
UC Irvine
UC Irvine Previously Published Works

Title
CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

Permalink
https://escholarship.org/uc/item/7rg0m5d9

Journal
eLife, 5(DECEMBER2016)

ISSN
2050-084X

Authors
Zhou, Miou
Greenhill, Stuart
Huang, Shan
et al.

Publication Date
2016

DOI
10.7554/elife.20985

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rg0m5d9
https://escholarship.org/uc/item/7rg0m5d9#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


*For correspondence: foxkd@

cardiff.ac.uk (KF); silvaa@mednet.

ucla.edu (AJS)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 26

Received: 26 August 2016

Accepted: 19 December 2016

Published: 20 December 2016

Reviewing editor: Moses V

Chao, New York University

Langone Medical Center, United

States

Copyright Zhou et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

CCR5 is a suppressor for cortical plasticity
and hippocampal learning and memory
Miou Zhou1†, Stuart Greenhill2,3†, Shan Huang1, Tawnie K Silva1,
Yoshitake Sano1,4, Shumin Wu5, Ying Cai1, Yoshiko Nagaoka5, Megha Sehgal1,
Denise J Cai1, Yong-Seok Lee1,6, Kevin Fox2*, Alcino J Silva1*

1Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for
Learning and Memory and Brain Research Institute, University of California, Los
Angeles, Los Angeles, United States; 2Cardiff School of Biosciences, Cardiff
University, Cardiff, United Kingdom; 3School of Life and Health Sciences, Aston
University, Birmingham, United Kingdom; 4Department of Applied Biological
Science, Tokyo University of Science, Chiba, Japan; 5Department of Molecular and
Medical Pharmacology, University of California, Los Angeles, Los Angeles, United
States; 6Department of Physiology, Seoul National University College of Medicine,
Seoul, Republic of Korea

Abstract Although the role of CCR5 in immunity and in HIV infection has been studied widely,

its role in neuronal plasticity, learning and memory is not understood. Here, we report that

decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP),

and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused

memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike

timing dependent plasticity and consequently, dramatically accelerated experience-dependent

plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and

CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits.

Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that

were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays

an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the

cognitive deficits caused by HIV.

DOI: 10.7554/eLife.20985.001

Introduction
C-C chemokine receptor 5 (CCR5) is a seven-transmembrane G protein-coupled receptor (GPCR)

involved in recruiting leukocytes to sites of tissue damage during inflammatory responses. CCR5 is

highly expressed in T cells and macrophages in the immune system (Sorce et al., 2011). In the cen-

tral nervous system, CCR5 is expressed in microglia, astrocytes and neurons in multiple brain regions

(Cartier et al., 2005; Meucci et al., 1998; Tran et al., 2007; Westmoreland et al., 2002), including

the CA1 region of the hippocampus (Torres-Muñoz et al., 2004).

Ligand binding to CCR5 is known to modulate several parallel signaling cascades implicated in

learning and memory, including the suppression of adenylyl cyclase (AC), as well as the activation of

the PI3K/AKT and p44/42 MAPK signaling (Cartier et al., 2005; Paruch et al., 2007; Tyner et al.,

2005). The CCR5 endogenous ligand RANTES (also known as CCL5) is reported to block neuronal

[Ca2+]i oscillations (Meucci et al., 1998) and to modulate glutamate release (Musante et al., 2008),

suggesting a role for CCR5 in the regulation of neuronal function.

CCR5 has a key role in HIV infection by mediating virus cellular entry. Ccr5 knockdown inhibits

HIV-1 infection in macrophages (Liang et al., 2010) and CCR5 antagonists effectively reduce HIV-1
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expression in AIDS patients (Hunt and Romanelli, 2009). Treatment with the CCR5 antagonist mara-

viroc has been reported to improve neurocognitive test performance among patients with moderate

cognitive impairment (Ndhlovu et al., 2014), supposedly by reducing monocytes and inflammation.

Cognitive deficits affect approximately 30% of HIV-positive adults and 50% of HIV-positive infants

(Galicia et al., 2002), and are a significant clinical problem associated with HIV infection. Although

CCR5 plays a crucial role in HIV infection in the central nervous system (CNS) (Ellis et al.,

2007; Zhou and Saksena, 2013), little is known about its role in neuronal plasticity or learning and

memory, or whether this receptor plays a direct role in HIV-associated cognitive disorders.

Here, we demonstrate that manipulations that decrease CCR5 function result in elevated MAPK

and CREB levels during learning, enhance synaptic plasticity and improve both cortical sensory plas-

ticity and hippocampal learning and memory, while the transgenic overexpression of this receptor

causes learning and memory deficits. Thus, our studies reveal an important suppressor role for CCR5

in neuroplasticity, learning and memory, independent of the proposed roles of CCR5 in neuroinflam-

mation and neurodegeneration. Since our results and other studies (Cormier and Dragic, 2002;

Morikis et al., 2007; Shen et al., 2000) show that HIV coat proteins can bind and activate CCR5,

thus activating its memory suppressor functions, our results suggest that besides the neuroinflamma-

tion induced neurodegeneration that can cause HIV-associated cognitive deficits, CCR5 activation by

HIV coat proteins also contributes to the cognitive deficits caused by HIV.

Results

Identification of Ccr5 knockout mice in a reverse genetic memory
screen
Our first indication that CCR5 was involved in plasticity and memory came from a reverse genetic

memory screen. In total, 148 transgenic and knockout mutant mouse strains with controlled genetic

backgrounds were chosen at random from the inventories of commercial vendors (Jackson Laborato-

ries and Taconic Farms) as well as individual laboratories, and screened for contextual memory phe-

notypes (Figure 1—figure supplement 1 and Figure 1—source data 1). Interestingly, 6 out of the 8

chemokine or chemokine receptor mutant strains screened (# labeling, Figure 1—figure supple-

ment 1) showed positive Z scores (see Materials and methods), including three mutant strains with

scores above 1, suggesting enhanced memory for contextual conditioning. HRasG12V mice were

used for comparison, since they were previously reported (Kushner et al., 2005) to show enhanced

memory for contextual fear conditioning. Like HRasG12V mice, mice homozygous for a null-mutation

of the Ccr5 gene (Ccr5-/-) showed average Z scores above 1. The CCR5 knockout resulted in memory

enhancements for contextual conditioning when tested 24 hr after training (Figure 1—figure sup-

plement 2A, t(14) = 2.43 p<0.05, Student’s t-test) and 2-weeks after training (Figure 1—figure sup-

plement 2B, t(14) = 3.07 p<0.01, Student’s t-test). These results show that the Ccr5 knockout results

in enhanced long-term (24 hr) and remote (2-weeks) memory. Importantly, activity levels including

baseline activity and activity bursts during shock-exposure were normal (Figure 1—figure supple-

ment 2C,D), a result demonstrating that the enhanced freezing of Ccr5-/- mice is not due to either

decreases in activity or increased sensitivity to the unconditioning stimulus (i.e., the footshock). In

contrast to contextual conditioning, tone conditioning (Hall et al., 2001) was unaltered in the Ccr5-/-

mice (Figure 1—figure supplement 2E), confirming that the contextual conditioning enhancement

of these mutants is not due to non-specific behavioral changes that alter conditioning responses.

Ccr5+/- mice show enhanced memory in multiple memory tasks
To test whether the heterozygous deletion mutation (Ccr5+/-) also results in enhanced memory,

Ccr5+/- mice were trained in the contextual fear conditioning task and were tested 2-weeks after

training. Compared to WT littermates, Ccr5+/- mice showed increased freezing levels (Figure 1A,

t(20) = 2.37 p<0.05, Student’s t-test); in contrast, baseline activity and shock sensitivity were normal

in these mutants (Figure 1—figure supplement 3A), demonstrating that both the Ccr5 heterozy-

gous and homozygous mutations result in enhanced contextual memory.

To determine whether the Ccr5+/- mutation also affects other forms of hippocampal-dependent

memory (Kogan et al., 2000; Riedel et al., 1999), the mice were tested in the Morris water maze

and social recognition tasks. In the hidden-platform version of the Morris water maze, mice were
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Figure 1. Ccr5+/- mice show enhanced memory in multiple memory tasks. (A) In a fear conditioning test given two weeks after training, Ccr5+/- mice

showed enhanced contextual memory (WT n = 11, Ccr5+/- n = 11; *p<0.05, Student’s t-test). (B) In a water maze probe test given after two days of

training, Ccr5+/- mice spent significantly more time in the target quadrant than in the other three quadrants of the water maze. In contrast, WT mice did

not search selectively for the platform (WT n = 14, Ccr5+/- n = 16; *p<0.05, Two-way ANOVA with repeated measure). Heat maps below the bar graphs

show the combined traces of the mice from each group during the probe test. (C) There was no difference between WT mice and Ccr5+/- mice in social

Figure 1 continued on next page
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tested for their ability to use spatial cues around a pool to find an escape platform hidden just

beneath the water surface. Following 2-days of training, memory was assessed by a probe test

wherein the mice search for 60 s with the platform removed from the pool. Since this probe test was

administered early in training, the WT mice did not search selectively for the platform. In contrast,

even with this limited amount of training, Ccr5+/- mice spent significantly more time in the quadrant

where the platform had been during training (target quadrant) than the other three quadrants, dem-

onstrating that the Ccr5+/- mutation not only enhances learning and memory for contextual condi-

tioning, but also results in enhanced spatial learning and memory [Figure 1B; Two-way ANOVA with

repeated measure, overall (genotype � percentage of time in each quadrant) interaction:

F(3,84) = 0.81; Main effect of quadrant%: F(3,84) = 6.99. Between the target quadrant and all other

quadrants for Ccr5+/- mice: p<0.05, Bonferroni post-tests]. Heat maps, derived from the combined

swimming traces of the mice in each group during the probe test, also illustrate the spatial learning

and memory enhancement of Ccr5+/- mice (Figure 1B).

The social recognition task takes advantage of mice’s preference for novel stimuli and tests their

ability to distinguish familiar versus novel conspecifics (Kogan et al., 2000). For this task, mice were

first habituated to the testing chamber on day 1; on day 2, they were placed in the same chamber

and allowed to interact for 7 min with an ovariectomized (OVX) female mouse placed under a wired

cylinder (training session). On day 3, individual mice were placed back into the same chamber (test

session), and allowed to interact with two OVX females (one familiar and one novel) (Figure 1C). In

the test session, compared to WT mice, Ccr5+/- mice spent significantly more time exploring the

novel OVX mouse, indicating that the Ccr5+/- mutation also enhanced learning and memory in the

social recognition test (Figure 1C, t(18) = 3.39 p<0.01, one sample paired t-test compared to 50%).

Importantly, the Ccr5+/- mutation did not affect the total interaction time during training, demon-

strating that their learning and memory enhancement is not due to increased social interaction.

Since anxiety and activity levels could confound the results of the memory tests described above,

we tested the Ccr5+/- mice and their WT littermate controls in the elevated plus maze and open field

tasks. Ccr5+/- mice were similar to WT littermates in both open arm entries and percentage time

spent in the open arms of the elevated plus-maze, two well-known measures of anxiety (Figure 1—

figure supplement 3B); Analyses of the open field (e.g., measures of total distance traveled and

percentage time in center zone) also revealed no differences between the Ccr5+/- mice and their WT

controls (Figure 1—figure supplement 3C). A previous study reported that CCR5 deficiency results

in the activation of astrocytes, which leads to neurodegeneration in aged mice (Lee et al., 2009).

We measured astrocyte numbers and apoptosis with GFAP and TUNEL staining in the hippocampus

of 3-month old mice, and found that in our genetic background there is no difference between WT

and Ccr5+/- mice (Figure 1—figure supplement 4A–C). Measurements of spine density in the hippo-

campal CA1 subregion revealed no differences between YFP/WT and YFP/Ccr5+/- mice (Figure 1—

figure supplement 4D). Altogether, these results indicate that the learning and memory

Figure 1 continued

training. In the social recognition test given 24 hr after training (7 min, a training time chosen to undertrain WT mice), Ccr5+/- mice, but not WT mice,

spent more time exploring the novel OVX mouse (WT n = 14, Ccr5+/- n = 19; **p<0.01, one sample t-test compared to 50%). Error bars indicate SEM.

DOI: 10.7554/eLife.20985.002

The following source data and figure supplements are available for figure 1:

Source data 1. Full names and MGI accession # of the 148 mutant strains in the reverse genetic memory screen (*Jax stock#: 370200; **Jax stock#:

370202).

DOI: 10.7554/eLife.20985.003

Figure supplement 1. Identification of Ccr5 knockout mice in a reverse genetic memory screen.

