 + v12x12 + v22x22 + v21x21 (4.26)

y2 = v22x22 + hv21x21 + hv11x11 + v12x12 (4.27)

wherein h, yj ∈ Fp3 . Equivalently, using vector notation,

y1 = v11x11 + v12x12 + v22x22 + v21x21 (4.28)

y2 = v22x22 + Hv21x21 + Hv11x11 + v12x12 (4.29)

wherein yj,vji ∈ F3×1
p are 3 × 1 vectors with Fp elements and H ∈ F3×3

p is a structured 3 × 3

matrix with Fp elements, representing h ∈ Fp3 . For ease of exposition, an instance of the problem

and its solution are illustrated in Fig. 4.3 using scalar notation and again in Fig. 4.4 using vector

notation. At each destination, interference can be aligned along one dimension by choosing

v22 = v21 & v12 = Hv11 (4.30)
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At the destinations, the spaces occupied by the two desired symbols and the aligned interference

symbol are represented using matrices S1 (destination 1) and S2 (destination 2).

S1 = [v11 v12 v21] = [v11 hv11 v21] (4.31)

S2 = [v22 hv21 v12] = [v21 hv21 hv11] (4.32)

When h /∈ Fp, we will now show that we can choose v11 and v21 such that elements of S1 and S2

are linearly independent over Fp. Set v21 = 1. Then S1 and S2 can be written as

S1 = [v11 hv11 1] & S2 = [1 h hv11] (4.33)

Consider S1. Note that v11 and hv11, are linearly independent over Fp since h /∈ Fp, i.e., H is

not a scaled identity matrix. Hence elements of S1 are linearly independent if 1
v11

is not a linear

combination (with coefficients from Fp) of 1 and h. This is guaranteed if

v11 /∈ A ,

{
1

α + βh
: α, β ∈ Fp, (α, β) 6= (0, 0)

}
∪ {0} (4.34)

Similarly, consider S2. Note that 1 and h are linearly independent over Fp, since H is not a scaled

identity matrix. Hence, elements of S2 are linearly independent if v11 is not a linear combination

of 1
h

and 1 over Fp. This is guaranteed if

v11 /∈ B ,

{
α +

β

h
: α, β ∈ Fp, (α, β) 6= (0, 0)

}
∪ {0} (4.35)

Since |A| ≤ p2 and |B| ≤ p2, and all p constant polynomials are contained in both A and B, we

must have

|A ∪B| ≤ 2p2 − p (4.36)
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Unless A ∪ B contains all p3 elements of Fp3 there is at least one choice of v11 that satisfies both

(4.34) and (4.35). In other words, the scheme works if

p3 > 2p2 − p (4.37)

which is true for all p ≥ 2. Thus, we have proved the achievability of rate 1
3

per message, and a

sum-rate of 4
3
, which matches the capacity outer bound. Note that a Fp symbol represents 1

3
of a

Fp3 symbol and the capacity is measured in Fp3 units because the original channel alphabet is from

Fp3 . Also note that the achievability proof applies to p = 2 as well.

Similar to splitting a field Fp3 to form a 3-dimensional space in field of order p, other fields of

order pn can be split to a n-dimensional field of order p. However, in order to achieve the optimal

capacity of 4
3
, symbol extensions would be required when n is not a multiple of 3. The capacity

result for the general case is presented in the next section.

4.2.8 Achievability over Fpn

Proof: Achievability proof for channels over field Fp2 is presented in Appendix I. Here, we

discuss achievability proof for channels over field Fpn , n > 3.

Let us use 3 symbol extensions, so that we operate in a 3n dimensional vector space over Fp. Each

message Wji is encoded into n streams represented by the elements of the column vector xji ∈

Fn×1
p , and the n streams are sent along the n column vectors of the precoding matrix Vji ∈ F3×n

pn .

Thus, the sum data rate is 4
3

in units of Fpn symbols per channel use, and it remains to be shown

that the desired symbols are resolvable from interference. Over each extended channel use, the
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received signals, y1,y2 ∈ F3×1
pn at 2 destinations are expressed as:

y1 = V11x11 + V12x12 + V22x22 + V21x21 (4.38)

y2 = V22x22 + hV21x21 + hV11x11 + V12x12 (4.39)

Note that similar to Fp3 , above relations can also be represented using vector notation. At each

destination, interference can be aligned along n dimensions by choosing

V22 = V21 & V12 = hV11 (4.40)

At each destination, 2n desired symbols and n aligned interference symbols are represented using

matrices S1 ∈ F3×3n
pn (for destination 1) and S2 ∈ F3×3n

pn (for destination 2).

S1 = [V11 V12 V21] = [V11 hV11 V21] (4.41)

S2 = [V22 hV21 V12] = [V21 hV21 hV11] (4.42)

We will now show that when h /∈ Fp, we can choose V11 and V21 such that the columns of S1 and

S2 are linearly independent over Fp. Let us denote V21 as just V and choose V11 = gV21 = gV

with a non-zero g ∈ Fpn and V ∈ F3×n
pn . Then S1 and S2 can be written as

S1 = [gV hgV V ] (4.43)

S2 = [V hV hgV ] (4.44)

wherein beamforming matrix V has n columns, denoted as v1, . . . ,vn ∈ F3×1
pn . In Fig. 4.5, we

illustrate the recursive proof described hereafter.
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begin h ∈ Fp? stop

Given h, choose g such that [g hg 1] and [h hg 1] are each linearly independent over Fp

Choose any non-zero v1 ∈ F3×1
pn , e.g., the vector of all ones

Given h, g,v1, choose v2 ∈ F3×1
pn such that the 6 columns in S1 and the

6 columns in S2 that contain v1,v2, are each linearly independent over Fp

Given h, g,v1,v2, · · · ,vk−1, choose vk ∈ F3×1
pn such that the 3k columns in S1 and

the 3k columns in S2 that contain v1,v2, · · · ,vk are each linearly independent over Fp

Given h, g,v1,v2, · · · ,vn−1, choose vn ∈ F3×1
pn such that the 3n columns in S1 and

the 3n columns in S2 that contain v1,v2, · · · ,vn are each linearly independent over Fp

stop

yes

no

Figure 4.5: Algorithm for the construction of precoding vectors.
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Choose v1 as the all-ones vector. We first consider columns containing v1. There are three such

columns, and they need to be linearly independent over Fp, in both S1 and S2.

From S1 : [gv1 hgv1 v1] (4.45)

From S2 : [v1 hv1 hgv1] (4.46)

Consider columns of S1. Note that gv1 and hgv1 are linearly independent over Fp, since h /∈ Fp,

i.e., h is not a constant polynomial, and g,v1 6= 0. Hence, elements of S1 are linearly independent

over Fp if 1
g

is not a linear combination of 1 and h over Fp. Similarly, elements of S2 are linearly

independent over Fp if g is not a linear combination of 1 and 1
h

over Fp . These are guaranteed if

g /∈ A & g /∈ B (4.47)

wherein A,B are defined as in 4.34 and 4.35. Since |A| ≤ p2, |B| ≤ p2 and A and B both contain

all p elements of Fp, we must have |A ∪ B| ≤ 2p2 − p. Therefore, a choice of g that satisfies both

conditions of (4.47) is guaranteed to exist if pn > 2p2 − p which is true ∀n ≥ 3.

If vk 6= 0, the same choice of g ensures that the following columns from S1 and S2 are linearly

independent over Fp, ∀k ∈ {1, . . . , n}.

From S1 : [gvk hgvk vk] (4.48)

From S2 : [vk hvk hgvk] (4.49)

We now present the recursive proof for linear independence over Fp of desired and interference

symbols at destinations. At iteration k, column vector vk+1 will be chosen based on previously

chosen columns v1, . . . ,vk and g. We already chose v1 to be the vector of ones. So now v2 will
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be chosen such that following columns are linearly independent over Fp in S1 and S2 :

From S1 : [gv1 hgv1 v1 gv2 hgv2 v2] (4.50)

From S2 : [hv1 hgv1 v1 hv2 hgv2 v2] (4.51)

Linear independence over Fp for (4.50) and (4.51) is guaranteed, respectively, if

v2 /∈A ,

{(
α1g + α2hg + α3

α4g + α5hg + α6

)
v1 : α1, · · · , α6 ∈ Fp, (α4, α5, α6) 6= (0, 0, 0)

}
(4.52)

v2 /∈B ,

{(
β1h+ β2hg + β3

β4h+ β5hg + β6

)
v1 : β1, · · · , β6 ∈ Fp, (β4, β5, β6) 6= (0, 0, 0)

}
(4.53)

Now we note that

A ∩B ⊇
{(

β2hg + β3

β5hg + β6

)
v1 : β2, β3, β5, β6 ∈ Fp, (β5, β6) 6= (0, 0)

}
(4.54)

|A| ≤ (p3 − 1)p3

p− 1
= p5 + p4 + p3 (4.55)

|B| − |A ∩B| ≤ (p3 − 1)p3

p− 1
− (p2 − 1)p2

p− 1
= p5 + p4 − p2 (4.56)

|A ∪B| = |A|+ |B| − |A ∩B| ≤ 2p5 + 2p4 + p3 − p2 (4.57)

Since there are p3n possible choices for v2, there must exist at least one choice that satisfies both

(4.52) and (4.53) if

p3n > 2p5 + 2p4 + p3 − p2 (4.58)

which is true for all p > 2. Similarly this recursion is carried out for choosing vectors v3, . . . ,vn−1.

