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Publishiﬁgjx-driven algebraic damping of m = 1 diocotron mode

Chi Yung Chim and Thomas M. O'Neil*
University of California at San Diego, La Jolla, California 92093

(Dated: 24 May 2016)

b{g— -nning trap have ob-
Qsport due to small field

Recent experiments with pure electron plasmas in a Malm

served the algebraic damping of m = 1 diocotron modes:
asymmetries produces a low density halo of electrons nteyingwadially outward from
the plasma core, and the mode damping begins ebtbc\halo reaches the resonant
radius r = R,, at the wall of the trap. The ddinping rate is proportional to the flux
of halo particles through the resonant lay r_;l&d\a ping is related to, but distinct
from spatial Landau damping, in whi hi\[\neé) wave-particle resonance produces

damping due to particle transport mobility and diffusion. As electrons are

swept around the “cat’s eye” o%{iﬁf‘tﬁe resonant wave-particle interaction, they
1

form a dipole (m = 1) densit ibution. From this distribution, the electric field
component perpendicular ‘Kﬂre displacement produces E x B-drift of the core

back to the axis, that\ s the m = 1 mode. The parallel component produces
direct

drift in the azim% n, that is, causes a shift in the mode frequency.
£
/\ %

exponential damping. This paper e&%wﬁ’h analytic theory the new algebraic
xbg\b
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Publishihg INTRODUCTION

Diocotron modes are dominant features in the low frequency dynamics of nonneutral
plasmas confined in Malmberg-Penning traps! ™. In an ideal limit, these modes involve only
cross magnetic field E x B drift motion and are described by the dfift-Poisson equations®.
These equations are isomorphic to Euler’s equations for the idea{ie. incompressible and
inviscid) flow of a neutral fluid, and the diocotron modes are aDgueS of a Kelvin modes

on a fluid vortex®.

There has been much previous work on diocotron modenstahilities*® ® and on diocotron

. . . ﬂ
mode damping®®'2. This paper focus on damping. K&S
Previously identified damping mechanisms jiclude™~a_spatial version of the Landau

resonance™?, the rotational pumping of bull vi sit‘))o’“, axial velocity dissipation on
a separatrix for plasma columns with trappéd _and S‘S-i}lg particles'®, and a strong damping
mechanism when the radial magnetron, fields{rom=end cylinders dominates over the radial
space charge field'2. The Landau m chan%ts into the ideal 2D E x B drift framework,
but others, such as rotational pu pinm\&l\/e physics beyond the ideal model.

This paper discusses a damping\ptechanism that is a close cousin of Landau damping, so

we begin with a review of the s\tlakl,andau resonance.

The nonneutral plasgia“celumn is immersed in a uniform axial magnetic field BZ, has
a radial space charge/clectsic figld F(r)7, and consequently undergoes an azimuthal E x B

drift rotation. ‘Hzfe, "{9, z) is a cylindrical coordinate system with the z-axis coincident
with the axis of thesyrap

e consider the plasma column to be a pure electron plasma in

this paper. Qﬂ
A dioéptron mode of azimuthal mode number m can experience a resonant interaction

with w e plasma flow at a critical plasma radius Ryes(m), where w,,, = mwg[Ryes(m)].

Here, mhis th) azimuthal mode number, w, is the mode frequency, and wg(r) = —cE(r)/Br

is\the lo&al rotation frequency of the plasma.
ineéar mode theory>® predicts that this spatial Landau resonance produces exponential
'd:damping when the slope of the radial density distribution is negative at the critical
radius, and this damping has been observed experimentally for low order azimuthal modes
with m > 1°.

The m = 1 mode is special in that the resonant radius is at the wall where typically there
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Publishimg no particles. It was long thought that an m = 1 mode would not experience damping
due to a Landau resonance®.

However, recent experiments'* have observed a novel algebraic damping of the m = 1
mode, which we believe is a close cousin of Landau damping. In these experiments, transport
produces a low density halo of particles that gradually extends (‘JA from the plasma core
until it reaches the wall. The algebraic damping begins when t elhﬁlo aches the resonant

region (the wall for m = 1), and the damping rate is propartiong
through the resonance. \

The theoretical picture that we envision for this flux -ii

to the flux of particles

¢n algebraic damping is similar

to, but distinct from, spatial Landau damping. In both caség, the damping results from an

interaction of the mode field with resonant part@, but particulars of the interactions

are very different in the two cases. In spatial™an akaamping, the resonant particles are

present before the mode is excited, and the\F\\n% results from a mode-driven rearrange-
18,

ment of particles near the resonant radit Qanalysis is linear and leads to exponential

damping.

In contrast, for the new flux- 'iv‘ek\??eﬁraic damping, there are no particles initially at
the resonant radius. The tra s&}w\d ally brings particles to the resonant radius, and
the mode field then sweeps th&a%ﬂs around the nonlinear cat’s eye orbits to a scrape-off
layer, causing the dampiiig.

As will be discusséd lat)e scrape-off layer is a thin region adjacent to the wall where

£
guiding center drift theory Breaks down and particles (electrons) are rapidly absorbed by

the wall. The crap\eQ{layer is at least as thick as a cyclotron radius. We will assume that
the thicknegs“ef the layer is much smaller than the mode amplitude.

Whil eMew
the t@iio 1‘/ particle orbits by the wall are non-ideal elements beyond the E x B drift

descriptign.

eory can be described within a 2D flow framework, the transport and

The ﬁ)iper that reported the experimental results on the new damping also included a

?h?lg\t coretical explanation''®. To help understand this theory consider Fig. 1, which
ows the cross section of an electron plasma column that has been displaced off the trap
axis through the excitation of an m = 1 diocotron mode. The displacement is of magnitude
D and direction § = 0. The gray lines are equipotential contours as seen in the mode frame.

In this frame the E x B drift flow is along the equipotential contours. The orange shaded
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Publishi:n?gion represents the relatively high density plasma core. In this region, the mode potential
can be described by linear theory, and the equipotential curves are simply displaced circles.
The resonant region is near the wall, and there nonlinear effects distort the circles. Near
the left side of the figure are the “cat’s eye” orbits, which describe the motion of particles
that are trapped in the wave trough. In order to make the “cat’S(é re” orbits easier to see
in Fig. 1, the ratio of the displacement to the wall radius (i.e. ﬁ&q taken to be the
largest of experiment values at 0.1. g‘
In addition to the E x B drift flow, there is a slow tran ossﬂ e transport produces
a low density halo that gradually extends out from the L)la a core. A given particle slowly
spirals out, moving successively from one contour to notheso larger radius.

The green dot-dashed equipotential contoursfin Fig. the critical contour that just

misses the blue dashed scrape-off layer at § = m@ansport moves an electron through
0

this critical contour, the electron hits the Che\“ yer and is absorbed by the wall before
returning to § = 0. The red solid curveyi }g\ 1 shows the trajectory of such an electron.

~—

\2? Cross section of the electron plasma column in a m = 1 mode. The orange shaded region

is the plasma core. The gray lines are equipotential contours in the mode frame. The blue dashed
curve is the scrape-off layer. The green dot-dashed curve is the critical contour. The red solid

curve is a particle trajectory.
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Publishing' "he previous theory focuses on the transfer of canonical angular momenta from the
plasma core to such electrons. In the guiding center drift approximation, the canonical
angular momentum for an electron in the uniform magnetic field of the trap is simply
Py = eBr?/2c, where the radial position r is measured from the center of the trap, B is the
magnetic field strength and e = —|e| is the electron charge!7. %en an m = 1 diocotron

mode is excited, the plasma core is displaced off the trap axis b

asmallsamount D, and the

core canonical angular momentum per unit length is changed b ﬁ(eB /2¢)D?, where N is
the number of core particles per unit length?. This chan e«i.s angular momentum is called
the canonical angular momentum of the mode. - —~—

When an individual electron E x B drifts in a neagly ciraslla orbit around the displaced

oscillates by order Ar ~ D cos[f(t)]. Thus, théglec rgﬂ)‘,ontinually trades angular momen-
tum back and forth with the core, or equi&&{tie vith mode. However, the orbit for an

center of the plasma core, the radius of the elec@n me ed from the center of the trap
le

in angular momentum. Since the thickness of the “cat’s eye” orbit is of order D, the net

electron that crosses the critical contows\ ncated by the wall, so there is a net change

ISAY

change in angular momentum is of ordew’ AFy ~ (eB/2¢)[R? — (R, — D)* ~ (eB/c)R,,D.
More precisely, the previous S\BQ btained the average change in canonical angular
momentum (AFy) = (2/7)(eB

Balancing the rate o qugsof the mode angular momentum against the rate of change

of halo particle angulr mementum yields the equation

/ d B AN

—N—D?+|—

/ % a2 T ' dt

'Wh per unit length at which halo particles pass through the resonance
ituting for (APy) yields the damping rate equation

/ 4D __21[dN

dt ™ N| dt

withe uti)n of linear algebraic damping D(t) = D(0) — ~t.

(APy) =0, (1)

Rw =", (2)

_-—

This @nple result captures the experimental observations that the mode amplitude decays

337') L{lear function of time and that the magnitude of the damping rate is proportional to the
of halo particles through the resonant layer. The predicted magnitude of the damping

rate is about half the measured rate.

Although this simple derivation has the advantage of brevity, it leaves questions unan-

swered. For example, given that the resonant particles cause mode damping, do they also



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishi'negj se a mode frequency shift? Also, why focus exclusively on the thin ribbon of electrons
beyond the critical contour, when there are many more resonant electrons? Is it really
true that the mode transfers zero net angular angular momentum to these other resonant
electrons?

