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Probing rotational decoherence with a trapped-ion planar rotor
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1Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
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4Department of Electrical and Computer Engineering,
University of Washington, Seattle, Washington 98195, USA

5University of Duisburg-Essen, Faculty of Physics, Lotharstraße 1, 47057 Duisburg, Germany

The quantum rotor is one of the simplest model systems in quantum mechanics, but only in
recent years has theoretical work revealed general fundamental scaling laws for its decoherence.
For example, a superposition of orientations decoheres at a rate proportional to the sine squared
of the angle between them. Here we observe scaling laws for rotational decoherence dynamics for
the first time, using a 4 µm-diameter planar rotor composed of two Paul-trapped ions. We prepare
the rotational motion of the ion crystal into superpositions of angular momentum with well-defined
differences ranging from 1 − 3 ℏ, and measure the rate of decoherence. We also tune the system-
environment interaction strength by introducing resonant electric field noise. The observed scaling
relationships for decoherence are in excellent agreement with recent theoretical work, and are directly
relevant to the growing development of rotor-based quantum applications.

Introduction.—The quantum rigid rotor is among the
simplest model quantum systems, on par with the quan-
tum harmonic oscillator and the qubit. In contrast to
these, the technological potential of quantum rotor dy-
namics has not yet been fully tapped. There have re-
cently been remarkable advances in the preparation and
control of molecular rotational states [1–7], in using such
states for coherent interactions [8–13], and in the manip-
ulation of nanoscale rotors [14–19]. These developments
are motivated by prospects of using the unique proper-
ties of rotors for encoding quantum information [20–24],
performing quantum simulations using tunable dipole-
dipole interactions [25–28], torque sensing [15, 29, 30],
and tests of the quantum superposition principle at high
masses [31, 32].

Experiments which aim to exploit rotational quantum
coherence will also need to contend with interaction with
their environment and the resulting decoherence. In rotor
systems, decoherence has been experimentally observed
only in certain limited contexts. These include the de-
cay of rotational coherences in gas-phase ensembles of
molecules due to collisions or radiation [33–37], and due
to light scattering or uncontrolled differential shifts in
optical traps [8, 12, 38–41]. To push quantum rotors into
a useful coherent regime, a comprehensive understanding
of their decoherence dynamics will be crucial.

The theory of rotor decoherence, which fully accounts
for orientational periodicity, has been developed only
within the last decade [42–46]. An important case is in-
teraction with an isotropic environment, which leads to
diffusion of a rotor’s angular momentum state. In this
case, a superposition of two orientation states |ϕ⟩ + |ϕ′⟩

∗ Current address: Exponent, Inc., Electrical Engineering and
Computer Science Practice, Warrenville, IL

is predicted to decay into a statistical mixture at a rate
proportional to two important parameters: (i) the angu-
lar momentum diffusion coefficient, and (ii) for inversion-
symmetric planar rotors, the sine squared of their relative
angle, sin2(ϕ − ϕ′). This can be compared with the de-

coherence rate |α− α′|2 for a superposition of harmonic
oscillator coherent states |α⟩+ |α′⟩ [47]. Experimentally
verifying harmonic oscillator decoherence scalings [48–
50] proved crucial for developing oscillators into building
blocks for quantum technologies. For rotors, the analo-
gous relations have not yet been experimentally probed.

Here we report on an experimental study of the deco-
herence dynamics of a planar rigid rotor. The rotor is
composed of two trapped atomic ions separated by sev-
eral micrometers and rotating with a frequency on the
order of one hundred kilohertz. We prepare this system
in a superposition of different rotation rates, which turns
into a superposition of orientation states, and engineer a
noisy electric-field environment to induce rotational deco-
herence on the millisecond timescale. Our results demon-
strate a sine-squared scaling of the decoherence rate for
orientational superpositions in the small-angle limit and
the expected scaling with the angular momentum diffu-
sion coefficient. Both findings are in excellent agreement
with theory.

Two-ion planar rotor.—We realize a quantum rigid ro-
tor as a pair of 40Ca+ ions Paul-trapped in a cylindrically
symmetric potential, created by a surface ion trap with
circular radio-frequency (rf) electrodes, see Fig. 1. The
ions are confined to the tranverse plane, while the cylin-
drical symmetry allows for a free rotational motion of the
ion crystal within the plane [51, 52]. The ions’ mutual
Coulomb repulsion balanced with the trap potential cre-
ates a rigid rotor with radius r = 2.2 µm. The Hamilto-
nian describing the rotational motion of the ion crystal is
that of a planar rotor H0 = L2

z/2I, where Lz is the angu-
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Fig. 1. Experimental setup. (a) Two 40Ca+ ions (not to scale) rotate above a circular surface ion trap in the plane parallel
to the surface. A tilted vertical beam of 729 nm laser light addresses the ion crystal on rotational sidebands of the electronic
|S⟩ ↔ |D⟩ transition, labeled by their order ∆ℓ, to create angular momentum superpositions. Sidebands of different orders
∆ℓ are spectrally resolved from one another. (b) Circuit schematic of the setup for creating the electric-field gradient noise
environment. A narrow-band noisy voltage is applied to the outer control electrodes in an alternating pattern, giving rise to a
quadrupole electric field at the location of the ion rotor. The zoom-in shows the ion rotor and the quadrupole field (blue). The
noisy gradient of this field exerts random torques on the rotor when on resonance with the ions’ rotation, resulting in angular
momentum diffusion and decoherence.

lar momentum operator component normal to the rotor
plane and I = 2mr2 is the moment of inertia. The an-
gular momentum eigenstates |ℓ⟩ are simultaneous eigen-
states of the Hamiltonian H0 and the angular momen-
tum operator Lz, with angular momentum eigenvalues
ℏℓ where ℓ spans the integers. In the angle basis |ϕ⟩ they
take the form ⟨ϕ| ℓ⟩ = exp(iℓϕ)/

√
2π. The energy scale

is set by the rotational constant ωr = ℏ/2I = 2π×13Hz.
Each ion contains an independent electronic degree of
freedom, of which only two states are of interest: the
2S1/2 (m = −1/2) sublevel of the ground electronic state

(labelled |S⟩) and the metastable 2D5/2 (m = −1/2)
state (labelled |D⟩). The ions’ internal electronic states
are coherently manipulated by a narrow-linewidth laser
near the |S⟩ ↔ |D⟩ resonance at 729 nm. Sidebands of
this resonance are used to couple to the rotational de-
gree of freedom. All measurements record the |D⟩ state
population averaged between the two ions, P (D).
Controlled environment.—We experimentally realize a

controllable environment by applying a noisy voltage to
the outer control electrodes of the trap, giving rise to
a noisy electric field that couples to the rotor via the
ions’ charge. Since the two-ion crystal has zero dipole
moment, the interaction with the noise field is via its
quadrupole component and thus is proportional to the
local field gradients,