We will now describe the last stage of recursion, i.e., choosing vector vn for given h, g,v1, . . . ,vn−1.
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We want to design vn such that all 3n columns are linearly independent over Fp in S1 and S2 :

S1 : [gv1 hgv1 v1 gv2 hgv2 v2 . . . gvn hgvn vn] (4.59)

S2 : [hv1 hgv1 v1 hv2 hgv2 v2 . . . hvn hgvn vn] (4.60)

The linear independence over Fp is guaranteed if

vn /∈ A ,

{ n−1∑

l=1

(
α3l−2g + α3l−1hg + α3l

α3n−2g + α3n−1hg + α3n

)
vl : α1, · · · , α3n ∈ Fp,

(α3n−2, α3n−1, α3n) 6= (0, 0, 0)

}
(4.61)

vn /∈ B ,

{ n−1∑

l=1

(
β3l−2h+ β3l−1hg + β3l

β3n−2h+ β3n−1hg + β3n

)
vl : β1, · · · , β3n ∈ Fp,

(β3n−2, β3n−1, β3n) 6= (0, 0, 0)

}
(4.62)

⇒ A ∩B ⊇
{ n−1∑

l=1

(
β3l−1hg + β3l

β3n−1hg + β3n

)
vl : β1, · · · , β3n ∈ Fp, (β3n−1, β3n) 6= (0, 0)

}
(4.63)

Next we bound the cardinalities as follows.

|A| ≤ (p3 − 1)p3n−3

p− 1
= p3n−1 + p3n−2 + p3n−3 (4.64)

|B| − |A ∩B| ≤ (p3 − 1)p3n−3

p− 1
− (p2 − 1)p2n−2

p− 1

= p3n−1 + p3n−2 + p3n−3 − p2n−1 − p2n−2 (4.65)

|A ∪B| = |A|+ |B| − |A ∩B| ≤ 2p3n−1 + 2p3n−2 + 2p3n−3 − p2n−1 − p2n−2 (4.66)
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Since there are p3n possible choices for vn, there must exist at least one choice that satisfies both

(4.61) and (4.62) if

p3n > 2p3n−1(1 +
1

p
+

1

p2
)− p2n−1 − p2n−2 (4.67)

which is easily shown to be true for all p ≥ 3 as follows. If p ≥ 3 then the RHS is bounded above

by 2p3n−1(1 + 1
3

+ 1
9
) = 26

9
p3n−1 whereas the LHS is bounded below by 3p3n−1.

4.3 Interference Channel

As noted previously, the impact of channel structure due to finite field operations in Fpn is not

evident in the capacity of the X channel as characterized in Theorem 4.2, because the capacity

results for the Fpn channels mimic the DoF results for the generic Rn×n real MIMO X channels

in the wireless setting. In this section we will extend our study beyond the X channel, to the 3

user interference channel, where the distinction between a generic Rn×n MIMO setting and the

Fn×np MIMO representations of the finite field Fpn becomes evident. In particular, we will study

the linear sum-capacity, Clinear, of a finite field 3-user interference channel with 3 source nodes, 3

destination nodes and 3 independent messages as illustrated in Fig. 4.6.

4.3.1 Prior Work

The K user interference channel, with K > 2, has been extensively studied in recent years.

Cadambe and Jafar showed in [9] that the K-user fully connected interference channel with M

antennas at each node has MK
2

sum-DoF over a time-varying or frequency-selective channel, based

on the CJ scheme. The DoF value of the 3 user constant complex MIMO interference channel with

M > 1 antennas at each node was also shown by Cadambe and Jafar, to be 3M
2

using an eigenvec-
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Figure 4.6: Wired network modeled as 3-user interference channel

tor solution. The DoF of asymmetric MIMO settings were characterized in [21, 18, 55, 58] and the

linear capacity of generic MIMO interference channels without symbol extensions was studied in

[19, 60, 7, 45, 20, 46, 55, 6].

For the complex constant 3 user SISO interference channel, Cadambe et al. showed in [12] that

the linear DoF value is 6
5

using asymmetric complex signaling scheme which precodes the real

and imaginary parts of the signal separately. The constant complex SISO channel setting can

be interpreted as having diversity 2. Bresler and Tse characterized the DoF of the 3 user time-

varying/frequency-selective interference channel as a function of the channel diversity, L, in [8].

While DoF of 3
2

can be achieved over channel with infinite diversity through the CJ scheme, Bresler

and Tse showed that the linear DoF of the 3-user interference channel with finite channel diversity

L, is 3D
2D+1

where D = 2L − bL/2c − 1 is known as the alignment depth. Channel diversity,

L, was shown to limit the extent to which interference signals can be aligned while maintaining

the resolvability of the desired signals from interference. With finite diversity, non-linear schemes

are needed to achieve the optimal DoF. Non-linear schemes, which include ideas from diophantine

approximations, rational dimensions, Renyi information dimensions, and non-trivial combinatorial

outer bound arguments, are not well understood even in the wireless setting. While these are
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promising directions for the finite field setting (especially the combinatorial aspects), non-linear

schemes are beyond the scope of this paper.

In the context of network coding, the 3 unicast problem which is the counterpart of the 3 user

interference channel, was studied in [16, 43, 38] by Das et al., Ramakrishnan et al., and Meng

et al., who introduced the Precoding-Based Network Alignment (PBNA) framework and found

conditions under which half the source-destination min-cut was achievable for each user. The

results were extended to networks with delay in [3]. These works require time-varying channel

coefficients due to a direct translation from the CJ scheme originally designed for the time-varying

interference channel. However, in this work we will focus only on the constant channel setting

over Fpn , viewed as a constant Fn×np MIMO setting. In particular, we wish to understand the

significance of the channel structure.

4.3.2 Finite Field Interference Channel Model

Consider the finite field 3-user interference channel

ȳ1(t) = h11x̄1(t) + h12x̄2(t) + h13x̄3(t) (4.68)

ȳ2(t) = h21x̄1(t) + h22x̄2(t) + h23x̄3(t) (4.69)

ȳ3(t) = h31x̄1(t) + h32x̄2(t) + h33x̄3(t) (4.70)

where, over the tth channel use, x̄i(t) is the symbol sent by source i, hji represents channel coeffi-

cient between source i and destination j and ȳj represents the received symbol at destination j. All

symbols x̄i(t), hji, ȳj(t) and addition and multiplication operations are in a finite field Fpn . The

channel coefficients hji are constant across t channel uses and assumed to be perfectly known at

all sources and destinations. There are three independent messages, with Wi denoting the message

that originates at source i and is intended for destination i.
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Figure 4.7: Normalization in 3-user Interference Channel

A coding scheme over T channel uses, that assigns to each message Wi a rate Ri, measured in

units of Fpn symbols per channel use, corresponds to a encoding function at each source i that

maps the messages originating at that source into a sequence of T transmitted symbols, and a

decoding function at each destination that maps the sequence of T received symbols into decoded

messages Ŵi.

Encoder 1: (W1)→ x̄1(1)x̄1(2) · · · x̄1(T ) (4.71)

Encoder 2: (W2)→ x̄2(1)x̄2(2) · · · x̄2(T ) (4.72)

Encoder 3: (W3)→ x̄3(1)x̄3(2) · · · x̄3(T ) (4.73)

Decoder 1: ȳ1(1)ȳ1(2) · · · ȳ1(T )→ (Ŵ1) (4.74)

Decoder 2: ȳ2(1)ȳ2(2) · · · ȳ2(T )→ (Ŵ2) (4.75)

Decoder 3: ȳ3(1)ȳ3(2) · · · ȳ3(T )→ (Ŵ3) (4.76)

Each message Wi is uniformly distributed over {1, 2, · · · , dpnTRie}, ∀i ∈ {1, 2, 3}. An error

occurs if (Ŵ1, Ŵ2, Ŵ3) 6= (W1,W2,W3). A rate tuple (R1, R2, R3) is said to be achievable if there

exist encoders and decoders such that the probability of error can be made arbitrarily small by
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choosing a sufficiently large T . The closure of all achievable rate pairs is the capacity region and

the maximum value of R1 + R2 + R3 across all rate tuples that belong to the capacity region, is

the sum-capacity, C. Since we are interested in linear interference alignment, we will again define

linear capacity, Clinear, as the highest sum-rate possible through vector linear coding schemes over

the base field Fp.

4.3.3 Interference Channel Normalization

As noted in the X channel, since the main insights come from the fully connected setting, we will

assume that all channel coefficients are non-zero. Channel settings where some of the channels are

zero are dealt with separately in the Appendix II. Without loss of generality, let us normalize the

channel coefficients at the sources and destinations shown in Fig. 4.7. Since these are invertible

operations, they do not affect the channel capacity.

The normalized 3-user interference channel can be represented as

y1 = h̄11x1 + x2 + x3 (4.77)

y2 = x1 + h̄22x2 + x3 (4.78)

y3 = x1 + h̄x2 + h̄33x3 (4.79)

wherein we have reduced channel parameters to four channel coefficients h̄11, h̄22, h̄33, h̄, defined

as

h̄11 =
h11h23

h13h21

, h̄22 =
h22h13

h23h12

, h̄33 =
h33h21

h31h23

, h̄ =
h13h21h32

h12h23h31

(4.80)

119



4.3.4 Linear-scheme Capacity of the Finite Field Interference Channel

In the study of the X channel, we noted how scalar channels over Fpn can be viewed as n × n

MIMO channels over Fp. Let us see if the same insight can be carried over to the 3 user interference

channel. For the 3 user MIMO interference channel, an eigenvector based interference alignment

solution that achieves the optimal DoF value, is introduced by Cadambe and Jafar in [9]. Let us see

if the same solution applies in the finite field setting as well. As we will show, while the eigenvector

solution holds in the wireless case for almost all channel realizations, because of channel structure

in the finite field case, the solution holds only in certain ‘degenerate’ settings, that are increasingly

rare as the base field size increases, so that in the limit of infinite p, the eigenvector solution does

not hold, almost surely.