A conceptual issue is the use of angular momentum balance. %n/fact, the total angular
momentum for the plasma core and halo is not conserved. Tratisport egntinually changes

Also, the simple theory is implicitly based on a zero

the angular momentum of the halo particles as these electrons m@ye out radially.
E\m del; the transport is

assumed to be due exclusively to mobility. Unfortunate 3ﬁ?~scro—diffusion model leads

-

to an infinite density gradient at the leading edge ofithe ha;o, nd such a gradient cannot
be maintained in the presence of even a small @;usion fficient. For the experimental
conditions, diffusion affects the orbits of all th&gpar 1c}£s)deemed responsible for damping in
the simple theory. Indeed the whole idea of%?e\d}y

such diffusion. The orbits are diffusively lba{en !

What is needed is a new, more ri rousse\or?based on a solution of the coupled Poisson
and transport equations. Such a h;o%ms about an evolving density, rather the particle
orbits, and makes no assump 'ongxw nservation of angular momentum.

We note at the outset, how\r,d.espite the problems listed above, the damping rate
given in Eq. (2) will s VTV(Sl the new theory, provided that the diffusion coefficient is

b

ed orbits looses meaning in the face of

sufficiently small, as/lefi inequalities given later. The simple theory needs a more

rigorous backup,{'udd 1S wrong in detail, but captures the essence of the physics. The new
theory does pre iwq ncy shift
5 32 ecD

Aw =

) SO (Ry), 3)

/£
wherd n™ (R, ¢ the unperturbed density in the resonant region of the halo.
The'wew ftheory preserves an important simplification of the traditional linear theory

for_an mS: 1 diocotron mode”. For any unperturbed density perturbation n(®(r) that is

hgugionically decreasing in r and goes to zero for some r > R,, the mode perturbation
s1lts from a uniform displacement D of the plasma column off the trap axis. The displaced
column produces an image in the conducting wall, and in the linear limit (i.e. D/R,, < 1),
the electric field from the image is uniform over the whole column, producing a uniform

E x B drift of the whole column transverse to the displacement D. This uniform motion of
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Publishi‘rlgz column around the trap axis is the mode.

In the traditional theory, there are no resonant particles near the wall, but the theory
presented here must include such particles. Moreover, the perturbed charge density of the
resonant particles produces an electric field that acts back on the plasma core, and one might
worry that this field would spoil the picture of uniform core displagtment. However, that is
not the case.

ortion of this field is the

The resonant particles are well outside the plasma core, go the field from the resonant
particles is a vacuum field in the region of the core. Th M

portion that drives the mode resonantly, and a dipole vacuuin field is uniform. Recall that
ﬁ

a dipole vacuum potential can be written in the for 5

do(r,0,t) = —0E,(t)r co(ﬁ— éﬁy(t)r sin ), (4)
e
where §E,(t) is the uniform field along tle\:}ctio 6 =0 and 6E,(t) is the uniform field

along § = 7/2. We assume that the hal@(\%llc%'is small, so the uniform field 0 E,(t)2+0E,y
d

is a small increment to the unifor el om the image in the wall and produces only a
small increment in the uniform dyift v%
a uniform displacement. d\\

In Section II, the damping rxand the frequency shift Aw are obtained as Green’s

eﬁ@sSibed charge density in the resonant region. To obtain these

tuwrbed charge density of the core is taken to be of the form

ity“of the core. Thus, the core perturbation is still

function integrals over

integral expressions

arising from a unifor disp}dcement.

The integral ex&h&ion can be rewritten in the form

. C C

whichf yields asgimple physical interpretation. The component of the uniform field from
&ies an’t)particles that is transverse to the displacement (0E,) cause an E x B drift

metion os' the core back toward the trap axis, that is, a damping of the mode. Likewise, the

?(ﬁlggnent of the field along the displacement (0 £, ) causes an increment to the E x B drift
velocity around the trap axis, that is, a mode frequency shift.

A second re-writing of the integral expression for D clarifies the issue of angular momen-
tum conservation. The equation can be re-written as a statement that the torque exerted

by the core on the resonant particles is equal and opposite to the torque exerted by the

7
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Publishingcnant particles back on the core. Two opposing torques are equal and opposite even if
a third torque (say, due to the transport) acts. The treatment based on Poisson’s equation
correctly, and automatically, focuses on torque balance, rather than angular momentum
balance.

For the conditions of the experiment, we will see that the transgért caused change in an-

gular momentum of electrons being swept to the wall is small co

ps?'od the change caused
by the mode field, so the angular momentum balance is approximatgly correct. Nevertheless,
the calculation of the damping rate should at least start resl a“sicorous foundation based

on torque balance. T~

To obtain explicit expressions for the damping rate andsfrequency shift, the transport
equation must be solved for the halo density d@butio in the resonant region and the
result substituted into the Green’s function integrals. LA_?& first step, the transport equation
is discussed and simplified in Section III.

Note that the halo evolution takes la&wo stages. First the halo extends radially

%ﬁ wall, the electrons are continuously absorbed,
bt

outward until it reaches to the wall

and a quasi-steady state density%

and frequency shift for this density\distribution.
Section IV obtains simple mxpressions for the density distribution, damping rate

and frequency shift by 18@\‘311 idealized transport model: zero diffusion coefficient and
1t

oil'is established. We calculate the damping rate

constant coefficient 6f mobilit
£

incompressible andl canbe idcorporated in a Hamiltonian description of the electron orbits.
This idealize 111()an icitly underlies the simple theory'*!5  but leads to an infinite

t 4t the leading edge of the halo, which is untenable.

The E x B drift low and mobility flow are then both

density gr
Section,V iiclu

1
s the effect of diffusive broadening at the leading edge gradient. For the
condifions of experiments, the broadening substantially modifies the density distribution
and.th

angwer f§1 the damping rate would be substantially changed. However, the Green’s function

wgzx for the damping rate can be rewritten in an approximate form that involves only
t

"bi’é in the region that determines the damping rate, so one might expect that the

flux entering the broadening layer, and this form again yields the zero-diffusion damping
rate in Eq. (2). The approximation requires that the diffusion coefficient be sufficiently
small, as will be specified by inequalities in Section V. Subject to these inequalities the

frequency shift is also relatively unchanged.
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Publishing: Vumerical solutions for the diffusively broadened density distribution are obtained in
Appendix A and are used in the Green’s function integral to obtain numerical results for the
damping rate. The numerical results are in good agreement with the approximate analytic
result of Section V.

Section VI obtains a perturbative correction to the damping ra}! to account for the slow
time dependence in D(#). This time dependence causes the c BQ?I"S emselves to move,

and the corrected damping rate is proportional to the flux tKhe moving contour. For

the conditions of the experiment the correction is small.

Finally, Section VII is a discussion on the general applicakilityef this flux-driven damping
ﬁ

mechanism. 5
II. GREEN’S FUNCTION SOLUTIO ORg E MODE DAMPING
RATE AND FREQUENCY SHIFT \

In this section, we obtain express'oré&"\s\tMmde damping rate and frequency shift as
Green’s function integrals over the %b@d charge density in the resonant region of the
halo. To complete the Calculatior% ain explicit expressions for the damping rate and
frequency shift, one must solve \rt-h.gperturbed charge density in the resonant region and

substitute into the Green/sdunction integrals. This second part of the calculation is deferred

to later sections.
The linear m —&r&i’c}o mode has the happy property!”!® that the self-consistent
mo

density perturbéti potential and mode frequency are known analytically for any

for some # <

unperturbed@t{y profile n(®(r) that is monotonically decreasing in r and goes to zero

he self-consistent density perturbation and mode potential are given by

S
the expressious £

Q 5 on(r,0,t) = —ag:)) D cos(0 — wit — a), (6)
3 rB

do(r,0,t) = ——[—ws +wg(r)]D cos[d —wit — af, (7)
NS ‘

cre w; = wr(Ry) is the mode frequency. As mentioned above, the mode can be understood

as a uniform displacement of the plasma column off the trap axis. From Eq. (6), one can
see that the displacement is of magnitude D and in the instantaneous direction 0 = wqt + «,

where « is a phase shift. In Fig. (1), the angle in the wave frame is simply § = § — wit — a.

9
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PublishingThe term (rB/c)wi D cos(f —wit — ) in the potential represents a uniform electric field
due to the image of the displaced plasma in the conducting wall. Recall that the image
is located far outside the wall in the linear theory limit where D <« R,. The uniform
field produces a uniform E x B drift of the plasma as a whole. The direction of the image
field is always along the direction of the instantaneous displacemght, so the uniform drift
velocity moves the plasma around the trap axis. The other teitmy in the mode potential,
(—rB/c)wg(r)D cos(f —wit — a), simply accounts for a shift in the Origin of the radial space

)

i néar the wall. However, here

charge field of the plasma column itself.

In this theory, there are no particles in the resonant xe
such particles must be included. As we will see, the ode potential acting on the resonant
particles produces a perturbed resonant particlé chargé“density, and this charge density
produces a correction to the mode potential. “Lhis cczir)ction acts back on the particles in
the non-resonant region causing a correct'o\:‘:)\%E x B drift motion. Nevertheless, we
will postulate that the perturbed char d@m the non-resonant region continues to be

of the form given by Eq. (6). Physi alig,\th\gerturbation in the non-resonant region is still

a uniform displacement. -~
Why is this the case? The Lomr icles near the wall are all outside the non-resonant
region, so the correction potentmvacuum potential in the non-resonant region. More-
over, the dipole compontn such potential represents a uniform electric field. Thus, the
E x B drift velocity Arom %

is field is uniform over the whole non-resonant region and pro-

£
vides a small corréction to t}ie uniform drift velocity produced by the linear mode potential

in Eq. (7). As.we will see, the correction can be accounted for simply by allowing D and «
in Eq. (6) to e)me—dependent.

