UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Rational choice an d framing devices:. Argumentation and computer programming

Permalink
https://escholarship.org/uc/item/7rf773hx

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 16(0)

Authors
Coulson, Seana
Flor, Nick V .

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7rf773hx
https://escholarship.org
http://www.cdlib.org/

Rational choice and framing devices: ,
Argumentation and computer programming

Seana Coulson
Department of Cognitive Science
University of California, San Diego
La Jolla, CA 92093-0515

coulson@cogsci.ucsd.edu

Abstract

The argumentative discourse of computer programmers
engaged in a collaborative programming task were analyzed
as instances of ecologically valid reasoning behavior.
Teams of expert programmers were brought into a
laboratory setting to work cooperatively on a software
maintenance task. Arguments which occurred
spontancously in the course of the task were examined with
respect to: (a) their effect on task performance; and (b) to
reveal the sorts of inferential machinery programmers use
when they reason with one another. Arguments were found
to be important in the formulation of plans as well as the
negotiation of strategic priorities with respect to the task.
Pragmatic features of the programmers' discourse revealed
extensive use of framing devices whose efficacy depended
upon interpretation in the context of linked pragmatic
scales.

Introduction

Traditional approaches to reasoning in cognitive science
involve the use of prescriptive formalisms to guide
research. This approach involves comparing people’s
actual behavior in the performance of deductive and
inductive inference with that predicted by formal theories
of logical and statistical inference. Classic examples
include studies by Tversky and Kahneman (1981), who
demonstrate the inadequacy of their human subjects to
make decisions in accordance with Bayesian probability
theory, and Wason and Johnson-Laird (1966), who
demonstrate a similar disparity between the character of
their subjects’ capacity for deductive inference and that
dictated by first order predicate calculus.

Although the traditional approach has succeeded in
generating a productive research program, it is problematic
in two respects. First, the use of prescriptive formalisms is
at odds with the goal of a descriptive account of rational
behavior. Rather than starting with a prescriptive formal
system, a more empirical approach to the investigation of
rational behavior would start with observations of people's
behavior in situations which paradigmatically require
rational thought. Second, because the traditional approach
has relied upon carefully controlled experimentation,
considerations of ecological validity have often been
lacking.

219

Nick V. Flor
Department of Cognitive Science
University of California, San Diego
La Jolla, CA 92093-0515

flor@cogsci.ucsd.edu

Recent research indicates that intelligent behavior is
largely the result of the exploitation of historically
established knowledge bases (e.g. physics), culturally
established symbol systems (e.g. calculus), and socially
manufactured tools (e.g. computers) (Hutchins, 1994).
Further, the pared down setting of experimental studies
often lacks the sorts of contextual clues which enable
cognitive activity in natural settings. A full account of
rational inference requires supplementation of traditional
studies with observational analyses of ecologically valid
reasoning behavior which occurs in the course of other,
goal-oriented behavior.

One resource which has been underutilized by cognitive
scientists interested in human reasoning ability is
pragmatics. The gap between the literal content of
speakers’ utterances, and, the representation which the
bearer eventually constructs on the basis of that
information, gives testimony to the human capacity for
inference. Moreover, pragmatic phenomena which operate
in rational argumentation are particularly germane to the
study of reasoning.

Because the defining characteristic of rational argument
is that it appeals to one’s opponents’ reason, argumentation
can be seen as a paradigmatic exemplar of rational
behavior. Consequently, we propose rhetorical theory as
an alternative guide to reasoning research. Rbetoric is a
tradition with over 2000 years of development which
catalogues the use of persuasive language. In contrast to
formalisms whose appeal must be enforced by an external
authority, rhetorical theory points to techniques which have
proven to be intrinsically compelling.

Arguments that occur between programmers in the
performance of a collaborative programming task thus
present an ideal opportunity for the study of ecologically
valid reasoning behavior. First, computer use is a good,
real-world application domain in which to study complex
behavior (Norman, 1986, 1987). Software development
clearly involves cognitive activity in the pursuit of well-
defined goals. Moreover, software development can also
be a highly social activity involving frequent interactions
between programmers and with their development tools.
The arguments discussed in this paper are those which
occurred spontaneously in the course of the performance of
a complex cognitive task.

mailto:coulson@cogsci.ucsd.edu
mailto:flor@cogsci.ucsd.edu

The goal of this study was first, to uncover the ways in
which argumentative discourse affects programmers'
performance of the task; and, second, to examine the
pragmatic featurcs of the programmers’ argumentative
discourse to reveal the sorts of inferential machinery which
they exploit when they reason with each other, We
consider how socially shared representations develop over
the course of the task and how they function to organize
and direct actions. We begin by reporting some general
findings and proceed to examine one example in detail.