DOI: 10.7554/eLife.20985.004

Figure supplement 2. Ccr5-/- mice show enhanced contextual memory.

DOI: 10.7554/eLife.20985.005

Figure supplement 3. Behavioral tasks to test the baseline activity and activity burst during fear conditioning, and anxiety and locomotive levels in WT

and Ccr5+/- mice.

DOI: 10.7554/eLife.20985.006

Figure supplement 4. WT and Ccr5+/- mice show similar GFAP and TUNEL immunostaining and similar spine density.

DOI: 10.7554/eLife.20985.007
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enhancements of the Ccr5+/- mice are not confounded by abnormal anxiety, changes in locomotor

activity, astrogliosis, apoptosis, or spine density.

Enhanced MAPK and CREB signaling and long-term potentiation in
Ccr5+/- mice
Mitogen-activated protein kinases p44/42 (MAPKs) (Atkins et al., 1998; Kushner et al., 2005;

Schafe et al., 2000) and cAMP-responsive element-binding protein (CREB) (Bourtchuladze et al.,

1994; Dash et al., 1990; Yin et al., 1994) are known to have a central role in hippocampal learning

and memory and in cortical plasticity (Barth et al., 2000; Glazewski et al., 1999). We focused our

signaling studies at two different time points (1 hr and 3 hr) following training (Chwang et al., 2006;

Stanciu et al., 2001). Prior to learning (measurements in home cage controls), there were no differ-

ences between WT and Ccr5+/- mice in either hippocampal MAPK or CREB activation measured with

phospho-specific antibodies (Figure 2A). In contrast, Ccr5+/- mice showed enhanced phosphorylated

MAPK (Figure 2B, t(10) = 4.45 p<0.01, Student’s t-test) and enhanced phosphorylated CREB levels

(Figure 2C, t(12) = 2.21 p<0.05, Student’s t-test) at 1 and 3 hr after fear conditioning, respectively

(see Figure 2—figure supplements 1, 2 and 3 for MAPK and CREB levels at both 1 hr and 3 hr).

Since MAPK/CREB signaling in neurons is known to affect synaptic plasticity, we tested whether

the Ccr5+/- mice show enhanced long-term potentiation (LTP), a cellular mechanism underlying learn-

ing and memory (Bliss and Collingridge, 1993; Lee and Silva, 2009). Field EPSPs (fEPSPs) evoked

by Schaffer collateral stimulation were recorded in the CA1 region of acute hippocampal slices pre-

pared from WT and Ccr5+/- mice. Analyses of the fEPSPs between 50 and 60 min post-tetanus

revealed enhanced LTP in Ccr5+/- mice (Figure 2D, t(12) = 2.61 p<0.05, Student’s t-test). Our results

suggest that the enhancement in MAPK/CREB signaling causes the hippocampal enhancements in

LTP that likely underlies the hippocampal-dependent learning and memory enhancements of Ccr5+/-

mice. More importantly, these signaling, electrophysiological and behavioral results of Ccr5+/- mice

suggest that CCR5 is a plasticity and memory suppressor (Abel et al., 1998).

Knockdown of Ccr5 in adult hippocampus results in enhanced memory
The Ccr5 knockout we studied is neither restricted to the hippocampus nor specific to adult brain

neurons, leaving open a number of other alternative explanations for the results described above.

Therefore, we used Adeno-Associated Viral vectors (AAV5) to restrict a shRNA-mediated Ccr5

knockdown to the adult hippocampus. AAV5 vectors containing either shRNA-CCR5 or shRNA-

dsRed (shRNA-Cont) (Figure 3A) were injected into the hippocampal pyramidal fields of 3 month-

old C57BL/6N mice. One month after shRNA-CCR5 virus injection, Ccr5 mRNA was markedly

reduced in the hippocampus compared to shRNA-Cont virus (Figure 3B, t(7) = 7.54 p<0.001, Stu-

dent’s t-test). Similarly, in cultured HEK293 cells, infection of shRNA-CCR5, but not shRNA-Cont

reduced Ccr5 expression (Figure 3—figure supplement 1A). Additionally, one-month after shRNA-

Cont or shRNA-CCR5 AAV injection, GFP expression (indicating AAV transfection) was observed

widely in the hippocampal pyramidal fields (including CA1 and CA2) of both groups (Figure 3C).

Most GFP-positive cells were recognized by the NeuN antibody (neuronal marker), but not by the

Iba1 antibody (microglia marker) (Figure 3D and Figure 3—figure supplement 1B) or the GFAP

antibody (astrocyte marker) (Figure 3—figure supplement 1C), demonstrating that the viral vectors

we used mainly transfected neurons, a result that we also confirmed in the barrel cortex (see results

below).

To test the impact of Ccr5 knockdown in hippocampal pyramidal fields, we trained the trans-

fected mice with contextual fear conditioning one-month after virus injection. When tested 2-weeks

after training, the shRNA-CCR5 mice showed enhanced contextual memory compared to shRNA-

Cont mice (Figure 3E, t(15) = 3.46 p<0.01, Student’s t-test). Mice transfected with shRNA-CCR5

showed similar enhancements in spatial learning and memory in the Morris water maze. Specifically,

we utilized the paradigm used for our knockout studies where a probe test was given after 2 days

training, when most control mice (transfected with shRNA-Cont virus) still failed to learn the task (e.

g., spent similar times in all four quadrants of the maze). Strikingly, mice transfected with the

shRNA-CCR5 virus spent significantly more time in the target quadrant than the other three quad-

rants [Figure 3F; Two-way ANOVA with repeated measure, overall (virus � percentage of time in

each quadrant) interaction: F(3,120) = 4.18; Main effect of quadrant%: F(3,120) = 9.45. Between the
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Figure 2. Ccr5+/- mice show post-training increases in MAPK and CREB signaling and enhanced hippocampal LTP. (A) Hippocampus collected from

home cage WT and Ccr5+/- mice had similar levels of phosphorylated p44/42 MAPK and CREB (MAPK: WT n = 4, Ccr5+/- n = 4; CREB: WT n = 6,

Ccr5+/- n = 7). (B) Ccr5+/- mice showed enhanced levels of phosphorylated p44/42 MAPK (normalized with total MAPK) in hippocampal samples

collected one hour after fear conditioning training (WT n = 6, Ccr5+/- n = 6; **p<0.01, Student’s t-test). (C) Ccr5+/- mice showed enhanced levels of

phosphorylated CREB (normalized with total CREB) in hippocampal samples collected 3 hr after fear conditioning training (WT n = 7, Ccr5+/- n = 7;

*p<0.05, Student’s t-test). (D) CA1 fEPSPs were recorded in hippocampal slices before (baseline) and after 5 TBS (theta bursts stimulation, each burst

consists of four stimuli at 100 Hz, 200 ms inter-burst interval). Ccr5+/- slices show a significant LTP enhancement in the fEPSP measured during the last

10 min of recordings following the tetanus (n = 7 mice for both WT and Ccr5+/-; *p<0.05, Student’s t-test). Error bars indicate SEM.

Figure 2 continued on next page
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target quadrant and all other quadrants for shRNA-CCR5 mice: p<0.001, Bonferroni post-tests; Tar-

get quadrant percentage between shRNA-Cont and shRNA-CCR5 group: t(40) = 2.53 p<0.05, Stu-

dent’s t-test]. Similar results were also obtained for other measures of probe trial performance

including proximity to the target platform and platform crossings (data not shown). Heat maps,

derived from the combined swimming traces of the mice in each group during the probe test, also

illustrate the spatial learning and memory enhancement of the shRNA-CCR5 group (Figure 3F). To

test whether with more extended training shRNA-Cont mice could also learn the water maze task, a

second probe test was given after 5 days of training. In this probe test, both shRNA-Cont and

shRNA-CCR5 mice spent more time in the target quadrant (Figure 3—figure supplement 1D), dem-

onstrating that with additional training the shRNA-Cont mice are able to show spatial learning in the

water maze task.

Altogether, these results demonstrate that CCR5 is a memory suppressor and that knocking-

down Ccr5 specifically in the adult CA1/CA2 is sufficient to enhance hippocampus-dependent learn-

ing and memory.

CCR5 overexpression leads to learning and memory deficits
Our CCR5 knockout and knockdown results demonstrate that CCR5 is a plasticity and memory sup-

pressor, and therefore predict that increases in CCR5 function lead to memory deficits. To test this

hypothesis, we generated transgenic (Tg) mice overexpressing Ccr5 under the Camk2a promoter

(Mayford et al., 1996). Compared to WT mice, CCR5 Tg mice show increases in hippocampal Ccr5

mRNA expression (Figure 4A). To test the impact of CCR5 overexpression on learning and memory,

WT and CCR5 Tg mice were tested in three hippocampal-dependent learning tasks, including two

contextual fear conditioning paradigms that are sensitive to changes in hippocampal function

(Cui et al., 2008; Matus-Amat et al., 2004). Analyses of a context pre-exposure fear-conditioning

paradigm (Matus-Amat et al., 2004) demonstrated that CCR5 Tg mice showed robust memory defi-

cits (Figure 4B, t(26) = 3.71 p=0.001, Student’s t-test). Similar results were also obtained with a multi-

day fear conditioning training procedure (Figure 4—figure supplement 1A).

WT and CCR5 Tg mice were also trained in the Morris water maze, and probe tests were given

after 3 days of training. In the probe test only WT mice, but not CCR5 Tg mice spent more time in

the target quadrant than the other three quadrants [Figure 4C, Two-way ANOVA with repeated

measure, Overall (genotype � quadrant%) interaction: F(3,102) = 3.42; Main effect of quadrant%:

F(3,102) = 21.44; Between the target quadrant and all other quadrants for WT mice: ***p<0.001, Bon-

ferroni post-tests; Target quadrant percentage between WT and Ccr5 transgenic group: t(34) = 2.33

*p<0.05, Student’s t-test]. CCR5 Tg mice also had higher average proximity from the platform and

less target platform crossing compared to WT mice (Figure 4—figure supplement 1B), indicating

that CCR5 overexpression results in spatial memory deficits. When a second probe test was given

after extended training, both WT and CCR5 Tg mice spent more time in the target quadrant than

the other three quadrants (Figure 4—figure supplement 1C), demonstrating that with extended

training CCR5 Tg mice also learned the water maze task. Altogether, the results presented demon-

strate a critical role for CCR5 in learning and memory.

We tested whether CCR5 overexpression changes either MAPK or CREB signaling in CCR5 Tg

mice after fear conditioning. Compared to their WT controls, CCR5 Tg mice show similar phosphory-

lated p44/42 MAPK levels at baseline or after fear conditioning training (Figure 4—figure supple-

ment 2A, B and C). Although CCR5 Tg mice and their WT controls have similar phosphorylated

Figure 2 continued

DOI: 10.7554/eLife.20985.008

The following figure supplements are available for figure 2:

Figure supplement 1. Hippocampal MAPK/CREB signaling of WT, Ccr5+/- and Ccr5-/- mice.

DOI: 10.7554/eLife.20985.009

Figure supplement 2. Hippocampal MAPK/CREB signaling of WT, Ccr5+/- and Ccr5-/- mice after fear conditioning.

DOI: 10.7554/eLife.20985.010

Figure supplement 3. Hippocampal MAPK/CREB signaling of WT, Ccr5+/- and Ccr5-/- mice after fear conditioning.

DOI: 10.7554/eLife.20985.011
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Figure 3. Ccr5 knockdown in the adult hippocampus results in enhanced memory. (A) Schematics of the shRNA-CCR5 and shRNA-dsRed (shRNA-Cont)

plasmids. (B) AAV containing shRNA-CCR5 or shRNA-Cont was injected into the hippocampus CA1/CA2 region, and dorsal CA1/CA2 Ccr5 mRNA was

measured one-month after virus injection. Compared to shRNA-Cont, shRNA-CCR5 triggered a significant reduction in Ccr5 mRNA expression

(***p<0.001, student’s t-test). Also, Ccr5-/- mice showed no Ccr5 mRNA expression in hippocampus. (C) AAV containing shRNA-CCR5 or shRNA-Cont

Figure 3 continued on next page
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CREB levels at baseline (Figure 4—figure supplement 3A), CCR5 Tg mice show decreased phos-

pho-CREB levels at 3 hr after fear conditioning training (Figure 4—figure supplement 3C). Because

of the critical role of CREB in memory consolidation (Bourtchuladze et al., 1994; Guzowski and

McGaugh, 1997), these results suggest that the memory deficits caused by CCR5 overexpression in

excitatory neurons are due to deficits in memory consolidation processes mediated by CREB

(Silva et al., 1998).