What4s onfittedsin this description? First, the nonlinear orbits in the resonant region cre-
ate ddusity peryirbations with azimuthal mode number greater than 1, and these harmonic

ion) produce fields in the non-resonant region that are not uniform. However,

se haﬁ)monic fields do not drive the m = 1 diocotron mode resonantly, and the density
Tm}tlli ations produced are negligibly small.

Also neglected is an even smaller correction to the perturbed density in the non-resonant
region that is caused by the transport. This correction is linear in mode amplitude and can
lead to the kind of exponential damping or growth discussed earlier by Davidson and Chao”.

We neglect this effect and focus on the interaction of the mode with resonant particles. This

10
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Publishi'l}ig)ice is motivated by the experimental observation that the damping begins only when the
halo particles reach the resonant region. The present theory is complementary to the earlier
theory of Davidson and Chao”.

The m = 1 Fourier components of the potential and density are related through the

Green’s function solution? /

AN

Ry
dpr(r,t) = 47re/ 27 dr' Gy (r|r") onar'
0

where
r [ r? ) ,
NEED AV A S
Gilrlr) = =y 00 (9)
?(R—2 TS<7A
is the Green’s function and (
27 ) ‘)
5 (r,1) = / \ge\wwr,e,w (10)
) T
Sy (1) \iw%n(r,e,t) (11)

are the Fourier components of the p Nﬁhﬁa\ otential and density. Note that the Green’s
function satisfies the required boggcondition G1(Ry|r") = 0. Also, note that Eq. (8)
is valid whether or not linearﬂﬁf\jn be used to find the density perturbation.

turbe

We postulate that the per ensity can be written as

on(0)
(1) = Dgos(0 — wit — a) 5 U(Ry — 1)+ 6n'(r,0,1), (12)
r

£
where U(R; — r)/a st —fufﬁction and Ry is the outer limit of the non-resonant region, that
is, the regio §b’ﬁg&r theory may be used. The quantity dn’(r,0,t) is the perturbed

ity the resonant region (i.e., for Ry < r < R,). The postulated functional

on(r,

charge de

form for

ﬂ
displdcemen en when the field from the resonant particles is taken into account, as
faineduin Carlier.

exp
%}u’cing Eq. (12) into Eq. (8) yields the relation

: ﬂon—/pesonant region (r < Rj) assumes that the perturbation is still a uniform

S D —iwit—ia i I / an(O) fou ’ g0 / /
6¢R‘r, t) = 47re§e ! /o 21’ dr' G (r|r") o 47T€/R 20’ dr' G (r|r")onf (r, 1),
(13)
where
/ o do 1(ot —if
ony(r,t) = —an/(r',0,t)e (14)
0 27

11
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Publishi:ﬂgc 1e Fourier component of on'(r,0,t). In evaluating the Green’s function integrals, one
must be careful to use the correct form of G (r|r’") depending on whether r > r" or r < 7.

For the non-resonant region r < R, the Green’s function integral in the first term yields

5

(15)

the result

B on(®)
47re/ 2r'dr' G (r]r") = 4re [/ 2r'dr' Gy (r r'dr' Gy ( |7“
0 or’ 0
2

_ zeT[N(T) N(Fy) 3&3\2}

2
where both integrals on the Right Hand Side have be 1r@grat by parts and N(r) =
Jy 2mr'dr'nl9(r"). For the resonant region Ry < r < Ry, t Green s function integral in

the first term yields the result

R] , , , an(o)
471'6/0 20’ dr' G (r|r") o = 2 3) (Ry) — mR2nO(Ry)], (16)

where again integration by parts has been

We will need the potential in the re Ke‘*hieglon later; here we focus on the potential in
e

the non-resonant region, where Eq. duees to the form

C w1 t+z’a 47T€C fu /7. / AN twit+ia
Eéqbl(r, t)e = \\ 2rr'dr' Gy (r|r")ony (1, t)e . (17)
i

/ Bxs“the otation frequency, and wy is given by wg(R,,), assuming

Here, wg(r) = —2ecN(r
that the density takessth

onstant value n(”)(R;) in the resonant region R; < r < R,,. Note

that the first term m_tht Right Hand Side of Eq. (17) has the same form as the coefficient

S

of cos(f — wyt w 7) for the linear diocotron mode.
We will st\tthe ensity is not in fact constant in the resonant region; particles are

excluded from, the,closed cat’s eye orbits, and the frequency shift Aw accounts for this fact.

The line

"zed/the continuity equation® in the non-resonant region takes the form

0 ic on(
Q&ls 3 {615 +iwg(r )} ony(r,t) = Eéd)l(r, t)W’ (18)
%he a_small correction to dn,(r,t) due to transport has been neglected.
Solving for 66y (r,t) in Eq. (17) and substituting into Eq. (18) yields the relation
a0 dnq(r,t)
wittia | )
[z ot Y (T)] ©/or

re

D 4mec

= —[wp(r) - W1]§7" B

Ry
/ 27 dr' G (r|r")om/, (v, 1) et tie, (19)
0

12
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Publishiﬁ(gr a self-consistent solution, this equation must be satisfied when the non-resonant density

perturbation postulated as the first term in Eq. (12) is substituted for dn(r,¢). Substituting

and carrying out the time derivatives yield the equation

—5{25‘51) +4[Z(T)M]D} y

D Ru 4 '
= —lwp(r) - WﬂgT — 5 / 2’ dr' Gy (r|r")d, ’1(6 f)owtrio,
0

)\ (20)

The two terms in square brackets cancel, leaving the res ~.
ﬁ
0D O« 8rec [l i
—i T 5 D= B /R1 27rr’d'r”§1 f'(r’)dwl(r’,t)e 1itie (21)

In the non-resonant region (r < Ry), the upper o@br the Green’s function in Eq. (9)

must be used, and this form is proportionak to .\ Thus, the r-dependence on the Right

~—

e Ri Hand Side, we have a self-consistent solution.

and imaginary time-dependence of

Hand Side of Eq. (21) cancels. VVheng(lK t and i0D /0t are chosen to match the real

integral expressions for the d atetand frequency shift

oD  8mec /R“’ \P\

r'dr! AOG (r|r")on’ (', 6, ) sin[f — wt — a, (22)

Using Eq. (14) and taking tlﬁlsa}dﬁmaginary parts of Eq. (21) yields the desired
pi

ot Br 0
Ry 2
Da—? = DAY = %/ r’dr’/ dOGy (r|r")on' (r',0,t) cos[d — wt —a],  (23)
V. Ry 0

0
where Aw = 804(6%‘ ffequency shift.
The argu eﬂfyf théwine and cosine functions in Eqs. (22) and (23) [i.e., § = 0 —w;t — ]

is the anglt measyred in the instantaneous rotating frame of the wave, and the #-integrals

£

aliong are simply the dipole Fourier components of 6n/(r, 0,t) evaluated in the

in these .ed

rotating frame. In subsequent sections, we will evaluate on’ in this rotating frame.

Ql interpretation of Eqgs. (22) and (23) provides a more mechanistic explanation
of

damping and frequency shift. The interpretation starts from the observation that the
wt Hand Side of the equations [i.e., 0D /0t and AwD] both have the dimensions of velocity.
As‘mentioned above, the charge density edn’(r,0,t) is zero for r < Ry, so the corresponding
dipole potential produced in the region r < R; is of the vacuum form

§¢/(r,0,t) = —rdE, cos§ — rdE, sin , (24)

13
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Publishiwg( re 05, and 0F), are independent of 0 and r. The Right Hand Sides of Egs. (22) and
(23) are simply expressions for (¢/B)JE, and —(c/B)dE, respectively. Thus, Eq. (22) is
simply a statement that the field § &, from the resonant particle charge density, produces an
E x B drift motion of the plasma along the direction of instantaneous displacement D, that
is, a growth or damping of the displacement depending on the Si%ﬂ/ of 0F,. Likewise, Egs.
(23) is a statement that JF, causes an E x B drift increment t, e velgcity of the plasma
transverse to D, and such an increment causes a frequency % the rate of rotation of

the plasma around the trap axis, that is, an increment i quency.

Finally, how does the Green’s function solution clari h"'*rsbues associated with the

ﬁ
angular momentum balance argument!*15? Let edn, '1d dny(r, 0) be two perturbed

charge densities in a Penning trap. The torq ‘exert n edng(r, ) by the field from

edny(r,0) is given by the integral x‘;)
_ c 1

Ry 2 Ry
Tab = —62/ r’dr'/ d@’/ rdr —G(r,0, r',@’)] crdng(r, 9)5nb(r’,§’)}
0 0 0 \ (25)

Because the trap has cyhndrlcal sy \yrg\t e Green’s function has the functional form
G(r,0,7,0) = G(r,r', 0 — <%\t o opposing torques are equal and opposite [i.e.,
Tap + Tha = 0], even if a third Nueh as that due to transport, acts.