The Functional Role of Argument

To investigate the interactions of programmers at work, we
brought 6 teams of 2-3 expert programmers into the
laboratory to work together to add new commands to an
existing computer game program. All subjects had had
prior experience working together in industry or on
programming projects for computer science classes. In
order to complete the task, programming teams had to
figure out how the existing program worked and then to
figure out how to modify it to meet the task demands.
From a maintenance perspective, the program was fairly
complex, involving two modules of approximately 1500
lines each, spread out over 14 source files in two
subdirectories. During the session, both subjects had their
own computer terminal and were seated next to one
another. Two video cameras were set up in sight of the
subjects. One recorded the programmers’ displays, while
the other was positioned to record changes in body
positions.

Transcription and coding. After each session, a complete
transcription of the session was prepared and incidents of
argumentative discourse were coded independently by two
coders. Argumentative discourse is defined as discourse
which contains an expressed disagreement between parties.
In an argument, then, one member of the programming
team espouses a belief or plan of action with which the
other programmer expresses doubt or disapproval.
Intercoder agreement was 90%. After coding, instances of
intercoder discrepancy were then evaluated jointly by the
coders to determine whether particular instances of
discourse fulfilled the criteria of the definition. This
discussion resulted in the labeling of several sections of
discourse as pseudoarguments, discourse initially coded as
an argument by one of the coders, and subsequently
discarded.

When do arguments occur?

It was initially hypothesized that arguments, when they
occurred, would occur al transition points in the
programming task. Although there are, theoretically, an
infinite number of algorithms one can deploy to solve a
programming problem, realistically speaking the choice of
a particular algorithm is quite constrained. One might
guess that arguments function to constrain the choice of
algorithms. Because the task involved modification of an
existing program, transition points were defined as periods
in which the team was actively editing the code.
Additions, modifications, and deletions of the code as

220

revealed by script (a UNIX routine which exhaustively
records all characters displayed on the computer screen)
were marked in the verbal transcript and their position was
compared to the position of argumentative incidents in the
transcript. While arguments occasionally occur at points
of transition, this is not necessarily the case.

Thus the hypothesis that the functional role of argument
lies chiefly in the planning phase task was disproved in its
strongest form. However, argumentative discourse clearly
plays some role in the team's plan formation process.
Arguments frequently occur because of contradictory plans
about how to proceed and thus involve discourse over two
or more competing plans. One such example is discussed
in detail in the section labelled the Right Way versus the
Not So Right Way.

Why do arguments occur?

Coders divided the arguments into six categories:
implementation details, responsibility, environment,
completion, division of labor, and strategy. The relative
proportion of each type of argument in the four two-person
programming teams is displayed in Chart 1. By far the
most frequent sort of argument concemed implementation
details, which comprised 45% of the disputes among two-
person leams. Implementation details concemn
contradictory proposals by the programmers about how to
write specific elements of the code. This includes things
such as how to implement a specific idea, where to add a
specific subroutine, whether or not to implement a
particular way, and arguments about the interpretation of
existing code.

Envranment
13%

Stralegy
15%

Chart 1. Distribution of argument topics.

Environment disputes included arguments concerning the
computational environment, such as the location in the
code, or the way client-server works. They comprised
13% of the arguments. Arguments about both the
environment and about implementation details help the
programming teams construct shared mental models of the
program's structure which ultimately serve to determine
their course of action. We discuss the details of how
arguments aid the establishment of shared mental models
in forthcoming work (Coulson & Flor, in progress).

Responsibility disputes involve disagreement over which
programmer was to receive credit or blame for a given

piece of the code, and issues such as who was doing more
work. Only 6% of the arguments were specifically about
responsibility. However, 15% of the arguments concerned
the division of labor. Division of labor involves disputes
concerning which programmer should perform which task.
Because of the constraints of the computing environment, a
good way to divide the labor is to have one participant
dictate changes while the other implements them. Analysis
reveals that both responsibility disputes and explicit
disputes over the division of labor affect who occupies the
dictator's role. However, it is not the case that the person
who wins the most arguments gets to dictate the changes.
Rather, it is the person whose arguments turn out to be the
most well-founded. Responsibility disputes, because they
can help establish the relative validity of the programmers'
competing strategies, seem to play an important role in the
social organization of the team.