Ccr5+/- mice display faster experience-dependent plasticity in the barrel
cortex
To test the hypothesis that CCR5 may also be a neuronal suppressor of neocortical sensory plasticity,

we studied experience-dependent plasticity in the barrel cortex. Trimming all of whiskers except for

D1 produces both an increase in the responses of layer 2/3 (L2/3) cells located in deprived barrel-

columns to stimulation of the spared D1 whisker, and an increase in the size of the spared whisker’s

representation in the barrel cortex (Fox, 1992). Experience-dependent plasticity was assayed by

measuring the single unit spike responses to the spared D1 whisker of single L2/3 neurons located in

the deprived barrels surrounding the D1 barrel (Figure 5A). Although 7-days of single whisker expe-

rience is insufficient to produce experience-dependent potentiation in WT barrel cortex

(Glazewski and Fox, 1996), three measures indicated faster potentiation in Ccr5+/- mice. First, pen-

etrations in barrels surrounding D1 revealed potentiated responses to D1 stimulation in Ccr5+/- but

not WT mice (Figure 5A). Second, a comparison of each cell’s response to the spared versus

deprived principal whisker response (vibrissae dominance) showed plasticity in Ccr5+/- (Figure 5C,

deprived versus undeprived t(21) = 3.222 p<0.01, Student’s t-test) but not in WT mice (Figure 5B,

deprived versus undeprived, t(11) = 1.663, p>0.05). Third, a plot of D1 response versus principal

whisker (PW) response showed points above the identity line (D1>PW) only for Ccr5+/- but not WT

mice (Figure 5D). Comparison of the time course of vibrissae dominance also showed a significant

increase in WVDI in Ccr5+/- mice (0.396 ± 0.051), but not in WT mice (0.111 ± 0.011) after 7 days

deprivation [Figure 5E; Interaction: F(2,41) = 1.398, genotype, F(1,41) = 8.919, days deprived

F(2,41) = 10.20, genotype and deprivation period are significant: t = 3.05, p<0.05, Bonferroni post-

tests]. These results demonstrate that Ccr5+/- mice show faster plasticity in the barrel cortex.

Ccr5+/- mice display greater probability and magnitude of LTP in barrel
cortical neurons
To investigate whether Ccr5+/- mice also show enhanced synaptic plasticity in the barrel cortex, a

spike-timing dependent protocol was used to induce low levels of LTP in L2/3 cells of WT mice.

Whole cell recordings were performed in L2/3 and field stimulation was applied to L4 in the same

cortical column (Figure 6A), and LTP was induced using a 5 ms pre-post interval as described previ-

ously (Kaneko et al., 2010). In WT mice, L2/3 cells showed significant LTP in just 20% of cases while

in Ccr5+/- and Ccr5-/- mice the same protocol produced LTP in 70% of cases (Figure 6B, c2 = 15.63,

Figure 3 continued

was injected into the hippocampus. One month after virus injection, brain slices were stained with DAPI (nuclear labeling) and GFP (virus infection).

Scale bar, 500 mm. (D) AAV containing shRNA-CCR5 or shRNA-Cont was injected into the hippocampus. One month after virus injection, brain slices

were stained with GFP (virus infection), NeuN (neurons), and Iba1 (microglia). GFP was exclusively expressed in neurons. Scale bar, 20 mm. (E) AAV

containing shRNA-CCR5 or shRNA-Cont was injected into the hippocampus, and mice were subjected to behavioral testing one month after virus

injection. In the fear conditioning test, shRNA-CCR5 mice showed enhanced contextual memory when compared to those injected with shRNA-Cont

virus (shRNA-cont n = 7, shRNA-CCR5 n = 10; **p<0.01, Student’s t-test). (F) In the probe test given after two days of water maze training, only shRNA-

CCR5 mice but not shRNA-Cont mice spent significantly more time in the target quadrant than the other three quadrants (shRNA-cont n = 22; shRNA-

CCR5 n = 20; *p<0.05, Student’s t-test; ***p<0.001, Two-way ANOVA with repeated measure). Heat maps below the bar graphs show the combined

traces of the mice from each group during the probe test. shRNA-Cont mice showed a pattern of wall-hugging swim after two days training, but they

learned the water maze task with extended training (Figure 3—figure supplement 1D). Error bars indicate SEM.

DOI: 10.7554/eLife.20985.012

The following figure supplement is available for figure 3:

Figure supplement 1. shRNA-CCR5 knockdown efficiency in HEK 293 cells, AAV infection specificity, and mice performance in the water maze probe

test 2.

DOI: 10.7554/eLife.20985.013
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p<0.001, c-squared test). On average, the WT mice did not show LTP, while the Ccr5+/- and Ccr5-/-

mice showed 188.1 ± 1.45% and 164.5 ± 22.5% potentiation, respectively (Figure 6C).

Ccr5+/- mice display lower release probability, and smaller and less
frequent mEPSPs in barrel cortical neurons
Previous studies with HRasG12V mice suggest that an increase in ocular dominance plasticity, as well

as in learning and memory, is accompanied by a lower synaptic release probability in the cortex

Figure 4. CCR5 overexpression leads to learning and memory deficits. (A) Compared to WT mice, CCR5-overexpressing transgenic (Tg) mice showed

enhanced Ccr5 mRNA expression in the hippocampus. (B) In a context pre-exposure fear-conditioning paradigm, CCR5 Tg mice showed contextual

memory deficits compared to WT mice (WT n = 13, CCR5 Tg n = 15; ***p<0.001, Student’s t-test). (C) In the probe test given after 3 days of training in

water maze, only WT mice but not CCR5 Tg mice, spent significantly more time in the target quadrant than the other three quadrants; CCR5 Tg mice

also had lower searching times in the target quadrant than WT mice, indicating a learning and memory deficit (WT n = 18, CCR5 Tg n = 18; *p<0.05,

Student’s t-test; ***p<0.001, Bonferroni post-tests, Two-way ANOVA with repeated measure). Error bars indicate SEM.

DOI: 10.7554/eLife.20985.014

The following figure supplements are available for figure 4:

Figure supplement 1. CCR5 overexpression leads to learning and memory deficits.

DOI: 10.7554/eLife.20985.015

Figure supplement 2. Hippocampal p44/42 MAPK signaling of WT and CCR5 transgenic (Tg) mice.

DOI: 10.7554/eLife.20985.016

Figure supplement 3. Hippocampal CREB signaling of WT and CCR5 transgenic (Tg) mice.

DOI: 10.7554/eLife.20985.017
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Figure 5. Ccr5+/- mice display accelerated experience dependent plasticity. (A) Recording locations plotted on a standard barrel field map. The barrel

shaded dark grey indicates the principal barrel for the spared whisker. The color of each circle represents the average response to D1 whisker

stimulation (spikes per 50 stimulations) for cells in L2/3. Deprived Ccr5+/- mice showed greater proportion of penetrations responding strongly to D1

stimulation (WT: control vs deprived, p>0.99;Ccr5+/-: control vs deprived, p=0.0019, binomial test). (B) Vibrissae dominance histograms. Vibrissae

Figure 5 continued on next page
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(Kaneko et al., 2010; Kushner et al., 2005). Therefore, we investigated the release probability in

the barrel cortex of WT, Ccr5+/- and Ccr5-/- mice, by measuring the attenuation rate of NMDA recep-

tor mediated evoked EPSPs (Figure 7A) in the presence of the activity-dependent NMDA receptor

Figure 5 continued

dominance is calculated as D1/(PW + D1) and sorted into 10 bins (see Materials and methods). In WT mice, there is very little shift in the dominance

histogram after 7 days of deprivation (n = 14). (C) The vibrissae dominance histogram shows a substantial shift right toward D1 dominance in the D1-

spared Ccr5+/- mice (blue) compared with undeprived Ccr5+/- mice (red) (n = 24; p<0.01, Student’s t-test). (D) The value of the response to D1

stimulation is plotted against the same L2/3 cell’s response to principal whisker (PW) stimulation for mice subject to 7 days deprivation. A large number

of Ccr5+/- (but not WT) cells lie above the unity line. (E) The average weighted vibrissae dominance index (WVDI) is plotted against deprivation period

for WT and Ccr5+/- mice. Naı̈ve WT and Ccr5+/- mice do not exhibit differences in their vibrissae dominance, however after 7 days deprivation there is

an increase in WVDI in Ccr5+/- mice but not in WT mice (7-day WT vs Ccr5+/- mice: p=0.0030, ANOVA, Bonferroni post-tests). Error bars indicate SEM.

DOI: 10.7554/eLife.20985.018

Figure 6. Ccr5 knockout mice exhibit a higher probability of LTP than WT Mice. (A) Schematic of LTP in vitro recordings. Whole-cell patch clamp

recordings were made from pyramidal cells in L2/3 of the barrel cortex. A stimulating electrode was placed in the center of the barrel immediately

below the recording site and the columnar projection from L4 to L2/3 was stimulated. (B) When LTP was induced with a spike-timing dependent

protocol with a low probability of potentiation in WT mice, Ccr5+/- and Ccr5-/- mice showed a higher incidence of LTP (70% LTP in Ccr5+/- and Ccr5-/-

mice vs 20% in WT, p<0.001, c-squared test). (C) Mean amplitude of LTP. Failures and successes are averaged together to give an overall average of all

recordings. Ccr5+/- and Ccr5-/- cells had larger LTP than WT cells which on average did not potentiate (n = 10 per group).

DOI: 10.7554/eLife.20985.019
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Figure 7. Ccr5 knockout mice exhibit lower release probability, and smaller, less frequent mEPSPs than WT mice. (A) Cells from Ccr5+/-and Ccr5-/- mice

exhibited lower release probability than cells from WT mice. Traces represent normalized amplitude of NMDA-receptor mediated evoked EPSPs in the

presence of the use-dependent antagonist MK-801. A faster decrease in the peak EPSP amplitude is indicative of a higher release probability. (B) Single

exponential curves were fitted for the data presented in panel A, and Ccr5+/- and Ccr5-/- mice demonstrated lower Pr than WT mice (n = 10 per group;

p<0.01, Kruskal-Wallis test). (C) Example miniature EPSPs recordings from WT and Ccr5+/- mice. (D) Cells from Ccr5+/- mice displayed smaller mEPSPs

than WT (WT n = 10, Ccr5+/- n = 10; p<0.001, K-S test). (E) Cells from Ccr5+/- mice displayed less frequent mEPSPs than WT and therefore greater inter-

event intervals (WT n = 10, Ccr5+/- n = 10;p<0.001, K-S test).

DOI: 10.7554/eLife.20985.020
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antagonist MK-801 (Hessler et al., 1993). The release probability was significantly lower in Ccr5+/-

and Ccr5-/- mice (Figure 7B, p<0.01, Kruskal-Wallis test). Consistent with this finding, mEPSPs

(Figure 7C) in L2/3 cells of Ccr5+/- mice were smaller (Figure 7D, D(52) = 0.6154 p<0.001, K-S test)

and occurred at a lower frequency compared to WT mice (Figure 7E, D(21) = 0.9524 p<0.001, K-S

test). Both effects could create greater ‘headroom’ for LTP and experience-dependent potentiation

in Ccr5 knockout mice.

Viral knockdown of Ccr5 expression in adult barrel cortex results in
enhanced experience dependent plasticity
To check whether the Ccr5+/- plasticity phenotype in the barrel cortex was dependent on a develop-

mental effect, we also injected shRNA-CCR5 or shRNA-Cont AAV into the barrel cortex of adult

C57BL/6N mice. Immuno-histochemistry confirmed that the virus exclusively infected neurons

(Figure 8A and Figure 8—figure supplement 1, 35% infection rate and 100% co-localization of

NeuN and GFP). Only shRNA-CCR5 mice, but not shRNA-Cont mice, exhibited a shifted vibrissae

dominance histogram after 7 days of single whisker experience (Figure 8B, t(10) = 6.485 p<0.001,

Student’s t-test). Knockdown of Ccr5 in the adult barrel cortex resulted in an experience-dependent

plasticity phenotype that closely mirrored that of the Ccr5+/- mice (Figure 8C, Ccr5+/- mice

t(20) = 2.939 p<0.01, Student’s t-test; viral knockdown: t(10) = 6.485 p<0.001, Student’s t-test), dem-

onstrating that CCR5 is a suppressor of neocortical plasticity acting directly on neurons in the adult

brain.