Eq. (22) for the da
6n4(r, ) be the pertupbe
and let ony(r, 0) b

ing rate is“equivalent to such a statement of torque balance. Let

‘harge density of the non-resonant region [i.e., —DIn®) /dr cos 0],
component of the perturbed charge density of the resonant

region [i.e., the onent of dn'(r,6)]. The torque 7, is given by the integral

Ry
&ab = / rdr/ do(— COS 0) ( - ;agzl))r. (26)

Usm lity of the sinusoidal functions in the harmonic expansion of d¢y(r,f), the

q. (26) picks out the term —rE,sin@ in the dipole portion of d¢y(r,0), a
(n\byqu ), vielding the result

I~

on(0)
or

DeB Ry (0)
= —WDa—e— rzdran . (27)
0 or

Rq
Tab = WDeEy/ r2dr
0

Multiplying Eq. (22) by —7D(eB/c)r?0n®) /Or and integrating over dr from r = 0 to

14



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishing R, yields the equation

Ru o R o
Tab = —87T2€2/ r'dr'/ d@énb(r',H)/ rdrGy(r|r’) 5 Dsm9 (28)
R 0 0 r

where dn, (1, 0) has been substituted for én’(r’,#). The potential d¢,(r',0) is given by the

expression
_ gl on® N
dpa(r',0) = —47T€/ 2rrdrGy (1, r)[—-D—* “cy% (29)

0

where ' > Ry > r. Using the relation Gy (', r) = Gy(r,1") fo%“\> rields the result

)

Ry
§¢a(r',0) = 87 eD/ rdrGi(p1) 0, (30)

so Eq. (26) can be rewritten as the result

2 ‘}85¢
b= — 'd dfs - ~Tha- 31
Tab /Rl r T/ nbz}&( 4 39 T, (31)

IIT. TRANSPORT EQUATION \

The particles move under thesco }ed\inﬂuence of an E x B drift flow and a radial
transport flow, so the density ev&%‘e&: rding to the equation

\
on +\&m¢ Vont 2200 o, (32)

BO\? rOr
clectrig potential and I',(7) is the radial transport flux.

£
niandlescription of the drift dynamics, where H(0, Py, t) = ed[r(F),

where ¢(r,0,t) is th

We employ a

is the drift Hamiltomian and (0, Py = eBr?/2c) are a canonically conjugate coordinate and

momentu '1%9’20. One can easily check that the Hamilton’s equations of motion?! are

the same B drift equations in a uniform magnetic field B = BZ. The Left Hand
Side Q {hen can be written in the form
3 0 0
—n+£szL¢ VLn——n+[n,H], (33)

3 ot ot

g™ H] is a Poisson bracket??.

The transport is understood to be due to small static field asymmetries?®, which exert
an azimuthal drag force on the rotating plasma, causing a radially outward drift motion. In
the experiments!'®, the transport flux is varied (i.e., increased) by applying additional field

asymmetries.

15
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Publishin g0n general grounds, the flux is expected to be of the Fick’s law form?*

. 6¢0 on
L= Foar " Df}’r’ (34)

where the coefficient of mobility p and the diffusion coefficient D satisfy the Einstein rela-
tion, u = eD/T < 0. Here, —0¢y/0r is the unperturbed radial eﬁield and T is the
1e 16

temperature in the halo region. The Fick’s law form follows fr irement that the

flux vanish for a thermal equilibrium density profile, n(r) = qiv{—eqﬁo(r) /T).
ke

By changing variables from (r,0,t) to (0, Py,t), Eq. ( )‘51 he form

B) 0 T

n . o . '

— H=—|—Flin+D 35
o mH] 8P9{ PR %)

where C
. eB 0 By} By - 2T
Bylr = 200 o L 2T (36)

6\*‘ redgy/or
Here P9|T is the rate at which mobility ch%egé value of Py of a particle. Note that D is

proportional to Pg\T and that P9|T <0 % 0 since ed¢/dr is negative. We will need
the transport equation in the resona \IQgJ.Q\n where to a good approximation erdgg/or is

approximately —2¢?N and P is xiwately P, = eBR? /2c, where N is the number of

w

particles per unit length. Thu Mnsport coefficients takes the simple form

% — Mg (22N, D = P9|pr%. (37)
For the expeZne<a\::?dltions, the factor T/Ne? in the diffusion coefficient is small
(i.e., T/Ne* ~ w e transport is dominated by mobility everywhere except at the
leading edgefQf @e halo where a large density gradient enhances the effect of diffusion.

The gener
K& F(0,Py,t) = Byl — wr — a(t)] (38)

-
y&%&monical transformation to this frame, with the new coordinate and momentum

I~

é =0 - wlt — Oé(lf), ]59 = Pg (39)
and the new Hamiltonian
_ oF

16
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Publishiwg( re Aw = ¢&. Since Py and P, are equal, we continue to use P, in the new Hamiltonian.
To work in the rotating frame, one need to only replace H by H in Eq. (35); the Right Hand
Side of the equation need not be changed since the radial flux is the same in both frames.
Since the transport flow is slow compared to the E x B drift flow, the halo particles very
nearly follow curves of constant H. Thus, changing independent %iables from (0, Py, t) to
(0, H,t) in Eq. (35) is useful. The result is the transport equatj

on +% oH +@ on| _on i[_ n 5OH | on | (41)
Ot s OH|s, Ot |gp  00|5,0Ps|5, OPy|s,0H %‘\ OPy|,,0H |5,
)h'@*-Hamiltonian H(O, Py, t) is

To complete the description of the transport equatio
ﬂ

needed. Formally, the Hamiltonian is given by the e ressiosl
H = ego[r(Py)] + e&b[r(Pg(w} _.%dl + Aw) Py, (42)

where ¢q(r) is the unperturbed potential w ?f is the perturbation caused by the

mode. \

mrt equation can be simplified by using the

As mentioned in the introduction, the
th E)na«n region. Our goal is to calculate the damping
rate and frequency shift to first or }Kt is small quantity. From Eqs. (22) and (23) one can

see that the integral expressig\ 1e damping rate and frequency shift are already first
order small in ny. Thus thﬁnetio 1al form of the perturbed halo density in the resonant

smallness of the halo density n, i

region need only be ate td zero order in ny,. Likewise, the transport equation, which

, need only be accurate to zero order in the halo density.

determines the f?c i
S

Of course, ny uiensionless parameter on which to base a proper ordering scheme.

gt &
The dimensidnles Zrd&ng parameter is N, /N = (n;7R2)/N, which has the value 0.1 for

typical e i al conditions. As we will see, even the largest of the neglected terms is

Let\us sta‘ﬁt by simplifying the Hamiltonian. In the resonant region, where the transport

-—
e%t“iou and Hamiltonian are needed, the dipole contribution to the perturbed potential is
ive

.% )y the expression
D 11 R

(r,t) = —erD[N(R,)—nRin"(Ry)] <ﬁﬁ>6_mt_m4we/ 2’ dr' Gy (r|r)ony (r' ) 1),
w R
(43)

where use has been made of Eqgs. (13) and (16). The first term is the contribution to the

dipole potential from the non-resonant region, and the second is the contribution from the

17
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Publishi:nsg< nant region. Simple estimates show that the second term is smaller than the first term
by a factor of N, /N, so we neglect the second term. The higher harmonic contributions to
the perturbed potential are comparably small and also are neglected. The constant square
bracket in the first term can be replaced by N with a relative error that is down by a factor
N, /N. Finally, there is a small f-independent contribution to Xﬁe perturbed potential,

which we also neglect. The radial electric field from this potenti

1-1;3 smaller than that from
the unperturbed potential ¢(r) by a factor that is much smaltey“than N,/N. Thus, the

perturbed potential reduces to the simple form )

In the resonant region, the Hamiltonian can&sil lified further by Taylor expansion

with respect to Py about Py = P,. Setting w)g 0, using d¢o/0r ~ —2Ne/r near

the wall and using the resonance Condltl Ry) = (¢/BRy)(0¢o/0r)|r, yield the
expansion
_ Ne2 Pg R, P,Aw
H = 0 4
COS T DN ] } (45)
where higher than second or b in the small quantity |Py — Py|/P, ~ 4D/R,, have

We will see that the s rm in the square bracket is a constant of value 0.6(N,,/N,).

been dropped and the p rg% pendent term AwP,, has been added.
ond

This term can b he analysis, but for consistency (and simplicity) is dropped

here yielding th amiltonian
P,\° (P —P,\ 4D
9 Pw ) — (GT) R—w COS 0:| (46)
endence of the transport equation also can be simplified by using the small-
NGSSQO In the introduction, we noted that the halo evolution can be divided into

t stag§. First the halo extends radially out to the wall. At the wall, particles are contin-

Tra}lslz absorbed and a quasi-steady state density distribution is established. We calculate
the damping rate and frequency shift for this quasi-steady state density distribution.

The modifier “quasi” is used since the density continues to change slowly due to the slow
damping, that is, due to the time dependence in D(t), which enters the Hamiltonian. In

Sections 4 and 5, we neglect this slow time dependence, that is, neglect the first two terms

18
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Publishimg the Left Hand Side of Eq. (41), to obtain the simplified transport equation

on a . ~OH| on
ol 9P+ DO O
0|, am Tt Pap | o

é]- (47)

One expects the corrections due to the neglected time dependence to be small since D(t)
is first order small in n;,. In Section 6, a perturbative treatment%to show that the

relative correction to the damping rate is approximately A~y 73 2N N. The relative

correction to the frequency shift is even smaller.