Vt(ϕ) =
er2

4

(
εtL

2
+ + ε∗tL

2
−
)
. (1)

Here, L± = e±iϕ are dimensionless angular momentum
raising and lowering operators, L± |ℓ⟩ = |ℓ± 1⟩ [53] and
εt = −∂xEx + ∂yEy + 2i∂xEy is the relevant field gra-
dient for quadrupolar interaction in the plane parallel to
the surface [54]. We inject voltage noise onto four of the

eight control electrodes which surround the rf electrodes
with alternating sign, as shown in Fig. 1(b). The result-
ing quadrupole field is proportional to the applied volt-
age, which is generated as white noise from an arbitrary
waveform generator and passed through a bandpass filter
with a 19 kHz bandwidth and tunable center frequency.
This allows us to directly control the noise spectral den-
sity of the electric field gradient. In the absence of in-
jected voltage noise, uncontrolled ambient electric field
gradient noise is still present at the location of the ions
due to stray voltage noise and thermally induced field
fluctuations originating from the electrodes [55, 56].
Averaging the rotor-field interaction over many real-

izations of the noisy electric field gradient, the coarse-
grained dynamics of the rotor’s quantum state ρ are
described by the Lindblad master equation of orienta-
tional decoherence for quadrupolar interactions ∂tρ =
−i[H0, ρ]/ℏ+ Lρ with [54],

Lρ =
D

4ℏ2
(
L2
−ρL

2
+ + L2

+ρL
2
− − 2ρ

)
. (2)

The Markovian description is only valid for timescales
large in comparison to the inverse linewidth of the noise
spectrum. The master equation describes angular mo-
mentum diffusion with a coefficient D, i.e. ∂t

〈
L2
z

〉
= 2D,

and decoherence in the rotor orientation [44],

⟨ϕ| Lρ |ϕ′⟩ = −D

ℏ2
sin2(ϕ− ϕ′) ⟨ϕ| ρ |ϕ′⟩ . (3)

The scaling with sin2(ϕ−ϕ′) is π-periodic rather than 2π-
periodic due to the inversion symmetry of the quadrupole
interaction [44, 57]. For a rapidly spinning rotor with
mean angular frequency ωrot = ⟨Lz⟩ /I, the diffusion co-
efficient is determined by the power spectral density of
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the field gradient at twice the rotation frequency [54],
D = e2r4Sε(2ωrot)/4. Here, Sε(ω) is the power spectral
density of εt. Equation (3) describes how angular mo-
mentum diffusion, which can also be understood via the
classical interaction between the rotor system and the
electric-field gradient environment, relates to quantum
decoherence of the rotor.

Rotational diffusion and decoherence.—We present two
types of measurements, (i) angular momentum diffusion
of the quantum rotor, and (ii) decoherence of angular
momentum superpositions. In both cases, we begin with
the ions trapped in an pinning potential which fixes their
locations. We first cool all motional degrees of freedom
with Doppler cooling, then sideband cool the transverse
librational motion and the motion normal to the rotor
plane to their vibrational ground states. We then ini-
tialize the ions’ internal states to |S⟩ via optical pump-
ing, and spin up the rotor by rotating and then releas-
ing the pinning potential via a protocol described in
Ref. [52]. This approximately produces a coherent rotor
state

∣∣Ψℓ

〉
that is localized in angular momentum space

at ℓ̄ = ⟨Lz⟩ /ℏ ≫ σℓ, where σℓ is the standard deviation
in units of ℏ. In the present experiment, ℓ̄ ≈ 6 × 103

and σℓ ≈ 20. The corresponding mean rotation fre-
quency, ωrot = 2ωrℓ̄, is chosen to be between 142 and
149 kHz. This procedure yields resolved sidebands on
the |S⟩ ↔ |D⟩ 729 nm transition at frequencies ∆ℓ ωrot

for integer ∆ℓ, corresponding to rotational state transi-
tions |ℓ⟩ → |ℓ+∆ℓ⟩. This allows selection of well-defined
angular momentum changes ∆ℓ by tuning the frequency
of the 729 nm laser to the corresponding sideband fre-
quency.

To determine the angular momentum diffusion coeffi-
cient, we measure the width of the rotor state σℓ over
time as it interacts with the environment. Under dif-
fusion, this width increases with time as σℓ(tdiff)

2 =
σℓ(0)

2 +2Dtdiff/ℏ2. The measurement protocol is shown
in Fig. 2(a). After letting the rotor interact with the envi-
ronment for time tdiff , we perform a Ramsey experiment
on the ∆ℓ = 1 sideband to measure its linewidth, which
is equal to 4ωrσℓ [52]. The linewidth is directly propor-
tional to σℓ since uncertainty in angular momentum di-
rectly corresponds to uncertainty in rotation frequency.
We add a small detuning of a few kHz to see Ramsey
fringes. The linewidth is inferred to be the reciprocal of
the fringe decay time [52]. We find that in the absence
of injected noise, the uncontrolled ambient environment
induces diffusion coefficients between 2 and 20 ℏ2/ms.

Figure 2(b) shows a sample diffusion measurement. In
Fig. 2(c), we plot the measured diffusion coefficient for
noise spectral densities with varying center frequency.
We find that the measured diffusion coefficient is indeed
proportional to the field gradient spectral density: diffu-
sion is maximized when the injected noise resonance is
equal to 2ωrot, and is consistent with a Lorentzian line-
shape with bandwidth of 19 kHz as the center frequency
of the noise is swept.

A direct coherence measurement is required to verify
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Fig. 2. Measurements of the angular momentum diffusion co-
efficient. (a) Diagram of the measurement protocol for the
angular momentum spread. A rotating coherent state is pre-
pared, and noise is injected for a time tdiff . Afterward, the
linewidth of the ∆ℓ = 1 sideband is measured with a Ramsey
experiment. The decay time of the Ramsey signal is inversely
proportional to the sideband linewidth, which is directly pro-
portional to the angular momentum spread of the rotor. (b)
A sample diffusion coefficient measurement. Angular momen-
tum distribution width σℓ is measured as a function of time
after rotational state preparation. The solid line is a fit giving
D = 156(20) ℏ2/ms. Inset: Selected individual Ramsey mea-
surements of σℓ with a detuning of 6 kHz from the ∆ℓ = 1
sideband transition. The shaded region shows the inferred
phase contrast from the data, from which σℓ is inferred. (c)
Demonstration of the 2ωrot resonance at a rotation frequency
ωrot = 144(2) kHz. For each data point, the center frequency
of the injected noise spectrum is shifted, while the amplitude
and bandwidth are preserved, and the rotation frequency is
kept constant. Measured diffusion coefficients below 20 ℏ2/ms
are likely prevented here by ambient noise. A Lorentzian line-
shape, centered at 2ωrot and with bandwidth equal to the
injected noise bandwidth of 19 kHz, is shown for reference.
Vertical bands are at ωrot and 2ωrot including variation.