Ccr5 knockout prevents V3 peptide-induced signaling, plasticity and
memory deficits
Our molecular, electrophysiological, sensory plasticity and behavioral results demonstrate that CCR5

is a suppressor for plasticity and learning and memory. Therefore, it is possible that acute activation

of CCR5 by HIV coat proteins could contribute to deficits in neuroplasticity and thereby learning and

memory. To explore this hypothesis, we tested whether the HIV gp120 V3 loop peptide results in

plasticity and learning deficits, and whether CCR5 is responsible for these deficits. The HIV gp120

V3 loop peptide contains the gp120 domain that binds to and activates CCR5 (Cormier and Dragic,

2002; Galanakis et al., 2009; Morikis et al., 2007; Sirois et al., 2005). Immunoprecipitation with

anti-HA-agarose, to co-precipitate V3-HA peptide and CCR5 in mouse hippocampal lysates, demon-

strated that V3 peptide binds to mouse hippocampal CCR5 (Figure 10—figure supplement 1).

To examine the effects of V3 peptide on neuroplasticity and the possible role of CCR5 in this, we

repeated the cortical LTP study shown in Figure 6 after pre-incubation for one hour with either 200

pM V3 peptide fragment or saline (control). In cells from WT mice, V3 treatment had a strong effect

on the magnitude and probability of LTP (Figure 9A,B), completely abolishing any instance of LTP

and producing an average depression of 27.8% (t(120) = 26.6, p<0.001, Student’s t-test). Cells from

Ccr5+/- mice still displayed a similar proportion of LTP (75% V3-treated vs 62.5% control, Figure 9D)

but showed significantly lower potentiation than in control conditions (127% V3 vs 208% control,

Figure 9C, t(120) = 42.2, p<0.001, Student’s t-test). In contrast, cells from mice lacking CCR5 (Ccr5-/-

mice) were not affected by V3 treatment at all, with higher probability of LTP (86% V3 vs 66% con-

trol, Figure 9F) and a similar magnitude of potentiation (186% V3 vs 182% control, Figure 9E). Simi-

lar effects of V3 treatment on plasticity were observed in hippocampal slices from WT mice and Ccr5

knockout mice. Analyses of hippocampal slices, that had been pre-incubated 1 hr with 200 pM V3

peptide, revealed Schaffer collateral fEPSPs LTP deficits between 50 and 60 min post-TBS (theta

burst stimulation) in WT (Figure 9G, t(14) = 2.53, p<0.05, Student’s t-test), but not from Ccr5+/-

(Figure 9H, t(13) = 1.74, p=0.105, Student’s t-test) and Ccr5-/- mice (Figure 9I, t(12) = 0.994, p=0.340,

Student’s t-test). These results demonstrate that V3 peptide causes LTP deficits both in barrel cortex

and hippocampus.

To examine the effect of V3 peptide on learning and memory, mice received a single hippocam-

pal V3 peptide infusion (concentration 2 mg/ml, 1 ml peptide to each hemisphere with the infusion

speed of 0.1 ml/min) either 30 min before or immediately after contextual fear conditioning

(Figure 10A). When injected 30 min before fear conditioning, V3 peptide caused contextual memory

deficits in C57BL/6N mice (Figure 10B, t(10) = 4.04, p<0.01, Student’s t-test). In contrast, V3 peptide

infusions following training did not affect contextual fear memory (Figure 10C, t(18) = 0.92, p=0.37,
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Student’s t-test), indicating that the V3 peptide must be present during training to disrupt learning

and memory.

When V3 peptide was infused into the hippocampus of WT, Ccr5+/- or Ccr5-/- mice 30 min before

training (Figure 10D), the V3-induced memory deficit was prevented by the Ccr5+/- or Ccr5-/- muta-

tion [Figure 10E; Two-way ANOVA, overall (genotype � treatment) interaction: F(2,50) = 1.0; Main

effect of treatment: F(1,50) = 11.10, Post hoc linear contrast: WT/Cont versus WT/V3, t(50) = 3.25

p<0.01, Bonferroni post-tests]. To examine whether decreasing Ccr5 expression specifically in

Figure 8. Viral knockdown of Ccr5 in barrel cortex enhances experience-dependent plasticity. (A) Specificity and spread of viral infection. Interleaved

slices processed for cytochrome oxidase (CytOx) confirmed viral location (GFP) over the recorded area of the barrel cortex. Arrows show lesions

marking recording penetrations. Confocal images of the neuronal marker (NeuN) and viral expression (GFP) suggest that the shRNA is expressed

exclusively in neurons. Scale bar = 20 mm. (B) Vibrissae dominance histogram after 7 days D1-spared single-whisker experience. Compared to control

group, knockdown of Ccr5 leads to a shifted histogram (shRNA-cont n = 6; shRNA-CCR5 n = 6; p<0.001, Student’s t-test). (C) Weighted VDI values

comparing Ccr5+/- mice with viral knockdowns. Viral knockdown has a similar effect to that of constitutive mutants after 7 days deprivation. Error bars

indicate SEM.

DOI: 10.7554/eLife.20985.021

The following figure supplement is available for figure 8:

Figure supplement 1. Specificity of viral infection in the barrel cortex.

DOI: 10.7554/eLife.20985.022
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Figure 9. Ccr5 knockout prevents gp120 V3 peptide induced long-term potentiation deficits both in hippocampus and in barrel cortex. (A) Whole-cell

patch clamp recordings were made from pyramidal cells in L2/3 of the barrel cortex of WT mice. When LTP was induced with a spike-timing dependent

protocol, in control conditions the trace showed no significant potentiation, while V3 peptide treatment caused significant depression (n = 8 for both

Control and V3; ***p<0.001, Student’s t-test). (B) WT control cells showed equal proportions of LTP, LTD and no change; In contrast, 7 out of 8 V3-

treated cells showed LTD. (C) Cells from Ccr5+/- mice showed strong LTP under control conditions, while V3-treated cells show significantly reduced

LTP (n = 8 for both Control and V3; ***p<0.001, Student’s t-test). (D) Although LTP magnitude was reduced in V3-treated cells, the proportion of cells

undergoing potentiation in slices from Ccr5+/- mice was similar to control. (E, F) Both control cells and V3-treated cells from Ccr5-/- mice showed strong

potentiation, with no significant difference in amplitude and in the probability of LTP (Control n = 6, V3 n = 7; p=0.25). (G) Hippocampal CA1 fEPSPs

were recorded in hippocampal slices before (baseline) and after 5 TBS (theta bursts stimulation). V3 peptide resulted in LTP deficits in the fEPSP

measured during the last 10 min of recordings in hippocampal slices from WT mice (n = 8 for both Control and V3; *p<0.05, Student’s t-test). (H, I) V3

Figure 9 continued on next page
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hippocampus is sufficient to block V3-induced memory deficit, shRNA-Cont or shRNA-CCR5 AAV

was injected to the hippocampus, and two weeks later, V3 peptide was infused into the hippocam-

pus, and mice were trained 30 min after V3 peptide infusion. Similar to the effects in WT mice, V3

peptide caused memory deficits in shRNA-Cont mice. Importantly, these deficits were prevented by

hippocampal Ccr5 knockdown [Figure 10F; Two-way ANOVA, overall (shRNA virus � treatment)

interaction: F(1,34) = 0.61; Main effect of treatment: F(1,34) = 7.19; Post hoc linear contrast: shRNA-

Cont/Cont versus shRNA-Cont/V3, t(34) = 2.45 p<0.05; shRNA-Cont/Cont versus shRNA-CCR5/Cont,

t(34) = 2.55 p<0.05; shRNA-Cont/V3 versus shRNA-CCR5/V3, t(34) = 3.50 p<0.01, Bonferroni post-

tests], demonstrating that CCR5 is an in vivo target for the V3 peptide-dependent memory deficits.

Since our results indicate that CCR5 regulates MAPK/CREB signaling, we next determined

whether an acute injection of the V3 peptide into the dorsal hippocampal CA1 area results in deficits

in MAPK or CREB activation after learning (Figure 11A). P44/42 pMAPK and pCREB levels in the

dorsal hippocampal CA1 subregion (Lein et al., 2004) were measured 1 hr or 3 hr after learning,

respectively. Compared to controls, V3 peptide resulted in a significant decrease in pMAPK

(Figure 11B, t(11) = 2.71 p<0.05, Student’s t-test), but had no effect on pCREB (Figure 11C). A simi-

lar decrease in pMAPK was observed when the V3 peptide was infused into the hippocampus of

mice injected with shRNA-Cont AAV. Importantly, this decrease in pMAPK activation after learning

was ameliorated by hippocampal Ccr5 knockdown [Figure 11D; Two-way ANOVA, overall (shRNA

virus � treatment) interaction: F(1,28) = 0.35; Main effect of treatment: F(1,28) = 11.8, Post hoc linear

contrast: shRNA-Cont/Cont versus shRNA-Cont/V3, t(28) = 2.85 p<0.05; shRNA-Cont/V3 versus

shRNA-CCR5/V3, t(28) = 2.48 p<0.05, Bonferroni post-tests]. Interestingly, unlike the Ccr5+/- mice,

that showed enhanced pMAPK activation after learning (Figure 2B), compared to shRNA-Cont mice,

mice injected with shRNA-CCR5 AAV did not show enhanced pMAPK, probably because in these

mice Ccr5 was knocked down in only the subset of hippocampal neurons transfected by the AAV

virus. Altogether, these results indicate that decreasing CCR5 protects against the acute deficits

caused by V3 peptide on hippocampal MAPK signaling, synaptic plasticity, and learning and mem-

ory, a result consistent with the idea that CCR5 activation contributes to the cognitive deficits trig-

gered by HIV proteins.

Discussion
CCR5 is a chemokine receptor that plays an important role in inflammatory responses. A learning

and memory reverse genetic screen showed that the Ccr5 knockout results in enhanced learning and

memory for contextual fear conditioning. This phenotype was confirmed in other learning and mem-

ory tasks including the water maze and social recognition. Importantly, the Ccr5 knockout did not

affect a number of behaviors that could have confounded the learning and memory findings, includ-

ing anxiety, activity, social interaction, cued conditioning, and shock reactivity. This enhancement in

learning and memory is consistent with increases in plasticity at the systems and cellular levels. In the

barrel cortex, Ccr5 knockout results in dramatically accelerated experience-dependent plasticity:

Ccr5+/- mice showed robust experience-dependent sensory plasticity at a time point (7-days after

whisker removal) when WT mice show no evidence of plasticity. Importantly, temporally and spatially

restricted knockdown of Ccr5, specifically in adult hippocampus or barrel cortex, also resulted in

enhancements in learning and memory as well as experience-dependent plasticity, demonstrating

that these effects are not due to changes during development.

MAPK and CREB have been implicated in learning and memory (Bourtchuladze et al., 1994;

Roth and Sweatt, 2008). Our results indicate that the Ccr5 knockout did not alter MAPK or CREB

signaling under baseline conditions. However, Ccr5 knockout resulted in an increase in MAPK and

CREB signaling levels at 1- and 3 hr after training, respectively. Enhanced MAPK or CREB signaling

have been associated with enhancements in learning and memory. For example, HRasG12V mice

have enhanced MAPK levels following training, and show increases in LTP and sensory plasticity, as

Figure 9 continued

peptide treatment had no significant effect on Ccr5+/- (control n = 8, V3 n = 7; p=0.105, Student’s t-test) and Ccr5-/- mice (control n = 7, V3 n = 7,

p=0.340, Student’s t-test). Error bars indicate SEM.

DOI: 10.7554/eLife.20985.023
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Figure 10. Both Ccr5 knockout and knockdown protect against gp120 V3 peptide induced memory deficits. (A) Schematic of V3 peptide infusion and

fear conditioning for the experiments shown in B and C. (B) 30 min after V3 peptide infusion into hippocampus, C57BL/6N mice were trained with fear

conditioning. V3 peptide caused contextual memory deficits (Cont n = 6, V3 n = 6; **p<0.01, Student’s t-test). (C) When V3 peptide was infused into

hippocampus immediately after fear conditioning training, no difference was observed between the control group and the V3 peptide group (Cont

n = 10, V3 n = 10). (D) Schematic for experiments shown in E and F. (E) 30 min after V3 peptide infusion into hippocampus, mice were trained with fear

conditioning. V3 peptide caused contextual memory deficits in WT mice, but Ccr5 knockout protected against V3-induced memory deficits (WT/Cont

Figure 10 continued on next page
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well as enhancements in learning and memory tested in a number of tasks (Kaneko et al., 2010;

Kushner et al., 2005); Similarly, enhanced CREB signaling is also associated with memory enhance-

ments in multiple tasks and model systems (Czajkowski et al., 2014; Kathirvelu and Colombo,

2013; Zhou et al., 2009) and in barrel cortex plasticity (Barth et al., 2000; Glazewski et al., 1999).