For plotting purposes, it is useful to re-write the redu@m onian in the scaled form

—
h=p®—pcosl (48)

)

-

where

-
. (50)
Likewise transport equation (47) ta \f}e..i(\:a ed form
oh| On
| 77| los (51)
a0hlg
where
Ry,\?
— 52
=) (52)
). (53)
To lowest ifi the Taylor expansion, § and  are treated as constant in the resonant
region. 1e smallest values of D accessed in the experiments, these constants are

orderdd as §
Eig&Q&bows a contour plot of i(6, p) in the resonant region near the wall. The ordinate
of\the plyt ranges from p = 0, the location of the wall, to p = —2, which is enough of the
\W@ ase space to show the resonant region. Of course, the full phase space extends to
ch lower values of p where the plasma core is located.
The contours of constant (6, p) are the trajectories that would be followed by a particle
moving only under the E x B drift flow, and the arrows on the contours indicate the direction

of the flow. There are open trajectories extending from # = 0 to § = 27, closed trajectories,

19
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Publishing 0= v -
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FIG. 2. Contonrswf h(thy)

and a separatrix between the two. The v l% positive on the open trajectories, zero

on the separatrix, and negative on th c]awajectories. The closed trajectories are the

“cat’s eye” trajectories.
Solving Eq. (48) yields a solu”o& }he\trajectories
X@; +vcos2 0 + 4h

where the minus sign isfo %Sed for the open trajectories, on which p(f) is a single-valued

function of 6. Both £he }3 i ad minus signs are needed for the closed trajectories, where

p(0) is double-valied. V4
1. there is a thin scrape-off layer where guiding center drift theory

o

electrons) are absorbed by the wall. The scrape-off layer is at least as

Adjacent t

fails, and
radius, which is of order 10~% c¢m for the experiments. However, other

effectd. such aswglisalignment of and ripples in the magnetic field, likely increase the thickness

: ape‘off layer. In this regard, note that the particles undergo rapid axial bounce

metion z%id azimuthal drift motion relative to the wall, so any region of the wall where the

N

The scrape-off mechanism and the thickness of the scrape-off layer Ar are not known

off mechanism reaches out furthest sets the overall thickness of the scrape-off layer.

experimentally, but we believe that the thickness Ar is small compared to the mode ampli-
tude D, for the range of amplitudes in the experiments. This condition is necessary for the

damping rate and the frequency shift to be independent of thickness. Note that a physical

20
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Publishi‘rlg(-kness Ar corresponds to a scaled momentum thickness Ap = Ar/2D.

)
-0.012 . ‘
00 0.2

0.6 08 1.0
L...

I

FIG. 3. Contours of h = h. (blue solid), \%&d dot-dashed) and the scrape-off layer (black

dashed) in the (6,p) plane. B
—

of the figure is taken to have ss Ap = 1072, The lower edge of the scrape-off layer

Fig. (3) shows a blow up <\hi\&\sq pace near the scrape-off layer, which for the sake
th

is shown as the black d

1@&5; at p = —Ap = —10 2. The solid blue contour is the critical
contour, h(f,p) = h4 Wth gt misses the scrape-off layer at # = 0 and 6 = 2. Eq. (48)

implies that the lue h orf the critical contour is given by h, = (Ap)?+Ap ~ Ap = 1072

Also shown is a_j t-dashed curve that will be explained in the next section.
Fig. wé the scrape-off layer and critical contour in (6, h)-space. The solid blue
horizont critical contour h = h, ~ 1072, and the black dashed curve is the lower

edge ¢f the sc éoff layer at h = h(0, —Ap) ~ Ap(cos ). Also shown is the red dot-dashed
curug of ig)(?)).

or of,'entation, note that p increases upward in Fig. (3) and that h increases upward in

In the region h > h,. of Fig. (4), the contours of constant h extend from 6 = 0 to § = 27.
Since the points (f = 0,h) and (6 = 27, h) are the same point physically, we require that
n(@ = 0,h) = n(f = 2m, h) in the region h > h.. In the region 0 < h < h,, the contours

21
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FIG. 4. Contours of h = h. (blue solid), k —‘\I\XJ\
dashed) in the (6, k) plane.

ot-dashed) and the scrape-off layer (black
\

\ 7
Ner before reaching # = 0 or # = 27. The particle
density within the scrape-off

aﬁ\
&%Qk
from the scrape-off layer and, when

at the surface of the s

of constant h encounter the scr

n to be zero. This implies that no particles emerge

iffusion is taken into account, that the particle density
ehjayer be zero. Otherwise, there would be an infinite density
gradient at the surféce, whicha

A
IV. ZE }‘\

FUSION MODEL

s unsustainable in the face of diffusion.

£
As

wWas no d/earlier, the scaled diffusion coefficient, 9§, is small compared to the scaled
m b_ﬂ&@%cien‘c B. Motivated by this observation, the previous calculation'®' of the
d mpingSrate assumed the limit of zero diffusion.

WA ‘i lew of this simple model is instructive since it admits a trivial analytic solution for
t

steady state density profile. Happily, the model yields the same answer for the damping

rate and frequency shift as a more realistic model that includes small but finite diffusion
[see Section 5.

Setting 6 = 0 and treating [ as a constant reduces transport equation (51) to the simple

22
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Publishifegin
on
o0

which immediately yields the solution

n(6,h) = glh + B0]. /
'R

The flow is incompressible along trajectories of constant k = h

To understand this result physically, note that constant 3 1mpliessconstant P9|T, which

on
— B=—
N Ooh

=0, (55)
0

in turn implies that the mobility flow is incompressiblé:

incorporated along with the incompressible E x B d@\%l

One can easily check that the Hamiltonian

nobility flow can then be

a Hamiltonian description.

4D, -0 (57)

generates both the E x B drift flow KL%O ility flow. Since we are neglecting any

explicit time dependence in this Hadr

flow along curves of constant K. /The
of Eq. (57). Since the Hamﬂ®k incompressible, the density is constant along the

Ll%m ). it is a constant of motion, that is, particles
ation k = h(6,p) + 30 is simply the scaled version

contour of constant k.

The red dot-dashed ul%il Figs. (3) and (4) are two views of the critical trajectory

k = h., drawn for the value £ = 2 x 107*, which is characteristic of the experimental

£

conditions. This ffajesiory jlist misses the scrape-off layer at 6 = 0 but enters the scrape-off

layer just to the IN: 2m.

For the yegign/h > h., the periodic boundary condition n(f = 0,h) = n( = 2, h) plus
the solutign ifi Eq (56) implies the relation n(f = 0,h) = n(f = 27, h + 273). Thus,

n(0 ={0,h) mist be constant in the region h > h.. The possibility of a periodic component
withet ver) short periodicity scale 0h ~ 27 is ruled out by even small diffusion. This
¢ clusiéjl will be clarified in the next section.

wa‘e;ry point above the red dot-dashed contour in Fig. (4), that is, above the trajectory
k% h., lies on a trajectory that emerges from the line interval (§# = 0, h > h..), on which the
density has a constant value. Thus, the density in the whole region above the red dot-dashed
trajectory has this constant value. The density below the red dot-dashed trajectory is zero,

because there the points lie on trajectories that emerge from the scrape-off layer. Thus, the

23
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Publishi'nfglsity is given by the expression
n(0,h) = n'O(R)U[L — h,. + (6], (58)

where U(x) is a step-function, and we have identified the value of the constant density as

n-S%lgritten in the form

n©(R,), the density at the beginning of the resonant region.
Egs. (22) and (23) for the damping rate and frequency shift

4D 2 2w B
oD — cchty <—) / de sin@ pdp
0

ot B \ R,
w 4D
DAw = _celty (4D d9 cos 0 p 0 [0,h(0,p)], (60)
B Ry (R1)

where the relations

r'dr' = 2D wdp - (61)
Gl (7”|7”/> 12 Dp
— A1) ~ 62
r AT \E% TR (62)
. \ .
have been used, and the Green’s fupction has been Taylor expanded about ' = R,, in the
last step of Eq. (62).

Substituting Eq. (58) for t e%

sions

-~

nd carrying out the p-integrals yields the expres-

(0)(R])/0 d@sme{ 20, he — B0] — pA(R1)}, (63)

QE)QH(O)(}%)/OQW Cose{p 0o — 0] — 2 (R)). o

the e ressidsl

-
_ _ _ op_ _

B2 0. = 50] = 57 0.0) — 29-(0.0) | o= 0.0) 50 (63

\Tm first term in this Taylor expansion does not integrate to zero when substituted into

Eq." (64) for the frequency shift, so the smaller, second term may be neglected, yielding the

GXPI'GSSIOII

ecR, (4D T _cosl o -
DAw ( w) (Ry) /0 do 5 p= (0, h,). (66)
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PublishiRg h. < 1, Eq. (54) implies that p* (0, h,) is approximately given by cos?# in the interval
7/2 < < 37/2 and is nearly zero elsewhere. Thus, Eq. (66) reduces to the result
_ecR, (4D 37/2 _cos
Aw = ©
Y~ 7 BD (R ) (Rl)/w/2 9=

_2e(m) D &
3 B R,

Egs. (15) and (17) show that the frequency w; has the val w@msmﬂing that the
density has the constant value n(®)(R;) in the resonant regiorﬁﬁ\x < R,,. For the density
tl@cons nt value n(”)(R;) to the

N

(67)

solution given by Eq. (56), the density does not extend
wall, but only to the dot-dashed trajectory in Figs. (8)and{d). The particles are excluded
from the closed cat’s eye orbits adjacent to the Wa_l}. he fhaquency shift accounts for this
exclusion, yielding an effective exclusion length of Ar = (8/37)D