Argumentative discourse is also involved in the
establishment of shared goal structures with respect to the
task. Normative aspects of programming were discussed
chiefly in the context of completion arguments, which
comprised 6% of the arguments, and strategy disputes,
which comprised 15% of the arguments. Completion
arguments concern whether a particular piece of code, or
the endeavour as a whole, should count as finished.
Strategy disputes involve the programmers' general
approach to the task. While arguments coded as strategy
arguments frequently began as disputes regarding
implementation details, they are not necessarily
implementation related. Strategy arguments frequently
concern issues of time-management and involve discussion
about the relative merits of top-down versus bottom-up
approaches, understanding the task versus acting to
complete the task, and the elegance versus the ease of a
particular implementation. The upshot of these arguments
frequently has direct ramifications for the completion of
the programming task.

Moreover, analysis of the arguments examined in this
study uncovered several persistent trends in the nature of
the appeals the programmers made in the course of their
arguments, This agreement in the face of disagreement
suggests that the programmers who participated in this
study share certain fundamental assumptions and values.
These include the virtue of simplicity, minimal standards
for code, and the necessity of a speed/elegance trade-off:

» Simplicity is a virtue: other things being equal, code
which is easiest for the programmers to implement is the
preferred solution.

* Minimal siandards for code: when modifying code
written by other programmers, it is unacceptable to write
code which is of a lower standard than the existing code.

» Speed/Elegance trade-off. it is permissible to sacrifice
the elegance of your code if the speed of implementation is
more important.

The Right Way vs. the Not-so-right Way

The example examined in this section concerns a
strategic argument, an argument which turns on a decision
about what sort of strategic emphasis the team should

employ. In the following example, the issue concerns
whether to employ a ‘quick and dirty’ versus a more
elegant solution to a particular programming problem. The
programmers are implementing a command that allows
players of the game to eavesdrop on one another. To do
this, they have to find a way to store the names of the
players who are eavesdroppers. Their ensuing argument
can be found in Table 1.

Table 1. Transcript of argument between R, L, and A.

1/R We don't wait we don't need to make a list or
anything do we?

2/ All we need is a character array to store the
name of the person who's eavesdropping on this
person.

3/L But what, we need a list of we need a list of the

4/R Oh, in case a lot of people are eavesdropping

5/ [whispers] no no right now this only supports
two people,

6/ let's only make it work for two [laughs]

TIA [laughs] He didn’t go through the trouble to put
down more users

8/R Yeah, so let’s not let’s worry about that

9/ that’s a future enhancement

10/A | That's for the next rev

11/R | Yeah, so let’s just do it the simple way

12/ Let's go back to

13/L | Noo that’s

14/R | my global variable way

15/A | Wait, wait, wait, wait, wait, well, well, see

16/L | No, let’s not do it that way, let’s do it the right
way.

17/A | Are you guys hungry or not? [laughs]

18/L | C’mon

19/A | [looks at Laura] twenty till eight

20/L. | I’s not that hard.

21/R | There are three of us here because we're
supposed to vote on things,

22/ The quick way

23/L | [pushes A’s head down, A laughs] She’s out of
the picture

24/A | [laughs]

25/R | or the Laura way [pause] the quick way [raises
hand]

26/A | Whatever.

27/1. | You mean the right way or the wrong way.

28/A | [laughs]

29/R | Define those.

30/A | There's the right way and the semi-right way,
yeah?

31/R | The fast way and the Laura way.

32/L. | You're not starving.

33/A | Kinda sorta.

34/ I'm unemployed remember [laughs).

35/R | Okay, okay, okay, we’ll make a list if you
wanna, lists are easy.

36/A | Okay so let’s let’s do it [pause] check out dot h.

221

The team considers two different ways in which the
eavesdrop command could be implemented. R’s
suggestion is to use a character array, a data structure
capable of representing the name of a single eavesdropper.
L, however, insists that what is needed is actually a linked
list of character arrays. The difference between the two
suggestions is that a character array can store the name of
one eavesdropper, while a linked list can store an indefinite
number of eavesdroppers’ names.