Figure 10 continued

n = 10, WT/V3 peptide n = 11, Ccr5+/-/Cont n = 8, Ccr5+/-/V3 peptide n = 11, Ccr5-/-/Cont n = 8, Ccr5-/-/V3 peptide n = 8; *p<0.05, **p<0.01,

***p<0.001, Two-way ANOVA). (F) V3 peptide caused contextual fear conditioning memory deficits in mice injected with shRNA-Cont AAV, but

hippocampal Ccr5 knockdown protected against V3-induced memory deficits (shRNA-Cont/Cont n = 10, shRNA-Cont/V3 n = 9, shRNA-CCR5/Cont

n = 10, shRNA-CCR5/V3 n = 9; *p<0.05, **p<0.01, Two-way ANOVA). Error bars indicate SEM.

DOI: 10.7554/eLife.20985.024

The following figure supplement is available for figure 10:

Figure supplement 1. V3-HA peptide binds to hippocampal CCR5.

DOI: 10.7554/eLife.20985.025

Figure 11. Ccr5 knockdown ameliorates hippocampal p44/42 MAPK signaling deficits caused by V3 peptide treatment. (A) The dorsal hippocampal

CA1 subregion was extracted 1 hr after training. V3 peptide reduced p44/42 pMAPK levels at 1 hr after fear conditioning (Cont n = 6, V3 n = 7; *p<0.05,

Student’s t-test). (B) V3 peptide had no effect on pCREB when dorsal hippocampal CA1 subregion was extracted 3 hr after fear conditioning (Cont

n = 5, V3 n = 6). (C) V3 peptide reduced p44/42 pMAPK in the dorsal CA1 of mice injected with shRNA-Cont virus at 1 hr after fear conditioning, but

Ccr5 knockdown ameliorated the decrease in p44/42 pMAPK levels observed after learning (n = 8 for each group; *p<0.05, Two-way ANOVA). Error

bars indicate SEM.

DOI: 10.7554/eLife.20985.026
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Altogether, these results indicate that increases in MAPK and CREB signaling are integral to the

learning and memory enhancements in the Ccr5 knockout mice.

Ccr5 knockout mice show enhanced long-term synaptic plasticity changes both in hippocampus

and barrel cortex. For example, our spike pairing protocol in the cortex induced LTP 20% of the

time in WT mice and 70% of the time in the Ccr5 knockout mice. Our neocortical studies also

showed that similar to HRasG12V mice (Kaneko et al., 2010; Kushner et al., 2005), Ccr5+/- mice also

have lower release probability and lower mini-amplitudes. The initial conditions present at the synap-

ses of Ccr5+/- mice thereby create the headroom for greater pre- and post-synaptic potentiation at

the synapse, both of which are important components of plasticity (Dachtler et al., 2011;

Hardingham and Fox, 2006). Together with the increased responsiveness of the MAPK/CREB sig-

naling pathway, the naive state of the synapse under CCR5 hypo-function creates a potent mix for

increased synaptic potentiation.

In agreement with the enhanced learning and memory with manipulations that decrease CCR5,

transgenic mice that overexpress CCR5 in excitatory neurons show learning and memory deficits,

demonstrating that CCR5 acts as a suppressor for plasticity and memory. Although a previous study

(Lee et al., 2009) reported learning and memory deficits in aged CCR5 mutants, this study used

aged mice (12–18 month old) and the control mice with a different genetic background. Our CCR5

transgenic results suggested that CCR5 activation by viral proteins, and subsequent plasticity and

memory suppression, may contribute to HIV associated impairments in cognition.

A recent study reported that transgenic mice overexpressing an HIV viral protein (gp120) showed

neuronal degeneration and subsequent behavioral deficits that could be ameliorated by a Ccr5

mutation (Maung et al., 2014). Similarly, multiple doses of gp120 in rats also resulted in physiologi-

cal and cognitive deficits (Tang et al., 2009). Interestingly, our study shows that acute treatment

(one injection 30 min before training) of HIV gp120 V3 loop peptide, which is known to bind and

activate CCR5 in the brain (Chan et al., 1999; Shah et al., 2006; Sirois et al., 2005), was sufficient

to induce deficits in a key cellular mechanism for learning and memory (LTP) and also in hippocam-

pus-dependent learning and memory in WT mice. Remarkably, these deficits were prevented by

either a viral-mediated Ccr5-knockdown or by a Ccr5 knockout mutation. The V3 loop is important

for HIV binding to CCR5 or CXCR4, and LTP deficits caused by the V3 loop peptide had been

reported to be blocked by a CXCR4 antagonist (Dong and Xiong, 2006). Nevertheless, our results

show that both in the barrel cortex and in hippocampus, the LTP deficits caused by the V3 peptide

are prevented by the homozygous Ccr5 mutation, demonstrating that CCR5 plays a critical role in

the V3-induced deficits in neuroplasticity. CCR5 antagonists and inhibitors have shown efficacy in

reduction of viral load in clinical studies (Fätkenheuer et al., 2005; Gulick et al., 2008). Our findings

support the application of brain permeable CCR5 antagonists, not only as a combination drug in

antiretroviral (ARV) therapy, but also as a treatment for cognitive deficits caused by HIV coat

proteins.

Previous studies showed that the establishment of long-lasting synaptic changes and long-term

memory requires the removal of inhibitory constraints on MAPK/CREB signaling (Abel et al., 1998).

Our findings with Ccr5 knockout, region-specific viral knockdown, and neuronal CCR5 over-expres-

sion demonstrate that CCR5 functions as a plasticity and memory suppressor by acting on the

MAPK/CREB signaling pathway. Our results also suggest that the inappropriate activation of this

suppressor by HIV coat proteins contributes to cognitive deficits. Since decreasing CCR5 function

leads to robust increases in plasticity and memory, CCR5 provides a novel target for cognitive

enhancement, and for the development of treatments for cognitive deficits.

Materials and methods

Subjects
3-month old C57BL/6N and Ccr5 knockout (Ccr5-/-) mice were purchased from Taconic Farms (Ger-

mantown, NY) and tested in a reverse genetic screen (Figure 1—figure supplement 1). Ccr5-/- mice

were then bred with C57BL/6N mice to generate Ccr5+/-. Experimental WT, Ccr5+/-, and Ccr5-/- mice

(3 to 5 months old) were generated by intercrossing Ccr5+/- mice. Littermates were used for all

experiments (except the initial reverse genetic screen). Experimental Ccr5-overexpressing transgenic

mice were generated and maintained in the C57BL/6N background. Yfp+/Ccr5+/- mice were
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generated by breeding male Thy1-YFP mice with female Ccr5+/- mice, and 3 to 6 months old Yfp+/

Ccr5+/- mice and their littermates Yfp+/Ccr5+/+ (Yfp+/WT) mice were used for the spine density

experiment. 10-week-old male C57BL/6N mice were purchased from Taconic Farms (Germantown,

NY) for shRNA-cont or shRNA-CCR5 AAV injections and for the V3 loop peptide experiments. Mice

were group housed with free access to food and water, and maintained on a 12:12 hr light:dark

cycle. All experiments were performed during the light phase of the cycle. All studies were approved

by the Animal Research Committee at UCLA and University of Cardiff and carried out in compliance

with the United Kingdom’s Animals (Scientific Procedures) Act 1986 where applicable.

Fear conditioning
For the reverse genetic screen for remote memory phenotypes, mice were subjected to a training

session with a total time of 8 min. The mice were allowed to explore the training chamber for 2 min,

and then 3 tone-shock pairs (2 s 0.75 mA shock co-terminated with 30 s tone) were delivered and

the 3 tones started at 2, 3 and 4 min. Two weeks after training, the mice were first returned to cham-

bers (context B) which were different from the training chambers (context A) for the cued memory

test (tone test), and 90 min later mice were returned to the training chamber for a 5 min test to

assess contextual memory. Standard Z scores were used to present the results of the memory

screen, which combine both freezing and suppression of activity ratios (SR) scores from the same

mice. Suppression of activity ratios (SR) were calculated as SR=(test activity)/(test activity + baseline

activity). Z scores for the entire wild type population were calculated as Z score=(individual-popula-

tion mean)/standard deviation, and the expected value is a mean of 0 and a standard deviation of 1.

Z scores for each mutant were calculated as: Z score= average[(%Freezing individual–%Freezing

population mean)/(standard deviation of population), (�1)*(SR individual–SR population mean)/(stan-

dard deviation of the population)]. So Z scores reflect alterations in both freezing and activity sup-

pression caused by different genetic mutations, with simplified comparisons and improved reliability

(Matynia et al., 2008).

To test contextual memory for Ccr5 knockout or knockdown mice, the mice were subjected to a

training session with a total time of 5 min. Mice were allowed to explore the training chamber for 2

min, and then 3 shocks (2 s, 0.75 mA) were delivered at 2, 3 and 4 min. To test contextual memory

for CCR5 transgenic mice, the mice were either subjected to a daily weak training for 5 days, or to a

context pre-exposure fear-conditioning paradigm. During the daily weak conditioning, the mice

were allowed to explore the training chamber for 25 s, and then a 1 s, 0.4 mA shock were delivered

and mice were removed for the training box 5 s after the shock. The freezing levels during the 25 s

period before the shock were used to measure contextual memory. For the context pre-exposure

fear conditioning, the mice were pre-exposed to the training context for 7 min on day 1. The mice

were brought back to the same context on day 2, and 10 s later received 3 shocks (0.75 mA) with 5 s

interval between the 3 shocks. The mice were removed from the training boxes 40 s after the last

shock. On day 3, the mice were tested for 5 min in the same training context.

Morris water maze
In the hidden version of the Morris water maze, mice were trained with two blocks per day for 5

days and each block consisted of two trials with 30 s interval between the trials. In each trial, mice

were given 60 s to find the platform. If mice found the platform earlier than 60 s, the trial ended

then. If mice failed to find the platform, the trial terminated at 60 s. After each trial, mice were put

on the platform for 15 s (Ccr5+/- and shRNA-CCR5 mice) or 20 s (CCR5 transgenic mice). Probe tests

with a time of 60 s were administered after two days of training (Ccr5+/- and shRNA-CCR5 mice and

their controls) or after three days of training (CCR5 transgenic mice and their controls). Testing at

day 2 maximized our ability to see enhancements, while testing at day 3 maximized our ability to see

deficits. To examine whether mice from different groups were able to learn the Morris water maze

task with extended training, a second probe test was performed after five days of training. Mice

showing floating behavior during training or probe test were excluded from further training or from

data analysis. Floating behavior was judged by mouse swimming speed, and mice with a swimming

speed lower than (average speed – 2 � SD (standard deviation)) were excluded.
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Social recognition
Mice were handled for 3 days (2 min handling each day) before social recognition task. During the 3-

day social recognition task, mice were first habituated to the testing chamber for 10 min on day 1.

On day 2, mice were placed back into the same chamber and habituated for 5 min, and then were

allowed to interact for 7 min with an ovariectomized (OVX) female mouse placed under a wired cylin-

der (training session). On day 3, mice were placed back into the same chamber and habituated for 5

min, and then were allowed to interact with two OVX females (one familiar and one novel) for 5 min

(test session). The time mice spent on exploring (sniffing) the OVX mice were hand scored by experi-

menters blinded of mouse genotypes and of familiar or novel OVX mice.

Open field
Mice were placed in a novel open field (28 cm � 28 cm � 25 cm), and were allowed to explore it for

a period of 20 min. The total distance mice traveled, and percentage time mice spent in the peri- or

center region of the open field were analyzed.

Elevated plus maze
Mice were placed on an elevated plus maze and were allowed to explore it for 5 min. The elevated

plus maze has two open arms and two close arms (with walls of 16.5 cm height), and each arm is 29

cm long and 8 cm wide. The percentage of time mice spent in the open arms, and open arm entry

times were analyzed.

Ccr5 knockdown efficiency measurement
To measure Ccr5 knockdown efficiency, HEK 293 cells were co-transfected with CCR5-tdTomato

plus either shRNA-CCR5 or shRNA-Cont (dsRed) plasmids. HEK293 cells were ordered from ATCC

(CRL-1573) and were tested with Mycoplasma Detection Kit (R&D Systems, CUL001B) to make sure

there was no contamination. One day after plasmid transfection, cells were imaged to examine the

effect of shRNA-CCR5 on CCR5-tdTomato expression. Ccr5 knockdown efficiency was also tested

by measuring Ccr5 mRNA expression in the hippocampus one month after the injection of AAV con-

taining shRNA-cont or shRNA-CCR5. To measure Ccr5 mRNA expression, tissue samples were col-

lected from the dorsal hippocampus and total RNA was extracted by RNeasy Mini Kit (Qiagen,

Valencia, CA, USA) and treated with DNase (Qiagen). Total RNA was first reverse-transcribed into

cDNA using oligo (dT) primers and Superscipt III First-Strand Synthesis System (Invitrogen, Carlsbad,

CA, USA), and was then quantified by qPCR. The following primer sequences were used for the

Ccr5 qPCR: 5’GCTGCCTAAACCCTGTCATC 3’(forward) and 5’GTTCTCCTGTGGATCG GGTA3’

(reverse). The ribosome protein RPL13A was used as a housekeeping control.