THEOREM 4.3. Fully connected 3-user interference channel over Fpn has capacityC = Clinear =

3
2

for all p > 3, if

h̄11 /∈ Fp, h̄22 /∈ Fp, h̄33 /∈ Fp, h̄ ∈ Fp (4.81)

Proof: The outer bound of 3
2

extends from [9] with only minor adjustments to account for

operating over finite fields. Achievable scheme is presented here. Let us denote the n × n linear

transformation corresponding to product by h̄ as H . i.e., h̄ ∈ Fpn and H ∈ Fn×np . The achievable

scheme involves beamforming vectors V̄1, V̄2, V̄3 ∈ Fn×1
p at the 3 sources such that interference is

aligned at all destinations. Note that we need eigenvectors of H (and also the eigenvalues) to be

in Fp. This implies that the eigen vector solution of [9] can be used only when h̄ ∈ Fp to achieve

linear-scheme capacity of 3
2
. Note that this is analogous to the asymmetric complex signaling

setting studied in [12] where because the scalar complex channels become rotation matrices over

reals, they do not have eigenvectors over reals unless the rotation is identity. Since h̄ ∈ Fp, H

is a scaled identity matrix, and every vector is an eigenvector of this matrix. Let us choose the

same beamforming matrices at the 3 sources, V̄ = V̄1 = V̄2 = V̄3. This ensures that interference
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is aligned at all destinations for the normalized 3-user interference channel. At destination 3,

interference from source 2 (h̄V̄ ) spans the same space as interference from source 1 (V̄ ), since

h̄ ∈ Fp. Having aligned interference at the destinations, we now discuss construction of the

beamforming matrix, such that desired and interference symbols are linearly independent at all

destinations. Above theorem is stated for all p > 3, owing to the proof technique used, and we

expect the result to hold for p = 2.

Achievability:

In the achievability proof, depending on whether n is odd or even, number of symbol extensions

m and input symbols per channel use t take different values.

When n is odd (n = 2l + 1), m = 2 symbol extensions are used, we choose V̄ ∈ F2×t
pn and send

t = n input symbols per channel use (x1, . . . , xn ∈ Fp) from each source. Interference will be

aligned at all destinations in an n dimensional space.

When n is even (n = 2l), symbol extensions are not required (m = 1), we choose V̄ ∈ F1×t
pn and

send t = l input symbols per channel use (x1, . . . , xl ∈ Fp) from each source. Since V̄ = V̄1 =

V̄2 = V̄3, it can be noted that interference will be aligned at all destinations in l dimensional space.

Let us denote the t columns of V̄ as v1,v2, . . . ,vt. Then, the signal space at Destination k can be

represented as

Sk = [h̄kkV̄ V̄ ] = [h̄kkv1, h̄kkv2, . . . , h̄kkvt, v1,v2, . . . ,vt] (4.82)

We now describe how to choose columns of V̄ such that desired and interference symbols are

linearly independent at all destinations. Let us choose v1 to be vector of ones. This implies that the

2 columns [h̄kkv1 v1] in Sk are linearly independent over Fp since h̄kk /∈ Fp, k ∈ {1, 2, 3}. Now
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let us construct v2 such that 4 columns of Sk are linearly independent over Fp for k ∈ {1, 2, 3}.

From Sk, v2 /∈ Ak ,
{

(α1h̄kk + α2)v1

β1h̄kk + β2

: α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(4.83)

Now we note that

|Ak| ≤
(p2 − 1)p2

p− 1
= p3 + p2, k ∈ {1, 2, 3} (4.84)

|A1 ∪ A2 ∪ A3| ≤ 3(p3 + p2) (4.85)

There are pmn choices for v2, and since pmn > 3(p3 + p2) for all p > 3, there exist choices for

v2 such that all 3 conditions of (4.83) hold. Choosing v2 from those, we note that 4 columns

of S1, S2, S3 are linearly independent over Fp. We proceed recursively in a similar manner, for

choosing columns v3,v4, . . . ,vt−1 such that 6, 8, . . . , 2(t − 1) columns are linearly independent

over Fp respectively, in all Sk, k ∈ {1, 2, 3}. Now consider the last iteration wherein column vt is

chosen such that all 2t columns are linearly independent over Fp in all Sk, k ∈ {1, 2, 3}, given that

2t− 2 columns are already linearly independent with appropriate choices of v1,v2, . . . ,vt−1.

From Sk, vt /∈ Ak ,
{

1

β1h̄kk + β2

(
(α1h̄kk + α2)v1 + (α3h̄kk + α4)v2 + · · ·+

(α2t−3h̄kk + α2t−2)vt−1

)
: αi, β1, β2 ∈ Fp, i ∈ {1, . . . , 2t− 2}, (β1, β2) 6= (0, 0)

}
(4.86)

Now we note that

|Ak| ≤
(p2 − 1)p2t−2

p− 1
= p2t−1 + p2t−2, k ∈ {1, 2, 3} (4.87)

|A1 ∪ A2 ∪ A3| ≤ 3(p2t−1 + p2t−2) (4.88)

There are pmn choices for vt, and since pmn > 3(p2t−1 +p2t−2) for all p > 3, there exist choices for

vt such that all 3 conditions of (4.86) hold. Choosing vt from those, we note that all 2t columns of

S1, S2, S3 are linearly independent over Fp. Hence, desired and interference symbols are linearly
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independent at all destinations. Thus, sum rate of 3
2

is achieved over Fpn for all n with p > 3, if

h̄kk /∈ Fp, k ∈ {1, 2, 3} and h̄ ∈ Fp.

Remark 3. The fraction of channel realizations for which the conditions h̄kk /∈ Fp, k ∈ {1, 2, 3}

and h̄ ∈ Fp hold, is given by

p

pn
× (

pn − p
pn

)3 (4.89)

which goes to 0 as p→∞.

Remark 4. The implications of the structure of the channel become evident now. While we have

n × n MIMO channels, they behave like channels with diversity n, e.g, like diagonal channels,

where also the eigenvector solution does not work except over a measure 0 set. To strengthen this

insight, we explore the 3-user interference channel further.

Insight: Channel Diversity

As noted for X networks earlier, the finite field Fpn is analogous to a n × n MIMO network with

special channel structure. The main insight that arises out of exploring the 3-user interference

channel is that n is analogous to channel diversity. This is similar to saying that a scalar channel

over Fpn is analogous to n parallel channels over Fp. In the remainder of this work, we will focus

only on linear capacity Clinear and reinforce the parallels between n and channel diversity.

Main Result

It is known from [8] that the 3-user interference channel over Fpn has channel diversity n, and

so has linear capacity of 3D
2D+1

when using linear beam forming schemes with alignment depth

D = 2n − bn/2c − 1. The alignment depth, i.e., the length of the longest chain of one-to-one

alignments, which is a function of channel diversity, is the primary limiting factor impacting both
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Table 4.2: Summary — 3-user Interference channel over finite fields

Finite field # Symbol ex-
tensions

# Fp Input symbols
at the 3 sources∗

Result

Fp3 1 2, 1, 1 Linear capacity = 4
3
, for all p

Fpn , odd n = 2l + 1 1 l + 1, l, l Linear capacity = 3l+1
2l+1

, for all p

Fp2 5 4, 4, 4 Linear capacity = 6
5
, for all p

* — # Fp Input symbols at the 3 sources denotes the number of input symbols from the field Fp,
sent from the 3 sources per extended channel use.

achievability and converse arguments. The achievable scheme is essentially the asymptotic inter-

ference alignment scheme of [9]. Similar to the 2-user X channel, proof of achievability involves

showing that there exist choices for beamforming vectors such that the desired signals are resolv-

able from interference at all destinations. Resolvability of the desired signals from interference

does not follow like in wireless channels wherein linear independence is shown using generic

properties of the channels, and so, explicit constructive proofs are needed for finite field channels.

Outer bounds for linear schemes come from the argument that the alignment depth cannot be more

than D, and suppose it were, then desired signal would lie in span of the interference signal at

the destinations. The result translates into the finite field setting as follows. We will focus mainly

on the case where n is odd (the cases where n is even follow similarly and will be touched upon

briefly).

THEOREM 4.4. The 3-user interference channel over Fpn with odd n = 2l+ 1 has linear capacity

Clinear = 3l+1
2l+1

if

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
(4.90)

h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.91)

h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.92)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0) (4.93)
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The outer bound on linear capacity is presented in Appendix II, Section 4.3.6. The achievable

scheme is presented next, which is summarized in Table 4.2.

4.3.5 Achievability

Over Fp2l+1 , we will show that 3l+ 1 symbols can be transmitted (l+ 1 symbols from source 1 and

l symbols each from sources 2 and 3), and all desired symbols are resolvable at the destinations.

Symbol extensions will not be necessary here. Note that h̄ is equivalent to the T matrix used in the

CJ scheme [9], since beamforming directions are identified with varying powers of h̄. We will first

discuss the achievable scheme over Fp3 and then show how it extends to all odd n, Fp2l+1 .

Achievability over Fp3

Proof: Let us consider the normalized 3-user interference channel over Fp3 so that h̄11, h̄22, h̄33, h̄ ∈

Fp3 . We will show that linear schemes can achieve the rate of 4
3
. Consider the finite field network

wherein source 1 sends 2 symbols, x1
1, x

2
1 ∈ Fp, while sources 2 and 3 send only one symbol each,

x2, x3 ∈ Fp.

Because of the channel normalization, we use the same beamforming direction v ∈ Fp3 for symbols

sent by sources 2 and 3, so that interference is aligned at destination 1 (v2 = v3 = v). At source 1,

we use 2 beam forming directions h̄v and v so that, one symbol aligns at destination 2, and another

aligns at destination 3 (v1
1 = v, v2

1 = h̄v). With these choices for beamforming directions, the

received symbols can be represented as

y1 = h̄11(vx1
1 + h̄vx2

1) + vx2 + vx3 (4.94)

y2 = vx1
1 + h̄vx2

1 + h̄22vx2 + vx3 (4.95)

y3 = vx1
1 + h̄vx2

1 + h̄vx2 + h̄33vx3 (4.96)
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h̄11h̄v h̄11v v

h̄22v h̄v v

h̄33v h̄v v

Desired

Desired

Desired

Figure 4.8: 3-user Interference channel over Fp3

Note that interference is aligned along v at destinations 1 and 2, while interference at destination

3 is aligned along h̄v. We have 3 dimensions at each destination over Fp, within which desired

and interference symbols need to be resolved. Signal spaces containing desired and interference

symbols need to have linearly independent elements.