In progressing from Eq. (45) to Eq. (46), the quantity (R, P,Aw)/(2DNe?) was dropped,
anticipating that it would be small compéued %g nnity. Substituting for Aw from Eq. (67)

shows that the quantity is indeed small: \

R F A(\ )~ 0.06 (68)

3‘ N
In Eq. (63) for the damp e first term in Taylor expansion (65) integrates to

zero, since p? (, h) is even in 0 a — 7 and sin @ is odd. Thus, the integral is determined

solely by the second terfii in the Taylor expansion and reduces to the form

p_ -

Rl " d0sindp (0 h){@h (6.h )} 80. (69)

Egs. ( 1mp the relation

_ —cos O + Vcos? 0 + 4h
p_(Q h) ——(0,h.)| = — :
3h 2v cos? 0 + 4h

For hf=h. ~ < 1, the Right Hand Side has the approximate value 1 for 7/2 < § < 37/2

(70)

and _15 early&zero elsewhere. Thus, Eq. (69) yields the result

3 oD ecRy, <4D)2 © gm/2
— = — | n (Rl)/ df sin 056
S ot B \ R, /2
- ecR,, (4D 2

By using Eq. (52) and the relation
: B |dN
n(0>(R1)P6|T = e_’

—_— 2
2me| dt | (72)
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PublishiBg. (71) reduces to the previous result for the damping rate'*!?

, as given by Eq. (2).

The second term in Taylor expansion (65) represents the particle density in the region
between the solid and the dot-dashed curves of Figs. (3) and (4) [i.e., between h = h. and
k = h.], so the damping rate is determined exclusively by particles in this region. From Fig.
(3), one can see that these are particles that are being swept aroupd the cat’s eye orbits to
the scrape-off layer and wall.

14,15

The previous calculation guessed that the wave torquedis iantly applied to these

particles, approximated that torque by the the rate of ¢

rrgs of ‘angular momentum of the

particles, and evaluated the change in angular mom ntut usinigs the zero diffusion orbits

)

t-dashed curves when mobility

discussed in this section.

A particle enters the region between the soli and. the
transports the particle through the contour h =4,.. Tﬁ)ate at which particles flow through
this contour between § and 0 + df is proKnal Bndh. Since fn is constant, the flux

t

is uniform in . Since all of the particl@*ﬂe}é\he scrape-off layer at p = —Ap, the average
t1Ckes

change in angular momentum for t % 5 is simply
~

NG -8 = p- (6.1 73)

Using the inequality h, ~ Ap < 1

\ 3m/2 _ 9 D
%\GBRM / df cosf = —ﬂ, (74)
mc T c
£

d Eq. (54) yields the result

/2

&

which is the r sul*hs{ed in the introduction. The rate of change of angular momentum
st |dN/dt|{AP,) and used as the torque in the torque balance equation to
dafipingrate in Eq. (2).

was then w1

Sirfce this previous calculation approximates the wave torque on the halo particles by the
rageQf ang) of halo particle angular momentum, omitting the torque due to the transport,

mayysk why the present and previous calculations agree. The answer is that the torque

rte
~

N\ Also, the quantity |dN/dt| is first order in 3, so the correction would be of order 2.

on a particle while it is being swept around the cat’s eye orbit is small, of order

Likewise in the Taylor expansion of Eq. (65) only the term first order in § was retained.
Thus, the two calculations are accurate only to order [, and differences would appear in

order 32.
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PublishiNg DIFFUSIVE BROADENING

An obvious criticism of the zero-diffusion model is that it leads to an infinite density
gradient at the leading edge of the halo [i.e. at k = h.|, and even a small diffusion gradient
must broaden such a gradient. This broadening is worrisome since #lie damping rate in the
zero diffusion model is determined by a thin ribbon of particles-at theJeading edge of the

LQVely broadened layer is

halo. Moreover, for the conditions of the experiments, the

much wider than the ribbon. Nevertheless, we will find that the answer for the damping

rate is not changed significantly, provided the diffusive adening 1s not too large, as will
be specified by constraints on the size of the diﬂusio@i iend.
Numerical solutions of transport equation (51)fre obtai § in Appendix A. The boundary
conditions imposed on the solution are that n(&';paoaches the constant value n(®(R;)
—= 27,

for sufficiently large h, that n(f = 0, h) = n(6. ;n-f’or h > h. and that n(6, h) be zero at
the surface of the scrape-off layer. The d}%self will prevent particles from reaching
N

Fig. (5) shows a contour plof of >I'é'iative density n(6, h)/n® (R,) obtained for the
transport coefficient values § = &\ 1d\d = 4 x 107, which are characteristic values for
the experiments. Only the rela \Eﬁsity need be specified since the transport equation is
linear and the boundar cm«%ons are homogeneous. The critical contour A = h,. is again

the contour h = 0.

drawn as a solid bluedine. "kikewise, the red dot-dashed line is the trajectory k = h., and the

dashed black Cu‘?%‘ /the /Surface of the scrape-off layer. Clearly the thin ribbon between

the solid blue litte angd the“dot-dashed red line is very narrow compared to the width of the

the full range of diffusive broadening, the range of h values shown in
6)7s la 'c{than that in Fig. (5). The upper dotted blue curve in Fig. (6) shows
ul-S8gle lélgth for diffusive broadening in the region h > h., and the lower dotted blue

've shqws the scale length in the region 0 < h < h.. The diffusive broadening scales are

in the two regions, since the boundary conditions of the transport equation (51)

~
> different in the two regions.

To estimate the h-scale length for diffusive broadening in the region h > h., we use a
perturbation expansion of Eq. (51) based on the smallness of 5 and §. Substituting the
expansion n(f, h) = n (@, h) +nM (4, h), where n™ /n(® is first order in 8 and 4, yields the
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FIG. 5. Contour plot of the rel \ 1t n(0,h)/n9(Ry). The black dashed line is the scrape-
off layer. The solid blue line and the,red dot-dashed line are the critical contours h = h, and

k = h¢. The blue dotte e rep sents the diffusive broadening layer (Ah)s.

zeroth-order equ 1on ﬂ?& = 0 and its simple solution n(®) = n© (h).
In first or the ansion yields the equation
n(®) 0 Oh on®)
— = — | O(h) —4 75
ah{"() apah] (75)
ﬁ

atmg a d 0 as constants and using the periodic boundary condition required for

3 T dpon™ 9 oh\ on©®
_ 9 g 00 sl 20
\ 0= /0 o7 90 Oh [5" (h) 6<8p> h ] (76)

where

reglon h > h. yields the equation

op o 8p
Here, the last expression follows from Eqs. (48) and (54).

27 27 )
<@> = / df Ol _ / ;Z—Q\/ cos? 0 + 4h. (77)
0 0 ™
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FIG. 6. Contour plot of the rel!«'m\@t n(0,h)/n9(Ry). The black dashed line is the scrape-

off layer. The solid blue line and the,red dot-dashed line are the critical contours h = h, and

k = h.. The upper and, I e% dotted line represent the diffusive broadening layer (Ah); and

(Ah)s.
Since the sionerm will be significant only at the leading edge of the halo where
h < 1, thedas . (77) has the approximate value (0h/dp) ~ —2/7. Thus, Eq.

R & ,
0 on®)
L PN
.\K5 0= g 1000+ a2, (78)
%he Ash)l = 20 /m3. The solution is given by the expression

}(LA_h;Lf ] ’

nO(h) = Cy + (Cy — Cy) exp {— (79)

where C; and Oy are constants. For h — h, > (Ah)y, the density n(”)(h) has the constant

value Cy, which we identify as the constant n(®)(R;). The constant C, is the value of the
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Publishifg eraged density at h = h, n(”(h.). This latter constant must be determined by matching
onto the solution for h < h,.

One can continue with the perturbation analysis to determine the #-dependent part of

the density, but the conclusion is that (Ah); sets the diffusive broadening scale. The upper

blue dotted curve in Fig. (6) is the line h = (Ah), = 2§/m5. Phisically, this broadening

scale is determined by a competition between diffusion and molik

In the region 0 < h < h,, a given particle makes a single p:&t\zlgh the (6, h) space and

then is lost to the scrape-off layer, so the diffusive broademns his region is determined

by a competition between diffusion and E x B drift stregr\n . Neglecting the mobility term

in Eq. (51) and using the small-h expansion 0h/0p % —| cds@ in the diffusion term yields

A

@(‘O% o'/ (80)

The lower dotted blue curve in Figs. ( %gs a plot of (Ah)y(6). For the conditions of

the diffusive broadening scale

the experiment, (Ah); is substantia han (AR)q(6).

If the diffusive broadening sc&&\l and (Ah), satisfy appropriate constraints, the
details of the density distribu% needed to calculate the damping rate and frequency
shift. First, we require that there éxists a contour h = hy, where hy, — h. is a few times larger
than (Ah); and yet h 1. This is possible if (Ah); < 1. Recall that h, ~ Ap < 1. The
density then has th¢ constaiitalue nO(Ry) for h > hy.

Second, we ref{'re t (/Ah)2(§ = 37/2) be small compared to h. ~ Ap, so that particles

u%\ﬂ = 0. Note here that the scrape-off layer on the Right Hand Side

can’t reach tht

of Fig. (5)Anters¢cts the contour h = 0 at § = 37/2. Physically, the particles must be swept

to the scra —/off}ayer by the E x B drift flow before the diffusive broadening can move the

ﬁ
parti&’:ﬂ} .
Q ary, the required inequalities are the following
5 20 2 T Ry,
(Ah); = — <1 (81)

\\ Wﬁ " T Ne2dD
3TH R,

1> (Ap)* ~ h2>> [(AR)o(37/2)]° = 66 = SNE D (82)

which are consistent with the experimental conditions except for the smallest values of D.

