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ABSTRACT OF THE DISSERTATION

Computational Mass Spectrometry: Algorithms for Identification of
Peptides not Present in Protein Databases

by

Julio Ng

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2011

Professor Pavel A. Pevzner, Chair
Professor Pieter C. Dorrestein, Co-Chair

Mass spectrometry has revolutionized protein identification in the last decade.

Efficient algorithms have been developed to identify peptides that are encoded

in protein databases. This work presents novel methods for interpretation of

mass spectrometry data on compounds that are not directly encoded in protein

databases. One example of compounds that are not in protein databases are non-

ribosomal peptides. Because of the specialized machinery that synthesizes these

compounds and their unique (often cyclic) structure, traditional database search

tools cannot analyze these data. With new algorithmic developments, we show

that mass spectrometry can speed up the process of characterization of cyclic pep-

xv



tides which are compounds of great interest in drug discovery. A second class

of peptides that are not encoded in protein databases are peptides that are the

product of fused proteins. This type of peptides can arise from cancer proteomes,

where the peptide spans a fusion point. Again, traditional search tools cannot

identify fusion peptides because they are not directly encoded in the databases.

We also present an algorithm to identify such peptides. Finally, mutated and mod-

ified peptides are also not directly encoded in protein databases. Existing tools

are particularly inefficient when searching for unexpected modifications. Although

this problem has been addressed with “blind” database search tools, their run-

ning time is too demanding to be practical for large databases. We develop new

methods to search for mutated and modified peptides that are orders of magnitude

faster than existing tools. Overall, with new algorithmic developments we enable

mass spectrometry to characterize novel compounds that evade identification with

traditional MS/MS tools.

xvi



Chapter 1

Introduction

Mass spectrometry has been the method of choice for study of proteins

in a high-throughput manner. Advances in instrumentation and software has al-

lowed researchers to take over more ambitious projects, both in terms of scale and

complexity of the experiments. Mass spectrometry’s versatility lies in the fact

that it can detect molecules in small concentrations in a wide range of masses.

Mass spectrometry has been utilized to detect biomarkers for diseases, identifi-

cation and quantification of expressed proteins, identification of modifications on

proteins, and aiding gene annotations, just to mention a few application in the

biological sciences.

1.1 Beyond regular database searches

Because of the ever expanding applications of mass spectrometry, there is

also a need to develop new computational methods to interpret the experimen-

tal data. The classical peptide identification problem tries to characterize a mass

spectrum by assigning an amino acid sequence to it. The sequence can be de-

rived from a database or de novo. MASCOT [1], SEQUEST [2], InsPect [3], etc.

are representative tools that use the database search approach for mass spectrum

identification. However, these algorithms are not designed for applications where

the peptide is not in the database. There are biologically significant events that

can alter the primary structure of proteins.

1
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In Chapter 2, an algorithm to identify fusion peptides is presented. Genome

rearrangements in cancer cells are one scenario in which proteins which altered

primary structure can arise. The use of mass spectrometry to detect genome re-

arrangements has the advantage that it can localize fusion points (breakpoints) of

proteins at the amino acid sequence level, as opposed to competing genomic tech-

nologies that can only pinpoint rearrangement events in the kilobase scale. Mass

spectrometry can also confirm the expression of proteins resulting from genomic

rearrangements. Detection of fusion peptides opens another possibility for mass

spectrometry to be used as a technology in the search for tumor biomarkers. A

technology that is sensitive and cost-efficient.

Lastly, this algorithm can be adapted to search for splice sites, given suffi-

cient peptide coverage and the genome of the organism of interest. This application

is useful for alternative splice site detection and validation.

1.2 Scaling searches to very large databases

With advances in mass spectrometry instrumentation, millions of mass

spectra can be generated in single experiments. To overcome this problems, re-

searchers have increased the efficiency of peptide identification tools by clustering

spectra [4, 5, 6, 7]. Clustering spectra significantly reduces the number of spectra

that needs to be searched against the database by up to 90% [7], without losing any

peptide identifications. Spectrum datasets are usually redundant and by clustering

similar spectra together, a consensus higher quality spectra can be created.

While spectra clustering can reduce the size of the input dataset, the run-

ning time of the database search algorithm still depends on the size of the database.

The largest databases can reach a few billion of amino acids (human six-frame

translation, conglomerate of bacterial proteomes, etc). As a consequence, even the

most efficient tag-based (filtering) database search algorithm, InsPect [3] does not

scale well for these databases. In Chapter 3, a novel algorithm is presented that

results in database search tool that is faster than InsPect for large databases. The

tool builds on the MSGappedDictionary [8] tool, a de novo peptide identification
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software based on the breakthrough concepts of Spectral Profiles [9] and Spectral

Dictionaries [10]. Contrasting with traditional de novo peptide identification tools,

MSGappedDictionary generates gapped peptides, a pattern of (integer) masses rep-

resenting masses of one or multiple amino acids. These patterns have a greater

filter efficiency than tags generated by InsPect, and usually have very few matches

in the database. Gapped peptides also have much greater accuracy than full de

novo sequence reconstructions because mass spectra fragmentation is not uniform

along all peptide bonds, making it unrealistic to have accurate full reconstructions.