S1 = [h̄11h̄v h̄11v v] = h̄11[h̄ 1
1

h̄11

]v (4.97)

S2 = [h̄22v h̄v v] = [h̄22 h̄ 1]v (4.98)

S3 = [h̄33v h̄v v] = [h̄33 h̄ 1]v (4.99)

When h̄ /∈ Fp, h̄ and 1 are linearly independent over Fp. Hence, elements of S1 can be linearly

dependent only if 1
h̄11

is a linear combination of h̄ and 1. Similarly elements of S2 and S3 can be

linearly dependent only if h̄22 or h̄33 is a linear combination of h̄ and 1, respectively. Thus, the
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scheme works when the following conditions are satisfied.

h̄11 /∈ A ,

{
1

β0 + β1h̄
: β0, β1 ∈ Fp, (β0, β1) 6= (0, 0)

}
∪ {0} (4.100)

h̄22 /∈ B ,
{
α0 + α1h̄ : α0, α1 ∈ Fp

}
(4.101)

h̄33 /∈ C ,
{
α0 + α1h̄ : α0, α1 ∈ Fp

}
(4.102)

h̄ /∈ Fp (4.103)

Hence we can achieve the rate of 4 Fp symbols per channel use, i.e., 4
3
Fp3 symbols per channel

use. Fig. 4.8 illustrates the achievable scheme described for Fp3 .

Remark 5. We can rewrite the conditions in terms of original channel coefficients as follows.

1

h11

/∈ A ,

{
α1

h32

h12h31

+ β1
h23

h13h21

: α1, β1 ∈ Fp
}

(4.104)

h22 /∈ B ,

{
α2
h21h32

h31

+ β2
h12h23

h13

: α2, β2 ∈ Fp
}

(4.105)

h33 /∈ C ,

{
α3
h13h32

h12

+ β3
h31h23

h21

: α3, β3 ∈ Fp
}

(4.106)

These conditions, which are obtained for the constant channel setting, are similar to the conditions

for feasibility of PBNA derived in [38] for the time-varying setting, wherein 6 cofactors of off-

diagonal channel coefficients are involved in the feasibility criteria. However, note that in this

finite field channel, the combining coefficients αk, βk, k ∈ {1, 2, 3} can be from Fp whereas in

[38], only binary coefficients were involved.

Remark 6. Each of the direct channels hii can take one of p3 values. At most p2 of these can be

linear combination of the cross channel functions. Hence, there are at least p3 − p2 choices for

each direct channel such that the linear independence conditions are met and so desired symbols

are resolvable. The fraction of channel realizations for which hii is not a linear combination of
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Desired

Desired

Desired

Figure 4.9: 3-user Interference channel over Fpn , n = 2l + 1

cross channel functions, is therefore at least

p3 − p2

p3
= 1− 1

p
→ 1 for large p (4.107)

The fraction of channels for which the scheme works, considering all conditions simultaneously is

therefore at least

(
p3 − p
p3

)× (1− 1

p
)3 = (1− 1

p2
)× (1− 1

p
)3 → 1 for large p (4.108)

Note that unlike the wireless case where the DoF results are proved in an almost surely sense, the

guarantee on the fraction of channels for which the scheme works is much more interesting.

Achievability over Fpn , n = 2l + 1

Proof: Now let us show that the sum-rate of 3l+1
2l+1

can be achieved over Fp2l+1 , which gen-

eralizes the proof for Fp3 discussed earlier, to any odd n. Suppose source 1 sends l + 1 symbols,

x1
1, x

2
1, . . . x

l+1
1 ∈ Fp, while sources 2 and 3 sends l symbols each, x1

2, . . . , x
l
2, x

1
3, . . . , x

l
3 ∈ Fp.
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We use the same set of beamforming directions, h̄l−1v, . . . , h̄v, v with v ∈ Fp2l+1 for the l symbols

sent by sources 2 and 3, so that interference is aligned at destination 1 in span([h̄l−1v . . . h̄v v]).

At source 1, we use l + 1 beamforming directions h̄lv, . . . , h̄v, v so that, l symbols align at desti-

nation 2, and l symbols align at destination 3. With these choices of beamforming directions for

input symbols, the received symbols at the destinations can be represented as

y1 = h̄11(h̄lvxl+1
1 + . . .+ h̄vx2

1 + vx1
1) + h̄l−1vxl2 + . . .+ vx1

2 + h̄l−1vxl3 + . . .+ vx1
3

(4.109)

y2 = h̄22(h̄l−1vxl2 + . . .+ vx1
2) + h̄l−1vxl3 + . . .+ vx1

3 + h̄lvxl+1
1 + . . .+ h̄vx2

1 + vx1
1

(4.110)

y3 = h̄33(h̄l−1vxl3 + . . .+ vx1
3) + h̄l−1vxl2 + . . .+ vx1

2 + h̄lvxl+1
1 + . . .+ h̄vx2

1 + vx1
1

(4.111)

In order to resolve desired symbols at the destinations, signal spaces containing desired and inter-

ference symbols need to have linearly independent entries.

S1 = [h̄11h̄
lv . . . h̄11h̄v h̄11v h̄l−1v . . . h̄v v ] = [h̄11h̄

l . . . h̄11h̄ h̄11 h̄l−1 . . . h̄ 1 ]v

(4.112)

S2 = [h̄22h̄
l−1v . . . h̄22h̄v h̄22v h̄lv . . . h̄v v ] = [h̄22h̄

l−1 . . . h̄22h̄ h̄22 h̄l . . . h̄ 1 ]v

(4.113)

S3 = [h̄33h̄
l−1v . . . h̄33h̄v h̄33v h̄lv . . . h̄v v ] = [h̄33h̄

l−1 . . . h̄33h̄ h̄33 h̄l . . . h̄ 1 ]v

(4.114)
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The desired and interference symbols are resolvable and 3l + 1 symbols can be decoded at the

destinations when the following conditions are satisfied.

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
(4.115)

h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.116)

h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.117)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)(4.118)

Fig. 4.9 illustrates the achievable scheme described for Fpn with n = 2l+1. Note that a Fp symbol

represents 1
2l+1

of an Fp2l+1 symbol and rate is measured in Fp2l+1 units. Hence we have proved

achievability of linear capacity of 3l+1
2l+1

for all odd n = 2l + 1.

Remark 7. Each of the direct channels hii can be from one of the p2l+1 choices. The fraction of

channel realizations for which direct channels satisfy the conditions is at least

Fraction of channels with h11 not in A ≥ p2l+1 − (p2l + . . .+ pl)

p2l+1

= 1− {1

p
+

1

p2
+ . . .+

1

pl+1
} → 1 for large p (4.119)

Fraction of channels with h22 or h33 not in B or C ≥ p2l+1 − (p2l + . . .+ pl+1)

p2l+1

= 1− {1

p
+

1

p2
+ . . .+

1

pl
} → 1 for large p (4.120)

Also, following condition on cross channel h̄ needs to be met

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0) (4.121)
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The l + 1 combining coefficients can represent no more than pl+1 distinct polynomials, and since

each has degree l or less, each polynomial can have at most l zeros. Therefore, the number of

possible h̄ that can violate (4.121) is no more than lpl+1. So, the fraction of h̄ values for which the

scheme works is at least

p2l+1 − lpl+1

p2l+1
= 1− l

pl
(4.122)

which approaches 1 as either p or l approaches infinity. Putting everything together, the fraction of

all channels for which the scheme works is at least

(
1− l

pl

)(
1−{1

p
+

1

p2
+ . . .+

1

pl+1
}
)(

1−{1

p
+

1

p2
+ . . .+

1

pl
}
)2

→ 1 for large p (4.123)

Achievability over Fp2

Having established the achievability proof over Fpn for odd n, we will omit the general case of

even n, except to mention that it can be translated from [8] using the same principles as illustrated

for odd n and does not offer new insights. However, we will present the achievability proof for

the case of n = 2 because the corresponding result in [12] uses the asymmetric complex signaling

approach which may be of interest. As before, Fp2 can be viewed as a 2-dimensional vector space

over subfield Fp, much like the field of complex numbers can be viewed as a 2-dimensional vector

space over reals, so that an achievable scheme similar to asymmetric complex signaling of [12] can

be used. Hence, we translate the DoF result of [12] into the finite field setting as follows.

THEOREM 4.5. The 3-user interference channel over Fp2 has linear capacity, Clinear = 6
5
, if

h̄11 =
h11h23

h13h21

/∈ Fp, h̄22 =
h22h13

h23h12

/∈ Fp, h̄33 =
h33h21

h31h23

/∈ Fp (4.124)

h̄h̄11 =
h11h32

h12h31

/∈ Fp,
h̄

h̄22

=
h21h32

h22h31

/∈ Fp,
h̄

h̄33

=
h32h13

h33h12

/∈ Fp (4.125)
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Proof: The outer bound follows from [12] (Theorem 4) in much the same fashion as the

outer bound for the previous section follows from [8] (Theorem 7). Here we present only the

achievability proof. Consider a 5 symbol extension of the normalized 3-user interference channel

over Fp2 . Over these 5 symbol extensions, 4 input symbols denoted by x1
k, x

2
k, x

3
k, x

4
k are precoded

and transmitted at source k. Each input symbol xik, i ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3} is from Fp.