that the even classically expected angular momentum
diffusion is accompanied by decoherence, which can
only be understood in a quantum picture. For this,
we perform a Ramsey interference experiment on a
chosen ∆ℓ sideband in the presence of the noise bath.
The initial π/2 pulse applies the operation |SS, ℓ⟩ →
(|SS, ℓ⟩ ± |SD, ℓ+∆ℓ⟩ − |DS, ℓ+∆ℓ⟩ ∓ |DD, ℓ+2∆ℓ⟩) /2,
where the signs depend on whether ∆ℓ is odd (top) or
even (bottom). Because the initial state consists of a
spread of many angular momentum values ℓ, each of
which has a different |ℓ⟩ → |ℓ+∆ℓ⟩ transition frequency,
free coherent evolution following the π/2 pulse results
in a dephasing when tracing over the motion [52]. We
therefore add a Hahn echo pulse to the center of the
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Fig. 3. Measurements of rotational decoherence. (a) Simplified diagram of the Ramsey sequence used to measure rotational
decoherence. Ions are shown in a co-rotating frame. A π/2 pulse on a rotational sideband of order ∆ℓ creates a superposition
of angular momenta. This may be equated to a superposition of two orientations of the rotor which are freely evolving at
different angular velocities and have a linearly increasing angular separation ∆ϕ. A π pulse reverses the separation, and a
π/2 pulse closes the interferometer. The noisy environment is turned on while the interferometer is open. The remaining
orientational coherence is quantified as the amplitude of the interference fringe. (b) Sample measurements of the decay of
phase contrast for superposition states with ∆ℓ =1, 2, 3 at a constant level of noise injected such that D = 70 ℏ2/ms. Fits are
of the form (5). Inset: Selected individual phase scans for ∆ℓ = 1. (c) Decoherence rate measured against angular momentum
diffusion coefficient. The leftmost datapoints are derived from an ambient environment where D = 2.1 ℏ2/ms, and the others
are obtained from use of the engineered environment, with varying amplitudes of injected noise. Solid curves are produced
from (6), with no free fitting parameters. Inset: Decoherence rates, from the data points at D = 70 ℏ2/ms in the main plot,
plotted against ∆ℓ on a log-log scale. The shaded area shows a power law fit including uncertainty. The black line shows the
theoretically expected power law of ∆ℓ2/3 from Eq. (6).

Ramsey scheme to reverse the free evolution and in
turn compensate for the dephasing. After time τ , the
interferometer is closed by a final π/2 pulse. With the
echo pulse included, any measured loss in phase contrast
can be attributed to nonunitary dynamics. We rule out
other known potential decoherence mechanisms which
could otherwise contribute to decay in fringe contrast by
independent measurements [54]. The angular momen-
tum superposition created by this experiment is akin to
a time-dependent superposition of orientations which
separate at a rate 2ωr∆ℓ, as depicted in Fig. 3(a).

A sample of rotational decoherence measurements is
presented in Fig. 3(b), which shows the Ramsey phase
contrast C as a function of total Ramsey time τ for an-
gular momentum superposition orders ∆ℓ = 1, 2, and 3.
The expected fringe contrast can be calculated by solving
the master equation (2) [54], yielding

C(τ) = exp

(
−Dτ

2ℏ2
[
1− sinc(2ωr∆ℓ τ)

])
, (4)

which describes an exponential decay modulated with the
rate of angular separation 2ωr∆ℓ. We note that while in
our experiment there are both ∆ℓ-separated and 2∆ℓ-
separated coherences, the fringe contrast of the average

|D⟩ state population is sensitive only to the ∆ℓ-separated
coherences, and is insensitive 2∆ℓ-separated coherences.
The experiment takes place in a regime where decoher-
ence occurs well before the completion of the first oscil-
lation at time τ = π/ωr∆ℓ, so that

C(τ) = C0 exp
[
−(γτ)3

]
, (5)

with

γ =

(
ω2
r∆ℓ

2D

3ℏ2

)1/3

. (6)

C0 less than unity accounts for imperfect operations. Fit-
ting the measurements to this function yields the deco-
herence rate γ, see Fig. 3(b). In Fig. 3(c), we present
triplets of decoherence rates for superpositions ∆ℓ =
1, 2, 3 across various strengths of the system-environment
interaction, which are quantified by the angular mo-
mentum diffusion coefficient. By varying the amplitude
of injected noise, we tune the diffusion coefficient from
2.1 ℏ2/ms (ambient environment, no noise injected) to
1000 ℏ2/ms. The solid curves are derived directly from
the solution to the master equation with no free fitting
parameters.
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Our experiment confirms three non-trivial predictions:
(i) The shape of the measured contrast decay profile in
Fig. 3(b) matches the predicted profile (5). In the pic-
ture of superposed time-dependent orientations, the τ3-
dependence may be understood as the integral of an in-
stantaneous decoherence rate that is quadratic in the
angular separation. This is a signature of the sine-
squared orientational scaling of rotational decoherence in
the small-angle limit, since for small angular separation
one obtains sin2[∆ϕ(t)] = sin2(2ωr∆ℓt) ≈ (2ωr∆ℓt)

2. (ii)
The power-law scaling for the decoherence rate (6) with
∆ℓ, γ ∼ ∆ℓ2/3, is confirmed by the fit in the inset of
Fig. 3(c). This yields γ ∼ ∆ℓ0.71(5), which is consistent
with the expected scaling. Repeating this analysis for
the four diffusion coefficients in the main plot of Fig. 3(c)
and averaging the exponents, we find γ ∼ ∆ℓ0.65(4). As
with the shape of the coherence profile in time, the scal-
ing γ ∼ ∆ℓ2/3 also results directly from the sine-squared
orientational scaling, since ∆ℓ sets the speed of angular
separation. (iii) The power-law scaling of the decoher-
ence rate (6) with diffusion coefficient, γ ∼ D1/3, can be
seen in our measurements in Fig. 3(c), where the slope of
the solid curves follows this 1/3 power law. We empha-
size that the solid curves come directly from (6) with no
free parameters. Thus in addition to finding agreement
with all expected scalings of the rotational decoherence
process, we also find that the absolute values of the mea-
sured decoherence rates agree with predictions from the
master equation. We see agreement over the full range
of measured diffusion coefficients.