R's comments in lines 4 and 5, his whispering, and his
laughter all suggest that he is aware of this difference and
that he considers his own suggestion to be less than
optimal. However, R points out that the program is
currently set up so that a maximum of 2 players can play
the game. Because there will never be more than one
eavesdropper in a 2-player game, all that is really needed
to make the function work is a data structure to store a
single player’s name. A character array and a linked list
will thus function equally well. While the character array
is easier to implement, the linked list is preferable from a
maintenance perspective because it can remain unchanged
if and when the game is modified to support more users.

R’s proposal meets with immediate support from A,
Further, A’s justification in line 7 appeals to the sentiment
that the standard of the new code need not exceed the
standard of the existing code. This justification occurred
frequently in programmers arguments to justify suboptimal
programming procedures, such as the failure to comment
code or to provide warnings to users to alert them when
they doing something illegal.

Even the most cursory inspection of the transcript points
to the extent to which the programmers’ arguments rely on
the particular way in which they describe the two
suggested solutions. These descriptions serve to frame the
suggestions in ways which have definite implications for
the choice of which solution to adopt. For instance,
contrast the terms used by L with those used by R to refer
to the two candidate solutions. Whereas L refers to the
linked list as the right way (line 16), R frames the linked
list suggestion as a future enhancement (line 9). Both
phrases (the right way and a future enhancement) cast the
linked list suggestion in a favorable light. However, while
R and A imply that the linked list suggestion should be
implemented by a future team, L implies that it is she, R,
and A who should implement the linked list.

R’s argument in favor of the character array solution is
based on an appeal to simplicity: the character array is
easier for the programming team to implement than the
linked list. Appeal to simplicity, like the appeal to the
standard of the existing code, is another justification which
occurs repeatedly in programmers’ arguments. The
programmers who participated in this study clearly
consider simplicity to be a virtue, especially when it refers
to the complexity of the tasks for which they are
responsible. So, by framing his own solution (in line 11)
as the simple way, R implies that the character array is the
preferable course of action.

In lines 12 and 16, L objects to R and A’s joint proposal
and offers her own way of framing the two solutions. L

refers, in line 16, to the character array solution as that
way, and to the linked list solution as the right way. L's
use of the distal deictic in that way (line 16), (as opposed
to the proximal deictic in this way) suggests that she is
distancing herself from the character array solution,
Moreover, her use of the definite rather than the indefinite
determiner in the right way (as compared to a right way)
emphasizes L's commitment to the linked list suggestion as
the unique solution to the problem at hand.

Change over time

Tables 2a and 2b contain the words which each of the three
programmers uses to refer to the linked list solution (2a)
and the character array solution (2b). The way in which
each programmer’s characterization of the two solutions
changes over the course of the argument is instructive as to
their changing commitments to the respective solutions.
As noted above, L initially refers to the character array as
that way (line 16), and later as the wrong way (line 27). R,
on the other hand, initially characterizes this suggestion
with the relatively neutral phrase, a character array (line
2), later shifting to a characterization consonant with his
appeal to simplicity. R refers to the character array
solution as the simple way in line 11, the quick way in lines
22 and 25, and the fast way in line 31.

Similarly, L shifts from a relatively neutral
characterization of the linked list as simply a list (line 3),
to one which strongly suggests her commitment to it. By
line 16 the linked list solution has become the right way, is
described as being not that hard (line 20), and is referred to
again in line 27 as the right way. Furthermore, R’s
characterization of the linked list solution undergoes a
parallel shift in the opposite direction. He initially refers
to the linked list solution with the neutral phrase a list (line
1). However, by line 9, it has become a future
enhancement. And, in lines 25 and 31, R calls the linked
list solution the Laura way. Referring to the solution in
this way uniquely identifies L as responsible for the
possible costs and benefits of the proposed solution and
underscores the fact that she (at least at line 25) is its sole
proponent.

Table 2a. Linked list solution.

L R A
1/ a list
3/ a list
9/ a future
enhancement
10/ for the next rev
16/ the right way
20/ not that hard
25/ the Laura way
27/ the right way
30/ the right way
31/ the Laura way
35/ easy

222

Table 2a. Each column contains phrases used by programmers L,
R, and A to refer to the linked list solution. Each phrase is
tagged with its line number from the transcript in Table 1.

In this discourse, A emerges as the least firmly
committed. Her only explicit reference to the character-
array solution occurs quite late in the excerpt, as the semi-
right way in line 30. This description contrasts both with
R’s phrase the quick way and with L's phrase the wrong
way in a way which marks A as occupying a position
intermediate to those of the other 2 programmers.
Moreover, A’s utterances with respect to the linked list
solution indicate her initial alliance with R (for the next rev
in line 10), and later capitulation to L's position (the right
way in line 30).