Corresponding 5 × 1 beam forming vectors are denoted using vectors v1
k,v

2
k,v

3
k,v

4
k ∈ F5×1

p2 , k ∈

{1, 2, 3}. Each destination has 10 dimensions of order p over the symbol extended channel. Desired

symbols from corresponding source would occupy 4 dimensions and for resolvability, interference

need to occupy only 6 dimensions of order p. Hence at each destination, two of the 8 interference

vectors from 2 unintended sources, need to be aligned. To this end, we make the following choices

for certain beam forming vectors.

v3
1 = h̄v1

2, v4
1 = v2

3, v3
2 = v1

3, v4
2 =

1

h̄
v2

1, v3
3 = v1

1, v4
3 = v2

2 (4.126)

Desired and Interference signal space at the three destinations are illustrated in Fig. 4.10. Due to

interference alignment, these signal space matrices can be equivalently re-written as

S1 =

[
h̄11

[
v1

1 v2
1 h̄v1

2 v2
3

]
v1

2 v2
2 v1

3

1

h̄
v2

1 v2
3 v1

1

]
(4.127)

S2 =

[
h̄22

[
v1

2 v2
2 v1

3

1

h̄
v2

1

]
v1

3 v2
3 v1

1 v2
2 v2

1 h̄v1
2

]
(4.128)

S3 =

[
h̄33

[
v1

3 v2
3 v1

1 v2
2

]
v1

1 v2
1 h̄v1

2 v2
3 h̄v2

2 h̄v1
3

]
(4.129)

In order to resolve desired signals at all destinations, the columns of these 3 matrices need to be

linearly independent over Fp. Note that the following six conditions are required.

h̄11 /∈ Fp, h̄22 /∈ Fp, h̄33 /∈ Fp, h̄h̄11 /∈ Fp,
h̄

h̄22

/∈ Fp,
h̄

h̄33

/∈ Fp (4.130)
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Desired

v1
1 v2

1 v3
1 v4

1

v1
2 v2

2 v3
2 v4

2

v1
3 v2

3 v3
3 v4

3

h̄11v
1
1 h̄11v

2
1 h̄11v

3
1 h̄11v

4
1 v1

2 v2
2 v3

2 v4
2 v2

3 v3
3

Desired

h̄22v
1
2 h̄22v

2
2 h̄22v

3
2 h̄22v

4
2 v1

3 v2
3 v3

3 v4
3 v2

1 v3
1

h̄33v
1
3 h̄33v

2
3 h̄33v

3
3 h̄33v

4
3 v1

1 v2
1 v3

1 v4
1 h̄v2

2 h̄v3
2

Desired

Figure 4.10: 3-user Interference channel over Fp2

We will now choose beam forming vectors vik, i ∈ {1, 2}, k ∈ {1, 2, 3}, such that all three matrices

Sk have their 10 columns linearly independent.

We choose v1
1 to be the vector of ones. Since h̄11, h̄33 /∈ Fp, vectors in S1 : [h̄11v

1
1 v1

1] are linearly

independent and so are similar vectors in S3 : [h̄33v
1
1 v1

1]. We now choose vector v2
1 such that

following conditions hold.

From S1, v2
1 /∈ A ,

{
(α1h̄11 + α2)v1

1

β1h̄11 + β2
1
h̄

: α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(4.131)

From S2, v2
1 /∈ B ,

{
α1v

1
1

β1 + β2
h̄22

h̄

: α1, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(4.132)

From S3, v2
1 /∈ C ,

{
(α1h̄33 + α2)v1

1 : α1, α2 ∈ Fp
}

(4.133)

Now we note that

|A| ≤ (p2 − 1)p2

p− 1
= p3 + p2 |B| ≤ (p2 − 1)p

p− 1
= p2 + p, |C| ≤ p2 (4.134)

|A ∪B ∪ C| ≤ p3 + 3p2 + p (4.135)
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There are p10 choices for v2
1 ∈ F5×1

p2 , and since

p10 > p3 + 3p2 + p (4.136)

for all p, there exist choices for v2
1 such that all 3 conditions (4.131),(4.132),(4.133) hold. Choosing

v2
1 from those, we note that 4 columns of S1 and 3 columns each of S2, S3 are linearly independent

over Fp.

Now we choose v1
2 similarly such that following conditions hold

v1
2 /∈ A ,

{
(α1h̄11 + α2)v1

1 + (α3h̄11 + 1
h̄
α4)v2

1

β1h̄11h̄+ β2

: α1, α2, α3, α4, β1, β2 ∈ Fp,

(β1, β2) 6= (0, 0)

}
(4.137)

v1
2 /∈ B ,

{
α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1

β1h̄22 + β2h̄
: α1, α2, α3, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(4.138)

v1
2 /∈ C ,

{
(α1h̄33 + α2)v1

1 + α3v
2
1

h̄
: α1, α2, α3 ∈ Fp

}
(4.139)

Now we note that

|A| ≤ (p2 − 1)p4

p− 1
= p5 + p4 |B| ≤ (p2 − 1)p3

p− 1
= p4 + p3, |C| ≤ p3 (4.140)

|A ∪B ∪ C| ≤ p5 + 2p4 + 2p3 (4.141)

There are p10 choices for v1
2, and since

p10 > p5 + 2p4 + 2p3 (4.142)

for all p, there exist choices for v1
2 such that all 3 conditions (4.137),(4.138),(4.139) hold. Choosing

v1
2 from those, we note that 6 columns of S1, 5 columns of S2 and 4 columns of S3 are linearly

independent over Fp.
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Now we choose v2
2 similarly such that following conditions hold

v2
2 /∈ A ,

{
(α1h̄11 + α2)v1

1 + (α3h̄11 +
1

h̄
α4)v2

1 + (α5h̄11h̄+ α6)v1
2 : αk ∈ Fp,

k ∈ {1, . . . , 6}
}

(4.143)

v2
2 /∈ B ,

{
1

β1h̄22 + β2

(
α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1 + (α4h̄+ α5h̄22)v1
2

)
:

αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 5}, (β1, β2) 6= (0, 0)

}
(4.144)

v2
2 /∈ C ,

{
1

β1h̄33 + β2h̄

(
(α1h̄33 + α2)v1

1 + α3v
2
1 + α4h̄v1

2

)
: αk, β1, β2 ∈ Fp,

k ∈ {1, . . . , 4}, (β1, β2) 6= (0, 0)

}
(4.145)

Now we note that

|A| ≤ p6, |B| ≤ (p2 − 1)p5

p− 1
= p6 + p5 |C| ≤ (p2 − 1)p4

p− 1
= p5 + p4 (4.146)

|A ∪B ∪ C| ≤ 2p6 + 2p5 + p4 (4.147)

There are p10 choices for v2
2, and since

p10 > 2p6 + 2p5 + p4 (4.148)

for all p, there exist choices for v2
2 such that all 3 conditions (4.143),(4.144),(4.145) hold. Choosing

v2
2 from those, we note that 7 columns each of S1, S2, and 6 columns of S3 are linearly independent

over Fp.
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Now we choose v1
3 similarly such that following conditions hold

v1
3 /∈ A ,

{
(α1h̄11 + α2)v1

1 + (α3h̄11 +
1

h̄
α4)v2

1 + (α5h̄11h̄+ α6)v1
2 + α7v

2
2 :

αk ∈ Fp, k ∈ {1, . . . , 7}
}

(4.149)

v1
3 /∈ B ,

{
1

β1h̄22 + β2

(
α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1 + (α4h̄+ α5h̄22)v1
2 +

(α6h̄22 + α7)v2
2

)
: αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 7}, (β1, β2) 6= (0, 0)

}
(4.150)

v1
3 /∈ C ,

{
1

β1h̄33 + β2h̄

(
(α1h̄33 + α2)v1

1 + α3v
2
1 + α4h̄v1

2 + (α5h̄33 + α6h̄)v2
2

)
:

αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 6}, (β1, β2) 6= (0, 0)

}
(4.151)

Now we note that

|A| ≤ p7, |B| ≤ (p2 − 1)p7

p− 1
= p8 + p7 |C| ≤ (p2 − 1)p6

p− 1
= p7 + p6 (4.152)

|A ∪B ∪ C| ≤ p8 + 3p7 + p6 (4.153)

There are p10 choices for v1
3, and since

p10 > p8 + 3p7 + p6 (4.154)

for all p, there exist choices for v1
3 such that all 3 conditions (4.149),(4.150),(4.151) hold. Choosing

v1
3 from those, we note that 8 columns each of S1, S3, and 9 columns of S2 are linearly independent

over Fp.
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Now we choose v2
3 similarly such that following conditions hold

v2
3 /∈ A , { 1

β1h̄11 + β2

(
(α1h̄11 + α2)v1

1 + (α3h̄11 +
1

h̄
α4)v2

1 + (α5h̄11h̄+ α6)v1
2 +

α7v
2
2 + α8v

1
3

)
: αk ∈ Fp, k ∈ {1, . . . , 8}, (β1, β2) 6= (0, 0)}(4.155)

v2
3 /∈ B , {α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1 + (α4h̄+ α5h̄22)v1
2 + (α6h̄22 + α7)v2

2 +

(α8h̄22 + α9)v1
3 : αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 9}}(4.156)

v2
3 /∈ C , { 1

β1h̄33 + β2

(
(α1h̄33 + α2)v1

1 + α3v
2
1 + α4h̄v1

2 + (α5h̄33 + α6h̄)v2
2 +

(α7h̄33 + α8h̄)v1
3

)
: αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 8}, (β1, β2) 6= (0, 0)}(4.157)

Now we note that

|A| ≤ (p2 − 1)p8

p− 1
= p9 + p8, |B| ≤ p9 |C| ≤ (p2 − 1)p8

p− 1
= p9 + p8 (4.158)

|A ∪B ∪ C| ≤ 3p9 + 2p8 (4.159)

There are p10 choices for v2
3, and since

p10 > 3p9 + 2p8 (4.160)

for p > 3, there exist choices for v2
3 such that all 3 conditions (4.155),(4.156),(4.157) hold. Choos-

ing v2
3 from those, we note that all columns each of S1, S2, S3 are linearly independent over Fp.