Immunoblotting for hippocampal samples
Dorsal hippocampus was homogenized with RIPA buffer (Sigma, St. Louis, MO, R0278) supple-

mented with protease inhibitor cocktail (Sigma, P8340), phosphatase inhibitor cocktail 2 (Sigma,

P5726), phosphatase inhibitor cocktail 3 (Sigma, P0044), and 0.5% SDS. After measuring protein con-

centration with the BCA protein assay kit (Pierce, Rockford, IL, 23225), protein samples were loaded

to NuPAGE Novex 4–12% Bis-Tris protein gel (ThermoFisher Scientific, Carlsbad, CA, NP0336BOX),

and after separation, proteins were transferred onto polyvinylidene difluoride (PVDF) membranes.

The PVDF membranes were blocked with 5% nonfat milk at room temperature for 1 hr and then

probed with primary antibodies (phospho-CREB, Cell Signaling 9198, 1:4000 dilution; phospho-p44/

42 MAPK, Cell Signaling 9101, 1:10,000 dilution) at 4˚C overnight. Membranes were then incubated

with secondary antibodies for 1 hr and developed with ECL solutions. The phospho-CREB or phos-

pho- p44/42 MAPK primary antibodies was stripped with Restore western blot stripping buffer

(ThermoFisher Scientific, 21059). After stripping, the PVDF membranes were blocked with 5% nonfat

milk at room temperature for 1 hr and then probed with primary antibodies (CREB, Cell Signaling

9197, 1:1000 dilution; p44/42 MAPK, Cell Signaling 9102, 1:4000 dilution) at 4˚C overnight. Mem-

branes were then incubated with secondary antibodies for 1 hr and developed with ECL plus solu-

tions and scanned with Typhoon 9410 imager and quantified with imageJ.
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Immunostaining for hippocampal samples
Mice were transcardially perfused with 4% PFA (4% paraformaldehyte in 0.1 M phosphate buffer)

and after perfusion brains were extracted and incubated with 4% PFA overnight at 4˚C. Coronal sec-
tions were cut at 50 mm on a microtome and transferred to PBS, then blocked in 5% Normal Goat

Serum in 0.1 M PBS and 0.1% TritonX-100 for 1 hr. After blocking sections were incubated in a pri-

mary antibody mix (in 0.1 M PBS, 0.2% TritonX-100 and 5% Normal Goat Serum) of rabbit anti-GFP

(Abcam AB6556, 1:500 dilution), mouse anti-Neun (Chemokon, MAB377, 1:1000), and rabbit anti-

GFAP (Dako Z0334, 1:500) or rabbit anti-Iba1 (Wako 019–19741, 1:500) for two days at 4˚C. After 3
� 15 min washes in 0.1 M PBS and 0.1% TritonX-100 the secondary antibodies were applied (in

0.1 M PBS, 0.2% TritonX-100 and 3% Normal Goat Serum): Alexa488 goat anti-rabbit (Invitrogen

A-11034, 1:500 dilution), Alexa568 goat anti-rabbit (Invitrogen A-11011, 1:500 dilution), and

Alexa647 goat anti-mouse (Invitrogen A-21235, 1:500 dilution). Slices were incubated in the second-

ary mix for 2 hr at room temperature. After 2 � 15 min washes in 0.1 M PBS and 0.1% TritonX-100,

slices were incubated with 4’,6-diaminodino-2-phenylindole (DAPI, Life Technologies D-21490,

1:2000) for 15 min, and then were further washed with 0.1 M PBS and 0.1% TritonX-100 for 15 min

before mounted onto slides with ProLong Gold antifade mounting media (Life Technologies,

P36934). All immunostaining images were acquired with a Nikon A1 Laser Scanning Confocal Micro-

scope (LSCM).

Immunostaining for cortical samples
Candidate mice were transcardially perfused, as described in the in vivo electrophysiology section,

three weeks after injection of AAV. Fixed brains were removed and stored whole in 20% sucrose

PBS after 24 hr postfix in 4% formaldehyde/20% sucrose PBS. Coronal sections were cut at 40 mm on

a freezing microtome and transferred to PBS, then blocked in 5% Normal Goat Serum in 0.1 M PBS

and 0.1% TritonX-100 for 1 hr. After blocking sections were incubated in a primary antibody mix (in

0.1 M PBS, 0.1% TritonX-100 and 3% Normal Goat Serum) of chicken polyclonal anti-GFP (Abcam

AB13970, 1:500 dilution) and mouse monoclonal anti-NeuN (Millipore MAB377, 1:100 dilution) for 2

hr at room temperature, 18 hr overnight at 4˚C and a further 2 hr at room temperature. After 3 � 30

min washes in 0.1 M PBS and 0.1% TritonX-100 the secondary antibodies were applied (in 0.1 M

PBS, 0.1% TritonX-100 and 3% Normal Goat Serum): Alexa488 goat anti-chicken (Life Technologies

A11039, 1:200 dilution) and Alexa594 goat anti-mouse (Life Technologies A11032, 1:200 dilution).

Slices were incubated in the secondary mix for 3.5 hr at room temperature, and then after a further

3 � 20 min washes in 0.1 M PBS and 0.1% TritonX-100 were mounted in Vectashield DAPI hardset

(Vector H1500). The same protocol was applied to tangential slices alternating with slices stained for

cytochrome oxidase to localise viral spread across barrels. Coronal sections were visualized using a

Leica TCS SP2 confocal microscope and tangential sections were visualized with an Olympus BX61

microscope in both epifluorescent and transmissive brightfield modes. Colocalisation of staining in

confocal images was automatically quantified with Imaris F1 7.7.2 (Bitplane, Zurich, Switzerland).

Hippocampal viral injection surgery
To knockdown Ccr5 in pyramidal fields of the hippocampus, high titers of Adeno-associated virus

(AAV) engineered to knock-down Ccr5 with an shRNA approach (shRNA-Cont or shRNA-CCR5

viruses, 0.7 ml, 1 � 1013 unit/ml) were stereotaxically injected into the hippocampal CA1 sub region

of 3 months old C57Bl/6Tac mice through a 30-gauge Hamilton microsyringe at four sites at the fol-

lowing coordinates relative to bregma (mm): AP: �1.8, ML: ±0.8, DV: �1.6; or AP: �2.5, ML: ±2, DV:

�1.6). After infusion, the microsyringe was left in place for an additional 5 min to ensure full virus dif-

fusion. After surgery, mice were treated with antibiotics and their health was monitored every day

for two weeks.

Hippocampal V3 peptide infusion
To infuse V3 loop peptide (CTRPNYNKRKRIHIGPGRAFYTTKNIIGTIRQAHC, Disulfide Bridge: 1–35)

into hippocampus, two cannula were implanted at the following coordinates relative to bregma

(mm): AP: �2.1, ML: ±1.7, DV: �1.6. Two weeks after cannulation, either at 30 min before fear condi-

tioning training or immediately after training, mice were anesthetized and saline (control) or V3 pep-

tide (concentration 2 mg/ml) was infused into hippocampus with the infusion speed 0.1 ml/min and 1
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ml solution to each hemisphere. After infusion, the injector was left in place for an additional 5 min to

ensure full diffusion.

V3-HA peptide immunoprecipitation
V3-HA peptide (CTRPNYNKRKRIHIGPGRAFYTTKNIIGTIRQAHCGYPYDVPDYA, Disulfide Bridge: 1–

35, from GenScript) and hippocampal CCR5 binding was detected with Pierce co-Immunoprecipita-

tion (Co-IP) kit. Mouse hippocampal tissue was prepared with IP Lysis/Wash Buffer, and was mixed

with anti-HA-agarose (Sigma) and incubated overnight at 4˚C with or without V3-HA peptide. After

elution, the samples were detected with CCR5 antibody (Santa Cruz Biotechnology) with western

blot.

Cortical viral injection surgery
To knockdown Ccr5 in the barrel cortex, subjects (C57Bl/6N mice; Taconic Farms, Ry, Denmark)

aged 2–3 months at time of surgery were anaesthetized with ketamine/xylazine (80/6 mg/kg) and

immobilized in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) with a thermostatically

controlled heating blanket (Harvard Instruments). The left parietal cranium was exposed and kept

moist with sterile cortex buffer. A dental drill was used to make a small craniotomy over the likely

location of the D1/D2 barrel (from bregma: AP: �1.5, ML: ±3), the dura resected with a 30 G hypo-

dermic needle and a pulled sharp bevelled glass pipette attached to a Hamilton syringe (Esslab,

Essex, UK) was carefully inserted to a depth of 300 mm (DV: �0.3). After 2–3 min 100 nl of high-titre

(1 � 1013 unit/ml) AAV was injected over a 5 min period. Fast green was added to the virus to allow

visual confirmation of the injection. The incision was closed with sutures and mice were allowed to

recover for three weeks before starting the deprivation protocol.

In vivo electrophysiology
Subjects
Mice aged between P50 and P90 were anesthetized with isoflurane and maintained by urethane (1.5

g/kg body weight i/p) plus a trace amount of acepromazine. Supplemental doses of urethane (10%

of the initial dose) were administered as required to maintain anaesthesia depth. Analgesic (lido-

caine) was applied to the ears and scalp. Deprived vibrissae were replaced by attaching the corre-

sponding contralateral whisker to the trimmed stub with cyanoacrylate adhesive. Naı̈ve mice had

their whiskers acutely cut and re-attached to minimize mechanical differences between cohorts.

Surgery
Mice were immobilized in a stereotaxic frame (Narashige, Japan) and body temperature maintained

at 37˚C with a thermostatically controlled heating blanket (Harvard Apparatus, Kent, UK). A 2 � 2

mm section of the left parietal cranium was thinned with a dental drill over the barrel cortex (0–2

mm caudal from bregma and 2–4 mm lateral from midline). Before each penetration a small fleck of

bone was removed from the recording site with a 30 G hypodermic needle just large enough to

introduce the electrode.

Recordings
Recordings were made from barrels corresponding to the spared whisker and its immediate sur-

rounding deprived barrels using carbon fibre microelectrodes. Action potentials were isolated with a

window discriminator to provide single-unit recordings, recorded with a Neurolog system (Digitimer,

Welwyn Garden City, UK) and digitised with a CED 1401 and Spike2 software (CED, Cambridge, UK)

running on a Windows PC.

Stimulation of whiskers was performed with a 3 � 3 matrix piezo-electric stimulator (Cardiff Uni-

versity Mechanical Engineering Centre) driven by a CED 3901 piezo amplifier (CED, Cambridge,

UK). Stimuli were applied as a trapezoidal ramp with 10 ms rise time, 10 ms plateau and 10 ms

return time, peak deflection was 300 mm (20˚ whisker deflection). Receptive fields were mapped

using pseudorandom sequences in blocks of 10 (9 whiskers and one blank field) at 5 Hz

(Jacob et al., 2010, 2012).
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Histology
Recording sites were confirmed by histology. After each penetration a small lesion (1 mA DC for

10 s, tip negative) was made at 350 mm estimated depth. At the end of the experiment the mouse

was deeply anaesthetized and transcardially perfused with 0.1 M phosphate-buffered saline, fol-

lowed by 4% formaldehyde in PBS. The brain was carefully removed after fixation and the cortex flat-

tened between two glass slides as previously described (Strominger and Woolsey, 1987). After 24

hr postfix in 4% formaldehyde and 20% sucrose in PBS flattened cortices were transferred to 20%

sucrose in PBS until sectioning. Tangential sections (35 mm) were cut on a freezing microtome and

reacted with diaminobenzidine and cytochrome C to stain for cytochrome oxidase activity (Wong-

Riley, 1979). This procedure allows for clear identification of the barrels and confirmation of the

recording site.