Table 2b. Character Array Solution

L R A
2/ a character
array
11/ the simple way
16/ that way
22/ the quick way
25/ the quick way
27/ the wrong
way
30/ the semi-right
way
31/ the fast way
Table 2b. Each column contains the phrases used by

programmers L, R, and A to refer to the character array solution.

In spite of his appeal to the democratic process, R
eventually accedes to L's manner of framing the linked list
solution. The contrast between R’s early implication that
the linked list solution is more difficult than the situation
warrants and his characterization of lists as easy in line 35
clearly signal R’s capitulation to L’s framing of the
solution.

Linked Pragmatic Scales

Several of the programmers’ utterances point to their use of
pragmatic scales as the context against which their
statements should be interpreted. A pragmatic scale
consists of objects or scenarios ordered along relevant
semantic dimensions (see Levinson, 1983 for review).
Once ordered, statements which concern one member of
the scale entail propositions about other members of the
scale. The programmers’ discourse contains reference to
(i) varying degrees of the ease of each implementation
(simple versus not thatr hard), (ii) the expected speed of
completing each implementation (quick way, fast way),
(iii) the normative correctness of each implementation (the
right way, the semi-right way, and the wrong way), and
(iv) the degree of their own hunger (hungry versus not
starving).

It is the interpretation of A’s utterances in the context of
linked pragmatic scales which lends them import extending
beyond their literal content. A’s rhetorical question, Are
you guys hungry or not? (line 17), as well as her mention
of the time (in line 19) suggest that she favors the character
array solution because it will take less time to implement.
All three of the programmers know that the faster they
finish the program, the sooner they can go out to dinner.
The admission of hunger by any one of the programmers,

then, can be interpreted as the expression of the desire to
finish the programming task quickly. Moreover, because it
is usually faster to implement a simple solution than a
more complicated solution, the goal of finishing the task
quickly is best accomplished by implementing the simplest
solution.

The logic behind A's mention of hunger (in line 17) and
her statement of the time relies on the existence of linked
pragmatic scales. For example, Figure A depicts scales
linked by the assumption that the ease of implementing a
particular piece of code is related to how quickly it can be
implemented. = Thus each point on the Ease of
Implementation scale has a corresponding point on the
Speed of Implementation scale. When scales are linked in
this manner, locating an object on one scale carries the
implication that it occupies the corresponding point on the
linked scale. This makes it possible to implicate how
quickly a solution can be implemented by making
reference to the perceived ease of implementation.
Similarly, stating that it will take a long time to implement
a particular function implicates the difficulty of the task.

Ease of Implementation —— Speed of Implementation
——simple — fast
——moderale — quick
—difficult — slow

Figure A. Quick and easy. Figure A depicts two linked scales:
the scale of the ease of implementation and the scale of the speed
of implementation. Once linked, statements which locate an
object on one scale implicate a corresponding location on the
adjacent scale. For example, stating that a function will be
implemented quickly, implicates that it will be relatively simple
to implement.

Figures B and C depict scales linked by the knowledge
of the specific situation of the programming team
comprised of R, L, and A that the sooner they finish the
programming task, the sooner they can eat dinner. Thus
A's utterances in lines 17 and 19 implicate speed as an
important factor in the decision of which solution to adopt.
The combination of the link between speed and ease of
implementation, R's framing of the character array solution
as the simple way, and the links between lateness, hunger
and the importance of speed, all conspire to promote the
character array as possessing a quality which has been
contextually established as the relevant quality on which
the group’s decision is to be based.

Viewed against the backdrop of the scales linked in
Figures A, B, and C, L’s statement about the linked list
solution, (It's not that hard in line 20) can be construed as
an attempt to relocate the linked list solution on the ease
scale. Because the ease of implementation is linked to the
speed scale, L implicates that her solution will not take an
inordinate amount of time to implement. Note that, at least
in line 20, L has not taken issue with any of the general
principles. She does not argue against the principle that
speed is related to difficulty (in fact, she relies on it). She
does not argue against the notion that speed is a virtue, that
simplicity is a virtue. And neither does she argue that

223

eating is an important goal. Instead she stays within the
framework of the linked scales established by A.