By using the constancy of n(f, h) for h > hy, Eqs. (59) and (60) can be re-written in the
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s zecg ( ) desme{ (O)QRI) [p2(0, ) — p*(Ry)]

+ [ o | (53

DAw — ?J(%) /O d&cose{n(O)éRl)[pQ(e,é S (Ry)]
\ (84)
D

0 _
w a6 22 w60},
]
“in-the integrals.

123

where the differential relation dp = dh(0p/0h)s has been
In both square brackets, the constant term p? ( ) inteerates to zero. By even-odd
arguments, the term p? (6, h;) integrates to zer Eq«(83), but not in Eq. (84). The
integral over h makes the only contribution i (.(SBF)and may be neglected in Eq. (84).
The integral is negligible there because hy %s the equations reduces to the form

2

8D Rw Oop_(0,h) -
_ce amp_ (0.0 2015 . (35)
oh
4D 27T
DAw = €CR XV / d cos 0p* (0, hy). (86)
The reason that the dlffu81 emng makes only a negligible change in the frequency

shift is easy to understa The leading edge of the halo has the approximate §-dependence

p_(0,0), which varies bysordery unity as § varies over the interval (0,27). On the other

hand the diffusive

20 /7P < 1, so t/ hangeproduced by the broadening is negligible.

To evalu e%hping rate in Eq. (85) first recognize that p sinf = 0h/90,
based on tha )y of hin Eq. (48). Such recognition, together with the chain rule
(000,
n(6, hy, are pQ}I‘iodic in 0, allows us to rewrite Eq. (85) as

-
oD _ecRy, (4D on
— = do h h

KS ot B ( )/ Adp @ iR

I~

Since hy, < 1, p_(#, h) can be approximated by p_(#, 0), which is given by p_(6,0) = cos

/@hlg) = —0p_/00],, and an integration by parts over 6 since p_ (6, h) and

(87)

from Eq. (54) for 7/2 < § < 37/2 and is zero elsewhere. Thus, Eq. (87) reduces to the form

D ADN? 32
8—:@(—) / decosef a2
ot B \R.) | T
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Publishiﬁlgbstituting for on/ 00 |5, from transport equation (51), carrying out the h-integral and using
the relations n(0, hy) = n”(R;) and On/0h(,0) = 0 yields the expression

oD Rw AD 2 3r/2 B _
E:_%(R_> //2 df cos @ - fn®(Ry), (89)

which reduces to the result / \

dD  ecR, [(4D\? 2 |dN/dt
_ (R—> n(o)(Rl) 28 = __| ‘ s (90)

dt B

: X
This result is the same as the damping rate for zero-diff siobgive in Egs. (71) and (2).
'M_
1e dfdh integrals in Eq. (85),

This analytic solution for the damping rate approximates

denoted as 3
J /%de i e/odﬁiap 1) (91)
= sin - ,
0 hi oh ;j(o) (1)
by the value 23, which significantly is indep(s'ldgl‘.\Cl ‘Srprovided J is not too large. Fig. (7)
shows a comparison of this analytical approximasion for the integral .J to a direct numeri-

cal evaluation using the numerical soluti Mhe diffusively broadened density found in

Appendix A. 3 ~

A (N o
=

10 \ " ’,,’

o’
.,,,,”/
34 s
10°8

FIG. 7. %lues of damping integral .J. Numerical results are in squares for T = 4 x 107> Ne? and in
hlegfor T = 1.6 x10 2Ne?, with D = 0.1R,,. Red dashed line shows the approximate analytical
result J ~ 24.

The numerical evaluations are obtained for many values of 3, shown in the figure, and for

D = 0.1R,, and two distinct values of T, T = 1.6 x 1072Ne? and 7' = 4 x 1072Ne?. These
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PUDliShi'ng es are characteristic of the experiment. The value of h; is taken to be large enough that
n(6,h)/n®(R,) is close to 1 and the integral J is independent of hy.
Results for T = 1.6 x 1072Ne? are shown as circles and for T = 4 x 1072Ne? as squares.
The red dashed line is the analytic result 23. Significantly, the circles and squares lie close to
the red line, with slightly larger values. The origin of the differenceg{es in the approximation
made in Eq. (88) in the analytic evaluation. We neglected t 1all figite b in p_(6, h).
However, when the finite value of 0 < h < h;, is retained in thi'erical evaluation, values
)

Ate Stgnificantly, even when the

slightly larger than the analytic approximation is obtain

That diffusive broadening does not change the dampi{l

broadening is much wider than the thin region respo

iible f@f amping in the zero-diffusive
model [i.e. (Ah); > 27| may be surprising. @ha‘c 15'needed is that (Ah); and (Ah),
satisfy inequalities (81) and (82).

To understand the near equality of the \%\%ng rates, first note that the scaled flow
ive]

of particles through contour hy is simpl which is the same as the flow through

contour h, in the zero diffusion mo Pro ided that (Ah)y < Ap, all of the particles that

pass through contour h = h; ultighately énter the scrape-off layer. To calculate the average
change in angular momentu 0&\{1‘ icles as they move from h = h; to the scrape-off
layer, one need only replace h, \m . (73). By inequality (82), hy, is small compared
to unity and the modi ion of Eq. (73) still reduces to the result in Eq. (74). Thus,
the average rate of ang }N)ngular momentum for the particles is the same in the two
cases.

The question r \a%as to whether or not the average rate of change of angular momen-

tum is a go IOleatlon to the torque exerted by the wave on the particles. In the zero

dél, pa ticles cross the contour h = h, and then enter the scrape-off layer in a

singlef pass th gh the (6, h) space. In scaled variables, the change in angular momentum

of.a.particle £aused by the transport during this period is of order dp ~ 3, which is much
aller fyan the average change dp ~ 1.

\ln the finite diffusion case, particles cross the contour h = h; and then make many passes
thiough the (6, h) space before reaching the scrape-off layer, so torque due to transport has
more time to act on the particle. The change in angular momentum due to the transport is
of order dp ~ hy, which is much larger than /3, but according to inequality (82) is still small

compared to the average change in angular momentum 0p ~ 1. Thus, the rate of change
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Publishinfgz ngular momentum of the particles still provides a good approximation to the torque

exerted by the wave. Therefore, the damping rates for the two cases are nearly the same.

VI. CORRECTION FOR TIME DEPENDENCE IN D(t)

Here, we obtain a perturbative correction to the damping r t the explicit time
dependence in the Hamiltonian, that is, due to the time dep nce in D(t). Unscaled
equations must be used to obtain this correction since D Ne caling. The first two
terms on the Left Hand Side of Eq. (41) give rise to the >

To estimate the relative size of these two terms%j: stitute the approximate zero-
diffusion solution n(f, H,t) = nO (R U[H — Fgc’i)], 0

(—0H./0t)(On/OH)g,. One can show that [0H iii‘aall compared to |0H /0t| for Ap <
1, so the first term may be neglected in com‘pa@ o the second. The equation then takes

ning the relation 0n/ot|gz =

the form
% Ht B 8?[[ Pa Tn + an } % H,taa—g é,t’ (92)
where o0
H/ot
: aﬂfap'za o
is the rate at which a gonto (0, Py, t) = constant moves upward in the (#, Py) phase
space. \5

Anticipating that Wil]/need Eq. (92) only for # in the range 7/2 < 6 < 37/2 and only

for small values of 4) implies that

Py— P, 4D(t) ~
5 ~ R, cos 0, (94)

Whic in tur 1 plles the relation

_4D(1)

0P
KS Ot |y Ru
\ S

Changing to scaled variables, choosing an angle in the range 7/2 < 6 < 37/2 and

P, cos . (95)

integrating with respect to h from h = hy, to h = 0 yields the result
4DP, -
/ dh% = —nO(R)[1 - — cos ). (96)

h,t w 0’T
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Publishifiginparing this result to Egs. (88) and (89) shows that the square bracket is a correction
to the flux through the contour h = h;, to account for the the fact that the contour moves
in time.

Substituting this result into Eq. (88) and carrying out the f-integration yields the damp-

ing rate /
dD il \
— =——————~ —~(1-2N 97
it~ 1N S o/ ) (97)

where ~ is the zero-diffusion damping rate in Eq. (71) and W 0.1.

%
VII. DISCUSSION -~
)

-

How general is the flux-driven damping meck@sm disc¢ussed here? First note that the

N

mechanism is not limited to the case of an m < 1 modt. Subsequent to the experimental

discovery of the damping for an m=1 di CW de, similar damping was observed for
an m = 2 mode!. Again, algebraic IQegan when the halo particles reached the
resonant layer, which for the m = 2 nfigx\{ell separated from the wall.