Therefore, we have constructed beam forming vectors such that desired and interference signals

are linearly independent at all destinations. This proves the achievability of linear-scheme capacity

of 6
5

for 3-user interference channel over Fp2 for all p > 3 when the specified conditions are met.

For p=2 and p=3, we are able to solve numerically using MATLAB, completing the achievability

proof of sum-rate 6
5

for channel over Fp2 for all p under the conditions of Theorem 4.5.
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Remark 8. Conditions of Theorem 4.5 can be written in terms of the original channels as follows.

h̄11 =
h11h23

h13h21

/∈ Fp, h̄22 =
h22h13

h23h12

/∈ Fp, h̄33 =
h33h21

h31h23

/∈ Fp (4.161)

h̄h̄11 =
h11h32

h12h31

/∈ Fp,
h̄

h̄22

=
h21h32

h22h31

/∈ Fp,
h̄

h̄33

=
h32h13

h33h12

/∈ Fp (4.162)

Note that these 6 conditions are equivalent to the 6 conditions on the phase differences between

channel coefficients in the asymmetric complex signing scheme for wireless networks, as described

in [12] (Theorem 2) to achieve DoF of 6
5
.

Remark 9. Each of the direct channels satisfy h̄ii /∈ Fp, i ∈ {1, 2, 3} The fraction of channel

realizations for which direct channels satisfy the 3 conditions is at least

(
p2 − p
p2

)3 = (1− 1

p
)3 → 1 for large p (4.163)

Further cross channel h̄ should satisfy the conditions h̄ 6= α
h̄11
, h̄ 6= βh̄22, h̄ 6= γh̄33 for α, β, γ ∈ Fp.

There are atmost 3p channels such that one of these 3 conditions on h̄ is violated. Hence there are

at least p2 − 3p valid channel realizations for h̄ for p > 3. Putting everything together, the fraction

of all channels for which the scheme works for p > 3 is at least

(1− 1

p
)3(
p2 − 3p

p2
) = (1− 1

p
)3(1− 3

p
)→ 1 for large p (4.164)

4.3.6 Linear outer bound

In this section, we will prove the linear outer bounds for 3-user interference channel over Fpn . The

proof follows along the lines of [8] (Theorem 7) by showing that the alignment depth can be at

most D, which is a function of channel diversity (in case of finite fields, n).

Linear outer bound over Fpn , n = 2l + 1
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Lemma 3. Alignment depth is at most D = 2n − bn
2
c − 1 for the normalized 3-user interference

channel, wherein channels h̄, h̄kk ∈ Fpn for odd n = 2l + 1 and satisfy

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
(4.165)

h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.166)

h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.167)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)(4.168)

Proof: Let us consider the normalized channel as described in section 4.3.3 for odd n =

2l + 1, and at source 1, denote a vector v of dimension m × 1 with entries from Fpn . Since this

is a converse proof, we assume that the desired symbols can be decoded at all the destinations.

Here m denotes the number of symbol extensions of the channel. This vector of source 1 needs

to be aligned with a vector from source 3 at destination 2, we can denote the vector at source 3 as

γ1v with γ1 ∈ Fp. Vector γ1v aligns with a vector from source 2 at destination 1, say β1v with

β1 ∈ Fp. Vector β1v aligns with a vector from source 1 at destination 3, say α1h̄v with α1 ∈ Fp.

So far, alignment chain length can be seen to be 4, and such an alignment chain can be extended

upto length D when operating in field of order pn. With n = 2l + 1 this results in source 1 using

l + 1 vectors, and sources 2 and 3 using l vectors each such that the alignment chain length is

D = 3l + 1. Then the vectors chosen so far at the 3 sources can be represented as

V1 = [αlh̄
lv αl−1h̄

l−1v . . . α1h̄v v] (4.169)

V2 = [βlh̄
l−1v βl−1h̄

l−2v . . . β2h̄v β1v] (4.170)

V3 = [γlh̄
l−1v γl−1h̄

l−2v . . . γ2h̄v γ1v] (4.171)
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αlh̄
lv αl−1h̄

l−1v . . . α1h̄v v

βlh̄
l−1v . . . β2h̄v β1v

γlh̄
l−1v . . . γ2h̄v γ1v

βlh̄
l−1v . . . β2h̄v β1v

γl+1h̄
lv

γl+1h̄
lv

αlh̄11h̄
lv αl−1h̄11h̄

l−1v . . . α1h̄11h̄v h̄11v

Desired

Figure 4.11: Alignment depth in 3-user Interference channel

wherein v is an m × 1 vector with entries from Fpn and αi, βi, γi ∈ Fp, ∀i ∈ {1, . . . , l}. We will

now argue that alignment chain length cannot be extended beyond D. Suppose on the contrary,

alignment chain length was greater than D, say D + 1. Then without loss of generality, we can

choose additional vector at source 3 such that at destination 2, it aligns with the vector αlh̄lv used

at source 1. This additional vector at source 3 can be represented as γl+1h̄
lv. Then the vectors sent

by source 3 can be represented as

V̄3 = [γl+1h̄
lv γlh̄

l−1v γl−1h̄
l−2v . . . γ2h̄v γ1v] (4.172)

Let us consider the signal space at destination 1, S1 = [h̄11V1 V2 V̄3]. Since l vectors from source

3 align with l vectors from source 2, we can denote the signal space as S1 = [h̄11V1 V2 γl+1h̄
lv].

Now we claim that h̄11V1 and V2 spans the channel space, since all vectors are linearly independent.

[h̄11V1 V2] =

[
αlh̄11h̄

lv αl−1h̄11h̄
l−1v . . . α1h̄11h̄v h̄11v βlh̄

l−1v βl−1h̄
l−2v . . . β2h̄v β1v

]

(4.173)
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It can be noted that columns of above matrix are linearly independent when all entries listed below

are linearly independent, since V is scaled by different powers of h̄, h̄11 and other coefficients.

[αlh̄11h̄
l αl−1h̄11h̄

l−1 . . . α1h̄11h̄ h̄11 βlh̄
l−1 βl−1h̄

l−2 . . . β2h̄ β1] (4.174)

This is true when following conditions on h̄, h̄11 are met.

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
(4.175)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0) (4.176)

Since n = 2l+1 columns of [h̄11V1 V2] are linearly independent, additional vector chosen γl+1h̄
lv

must lie in span of [h̄11V1 V2]. It cannot lie in the space spanned by V2 because that would contra-

dict (4.168). But if it does not lie in the space spanned by V2 then the desired signal space h̄11V1

is not resolvable from interference. This is a contradiction, since in the converse we assume that

the desired signal is resolvable from interference. Therefore additional vector γl+1h̄
lv cannot be

chosen at source 3 such that it aligns at destination 1, i.e., alignment depth cannot be greater than

D = 3l+1. This is illustrated in Fig. 4.11. Similarly alignment chains originating at other sources

and ending at other destinations can be shown to be of depth not greater than D. Consolidating the

linear independence conditions for all such chains, we note that alignment depth is at most D for

channels satisfying conditions ((4.165),(4.166),(4.167),(4.168)). Thus, we have proved Lemma 3.

We now show the outer bound on linear-scheme capacity for 3-user interference channel to be

3D
2D+1

. The proof of this part is almost identical to that in [8] (Theorem 7), so it is summarized only

for the sake of completeness.

THEOREM 4.6. For the 3-user interference channel over Fpn , outer bound on linear-scheme ca-

pacity is given by 3D
2D+1

, with D = 2n − bn
2
c − 1 for odd n = 2l + 1 wherein channels satisfy the
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Figure 4.12: Distinct channel structures with 3 cross channels as 0

following conditions

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
(4.177)

h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.178)

h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
(4.179)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)(4.180)

Proof: Let Vi↑k denote the signal space of user i (part of Vi) aligned to depth k + 1 and di =

dim(Vi), di↑k = dim(Vi↑k). Lemma 8 of [8] follows since we have finite dimensional subspaces,

i.e., di↑k ≥ di↑k+a + di−b↑k+b − di−b↑k+a+b. For a = −1, b = −1, we have

di↑k ≥ di↑k−1 + di+1↑k−1 − di+1↑k−2 (4.181)

Since alignment depth is at most D (Lemma 3), Vi↑D = {0} for each i, and so similar to lemma 9

of [8], we have

di ≥ di−1↑1 + di↑D−1 (4.182)
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Let us denote ck =
∑3

i=1 di↑k. Then using 4.181, we have ck ≥ 2ck−1 − ck−2. Using induction, it

can be deduced that ck ≥ ick−i+1 − (i− 1)ck−i. For i = k = D − 1, we have

(D − 2)c0 ≥ (D − 1)c1 − cD−1 (4.183)

Using 4.182, it can be shown that c0 ≥ c1+cD−1. Combining with 4.183, we have (D−1)c0 ≥ Dc1.

Let total dimension at each destination be denoted by N = mn where m symbol extensions

of the channel is considered with channels from Fpn . Since interference span must be linearly

independent of desired signal, and considering N dimensions at destination 1, we have

Destination 1: dim(h̄11V1 + V2 + V3) = d1 + d2 + d3 − d2↑1 ≤ N

Destination 2: dim(V1 + h̄22V2 + V3) = d1 + d2 + d3 − d3↑1 ≤ N

Destination 3: dim(V1 + h̄V2 + h̄33V3) = d1 + d2 + d3 − d1↑1 ≤ N

Adding above inequalities and using (D − 1)c0 ≥ Dc1, we can deduce as in [8] that

d1 + d2 + d3

N
≤ 3D

2D + 1
(4.184)

Thus we have proved the outer bound on linear-scheme capacity for 3-user interference channel

over Fpn with channels satisfying aforementioned linear independence constraints.