Discussion.—In summary, we have presented an exper-
imental study of the decoherence dynamics of a trapped-
ion planar rotor due to a noisy electric field. We have ver-
ified the theoretical prediction that the decoherence rate
of a superposition of two orientations is proportional to
sin2(ϕ−ϕ′) in the small-angle limit. In addition, by inde-
pendently engineering and measuring the rate of angular
momentum diffusion, we have confirmed the dependence
of rotational decoherence on angular momentum diffu-
sion. These results serve as a controlled test of the theory
of rotor decoherence, which constitutes a necessary step
towards utilizing rotational quantum coherence for sens-
ing, quantum information processing, and fundamental
tests [15, 20–22, 25–27, 31, 32]. Our work may serve as
a basis for the observation of decoherence-free subspaces
in the rotational degree of freedom [57], for future stud-
ies of surface noise beyond heating measurements with
single ions [56], and for first experiments creating mas-
sive superposition states with nanoscale spin rotors [58].
Finally, quantitatively understanding rotor decoherence
in planar surface traps is a crucial step first step towards
probing the exchange phase of distant atoms in trapped
rotor interferometer [59].
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END MATTER

Experimental details— The rf electrodes produce a
three-dimensional harmonic potential centered 180 µm
above the trap surface, whose confinement strength
is characterized by secular trap frequencies ωz =
2π × 2.87MHz normal to the trap surface and ωx = ωy =
2π × 1.44MHz in the transverse plane. The 729 nm laser
addresses the full ion crystal nearly normal to the rotor,
at a small angle of 5.6◦ with respect to the normal of
the rotor plane, in order to maximize coupling to the de-
sired sideband orders [52]. A uniform magnetic field of
409 µT separates the Zeeman sublevels of the electronic
states to allow frequency selectivity of the sublevels of
interest. State measurement is performed by applying
cycling transition laser light at 397 nm, which is reso-
nant with a dipole-allowed transition from the |S⟩ state
but off-resonant from any transition from the |D⟩ state.
This allows state discrimination by counting scattered
photons.

Appendix A: Theoretical description

1. Derivation of the master equation

We consider a planar rigid rotor formed by two ions
with charges e at positions r1,2 = zez ± reρ(ϕ), where z
is the height above the surface trap, 2r is the ion separa-
tion, and the angle ϕ describes the rotor orientation. The
potential energy of the rotor in the quadrupole potential
follows as

V (ϕ) = −er2eρ(ϕ) · [∇⊗E(zez, t)] eρ(ϕ), (A1)

where E(r, t) is the local field strength at time t. The
vector gradient ∇⊗E(zez, t) is symmetric and traceless,
and determined by the trap geometry. Using that L± =
e±iϕ, this potential energy can be rewritten up to an
additive constant as

Vt(ϕ) =
er2

4

(
εtL

2
+ + ε∗tL

2
−
)
, (A2)

where we defined the complex-valued combination of field
gradients

εt = −∂xEx + ∂yEy + 2i∂xEy, (A3)

whose magnitude is determined by the trapping geome-
try as well as the time-dependent voltage applied to the
control electrodes.
The quantum state |ψt⟩ of the rotor evolves according

to the Schrödinger equation with the free Hamiltonian
H0 = L2

z/2I and the potential (A2). Transformation to
the interaction picture |ψt⟩ = exp(−iH0t/ℏ) |χt⟩ shows
that the rotor evolves according to the interaction picture

potential Ṽt = exp(iH0t/ℏ)Vt exp(−iH0t/ℏ), which can
be further evaluated by using that

L2
±(t) = eiH0t/ℏL2

±e
−iH0t/ℏ = e2iℏt/IL2

±e
±2itLz/I , (A4)

as follows from the commutation relations [Lz, L±] =
±ℏL± and L±L∓ = I. The interaction picture

Schrödinger equation is thus given by iℏ∂t |χt⟩ = Ṽt |χt⟩
with

Ṽt =
er2

4

(
e2iℏt/IεtL

2
+e

2itLz/I + h.c.
)
. (A5)

We now integrate this Schrödinger equation over the time
interval ∆t ≫ 1/ωrot and iterate the resulting integral
equation twice to obtain

|χt+∆t⟩ = |χt⟩ −
i

ℏ

∫ t+∆t

t

dt′Ṽt′ |χt⟩

− 1

ℏ2

∫ t+∆t

t

dt′
∫ t′

t

dt′′Ṽt′ Ṽt′′ |χt′′⟩ . (A6)

To express that |χt⟩ evolves little in ∆t, we approximate
|χt′′⟩ ≃ |χt⟩.

https://doi.org/10.1038/35002001
https://doi.org/10.1038/35002001
https://doi.org/10.1103/PhysRevLett.91.230405
https://doi.org/10.1103/PhysRevLett.91.230405
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This equation describes how the dynamics of the pure
state |χt⟩ is influenced by the time-dependent voltage
applied to the control electrodes. This voltage is cho-
sen randomly, so that the rotor state is described by the
density operator ρ̃ = E[|χt⟩ ⟨χt|], where E denotes the
ensemble average over many repetitions of the experi-
ment. The equation of motion for ρ̃ can be derived by
calculating

∆ρ̃ = E(|χt+∆t⟩ ⟨χt+∆t|)− |χt⟩ ⟨χt| (A7)

by inserting Eq. (A6), which yields

∆ρ̃ =
1

ℏ2

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′E
(
Ṽt′ ρ̃Ṽt′′

)
− 1

ℏ2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
{
E
(
Ṽt′ Ṽt′′

)
, ρ̃
}
. (A8)

Here, {A,B} = AB +BA denotes the anticommutator.
The time integrals appearing in Eq. (A8) can be cal-

culated for rapidly revolving rotor states |χt⟩, which
are localized in angular momentum close to the quan-
tum number ℓ = Iωrot/ℏ ≫ 1 with angular momentum
spread σℓ ≪ ℓ. Since this implies exp(±2itLz/I) |χt⟩ ≃
e±2iωrott |χt⟩ one is left with the integrals∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′E(εt′ε∗t′′)e2iωrot(t
′−t′′) ≃ ∆tSε(2ωrot)

(A9a)
and∫ t+∆t

t

dt′
∫ t′

t

dt′′E(εt′ε∗t′′)e2iωrot(t
′−t′′) ≃ ∆t

2
Sε(2ωrot)

(A9b)
upon inserting (A5) and neglecting rapidly rotating
terms exp[±i2ωrot(t

′ + t′′)] ≃ 0 in the rotating-wave ap-
proximation. In both integrals we used that εt is de-
scribed by a real, stationary, and time-inversion-invariant
stochastic process with zero mean, multiplied by a fixed
complex phase factor (as determined by (A3)), to identify
the power spectral density

Sε(ω) =

∫ ∞

−∞
dτE(εtε∗t−τ )e

iωτ . (A10)

The statistical properties of the the applied voltage di-
rectly translate to those of εt since retardation effects in
the field propagation can be neglected at the short dis-
tances of the experiment. The time interval ∆t will be
taken large compared to the decay time of the noise corre-
lations. Moreover, the noise filter bandwidth of 20 kHz is
large in comparison to the width of the rotation frequen-
cies ℏσℓ/I ≃ 1 kHz, justifying the approximation before
Eq. (A9).