£ 2"mode is well separated from the wall, one may

Because the resonant layer fow the
ask what plays the role of thﬁ“:&in runcating particle orbits? Put another way, what
frow

prevents the resonant particles \gwing back angular momentum that they have received
from the mode? We b 1eve\03t the answer is simply passage of the particles through the

“cat’s-eye” orbits i thg résgnant layer. Because of transport, the particles cannot come
back through thegt stiucturés, and in the one-way passage, the particles pick up significant

urm{l the mode, causing the damping. In principle, this mechanism also

. 7, = 3 and higher, but the resonant layer is closer to and even inside the

des, and such modes typically suffer large ordinary Landau damping.
In fhis papérive do not treat the damping of the m = 2 mode in parallel with the damping
0 th@&\lgode, because there are technical differences between m = 1 and m = 2 cases.
em é)l mode admits an analytic solution for a general monotonically decreasing density
T’r?ﬁls while the m = 2 mode does not. The structure of the “cat’s-eye” orbits differ, since
the potential goes to zero at the resonant radius for an m = 1 mode (i.e. at the wall), but
not for the m = 2 mode. Also, the truncation of the orbits by the wall is different than
simply passing through the “cats eye orbits. The theory for the higher order modes must

wait for a later paper.
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Publishin gﬁ Jroader than the flux-driven damping mechanism itself is the idea that all Landau-type
damping (or growth), that is, damping (or growth) due to interaction with resonant particles,
can be thought of as resulting from the action of the bare electric field from the resonant
particles back on the mode. The resonant particles travel at the mode phase velocity so
the electric field from the resonant particles drives the mode resg‘n/antly. The idea is not

e field from the resonant
particles is uniform, but applies for arbitrary mode number. ’I{?eral idea was elaborated

limited to the case where the azimuthal mode number is unity a

in a recent paper?”.

Q<
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Appendix A: Numerical lu%&h\y diffusive broadening

This appendix describes a, numerical solution of the transport equation (51) using an

eigenfunction expansion. is golution follows a similar approach in the work of Dubin and

£
Tsidulko®. Y
Fig. (8)ill straw region of the solution of Eq. (51). In this figure, we set p = Ap =

1072 to be ccrape-off layer. The scrape-off layer is the black solid contour h = Apcos 6,

with smafler germ (Ap)? dropped. The critical contour, which is the blue dot-dashed curve,
ish=h.= 'fhe orange dotted curve is the contour h = 0.

The io) for which n(6, h) is solved is bounded in the figure by the scrape-off layer and
ti(@ ht lines # = 0 and § = 27. It can be divided into three region of interests, which
’Khsl}\ >"he, 0 < h < h.and h < 0. The three regions are to be explained in the paragraphs
that follow. Meanwhile three boundary conditions of Eq. (51) will be introduced in the
explanation.

The first region, h > h., is taken to extend to infinite h, since we are interested in the

regime h < h, < 1 and the non-resonant region is far from the wall. At large h, the density
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FIG. 8. Tllustration of the region for which Eq. (51)@0]%(1. e black solid curve is the scrape-

off layer. The blue dot-dashed curve is the criticahﬁ%ug_? = h.. The orange dotted curve is the

contour h = 0. \\

is equal to that at the edge of the n n—&%\ntegion. Therefore
\ S
&“\{;\e, W) = (R, (A1)
RN
which is our first boundary con\i(ﬂ.\
tmdi)tEO:a is the periodic boundary condition f(# = 0,h) = f(0 =

reférs to the same physical point. It only applies in the region

Our second boundar

27, h), as § = 0 and

h > h., which is Zie Iy re,gion that can access # = 0 and 0 = 2.
The second région, 0 <h < h,, is the region of open orbits in contact with the scrape-off
e)ensity must be zero, i.e.

£

layer, wher

. n(0,h = Apcosf) = 0. (A2)

-
I m&wb, the range of @ that a particle can access is bounded by the scrape-off layer.
The ‘@ird region, h < 0, differs from the first and second region in that the contours
Eﬂs (;.l\osed in this region. We continue to apply Eq. (51) in this region, and use the same
zéo-density boundary h = Apcos as in the second region. However in Eq. (51), the factor
Oh/0p takes p = p_(0, h) from Eq. (54) when p(, h) is expressed, and misses the p = p, ()
part of the closed contour for h < 0. Fortunately, the error is negligible because this region

is dynamically inaccessible to the particles, as discussed in the small-diffusion condition (82)
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PUinShih]gSeCtiOI’l V. There are literally no particles for h < 0, and thus n is vanishingly small in
this region.
Since Eq. (51) is linear and the boundary conditions are homogeneous, the density may

be normalized as f = n/n”(R;) and the equation rewritten as

of] o on| of /
%), B - 53_]9 Joh é]- 3\ (A3)
0.030-

S04 06 08 1.0
0/(2n)

layer. The blue dot-daghed, curve, is the critical contour A = h.. The orange dotted curve is the

FIG. 9. Illustration of the r%io\ix(ution in (0, x)-space. The black solid line is the scrape-off

contour h = 0. f

Vs

In order to.fit Nundary condition more easily, we change variables from (6, k) to
(0,7), whepe s = h — Apcosf. Fig. (9) shows the region of solution in the (#, ) space.

The blackgolitl linews the scrape-off layer. The blue dot-dashed curve is the critical contour

h = I{, and t o/range dotted curve is the contour h = 0. As we see from the figure, the
regiQp solhtion in Fig. (8) is reshaped to the semi-infinite rectangular region in Fig.
(M. Thé)boundaries of the region of solution are lines z = 0, § = 0, and § = 27, and the

%g}ion éxtends to infinite x. As discussed when the region was described in (6, h)-space,
~

solution is solved considering the three subregions h > h., 0 < h < h. and h < 0 as a
whole, although we expect the value of f in the dynamically inaccessible region h < 0 to be
vanishingly small.

In this new set of variables and the normalized density, the first boundary condition,
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lim f=1. (A4)

T—00

The second boundary condition, which is the periodic boundary condition, is rephrased as
f(0 =0,2) = f(0 = 2n,x). It applies only to the region h > /{the same as when the
region was described in terms of (#,h). Since the region h > h/r Vm values of x > 0,

the periodic boundary condition applies for all z > 0.
More importantly, at the scrape-off layer, the third @\condition (A2) is now

expressed as
fl0,z=0)= 0&3 (A5)

which is much easier to work with as the scrape is straightened to be the horizontal

line z = 0, and #-dependence is avoided. o

By using the relations 9,5 = (ax/ahw ol = (02/00)0,|5 + Ogl. Eq. (A3) is

rewritten in the form ﬁ\
Y T

Here 1(0, ) = Oh/dp is explici

(A7)

using the relations 4d8)4ind, (54). The fact that we are interested in the region 0 < h <
hy < 1 permits g‘b‘qn e the z-dependence in 7 by neglecting A and thus approximating

3

‘o (05 fnd n(0) are both periodic in # for all values of x, they may be expressed

n(0,z) ~n(f) = —|cos . (A8)

as the\Fouriex Series

KS F0,2) = > fulz)e, (A9)
\\ R
@) =Y e’ (A10)

V=—00

where 7, = —fozw df) cos(0)|e=?/(2x). Note that f_, = fi and 7_, = 7} as f and 7 are

real functions. In practice, both series must be truncated when solving numerically for [i.e.
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Publishifig= 0 if lp| > Ny, and n, = 0 if |v| > N,]. Ny and N,, are positive integers chosen to be
sufficiently large to resolve 7(#) and to obtain a converged solution of f(6,z).
Substituting Fourier expansions (A9) and (A10) into Eq. (A6), using the relation sin § =

(e —e~1) /(2i) and equating coefficients of ¢ on both sides yields the differential equations

)+ 1) = @) = B1) -6 YT (AW

rom — Ny to Ny. Since

This is a set of 2N;+-1 linear coupled ODEs, as the subscri t‘p)c\o%

the coefficients are constants, we seek a solution of the _£0 J.() = C,e . Substituting
this form of solution into Eq. (A11) yields a set of ei 'onvahsf equations

o G
inC, —ZSTP[CMH —Cy :\ ;L)s %0 Z N—vCltv, (A12)
\ Vﬁ_N"I

with s as the eigenvalue and C, as t\%ement of the eigenvector. By inspection,

there is an obvious eigenvalue s =

with coefficient C,, = 9,9 as the eigenvector. This
eigenvector corresponds to the a gonstant/cigenfunction f,(z) = d,0, and we set Cy to be 1 so
as to satisfy Eq. (A4) for lar x hysically admissible eigenvalues are the ones with
positive real parts, denoted as 1th the eigenvector {C),,}, since the eigenfunctions

el p—imlsie when o is large. The subscript 7 refers to the r-th
eigenvalue and eigenyecto d\S

£

Both the eigental angd' the eigenvectors are obtained numerically. It is noteworthy

die out in the form of

that in the nu cr&l&olu ions, the eigenvalue with the smallest positive real part is equal
to m8/(20), whicll is the reciprocal of the diffusive broadening scale (Ah); in Eq. (81). Its

»/(Ah)1 - is responsible for the change of density

eigenfunéiions which then has the form e~
over that' broad¢éning region. Other eigenvalues are not as recognizable though, and the
respective eignfunctions superpose, together with that for the scale (Ah);, to produce the
délicate sensity structure around h = h, in Fig. (6).

xfhe otal solution is a superposition of all the eigenfunctions

Ny )
hx) =1+ Y ACe e (A13)
r p,:—Nf

where A, is the coefficient of the r-th eigenfunction.
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PublishingVe have to satisfy the boundary condition at the scrape-off layer, therefore by following
Eq. (A5), we obtain the condition

Ny B
0=fl.z=0=1+Y > AC,e" (A14)

r p=—N;y
Collecting coefficients for every Fourier component yields the set wd equations

0=0u+ Y ACu, )

"N

<
)

(A15)

from which {A,} is solved numerically.

-
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