4.4 Summary

Capacity and linear capacity results are explored for the 2-user X channel and the 3-user inter-

ference channel respectively, over the finite field Fpn , by translating precoding based interference

alignment schemes from corresponding DoF results for the wireless setting. The main insight is

that the finite field Fpn can be viewed as analogous to diagonal n × n wireless channels with di-
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versity n. This insight appears to be broadly true for linear precoding based schemes. While the

linear capacity is fully characterized, the information theoretic capacity remains open for finite

field networks over Fp, i.e., for n = 1, where diversity is only 1. We expect that signal level align-

ment schemes and combinatorial outer bound arguments such as those presented in [17] should be

useful in these cases.
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Chapter 5

Conclusions

Three categories were studied to understand the impact of non-generic channels on the signaling

dimensions of linear communication networks.

Implications of rank deficiencies on the DoF of MIMO interference networks were explored, in-

volving either asymptotic or non-asymptotic interference alignment schemes. One of the key ob-

servations is that the rank deficiencies of the cross channels cannot hurt and could even improve

the DoF, while the rank deficiencies of the direct channels cannot help and could hurt. For the

K-user interference channel with M ×M channels being rank deficient, DoF per user was found

to be min
(
D0,M − min(M,(K−1)D)

2

)
where D0 is the rank of all direct channels, and D is the rank

of all cross channels.

The single user MIMO rank deficient channel with full decomposition (no joint processing) is same

as the problem with the overall transfer matrix of a SISO interference channel being rank deficient.

In a K-user SISO interference channel, the overall K ×K transfer matrix could be rank deficient,

say rank D. This could arise because of network topology, wherein relays with D antennas listen

to signals from K transmitters and forward to K receivers. Study of alignment feasibility for a

multiple unicast session with similar network topology is one relevant problem, as in [37] for 3
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users, highlighting the significance of rank deficiencies in wired networks. However, feasbility

problem is open for interference channel with K > 3 users, and is an interesting research avenue.

Some of our findings were presented in [44].

2-hop rank deficient interference channel was studied to understand multi-hop network dependen-

cies along with rank deficient channels. For the 2-hop rank deficient interference channel, a rank

matching principle was identified similar to impedance matching, wherein maximum of 2M DoF

are achieved when the ranks in both hops are the same. Under moderate rank deficiencies, the DoF

loss was found to be the rank mismatch between the 2 hops. For the 2-hop rank deficient inter-

ference channel with M antennas at all nodes, DoF was found to be min(4D1, 4D2, 2M − ∆D),

wherein ∆D = |D1 −D2| and D1 is the rank of all channels in the first hop and D2 is the rank of

all channels in the second hop. Further in [52], to understand the implications of the rank-matching

bounds beyond the sum-DoF of the 2-hop interference channel, limited extensions were studied —

beyond sum-DoF to DoF regions, beyond 2 unicasts to general message sets (X setting), beyond

2 hops to the 2 × 2 × 2 × 2 setting and beyond 2 nodes per layer to the K × K × K setting.

In particular, we find that the DoF loss due to rank-mismatch may be circumvented, at least in

symmetric settings, through expanded message sets and/or expanded number of hops.

Constant finite field channels over Fpn were studied to understand the limitations of finite alphabet

with limited diversity. Scalar (SISO) channels over Fpn are equivalent to vector n×nMIMO chan-

nels over Fp. Through the study of the capacity of 2-user finite field X channel and linear-scheme

capacity of 3-user finite field interference channel, interesting parallels were drawn between p and

SNR, and n and channel diversity.
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Appendix A

Constant finite field channels : Proofs

A.1 Zero Channels in 3-user Interference channel

Here, we deal with realizations of the 3-user interference channel where some of the channel

coefficients are zero.

THEOREM A.1. For the 3 user interference channel over Fpn , if one or more of the channel

coefficients hji is equal to zero, the capacity results are given as follows:

1. If all three direct channels are zero, then C = Clinear = 0.

2. If any two direct channels are zero, then C = Clinear = 1.

3. If exactly one direct channel is zero, then C = Clinear = 1 or C = Clinear = 2, depending

on whether any of the cross-channels between the other two users takes a non-zero value or

they are all zero, respectively.

4. If all direct channels are non-zero and all 6 cross channels are zero, then C = Clinear = 3.

152



5. If all direct channels are non-zero and either 4 or 5 cross channels are zero, then C =

Clinear = 2.

6. If all direct channels are non-zero and either 2 or 3 cross channels are zero, and if hij =

hji = 0 for any one {i, j} ∈ {1, 2, 3}, then C = Clinear = 2.

7. In all other cases, the linear capacity is either 1 or 1.5 for channels over Fpn with p > 3 (the

specific cases for each are identified in the proof).

Proof: Cases 1, 2, 3, 4, 6 are trivial. The remaining cases are discussed below.

Case 5: For all these channel structures, it can be shown that there always exists at least one

{i, j} ∈ {1, 2, 3} such that hij = hji = 0, and so only the sources {i, j} can be used for transmis-

sion, leading to a sum rate of 2 being achievable. Outer bound of 2 follows by removing all but

one non-zero cross-link.

Case 7:

For the achievability of sum rate of 1.5, consider the following:

1. All channels are from Fpn . For even n = 2l, we choose beamforming matrices V ∈ F1×l
pn at

some of the sources and V ′ ∈ F1×l
pn at others, and precode n

2
= l symbols x1

k, x
2
k, . . . , x

l
k ∈ Fp

for each channel use, at all 3 sources. We denote the l columns of V as v1,v2, . . . ,vl and

those of V ′ as v′1,v
′
2, . . . ,v

′
l. These beam forming matrices would be chosen such that

desired and interference symbols are linearly independent over Fp at the destinations.

2. When n is odd, 2 symbol extensions are used wherein the beamforming matrix V ∈ F2×n
pn

is used at some of the sources and V ′ ∈ F2×n
pn at others. Over 2 channel uses, n input

symbols are precoded at each source. Columns of V and V ′ are then chosen such that

desired and interference symbols are linearly independent over Fp at all destinations. Linear

independence arguments follow similar to case of even n.
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We describe only even n for various channel structures, for brevity. Let us first consider the setting

where 3 cross channels are zero. There are 5 distinct channel structures corresponding to any three

cross channels being zero, and all other channel structures (
(

6
3

)
− 5 = 15) are isomorphic to them.

These 5 channel structures are shown in Fig. 4.12. Of these, A, B, C belong to Case 5, and are

therefore trivial.

Structure D:

For this structure, interference from sources 1 and 2 need to be aligned at destination 3. The

normalized channel for this structure is illustrated in Fig. A.1.

Figure A.1: Normalized channel of structure D

Beam forming matrix V is used at sources 1 and 2, and V ′ is used at source 3. Signal spaces at 3

destinations are then given by

S1 = [h̄11V ] = [h̄11v1, h̄11v2, . . . , h̄11vl] (A.1)

S2 = [h̄22V V ] = [h̄22v1, h̄22v2, . . . , h̄22vl, v1, v2, . . . , vl] (A.2)

S3 = [h̄33V
′ V ] = [h̄33v

′
1, h̄33v

′
2, . . . , h̄33v

′
l, v1, v2, . . . , vl] (A.3)

Consider signal space at destination 2. Let us choose v1 as 1, then if h̄22 /∈ Fp, [h̄22v1 v1] are lin-

early independent over Fp. Now let us construct v2 such that 4 columns of S2, [h̄22v1 v1 h̄22v2 v2]
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are linearly independent over Fp.

From S2, v2 /∈ A ,

{
(α1h̄22 + α2)v1

β1h̄22 + β2

: α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(A.4)

Now we note that

|A| ≤ (p2 − 1)p2

p− 1
= p3 + p2 (A.5)

There are pn choices for v2, and since pn > (p3 + p2) for all p, there exist choices for v2 such that

condition (A.4) holds. Choosing v2 from those, we note that 4 columns of S2 are linearly indepen-

dent over Fp. We proceed recursively in a similar manner, for choosing columns v3,v4, . . . ,vl−1

such that 6, 8, . . . , 2(l − 1) columns are linearly independent over Fp respectively, in S2.

Let us now discuss the last iteration wherein we choose column vl such that all n = 2l columns

are linearly independent over Fp in S2, given that 2l − 2 columns are already linearly independent

with appropriate choices of v1,v2, . . . ,vl−1.

From S2, vl /∈ A ,

{
1

β1h̄22 + β2

((α1h̄22 + α2)v1 + (α3h̄22 + α4)v2 + · · ·+

(α2l−3h̄22 + α2l−2)vl−1) : αi, β1, β2 ∈ Fp, i ∈ {1, . . . , 2l − 2}, (β1, β2) 6= (0, 0)

}
(A.6)

Now we note that

|A| ≤ (p2 − 1)p2l−2

p− 1
= p2l−1 + p2l−2 (A.7)

There are pn = p2l choices for vl, and since p2l > (p2l−1 + p2l−2) for all p, there exist choices

for vl such that condition (A.6) holds. Choosing vl from those, we note that all n columns of S2

are linearly independent over Fp. Also, it can be noted that l = n
2

columns of V in S1 and S3

are linearly independent over Fp. Destination 1 does not receive any interference and so desired
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x1

x2

Clinear = 1.5 or 1C = Clinear = 2 Clinear = 1.5 or 1 Clinear = 1.5 or 1 Clinear = 1.5 or 1

Figure A.2: Distinct channel structures with 2 cross channels as 0

symbols are resolvable.

Let us now consider destination 3 where interference is aligned in n
2

= l linearly independent

columns of V . Since source 3 does not cause interference anywhere, V ′ is trivially chosen to be

1
h̄33

times the remaining n/2 basis vectors. Hence, desired and interference symbols are linearly

independent at all destinations. Thus, sum rate of 3
2

is achieved for structure D in Fig. A.1, with

channels over Fpn for all even n, if h̄22 /∈ Fp.