Inserting the integrals (A9) into equation (A8) shows
that the ensemble-averaged quantum state follows the
Markovian master equation

∂tρ̃ ≃ ∆ρ̃

∆t
=

D

4ℏ2
(
L2
+ρ̃L

2
− + L2

−ρ̃L
2
+ − 2ρ̃

)
, (A11)

with the diffusion coefficient D given by e2r4Sε(2ωrot)/4
as stated in the main text. Transforming back to the
Schrödinger picture yields (under the same assumptions
as above) the master equation (2).
Note that the diffusion coefficient can also be obtained

in a classical picture. Starting from the equation of mo-
tion in the noisy potential (A2),

L̇z = −ier
2

2

(
εte

2iϕ − ε∗t e
−2iϕ

)
, (A12)

together with ϕ̇ = Lz/I, it follows that E(Lz) = const. In
order to obtain the diffusion coefficient, we first formally
solve (A12) for a time step ∆t in the co-rotating frame
ϕ→ ϕ+ ωrott,

Lz(t+∆t) =Lz(t)− i
er2

2

∫ t+∆t

t

dt′
(
εt′e

2iϕ+2iωrott
′

−ε∗t′e−2iϕ−2iωrott
′
)
. (A13)

Here we use that ϕ(t′) ≃ ϕ(t) under the same approxima-
tion as after (A8). A rotating wave approximation and
(A9a) yield the second moment

E[L2
z(t+∆t)]− E[L2

z(t)]

≃ e2r4

2

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′E(εt′ε∗t′′)e2iωrot(t
′−t′′)

≃ 2D∆t. (A14)

Drawing the limit ∆t→ 0, we thus obtain ∂tE(L2
z) = 2D

as also implied by the quantum master equation (2).
While angular momentum diffusion can be understood
classically, the observed decoherence of rotational super-
positions is a genuine signature of the quantum master
equation (2).

2. Time evolution in the noise field

The time evolution under the master equation (2) can
be determined by using Eq. (A6) for a pure state |χt⟩ and
then calculating the ensemble average over many repeti-
tions of the experiment. Specifically, approximating |χt′′⟩
on the right hand side by |χt⟩ (see above), the operator

W (t) =I− i

ℏ

∫ t+∆t

t

dt′Ṽt′

− 1

ℏ2

∫ t+∆t

t

dt′
∫ t′

t

dt′′Ṽt′ Ṽt′′ (A15)

propagates the state over the time interval ∆t, |χt+∆t⟩ =
W (t) |χt⟩. Concatenating N = t/∆t ≫ 1 of these
timesteps, we can express the Schrödinger-picture state
at time t as

|ψt⟩ = e−iH0t/ℏUt |ψ0⟩ , (A16)
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where |ψ0⟩ is the initial state and

Ut ≃W (t−∆t) · · ·W (∆t)W (0) , (A17)

When calculating expectation values in the ensemble av-
erage, we can use that the random fields εt are uncor-
related between different time intervals [n∆t, (n+1)∆t].
One can thus decompose the ensemble average over the
random noise trajectory E(·) by the product of ensemble
averages En(·) at fixed times tn = n∆t, so that

E(·) = lim
N→∞

EN−1(EN−2(· · ·E0(·))). (A18)

This property will be used below to determine the out-
come of the Ramsey interference protocol.

The Ramsey scheme discussed below requires the time
evolution (A16) of a coherent rotor state |Ψℓ⟩ charac-
terized by a mean angular momentum quantum num-
ber ℓ and width σℓ with ℓ ≫ σℓ ≫ 1. Using that
L2
±(t) |Ψℓ⟩ ≃ e±4iℓωrt |Ψℓ⟩, with ωr = ℏ/2I, yields

|ψt⟩ ≃ uℓ(t)e
−iH0t/ℏ |Ψℓ⟩

≃ uℓ(t)e
iℓ2ωrte−i2ℓωrtLz/ℏ |Ψℓ⟩ . (A19)

Here, uℓ(t) is the c-number obtained by replacing in Ut

all operators L2
±(tn) by exp(±4iℓωrtn). In the second ex-

pression, the unitary operator exp(−i2ℓωrtLz/ℏ) serves
to displace the rotor state by the angle 2ℓωrt, while the
global phase factor results from neglecting dispersion.

The Ramsey scheme also requires a generalization of
(A19) for the the case of a coherent rotor state displaced
by the angle φ. Using that

L2
±(t)e

−iφLz/ℏ = e±2iφe−iφLz/ℏL2
±(t), (A20)

we obtain

|ψt⟩ ≃ uℓ(t|φ)e−iH0t/ℏe−iφLz/ℏ |Ψℓ⟩

≃ uℓ(t|φ)eiℓ
2ωrte−i(φ+2ℓωrt)Lz/ℏ |Ψℓ⟩ . (A21)

Like above, the c-numbers uℓ(t|φ) are obtained by replac-
ing in Ut all operators L

2
±(tn) by exp[±2i(φ+ 2ℓωrtn)].

3. Rabi pulses

This section derives the action of a Rabi pulse on the
four internal levels and the rotational degrees of free-
dom of the two-ion rotor. We start with the light-matter
Hamiltonian

HL =

2∑
j=1

σ+
j fL(rj , t) + h.c., (A22)

where σ+
j = |D⟩j ⟨S|j describes the excitation of the

quadrupole transition of atom j, and fL(rj , t) is deter-
mined by the relevant field gradient at the position of

the j-th atom. Assuming plane-wave illumination with
inclination θ to the rotor plane, we have

fL(rj , t) = ℏg0e−i(kz cos θ+ωt)ei(−1)jkr sin θ cosϕ, (A23)

where g0 is the coupling rate, ω is the laser frequency,
and k = ω/c. Using that

⟨ℓ+∆ℓ| e±ikr sin θ cosϕ |ℓ⟩ = (±i)∆ℓJ∆ℓ(kr sin θ), (A24)

one obtains

HL =ℏg0e−i(kz cos θ+ωt)
2∑

j=1

∑
∆ℓ∈Z

(−1)j∆ℓi∆ℓ

× J∆ℓ(kr sin θ)σ
+
j L

∆ℓ
+ + h.c., (A25)

The light-matter Hamiltonian (A25) can be further
simplified by first transforming into the frame co-rotating
with the laser field and then into the interaction picture
with respect to Hrot = ℏ∆ω(σ+

1 σ
−
1 +σ+

2 σ
−
2 )+H0, where

∆ω = ω0 − ω denotes the laser detuning from the elec-
tronic transition frequency ω0. This yields

HL(t) =e
iHrott/ℏHLe

−iHrott/ℏ

=ℏg0e−ikz cos θ
2∑

j=1

∑
ℓ∈Z

∑
∆ℓ∈Z

(−1)j∆ℓi∆ℓJ∆ℓ(kr sin θ)

× eit[∆ω+∆ℓ(2ℓ+∆ℓ)ωr]σ+
j |ℓ+∆ℓ⟩ ⟨ℓ|+ h.c.