In vitro electrophysiology
Slicing procedure
Mice aged between P50 and P60 were killed by cervical dislocation, decapitated and the brain

quickly removed and cooled in ice-cold dissection buffer (in mM: 108 choline-Cl, 3 KCl, 26 NaHCO3,

1.25 NaH2, PO4, 25 D-glucose, 3 Na-pyruvate, 1 CaCl2, 6 MgSO4, 285 mOsm) bubbled with 95%

O2/5% CO2. Coronal slices (350 mm thick) were cut on a vibrating microtome (Microm HM650V,

Thermo Fisher, Cheshire, UK) and transferred to a holding chamber containing normal artificial CSF

(in mM: 119 NaCl, 3.5 KCl, 1 NaH2PO4, 10 D-glucose, 2 CaCl2, 1 MgSO4, 300 mOsm) bubbled with

95% O2/5% CO2. Slices were incubated at 32˚C for 45 min after slicing, then returned to room tem-

perature until recording.

Recordings
Whole cell recordings were performed at 35–37˚C. Barrels were identified in slices under bright field

illumination using an Olympus BX50WI microscope. Pyramidal neurons were identified using DIC

optics. Recording pipettes (4–10 MW) were pulled from borosilicate glass (Clark GC150-F10, Harvard

Apparatus, UK) and filled with a potassium gluconate-based recording solution (in mM: 110 K-gluco-

nate, 10 KCl, 2 MgCl2, 2 Na2ATP, 0.03 Na2GTP, 10 HEPES, pH 7.3, 270 mOsm). LII/III pyramidal cells

were selected for their characteristic regular spiking behavior under depolarizing current. Recordings

were aborted if Vm deviated spontaneously by more than 5 mV, or access resistance deviated by

more than 20% during the recording. An Axon Multiclamp 700 B (Molecular Devices, Sunnyvale, CA)

in current clamp mode was used as the patch amplifier and signals were telegraphed to and digi-

tised by a CED 1401 with Signal software (CED, Cambridge, UK) running on a Windows PC.

LTP experiments
A tungsten monopolar stimulating electrode was placed centrally to a selected barrel in layer IV and

suitable pyramidal neurons were identified in the area vertically above the stimulating electrode.

Once a whole cell recording was established extracellular stimulus was applied at 0.1 Hz, consisting

of a pairs of pulses at 20 Hz. The stimulus was of 0.2 ms duration and 1–35 V intensity, designed to

produce a monosynaptic EPSP of 3–6 mV in the postsynaptic cell. After 10 min of baseline recording,

LTP was induced by pairing a suprathreshold 2.5 ms somatic depolarizing pulse with a single presyn-

aptic stimulus (5 ms pre-post interval). Four runs of 50 paired stimuli at 2 Hz were delivered at 0.025

Hz. After LTP induction the stimulus paradigm was switched back the same as in the baseline record-

ing and one hour of post-paring data were acquired. EPSP amplitudes were calculated as the peak

response above the preceding baseline voltage. Significant potentiation was calculated by compar-

ing mean EPSP amplitude at 50–60 mins after LTP induction with mean baseline EPSP amplitude

using Student’s t-test.

Release probability experiments
The position of the recording and stimulating electrodes were identical to those for the LTP experi-

ments. Once the recordings were established the perfusion solution was switched to magnesium-

free ACSF and an NMDA-receptor mediated response was isolated by the addition of 20 mM CNQX

to the bath solution. Single extracellular stimuli were delivered at 0.1 Hz. After a stable baseline had

been established, stimulation was halted and 10 mM MK-801 was washed onto the slice for 10 min.
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Stimulation was then resumed as before and at least 100 further stimulus trials were recorded, still in

the presence of MK-801 and CNQX in Mg-free ACSF. Single and double-exponential fits of the

response amplitude over time were performed with GraphPad Prism 5 and 6 (GraphPad, La Jolla,

CA). The rate of decrease in the NMDAr-mediated EPSPs is directly related to the release probabil-

ity of synapses in the observed pathway.

mEPSP recordings
Recordings were made in layer II/III pyramidal cells. Miniature AMPA receptor-mediated EPSPs were

isolated by the bath application of 1 mM tetrodotoxin, 100 mM picrotoxin and 50 mM D-AP5. Action

potential blockade was confirmed with the injection of highly-depolarizing square current pulses

(0.8–1 nA, 500 ms). 100–500 events were analysed per cell with a template-matching and threshold-

crossing method (Axograph X, Berkeley, CA). Well-defined, isolated mEPSPs were identified and

used to train a loose-fitting template, with a detection minimum threshold of 2.5 times the RMS

baseline noise (Clements and Bekkers, 1997). Amplitudes and inter-event intervals were binned

and their cumulative distribution compared using a Kolmogorov-Smirnov test.

Statistical analysis
Results are expressed as mean ± s.e.m. Student’s t-tests were used for statistical comparisons

between groups, unless specified (ANOVA analyses, binomial test, Bonferroni post-tests, c-squared

test, Kruskal-Wallis test or K-S test) in the results or figure legends. p<0.05 indicates significant dif-

ference between groups (significance for comparisons: *p<0.05; **p<0.01; ***p<0.001). Sample

sizes were chosen on the basis of previous studies. No statistical methods were used to predeter-

mine the sample size.

Acknowledgements
We thank Ayal Lavi, Adam Frank, Michael Sofroniew, Yan Ao, and Kenta Saito for advice and techni-

cal support. We thank Antony Landreth, Anna Matynia, Mika Guzman, Cindy Montes, and Aida Amin

for their contribution to the reverse genetic screen. This work was supported by grants from the

NIMH (P50-MH0779720) to AJS and KDF, and from the MRC (G0901299) to KDF, and the Dr Miriam

and Sheldon G Adelson Medical Research Foundation to AJS.

Additional information

Funding

Funder Grant reference number Author

National Institute of Mental
Health

P50-MH0779720 Kevin Fox
Alcino J Silva

Dr. Miriam and Sheldon G.
Adelson Medical Research
Foundation

Alcino J Silva

Medical Research Council G0901299 Kevin Fox

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

MZ, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article; SG, Conception and design, Acquisition of data, Analysis and interpretation of

data, Drafting or revising the article ; SH, YS, SW, YC, MS, Acquisition of data; TKS, Conception and

design, Acquisition of data; YN, Contributed unpublished essential data or reagents; DJC, Y-SL,

Analysis and interpretation of data; KF, AJS, Conception and design, Analysis and interpretation of

data, Drafting or revising the article

Zhou et al. eLife 2016;5:e20985. DOI: 10.7554/eLife.20985 26 of 30

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20985


Author ORCIDs

Stuart Greenhill, http://orcid.org/0000-0002-5038-5258

Alcino J Silva, http://orcid.org/0000-0002-1587-4558

Ethics

Animal experimentation: All experiments were performed during the light phase of the cycle. All

studies were approved by the UCLA Institutional Animal Care and Use Committee, also known as

the Chancellor’s Animal Research Committee (ARC, protocol# 1998-070), and by University of Car-

diff and carried out in compliance with the United Kingdom’s Animals (Scientific Procedures) Act

1986 where applicable.

References
Abel T, Martin KC, Bartsch D, Kandel ER. 1998. Memory suppressor genes: inhibitory constraints on the storage
of long-term memory. Science 279:338–341. doi: 10.1126/science.279.5349.338, PMID: 9454331

Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. 1998. The MAPK cascade is required for mammalian
associative learning. Nature Neuroscience 1:602–609. doi: 10.1038/2836, PMID: 10196568

Barth AL, McKenna M, Glazewski S, Hill P, Impey S, Storm D, Fox K. 2000. Upregulation of cAMP response
element-mediated gene expression during experience-dependent plasticity in adult neocortex. Journal of
Neuroscience 20:4206–4216. PMID: 10818156

Bliss TV, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus.
Nature 361:31–39. doi: 10.1038/361031a0, PMID: 8421494

Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. 1994. Deficient long-term memory in mice
with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68. doi: 10.1016/0092-
8674(94)90400-6, PMID: 7923378

Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. 2005. Chemokine receptors in the central nervous system:
role in brain inflammation and neurodegenerative diseases. Brain Research Reviews 48:16–42. doi: 10.1016/j.
brainresrev.2004.07.021, PMID: 15708626

Chan SY, Speck RF, Power C, Gaffen SL, Chesebro B, Goldsmith MA. 1999. V3 recombinants indicate a central
role for CCR5 as a coreceptor in tissue infection by human immunodeficiency virus type 1. Journal of Virology
73:2350–2358. PMID: 9971818

Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD. 2006. ERK/MAPK regulates hippocampal histone
phosphorylation following contextual fear conditioning. Learning & Memory 13:322–328. doi: 10.1101/lm.
152906, PMID: 16741283

Clements JD, Bekkers JM. 1997. Detection of spontaneous synaptic events with an optimally scaled template.
Biophysical Journal 73:220–229. doi: 10.1016/S0006-3495(97)78062-7, PMID: 9199786

Cormier EG, Dragic T. 2002. The crown and stem of the V3 loop play distinct roles in human immunodeficiency
virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor. Journal of Virology 76:8953–8957.
doi: 10.1128/JVI.76.17.8953-8957.2002, PMID: 12163614

Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. 2008.
Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–560. doi: 10.
1016/j.cell.2008.09.060, PMID: 18984165

Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, Trachtenberg JT, Silva AJ.
2014. Encoding and storage of spatial information in the retrosplenial cortex. PNAS 111:8661–8666. doi: 10.
1073/pnas.1313222111, PMID: 24912150

Dachtler J, Hardingham NR, Glazewski S, Wright NF, Blain EJ, Fox K. 2011. Experience-dependent plasticity acts
via GluR1 and a novel neuronal nitric oxide synthase-dependent synaptic mechanism in adult cortex. Journal of
Neuroscience 31:11220–11230. doi: 10.1523/JNEUROSCI.1590-11.2011, PMID: 21813683

Dash PK, Hochner B, Kandel ER. 1990. Injection of the cAMP-responsive element into the nucleus of aplysia
sensory neurons blocks long-term facilitation. Nature 345:718–721. doi: 10.1038/345718a0, PMID: 2141668

Dong J, Xiong H. 2006. Human immunodeficiency virus type 1 gp120 inhibits long-term potentiation via
chemokine receptor CXCR4 in rat hippocampal slices. Journal of Neuroscience Research 83:489–496. doi: 10.
1002/jnr.20745, PMID: 16400660

Ellis R, Langford D, Masliah E. 2007. HIV and antiretroviral therapy in the brain: neuronal injury and repair.
Nature Reviews Neuroscience 8:33–44. doi: 10.1038/nrn2040, PMID: 17180161

Fox K. 1992. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. Journal of
Neuroscience 12:1826–1838. PMID: 1578273

Fätkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD,
Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der
Ryst E. 2005. Efficacy of short-term monotherapy with Maraviroc, a new CCR5 antagonist, in patients infected
with HIV-1. Nature Medicine 11:1170–1172. doi: 10.1038/nm1319, PMID: 16205738

Galanakis PA, Kandias NG, Rizos AK, Morikis D, Krambovitis E, Spyroulias GA. 2009. NMR evidence of charge-
dependent interaction between various PND V3 and CCR5 N-terminal peptides. Biopolymers 92:94–109.
doi: 10.1002/bip.21127, PMID: 19117029

Zhou et al. eLife 2016;5:e20985. DOI: 10.7554/eLife.20985 27 of 30

Research article Neuroscience

http://orcid.org/0000-0002-5038-5258
http://orcid.org/0000-0002-1587-4558
http://dx.doi.org/10.1126/science.279.5349.338
http://www.ncbi.nlm.nih.gov/pubmed/9454331
http://dx.doi.org/10.1038/2836
http://www.ncbi.nlm.nih.gov/pubmed/10196568
http://www.ncbi.nlm.nih.gov/pubmed/10818156
http://dx.doi.org/10.1038/361031a0
http://www.ncbi.nlm.nih.gov/pubmed/8421494
http://dx.doi.org/10.1016/0092-8674(94)90400-6
http://dx.doi.org/10.1016/0092-8674(94)90400-6
http://www.ncbi.nlm.nih.gov/pubmed/7923378
http://dx.doi.org/10.1016/j.brainresrev.2004.07.021
http://dx.doi.org/10.1016/j.brainresrev.2004.07.021
http://www.ncbi.nlm.nih.gov/pubmed/15708626
http://www.ncbi.nlm.nih.gov/pubmed/9971818
http://dx.doi.org/10.1101/lm.152906
http://dx.doi.org/10.1101/lm.152906
http://www.ncbi.nlm.nih.gov/pubmed/16741283
http://dx.doi.org/10.1016/S0006-3495(97)78062-7
http://www.ncbi.nlm.nih.gov/pubmed/9199786
http://dx.doi.org/10.1128/JVI.76.17.8953-8957.2002
http://www.ncbi.nlm.nih.gov/pubmed/12163614
http://dx.doi.org/10.1016/j.cell.2008.09.060
http://dx.doi.org/10.1016/j.cell.2008.09.060
http://www.ncbi.nlm.nih.gov/pubmed/18984165
http://dx.doi.org/10.1073/pnas.1313222111
http://dx.doi.org/10.1073/pnas.1313222111
http://www.ncbi.nlm.nih.gov/pubmed/24912150
http://dx.doi.org/10.1523/JNEUROSCI.1590-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21813683
http://dx.doi.org/10.1038/345718a0
http://www.ncbi.nlm.nih.gov/pubmed/2141668
http://dx.doi.org/10.1002/jnr.20745
http://dx.doi.org/10.1002/jnr.20745
http://www.ncbi.nlm.nih.gov/pubmed/16400660
http://dx.doi.org/10.1038/nrn2040
http://www.ncbi.nlm.nih.gov/pubmed/17180161
http://www.ncbi.nlm.nih.gov/pubmed/1578273
http://dx.doi.org/10.1038/nm1319
http://www.ncbi.nlm.nih.gov/pubmed/16205738
http://dx.doi.org/10.1002/bip.21127
http://www.ncbi.nlm.nih.gov/pubmed/19117029
http://dx.doi.org/10.7554/eLife.20985