Fraction of channels for which scheme achieves 3
2

sum rate is given by

pn − p
pn

= 1− 1

pn−1
→ 1 for large p, n (A.8)

3
2

is also an information theoretic outer bound on sum rate for structure D because the sum-rate

of any two users is bounded by 1. However, when h̄22 = 1, then arguing along the lines of [11]

we find that destination 3 can decode all three messages, so that the information theoretic sum-

capacity bound = 1. For all other cases where h̄22 ∈ Fp but h̄22 /∈ {0, 1}, the linear capacity is still

1 (because the linear capacity does not depend on the scaling of channel coefficients by non-zero

Fp elements) but the information theoretic capacity is unknown.

Thus, structure D has linear capacity of 1.5 if h̄22 /∈ Fp, and 1 otherwise.

Structure E: For structure E, the sum rate of 1.5 is achieved even without channel knowledge at

the sources. For example, source 1 sends an Fpn symbol only over the first channel use and stays

quiet over the second channel use, source 2 sends a Fpn symbol over the second channel use and
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remains quiet over the first channel use, and source 3 repeats its Fpn symbol over both channel

uses. This allows each destination to decode its desired symbols. The outer bound of 1.5 applies

because the sum-capacity of any two users is 1. Thus, structure E has C = Clinear = 1.5.

Next let us consider cases where 2 cross channels are 0, shown in Fig. A.2. Structure F belongs to

Case 5, so it is trivial.

Structure G: The normalized channel for this structure is illustrated in Fig. A.3. For this structure,

signals from sources 1 and 2 need to be aligned at destination 3 and remain resolvable at destination

2. Following the proof for structure D, this can be done if h̄22 /∈ Fp. Similarly, signals from

sources 1 and 3 need to align at destination 2 and remain resolvable at destination 3. This can be

done if h̄33 /∈ Fp. We choose V such that both S2 = [h̄22V V ] and S3 = [h̄33V V ] are linearly

independent over Fp, which can be shown to be possible for all p > 2. Thus, sum rate of 3
2

is

achieved for structure G in Fig. A.3, with channels over Fpn for all even n, if h̄22, h̄33 /∈ Fp. The

outer bound of 3
2

follows from the pair-wise bounds. If all non-zero channels are equal to 1, then

the argument of [11] shows that one destination can decode all messages, i.e., C = Clinear = 1.

In all other cases with non-zero h̄kk ∈ Fp for any k = 2, 3, the linear capacity is still one because

the linear capacity is not affected by a scaling of channel coefficients by non-zero constants in Fp.

Thus structure G has linear-scheme capacity of 3
2

if h̄kk /∈ Fp, k ∈ {2, 3}, and 1 otherwise.

Figure A.3: Normalized channel - structure
G

Figure A.4: Normalized channel - structure
H
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Structure H:

The normalized channel for this structure is illustrated in Fig. A.4. For this structure, signals

from sources 1 and 2 need to be aligned at destination 3 and remain resolvable at destination 2.

Following the proof for structure D, this can be done if h̄22 /∈ Fp. We choose V ′ such that both

S1 = [h̄11V V ′] and S3 = [h̄33V
′ V ] are linearly independent over Fp, which can be shown to be

possible for all p > 2. Thus, sum rate of 3
2

is achieved for structure H in Fig. A.4, with channels

over Fpn for all even n, if h̄22 /∈ Fp. The outer bound of 3
2

follows from the pair-wise bounds. If all

non-zero channels are equal to 1, then the argument of [11] shows that one destination can decode

all messages, i.e., C = Clinear = 1. In all other cases with non-zero h̄22 ∈ Fp, the linear capacity is

still one because the linear capacity is not affected by a scaling of channel coefficients by non-zero

constants in Fp. Thus structure H has linear-scheme capacity of 3
2

if h̄22 /∈ Fp, and 1 otherwise.

Structure I:

The normalized channel for this structure is illustrated in Fig. A.5. For this structure, signals

from sources 1 and 3 need to be aligned at destination 2 and remain resolvable at destination 1.

Following the proof for structure D, this can be done if h̄11 /∈ Fp. We choose V ′ such that both

S2 = [h̄22V
′ V ] and S3 = [h̄33V V ′] are linearly independent over Fp, which can be shown to be

possible for all p > 2. Thus, sum rate of 3
2

is achieved for structure H in Fig. A.5, with channels

over Fpn for all even n, if h̄11 /∈ Fp. The outer bound of 3
2

follows from the pair-wise bounds. If all

non-zero channels are equal to 1, then the argument of [11] shows that one destination can decode

all messages, i.e., C = Clinear = 1. In all other cases with non-zero h̄11 ∈ Fp, the linear capacity is

still one because the linear capacity is not affected by a scaling of channel coefficients by non-zero

constants in Fp. Thus structure I has linear-scheme capacity of 3
2

if h̄11 /∈ Fp, and 1 otherwise.

Structure J:

The normalized channel for this structure is illustrated in Fig. A.6. For this structure, signals from

sources 1 and 3 need to be aligned at destination 2 but remain resolvable at destinations 1 and 3.

Following the proof for structure D, this can be done if h̄11, h̄33 /∈ Fp. We choose V such that both

S1 = [h̄11V V ] and S3 = [h̄33V V ] are linearly independent over Fp, which can be shown to be
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Figure A.5: Normalized channel - structure
I

Figure A.6: Normalized channel - structure
J

possible for all p > 2. Thus, sum rate of 3
2

is achieved for structure J in Fig. A.6, with channels

over Fpn for all even n, if h̄11, h̄33 /∈ Fp. The outer bound of 3
2

follows from the pair-wise bounds.

If all non-zero channels are equal to 1, then the argument of [11] shows that one destination can

decode all messages, i.e., C = Clinear = 1. In all other cases with non-zero h̄kk ∈ Fp for any

k = 1, 3, the linear capacity is still one because the linear capacity is not affected by a scaling of

channel coefficients by non-zero constants in Fp. Thus structure J has linear-scheme capacity of 3
2

if h̄kk /∈ Fp, k ∈ {1, 3}, and 1 otherwise.

Finally, let us now consider the setting where only one cross channel is zero.

Structure K:

The normalized channel for this structure is illustrated in Fig. A.7. For this single channel structure,

interference from sources 2 and 3 need to be aligned at destination 1, and interference from sources

1 and 3 need to be aligned at destination 2.

Beam forming matrix V is used at all 3 sources. Signal spaces at 3 destinations are then given by

S1 = [h̄11V V ] = [h̄11v1, h̄11v2, . . . , h̄11vl,v1, v2, . . . , vl] (A.9)

S2 = [h̄22V V ] = [h̄22v1, h̄22v2, . . . , h̄22vl,v1, v2, . . . , vl] (A.10)

S3 = [h̄33V V ] = [h̄33v1, h̄33v2, . . . , h̄33vl,v1, v2, . . . , vl] (A.11)
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Let us choose v1 as 1, then if h̄11, h̄22, h̄33 /∈ Fp, [h̄11v1 v1], [h̄22v1 v1] and [h̄33v1 v1] are

linearly independent over Fp. Now let us construct v2 such that 4 columns of Sk, k ∈ {1, 2, 3} are

linearly independent.

From Sk, v2 /∈ Ak ,
{

(α1h̄kk + α2)v1

β1h̄kk + β2

: α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
, k ∈ {1, 2, 3}

(A.12)

Now we note that

|Ak| ≤
(p2 − 1)p2

p− 1
= p3 + p2, k ∈ {1, 2, 3} (A.13)

|A1 ∪ A2 ∪ A3| ≤ 3(p3 + p2) (A.14)

There are pn choices for v2, and since pn > 3(p3 + p2) for all p > 3, there exist choices for

v2 such that all 3 conditions of (A.12) hold. Choosing v2 from those, we note that 4 columns of

Sk, k ∈ {1, 2, 3} are linearly independent over Fp. We proceed recursively in a similar manner, for

choosing columns v3,v4, . . . ,vl−1 such that 6, 8, . . . , 2(l − 1) columns are linearly independent

over Fp respectively, in Sk, k ∈ {1, 2, 3}.

For the last iteration, we choose column vl such that all n = 2l columns are linearly independent

over Fp in Sk, k ∈ {1, 2, 3}, given that 2l − 2 columns are already linearly independent with

appropriate choices of v1,v2, . . . ,vl−1.

From Sk, vl /∈ Ak ,
{

1

β1h̄kk + β2

(
(α1h̄kk + α2)v1 + (α3h̄kk + α4)v2 + · · ·+

(α2l−3h̄kk + α2l−2)vl−1

)
: αi, β1, β2 ∈ Fp, i ∈ {1, . . . , 2l − 2},

(β1, β2) 6= (0, 0)

}
, k ∈ {1, 2, 3} (A.15)
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Now we note that

|Ak| ≤
(p2 − 1)p2l−2

p− 1
= p2l−1 + p2l−2 (A.16)

|A1 ∪ A2 ∪ A3| ≤ 3(p2l−1 + p2l−2) (A.17)

There are pn = p2l choices for vl, and since p2l > 3(p2l−1 +p2l−2) for all p > 3, there exist choices

for vl such that conditions of (A.15) hold. Choosing vl from those, we note that all n columns of

S1, S2, S3 are linearly independent over Fp.

Figure A.7: Normalized channel of structure K

Hence, desired and interference symbols are linearly independent at all destinations. Thus, sum

rate of 3
2

is achieved for structure K in Fig. A.7, with channels over Fpn for all even n, if

h̄11, h̄22, h̄33 /∈ Fp.

Fraction of channels for which scheme achieves 3
2

sum rate is given by

(
pn − p
pn

)3 = (1− 1

pn−1
)3 → 1 for large p, n (A.18)

The outer bound of 3
2

follows from the pair-wise bounds. If all channels are equal to 1, then the

argument of [11] shows that one destination can decode all messages, i.e., C = Clinear = 1. In

all other cases with non-zero h̄kk ∈ Fp for any k, the linear capacity is still one because the linear

capacity is not affected by a scaling of channel coefficients by non-zero constants in Fp. Thus

structure K has linear-scheme capacity of 3
2

if h̄kk /∈ Fp, k ∈ {1, 2, 3}, and 1 otherwise.
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