(A26)

For rapidly rotating states, where 2ℓ+∆ℓ ≃ 2ℓ, the laser
frequency is tuned in resonance with the angular momen-
tum transition ∆ℓ by choosing ω ≃ ω0 +2ℓωr∆ℓ, so that

HL(t) ≃ ℏg
[
σ+
1 L

∆ℓ
+ + (−1)∆ℓσ+

2 L
∆ℓ
+

]
+ h.c., (A27)

where we defined

g = g0e
−ikz cos θ(−i)∆ℓJ∆ℓ(kr sin θ). (A28)

The excitation of the atom’s electronic state is thus ac-
companied by an angular momentum kick of strength
∆ℓ. Applying the laser field for a short time period t, as
described by the unitary

UL(t) = exp
[
−igt

(
σ+
1 L

∆ℓ
+ + h.c.

)]
× exp

[
−igt(−1)∆ℓ

(
σ+
2 L

∆ℓ
+ + h.c.

)]
, (A29)

gives rise to Rabi oscillations, which can be used to im-
plement π/2-pulses and π-pulses. Specifically, choosing
gt = −iπ/4 implements a π/2-pulse,

Xπ/2 =
I
2
− σ+

1 + (−1)∆ℓσ+
2

2
L∆ℓ
+ +

σ−
1 + (−1)∆ℓσ−

2

2
L∆ℓ
−

+
(−1)∆ℓ

2

(
σ+
1 σ

+
2 L

2∆ℓ
+ + σ−

1 σ
−
2 L

2∆ℓ
−

−σ+
1 σ

−
2 − σ−

1 σ
+
2

)
. (A30)

Likewise, choosing gt = −iπ/2 gives the π-pulse

Xπ =(−1)∆ℓ
(
σ+
1 σ

+
2 L

2∆ℓ
+ + σ−

1 σ
−
2 L

2∆ℓ
−

−σ+
1 σ

−
2 − σ−

1 σ
+
2

)
. (A31)
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Fig. 4. Sketch of the rotational interferometer sequence con-
sisting of the two π/2-pulses and an intermediate π-pulse to
implement a Hahn echo at separation τ/2. The three involved
two-ion rotor states, defined in Eqs. (A33), revolve with mean
angular momentum ℓ, ℓ+∆ℓ, and ℓ+ 2∆ℓ, respectively. The
shaded regions indicate the coherences between superposition
branches as read-out by the measurement of the mean exci-
tation probability P (D), see Eq. (A42).

4. Ramsey scheme

The interferometer sequence, as sketched in Fig. 4, con-
sists of the following steps:

(0) Initialization—The rotor is prepared in the coher-
ent rotor state |Φ0⟩ =

∣∣SS,Ψℓ

〉
with mean angular

momentum ℓ≫ σℓ.

(1) Creation of the superposition—At t = 0, a
π/2-pulse creates a superposition of angular momen-
tum states |Φ1⟩ = Xπ/2 |Φ0⟩. Direct application of
Eq. (A30) yields the threefold superposition

|Φ1⟩ =
1

2

(
|1⟩ −

√
2 |2⟩+ |3⟩

)
, (A32)

with the three orthonormal states

|1⟩ =
∣∣SS,Ψℓ

〉
(A33a)

|2⟩ = 1√
2

(
|DS⟩+ (−1)∆ℓ |SD⟩

) ∣∣Ψℓ+∆ℓ

〉
(A33b)

|3⟩ =(−1)∆ℓ
∣∣DD,Ψℓ+2∆ℓ

〉
(A33c)

The laser pulse thus entangles the two ion’s internal
state with that of the rotational degree of freedom.
Whether ∆ℓ is even or odd determines whether the
π/2 pulse creates the even or odd superposition of
|DS⟩ and |SD⟩.

(2) Time evolution—This is followed by a time evolu-
tion according to Eq. (A16) in presence of the envi-
ronment until t = τ/2, |Φ2⟩ = e−iHrotτ/2ℏUτ/2 |Φ1⟩.
Using the result (A19) yields

|Φ2⟩ =
1

2

[
aℓTℓ |1⟩ −

√
2e−i∆ωτ/2aℓ+∆ℓTℓ+∆ℓ |2⟩

+ e−i∆ωτaℓ+2∆ℓTℓ+2∆ℓ |3⟩
]
. (A34)

Here, we introduced the weights

aℓ = eiℓ
2ωrτ/2uℓ

(τ
2

)
(A35)

and the angular displacement operators

Tℓ = exp

(
−i ℓωrτLz

ℏ

)
(A36)

(3) Hahn echo pulse—At t = τ/2, a π-pulse implements
a Hahn echo |Φ3⟩ = Xπ |Φ2⟩. Using Eq. (A31) this
becomes

|Φ3⟩ =
1

2

[
aℓTℓ |3⟩+ e−i∆ωτ/2

√
2aℓ+∆ℓTℓ+∆ℓ |2⟩

+ e−i∆ωτaℓ+2∆ℓTℓ+2∆ℓ |1⟩
]
. (A37)

(4) Time evolution—This is followed by the second time
evolution in presence of the environment until t = τ ,
|Φ4⟩ = e−iHrotτ/2ℏUτ/2 |Φ3⟩. Using Eq. (A21) yields

|Φ4⟩ =
1

2
e−i∆ωτT 2

ℓ+∆ℓ

[
bℓ
ℓ+2∆ℓ

aℓ |3⟩+
√
2bℓ+∆ℓ

ℓ+∆ℓ
aℓ+∆ℓ |2⟩

+bℓ+2∆ℓ

ℓ
aℓ+2∆ℓ |1⟩

]
, (A38)

where we abbreviated the weights

bℓ
′

ℓ = eiℓ
2ωrτ/2uℓ

(τ
2

∣∣∣ωrτℓ
′
)
. (A39)

Note that all states in the superposition (A38) are
translated by the same angle 2(ℓ + ∆ℓ)ωrτ , meaning
that the interferometer can now be closed.