Lateness Degree of Hunger
—— exlremely —— slarving
—— fairly —— moderale
—— early —— not hungry

Figure B. Lateness and Hunger. Figure B depicts the linked
scales of Lateness and the Degree of Hunger.

Degree of Hunger Importance of Speed
—— starving [~ utmost
—— moderale —— moderate
—— not hungry — unimportant

Figure C. Hunger = Importance of Speed. Figure C depicts the
linked scales of Hunger and the Importance of Speed.

However, in the face of the alliance between A and R, L
changes the character of the debate. Rather than trying to
relocate the linked list solution on the scales of simplicity
and speed, L reformulates the contrast between the two
candidate solutions. Whereas R has framed the contrast as
the quick way versus the Laura way (line 22 and 25), L
frames the contrast as that between the right way and the
wrong way (line 27). Right versus wrong is a bivalent
distinction which clearly implicates the linked list solution
as the only reasonable choice. A’s response to this move
by L is particularly interesting because it introduces a
scalar reading of a categorical distinction. Calling the
character array solution the wrong way implicates that it is
not a viable candidate for implementation. However, a
semi-right solution may be permissible if its
implementation is sufficiently fast, easy, and warranted by
the speed/quality trade-off.

Although the specific issue of debate concerns which of
two possible ways the team should implement a particular
facet of the eavesdrop command, the larger issue involves
the negotiation of a speed/quality tradeoff. Another
prevailing trend among the programmers who participated
in this study, was first, the belief that writing high quality
code (in general) takes longer than writing low quality
code does; and second, a willingness to implement code
which was -- in their own estimation -- less elegant, or
suboptimal when time constraints were stringent.

The existence of a general model linking the importance
of speed to the importance of quality coupled with the
situation-particular model in which the degree of hunger is
linked to the importance of speed, yields a link between the
degree of hunger and the importance of quality. Because
the general model dictates that the importance of speed is
inversely proportional to the importance of quality, the
programmers are able to link scales such that the degree of

224

their hunger is inversely proportional to the importance of
quality.

Conclusion

The above example shows how arguments about strategy
work by successive framings and reframings of a particular
task until the group settles onto one. Note how negotiation
of general priorities is integrally connected with arguing
about specific facets of the task itself. Thus both general
priorities and subtask priorities fall out of these sorts of
arguments. The data examined here suggest that strategy
arguments do not generally concem the value of competing
solutions. That is to say, all of the programmers agree on
the attributes of each of the suggested solutions.
Moreover, there is agreement as to which of those
attributions are to count as favorable. The issue in the
programmers’ strategic argument is how their agreed upon
values are to be brought to bear on the particular situation
at hand.

While Tversky and Kahneman (1981) point to their
discovery that people’s decision was affected by
differential framing as irrational behavior, we demonstrate
how the ability to differentially frame situations is a
component of rational behavior, where rationality is
empirically construed. From the data examined herein, it
would seem that Kahneman and Tversky's findings would
come as no surprise to the participants in our study. The
fact that they utilize framing techniques in their arguments
concerning the choice between two programming solutions
suggests, first, that they possess a tacit awareness of the
influence of differential framing on decision making; and,
second, that they are able to exploit this knowledge in their
attempts to influence one another’s behavior with respect
to the task at hand.

References
Coulson, S. and Flor, N. (1994, in progress). The
establishment of mutual mental models among
collaborating programmers.

Flor, N. and E. Hutchins. (1991). Analyzing distributed
cognition in software teams: A case study of team
programming during perfective software maintenance.
In Empirical Studies of Programmers 4. Norwood, NI:
Ablex Publishing Corporation.

Grice, H.P. (1967). Logic and Conversation.
Unpublished MS. of the William James Society.

Hutchins. (1994, in press). Cognition in the Wild.
Cambridge, MA: MIT Press.

Levinson, S. (1983). Pragmatics. Cambridge, England:
Cambridge University Press.

Norman, D. (1986). Cognitive engineering. In D.A.
Norman & S.W. Draper (Eds.), User Centered System
Design. Hillsdale, NJ: Erlbaum,

Tversky, A. & D. Kahneman. (1981). The framing of
decisions and the psychology of choice. Science, 1981
Jan, v211 (n4481):453-458.

Wason and Johnson-Laird. (1975). In R.J. Falmagne (Ed.)
Reasoning: Representation and process in children and
adults. Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

	cogsci_1994_219-224