Galicia O, Sánchez-Alavez M, Méndez Dı́az M, Navarro L, Prospero-Garcı́a O. 2002. [HIV glycoprotein 120:
possible etiological agent of AIDS-associated dementia]. Revista De Investigacion Clinica; Organo Del Hospital
De Enfermedades De La Nutricion 54:437–452. PMID: 12587419

Glazewski S, Barth AL, Wallace H, McKenna M, Silva A, Fox K. 1999. Impaired experience-dependent plasticity in
barrel cortex of mice lacking the alpha and delta isoforms of CREB. Cerebral Cortex 9:249–256. doi: 10.1093/
cercor/9.3.249, PMID: 10355905

Glazewski S, Fox K. 1996. Time course of experience-dependent synaptic potentiation and depression in barrel
cortex of adolescent rats. Journal of Neurophysiology 75:1714–1729. PMID: 8727408

Gulick RM, Lalezari J, Goodrich J, Clumeck N, DeJesus E, Horban A, Nadler J, Clotet B, Karlsson A, Wohlfeiler
M, Montana JB, McHale M, Sullivan J, Ridgway C, Felstead S, Dunne MW, van der Ryst E, Mayer H, MOTIVATE
Study Teams. 2008. Maraviroc for previously treated patients with R5 HIV-1 infection. New England Journal of
Medicine 359:1429–1441. doi: 10.1056/NEJMoa0803152, PMID: 18832244

Guzowski JF, McGaugh JL. 1997. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP
response element binding protein levels impairs consolidation of memory for water maze training. PNAS 94:
2693–2698. doi: 10.1073/pnas.94.6.2693, PMID: 9122258

Hall J, Thomas KL, Everitt BJ. 2001. Cellular imaging of zif268 expression in the hippocampus and amygdala
during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the
recall of contextual memories. Journal of Neuroscience 21:2186–2193. PMID: 11245703

Hardingham N, Fox K. 2006. The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of
neocortical potentiation. Journal of Neuroscience 26:7395–7404. doi: 10.1523/JNEUROSCI.0652-06.2006,
PMID: 16837587

Hessler NA, Shirke AM, Malinow R. 1993. The probability of transmitter release at a mammalian central synapse.
Nature 366:569–572. doi: 10.1038/366569a0, PMID: 7902955

Hunt JS, Romanelli F. 2009. Maraviroc, a CCR5 coreceptor antagonist that blocks entry of human
immunodeficiency virus type 1. Pharmacotherapy 29:295–304. doi: 10.1592/phco.29.3.295, PMID: 19249948

Jacob V, Estebanez L, Le Cam J, Tiercelin JY, Parra P, Parésys G, Shulz DE. 2010. The matrix: a new tool for
probing the whisker-to-barrel system with natural stimuli. Journal of Neuroscience Methods 189:65–74. doi: 10.
1016/j.jneumeth.2010.03.020, PMID: 20362614

Jacob V, Petreanu L, Wright N, Svoboda K, Fox K. 2012. Regular spiking and intrinsic bursting pyramidal cells
show orthogonal forms of experience-dependent plasticity in layer V of barrel cortex. Neuron 73:391–404.
doi: 10.1016/j.neuron.2011.11.034, PMID: 22284191

Kaneko M, Cheetham CE, Lee YS, Silva AJ, Stryker MP, Fox K. 2010. Constitutively active H-ras accelerates
multiple forms of plasticity in developing visual cortex. PNAS 107:19026–19031. doi: 10.1073/pnas.
1013866107, PMID: 20937865

Kathirvelu B, Colombo PJ. 2013. Effects of lentivirus-mediated CREB expression in the dorsolateral striatum:
memory enhancement and evidence for competitive and cooperative interactions with the hippocampus.
Hippocampus 23:1066–1074. doi: 10.1002/hipo.22188, PMID: 23939934

Kogan JH, Frankland PW, Silva AJ. 2000. Long-term memory underlying hippocampus-dependent social
recognition in mice. Hippocampus 10:47–56. doi: 10.1002/(SICI)1098-1063(2000)10:1<47::AID-HIPO5>3.0.CO;
2-6, PMID: 10706216

Kushner SA, Elgersma Y, Murphy GG, Jaarsma D, van Woerden GM, Hojjati MR, Cui Y, LeBoutillier JC, Marrone
DF, Choi ES, De Zeeuw CI, Petit TL, Pozzo-Miller L, Silva AJ. 2005. Modulation of presynaptic plasticity and
learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. Journal of
Neuroscience 25:9721–9734. doi: 10.1523/JNEUROSCI.2836-05.2005, PMID: 16237176

Lee YK, Kwak DH, Oh KW, Nam SY, Lee BJ, Yun YW, Kim YB, Han SB, Hong JT. 2009. CCR5 deficiency induces
astrocyte activation, Abeta deposit and impaired memory function. Neurobiology of Learning and Memory 92:
356–363. doi: 10.1016/j.nlm.2009.04.003, PMID: 19394434

Lee YS, Silva AJ. 2009. The molecular and cellular biology of enhanced cognition. Nature Reviews Neuroscience
10:126–140. doi: 10.1038/nrn2572, PMID: 19153576

Lein ES, Zhao X, Gage FH. 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and
high-throughput in situ hybridization. Journal of Neuroscience 24:3879–3889. doi: 10.1523/JNEUROSCI.4710-
03.2004, PMID: 15084669

Liang M, Kamata M, Chen KN, Pariente N, An DS, Chen IS. 2010. Inhibition of HIV-1 infection by a unique short
hairpin RNA to chemokine receptor 5 delivered into macrophages through hematopoietic progenitor cell
transduction. The Journal of Gene Medicine 12:255–265. doi: 10.1002/jgm.1440, PMID: 20186995

Matus-Amat P, Higgins EA, Barrientos RM, Rudy JW. 2004. The role of the dorsal hippocampus in the acquisition
and retrieval of context memory representations. Journal of Neuroscience 24:2431–2439. doi: 10.1523/
JNEUROSCI.1598-03.2004, PMID: 15014118

Matynia A, Anagnostaras SG, Wiltgen BJ, Lacuesta M, Fanselow MS, Silva AJ. 2008. A high through-put reverse
genetic screen identifies two genes involved in remote memory in mice. PLoS One 3:e2121. doi: 10.1371/
journal.pone.0002121, PMID: 18464936

Maung R, Hoefer MM, Sanchez AB, Sejbuk NE, Medders KE, Desai MK, Catalan IC, Dowling CC, de Rozieres
CM, Garden GA, Russo R, Roberts AJ, Williams R, Kaul M. 2014. CCR5 knockout prevents neuronal injury and
behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120. The
Journal of Immunology 193:1895–1910. doi: 10.4049/jimmunol.1302915, PMID: 25031461

Zhou et al. eLife 2016;5:e20985. DOI: 10.7554/eLife.20985 28 of 30

Research article Neuroscience

http://www.ncbi.nlm.nih.gov/pubmed/12587419
http://dx.doi.org/10.1093/cercor/9.3.249
http://dx.doi.org/10.1093/cercor/9.3.249
http://www.ncbi.nlm.nih.gov/pubmed/10355905
http://www.ncbi.nlm.nih.gov/pubmed/8727408
http://dx.doi.org/10.1056/NEJMoa0803152
http://www.ncbi.nlm.nih.gov/pubmed/18832244
http://dx.doi.org/10.1073/pnas.94.6.2693
http://www.ncbi.nlm.nih.gov/pubmed/9122258
http://www.ncbi.nlm.nih.gov/pubmed/11245703
http://dx.doi.org/10.1523/JNEUROSCI.0652-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16837587
http://dx.doi.org/10.1038/366569a0
http://www.ncbi.nlm.nih.gov/pubmed/7902955
http://dx.doi.org/10.1592/phco.29.3.295
http://www.ncbi.nlm.nih.gov/pubmed/19249948
http://dx.doi.org/10.1016/j.jneumeth.2010.03.020
http://dx.doi.org/10.1016/j.jneumeth.2010.03.020
http://www.ncbi.nlm.nih.gov/pubmed/20362614
http://dx.doi.org/10.1016/j.neuron.2011.11.034
http://www.ncbi.nlm.nih.gov/pubmed/22284191
http://dx.doi.org/10.1073/pnas.1013866107
http://dx.doi.org/10.1073/pnas.1013866107
http://www.ncbi.nlm.nih.gov/pubmed/20937865
http://dx.doi.org/10.1002/hipo.22188
http://www.ncbi.nlm.nih.gov/pubmed/23939934
http://dx.doi.org/10.1002/(SICI)1098-1063(2000)10:1%3C47::AID-HIPO5%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1098-1063(2000)10:1%3C47::AID-HIPO5%3E3.0.CO;2-6
http://www.ncbi.nlm.nih.gov/pubmed/10706216
http://dx.doi.org/10.1523/JNEUROSCI.2836-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16237176
http://dx.doi.org/10.1016/j.nlm.2009.04.003
http://www.ncbi.nlm.nih.gov/pubmed/19394434
http://dx.doi.org/10.1038/nrn2572
http://www.ncbi.nlm.nih.gov/pubmed/19153576
http://dx.doi.org/10.1523/JNEUROSCI.4710-03.2004
http://dx.doi.org/10.1523/JNEUROSCI.4710-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/15084669
http://dx.doi.org/10.1002/jgm.1440
http://www.ncbi.nlm.nih.gov/pubmed/20186995
http://dx.doi.org/10.1523/JNEUROSCI.1598-03.2004
http://dx.doi.org/10.1523/JNEUROSCI.1598-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/15014118
http://dx.doi.org/10.1371/journal.pone.0002121
http://dx.doi.org/10.1371/journal.pone.0002121
http://www.ncbi.nlm.nih.gov/pubmed/18464936
http://dx.doi.org/10.4049/jimmunol.1302915
http://www.ncbi.nlm.nih.gov/pubmed/25031461
http://dx.doi.org/10.7554/eLife.20985


Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER. 1996. Control of memory formation through
regulated expression of a CaMKII transgene. Science 274:1678–1683. doi: 10.1126/science.274.5293.1678,
PMID: 8939850

Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ. 1998. Chemokines regulate hippocampal
neuronal signaling and gp120 neurotoxicity. PNAS 95:14500–14505. doi: 10.1073/pnas.95.24.14500, PMID:
9826729

Morikis D, Rizos AK, Spandidos DA, Krambovitis E. 2007. Electrostatic modeling of peptides derived from the
V3-loop of HIV-1 gp120: implications of the interaction with chemokine receptor CCR5. International Journal of
Molecular Medicine 19:343–351. doi: 10.3892/ijmm.19.3.343, PMID: 17273779

Musante V, Longordo F, Neri E, Pedrazzi M, Kalfas F, Severi P, Raiteri M, Pittaluga A. 2008. RANTES modulates
the release of glutamate in human neocortex. Journal of Neuroscience 28:12231–12240. doi: 10.1523/
JNEUROSCI.3212-08.2008, PMID: 19020017

Ndhlovu LC, Umaki T, Chew GM, Chow DC, Agsalda M, Kallianpur KJ, Paul R, Zhang G, Ho E, Hanks N,
Nakamoto B, Shiramizu BT, Shikuma CM. 2014. Treatment intensification with maraviroc (CCR5 antagonist)
leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is
associated with improvements in neurocognitive test performance: implications for HIV-associated
neurocognitive disease (HAND). Journal of NeuroVirology 20:571–582. doi: 10.1007/s13365-014-0279-x,
PMID: 25227930
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