(5) Closing of the interferometer—A second π/2-
pulse |Φ5⟩ = Xπ/2 |Φ4⟩ yields

|Φ5⟩ =
1

4
e−i∆ωτT 2

ℓ+∆ℓ

[√
2
(
bℓ
ℓ+2∆ℓ

aℓ − bℓ+2∆ℓ

ℓ
aℓ+2∆ℓ

)
|2⟩

+
(
bℓ
ℓ+2∆ℓ

aℓ + 2bℓ+∆ℓ

ℓ+∆ℓ
aℓ+∆ℓ + bℓ+2∆ℓ

ℓ
aℓ+2∆ℓ

)
|1⟩

+
(
bℓ
ℓ+2∆ℓ

aℓ − 2bℓ+∆ℓ

ℓ+∆ℓ
aℓ+∆ℓ + bℓ+2∆ℓ

ℓ
aℓ+2∆ℓ

)
|3⟩

]
(A40)

(6) Measurement—Measuring the mean flourescence
light of the two atoms yields the mean probability of
being in the excited state,

P (D) =Prob(DD) +
1

2
[Prob(DS) + Prob(SD)]

=
1

2
+

1

2
[Prob(DD)− Prob(SS)] . (A41)

Using the final state (A40) and averaging over many
repetitions of the experiment yields

P (D) =
1

2
− 1

4
Re

[
E
(
bℓ+∆ℓ

ℓ+∆ℓ
(bℓ

ℓ+2∆ℓ
)∗
)
E(aℓ+∆ℓa

∗
ℓ
)

+E
(
bℓ+∆ℓ

ℓ+∆ℓ
(bℓ+2∆ℓ

ℓ
)∗
)
E(aℓ+∆ℓa

∗
ℓ+2∆ℓ

)
]
. (A42)

Here, we used that the coefficients aℓ and bℓ
′

ℓ are sta-
tistically uncorrelated as discussed in the context of
Eq. (A18). Next, we will explicitly calculate the en-
semble averages in Eq. (A42).
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5. Ensemble averaged signal

We are now in the position to evaluate the ensemble-
averaged signal (A42) by using the decomposition (A17)
and the rule (A18). We start with

E(aℓ+∆ℓa
∗
ℓ
) = exp

[
i
ωrτ

2
∆ℓ(2ℓ+∆ℓ)

]
× E

[
uℓ+∆ℓ

(τ
2

)
u∗
ℓ

(τ
2

)]
. (A43)

The expectation value in the second line can be calcu-
lated by writing

E
[
uℓ+∆ℓ

(τ
2

)
u∗
ℓ

(τ
2

)]
=

N∏
n,n′=0

E
[
wℓ+∆ℓ(n∆t)w

∗
ℓ
(n′∆t)

]
,

(A44)

where ∆t = τ/2N with N ≫ 1, and we defined

wℓ(n∆t) =1− i

ℏ

∫ (n+1)∆t

n∆t

dt′vℓ(t
′)

− 1

ℏ2

∫ (n+1)∆t

n∆t

dt′
∫ t′

n∆t

dt′′vℓ(t
′)vℓ(t

′′),

(A45)

with

vℓ(t) =
er2

4
(εte

4iℓωrt + c.c.). (A46)

This latter function is obtained by replacing L2
±(t) in the

potential energy (A5) by the c-numbers exp(±4iℓωrt).
Inserting Eq. (A45) into Eq. (A44) and using the same

steps as in the derivation of the master equation yields

E
[
uℓ+∆ℓ

(τ
2

)
u∗
ℓ

(τ
2

)]
≃

N∏
n=0

[
1− D∆t

ℏ2
sin2 [∆ℓ (2n+ 1)ωr∆t]

]

≃
N∏

n=0

exp

[
−D∆t

ℏ2
sin2 [∆ℓ (2n+ 1)ωr∆t]

]
. (A47)

For N ≫ 1 the sum in the exponent can be approximated
by an integral, leading to

E(aℓ+∆ℓa
∗
ℓ
) ≃ exp

(
−Dτ

4ℏ2
[1− sinc (2∆ℓωrτ)]

)
× exp

[
i
ωrτ

2
∆ℓ(2ℓ+∆ℓ)

]
. (A48)

In a similar fashion, one can evaluate the expectation
value

E(aℓ+∆ℓa
∗
ℓ+2∆ℓ

) ≃ exp

(
−Dτ

4ℏ2
[1− sinc (2∆ℓωrτ)]

)
× exp

[
−iωrτ

2
∆ℓ(2ℓ+ 3∆ℓ)

]
(A49)

It contains the same decoherence-induced decay as the
expression above since only the relative angular momen-
tum between the two superposition branches matters.
The expectation values containing bℓ

′

ℓ coefficients can
be calculated by a straight-forward generalization replac-
ing vℓ(t) by

vℓ
′

ℓ (t) =
er2

4
(εte

i2ℓ′ωrτe4iℓωrt + c.c.). (A50)

This yields

E
[
bℓ+∆ℓ

ℓ+∆ℓ
(bℓ

ℓ+2∆ℓ
)∗
]
≃ exp

(
−Dτ

4ℏ2
[1− sinc (2∆ℓωrτ)]

)
× exp

[
−iωrτ

2
∆ℓ(2ℓ+ 3∆ℓ)

]
(A51)

and

E
[
bℓ+∆ℓ

ℓ+∆ℓ
(bℓ+2∆ℓ

ℓ
)∗
]
≃ exp

(
−Dτ

4ℏ2
[1− sinc (2∆ℓωrτ)]

)
× exp

[
i
ωrτ

2
∆ℓ(2ℓ+∆ℓ)

]
.

(A52)

Putting everything together, we obtain the measure-
ment signal

P (D) =
1

2
− 1

2
cos

(
ωrτ∆ℓ

2
)
C(τ), (A53)

with the reduction factor of the Ramsey fringe contrast
due to rotational decoherence

C(τ) = exp

(
−Dτ

2ℏ2
[1− sinc (2∆ℓωrτ)]

)
. (A54)

Appendix B: Coherent effects on the contrast decay
profile

From (A53) we see that the phase contrast, which de-
cays from decoherence as C(τ) given by (4) in the main
text, is additionally modulated by a factor

Cmod(τ) = cos
(
ωr∆ℓ

2τ
)
. (B1)

This arises from interference between the two relevant
coherences of the rotor state: |ℓ⟩ ↔ |ℓ+∆ℓ⟩ and
|ℓ+∆ℓ⟩ ↔ |ℓ+ 2∆ℓ⟩, whose respective transition fre-
quencies differ by 2∆ℓ2ωr = 2π × 26Hz ×∆ℓ2. This
modulation is necessarily present in the coherence mea-
surements presented in this work, which otherwise yield a
contrast profile of the form exp

[
−(γτ)3

]
. Equation (B1)

predicts a node in the fringe contrast at τ = π/(2∆ℓ2ωr).
The modulation may therefore be safely neglected only if
the coherence time is much shorter than the node time,
1/γ ≪ π/(2∆ℓ2ωr). Otherwise, the effect of the modula-
tion may be measurable before decoherence has occurred,
and thus this effect must be accounted for in order to
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Fig. 5. Coherent oscillations of phase contrast amplitude.
All contrast decay measurements for ∆ℓ = 3 measurements
of decoherence presented in Fig. 3(b) are shown here. The
shaded region is the contrast profile of the coherent effect
discussed in this section. Solid lines are fits of the form (5)
from the main text, additionally multiplied by the shaded
profile only if ∆ℓ2ωr/2πγ > 0.1. In these cases, the coherence
time is sufficiently long that the effect is appreciable. Here,
this applies to only the D = 2.1 ℏ2/ms and D = 13 ℏ2/ms
curves.

accurately estimate γ from the measurements. We find
from numerical simulations that the modulation profile
may be appreciably influenced by imperfect operations,
where only a partial initial coherence is created, which
we therefore must also take into account.

Figure 5 demonstrates this effect. Measured contrast
decay curves for ∆ℓ = 3 superpositions are shown, whose
fits for γ are shown in Fig. 3(b). The shaded region
shows the profile Cmod(τ), modified from (B1) to ac-
count for imperfect operations (sub-unity initial contrast)
such that it yields agreement with numerical simulations.
In particular, (B1) predicts a node in the contrast at
τ = π/(2∆ℓ2ωr) = 2.1ms, while the numerically simu-
lated profile corrected for imperfect operations predicts
this node to instead be at t = 2.4ms, as shown in Fig 5.
If the coherence time is comparable or greater than this
node time, then the measured decay profile differs sig-
nificantly from (5) from the main text, and must be ac-
counted for when extracting a decoherence rate. Includ-
ing corrections due to imperfect operations, the contrast
node is expected to occur at τ = 4.8ms for our ∆ℓ = 2
measurements, and at τ = 19ms for our ∆ℓ = 1 mea-
surements. For most of our measurements, this effect
is negligible. In estimating the decoherence rate γ in
Fig. 3(b), we explicitly account for this effect only when
∆ℓ2ωr/2πγ > 0.1.
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Fig. 6. Measurements of rotational friction. The rota-
tion frequency is measured as a function of wait time after
preparation of a rapidly rotating state, both without without
(D = 19 ℏ2/ms) and with (D = 110 ℏ2/ms) voltage noise in-
jection. Over 100ms, no measurable slowdown is observed.

Appendix C: Non-rigid effects

In the main text, we approximate the ion crystal as
a rigid rotor. The leading-order non-rigid effect is cen-
trifugal distortion: the moment of inertia increases as
the square of the rotation frequency due to centrifugal
force, effectively reducing the rotational constant ωr with
increasing angular momentum. For an in-plane confine-
ment strength such that the center-of-mass vibrational
frequency is ωx, the fractional change to ωr due to finite
rotation frequency ωrot is given by 2ω2

rot/ω
2
x = 2.0×10−2

for parameters used in this work. This quantity is smaller
than the fractional uncertainty of any measurement pre-
sented, so we neglect this correction.

Appendix D: Measurements of rotational friction

A finite-temperature environment interacting with a
quantum rotor will have a frictional effect in addition to
angular momentum diffusion, which in general may affect
the decoherence dynamics [45]. We thus verify that the
environment is well-approximated as infinite temperature
by confirming that rotational friction is negligible. We
measure rotational friction by recording the center fre-
quency of a rotational sideband at various wait times af-
ter rotational state preparation. For increased sensitivity,

the third rotational sideband frequency ω
(∆ℓ=3)
sb is chosen,

and the rotation frequency inferred as ωrot = ω
(∆ℓ=3)
sb /3.

As shown in Fig. 6, we do this for both an ambient en-
vironment (D = 19 ℏ2/ms) and an engineered environ-
ment (D = 110 ℏ2/ms). In both cases, we find the rate
of slowdown to be consistent with zero. We bound the
rate of slowdown (2σ uncertainty of the slope of the fit)
at < 0.2 ℏ/ms in the case of the ambient environment,
and < 0.3 ℏ/ms in the case of the engineered environ-
ment. We thus neglect rotational friction in the theoret-
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ical treatment in the main text.

Appendix E: Additional decoherence sources

Two other potentially relevant effects are decoherence
of the ions’ electronic state and changes of the rotor’s mo-
ment of inertia due to fluctuations of the trap frequency.
We rule out both of these as significant contributions.

Since the Ramsey experiment entangles the angular
momentum state of the rotor with the electronic state
of the ions, decoherence of the electronic states will also
result in a loss of measured phase contrast. To measure
the electronic coherence time, we trap a single ion and
prepare it in the superposition |S⟩+ |D⟩ with a Ramsey
experiment including a Hahn echo pulse. This measure-
ment is shown in Fig. 7, where we find the 1/e coherence
time to be 38ms, much longer than any coherence mea-
surement presented in this work.

Changes in the rotor’s moment of inertia conserve its
angular momentum but change the rotation frequency,
thereby also decohering a superposition of angular dis-
placements. The stability of the moment of inertia I is
determined by the stability of the transverse trap fre-

quency ωx, related by I ∝ ω
−4/3
x . We measure the sta-

bility of the trap frequency by trapping a single ion and
preparing it in the Fock-state superposition |0⟩+ |1⟩ with
a Ramsey experiment including a Hahn echo pulse. We

find that this vibrational motion has a 1/e coherence time
of 32 ms, as shown in Fig. 7. When propagated to the
case of angular momentum superpositions in the rotor
for ωrot = 145 kHz, this yields an inferred rotational co-
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Fig. 7. Measurements of other coherences. The electronic
coherence measurement measures the coherence of the super-
position |S⟩+ |D⟩ of a single ion, and the motional coherence
measurement measures the coherence of horizontal vibrational
motion of a single ion, placing a bound on the stability of the
rotor’s moment of inertia. A Hahn echo pulse is included in
both of these measurements to match the conditions of the
rotational decoherence measurements.

herence time of 240ms/∆ℓ, again much longer than the
actual rotational coherence times measured.
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