Gapped peptides are, therefore, a more natural and accurate way to represent de

novo (partial) reconstructions.

MSGappedDictionary is a de novo peptide identification tool and its run-

time is independent of the size of the database, but matching gapped peptides

to a database could potentially be a very time-consuming task. In fact, it is not

clear how to match these patterns to a database efficiently. The classical pat-

tern matching algorithms deal with the problem of exact matching patterns to a

text, making them not applicable to the problem of matching gapped peptides to

proteome database. The main goal of Chapter 3 is to develop an algorithm to

efficiently match gapped peptides to a database. Furthermore, adaptations of the

algorithm are presented for mutation tolerance searching using gapped peptides.

1.3 New applications of mass spectrometry

Mass spectrometry revolutionized proteomics when high-throughput pep-

tide identification algorithms were introduced, replacing traditional manual anno-

tation. Application of mass spectrometry to the identification of natural products,

specifically on sequencing of cyclic peptides, is a novel area requiring develop-

ment of computational tools for the interpretation of experimental data. Chap-

ters 4, 6 and 7 describe developments in applications of mass spectrometry to

natural product identification and discovery. The hope is that with the develop-

ment of these computational tools, this field can benefit the same way proteomics

benefit when high-throughput peptide sequencing was introduced. The properties
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of high-throughput and sensitivity in the field of natural products, where tedious

manual interpretation of Nuclear Magnetic Resonance data is expected, is almost

unheard of.

In parallel to algorithms for identification of (linear) peptides, algorithms

for identification of cyclic peptides also fall into two categories, de novo sequence

reconstruction and database search identification. The parallel even extends fur-

ther when database search methods are mutation tolerant, just as in linear peptide

searches. The strategy of a mutation tolerant search in a database of cyclic pep-

tides is called comparative dereplication, and it can save significant efforts in nat-

ural product research by quickly identifying compounds previously characterized

or their known relatives.

1.4 Software Developments

There are mainly two areas in which computational tools can aid researchers

make the most out of mass spectrometry datasets. The first is the development

and improvement of algorithms for existing and new problems. In the academic

environment, most of the resources are dedicated to the development of the most

cutting-edge software that outperforms existing tools that solve the same problem,

or to the creation of software that tackles a novel problem. In other words, we

are very good at developing the smartest algorithms to solve the most difficult

problems. In fact, most of the time, we are only limited by the capabilities of the

instruments. The lag between new instrumental developments, and software that

can take advantage of the new capabilities, is minimal.

The second area, which receives less attention in academic software tools

(as opposed to commercial software), is the application of software engineering

principles to the development of these software tools. Because most of the resources

are dedicated to creating new algorithms and limited resources are dedicated to the

support and polishing of such algorithms, software tools never become ubiquitous

in the community, regardless of the novelty and power of the algorithms. For

example, user friendliness is usually not a top priority when developing software
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in academic settings. As a result, when a tool is released, the documentation

describes a long list of command line options and a configuration file with obscure

and hidden options. Furthermore, it is assumed that the user’s computer has all

the dependencies to run the software installed.

To this end, several first steps have been taken to remedy the situation.

Our group in particular, now has a user-friendly webserver that allows users to run

several of our tools (http://proteomics.ucsd.edu) with the interface rendered in

a web browser freeing the user from installing software dependencies in their local

computers and understanding the multiple configuration options of the software.

In Chapter 7, a detailed description of the technologies used to create the website

to run the cyclic peptide sequencing tools is provided to illustrate methods for easy

job submission, interactive documentation and results representation.

User-friendliness is crucial for the popularity of the software, but developer-

friendliness is important for the maintenance and further development of the soft-

ware. Our group has created a central repository for the latest software tools we

developed. An effort led by Sangtae Kim and I, we created a umbrella package

called MS Java containing all of our algorithms. The package contains various

Application Programming Interfaces (API’s) that standardize communication be-

tween tools authored by different people. These conventions will also be very useful

for future developers that want to use existing tools or want to reuse portions of the

current algorithms. Object oriented (OO) design is also used extensively to rep-

resent common elements in mass spectrometry (i.e. peptide, database, spectrum,

etc).

I believe that applying best software engineering practices will make our

tools easily maintainable to future developers, and at the same time providing

user-friendly interfaces for running our software.



Chapter 2

Algorithm for Identification of

Fusion Proteins via Mass

Spectrometry

Identification of fusion proteins has contributed significantly to our under-

standing of cancer progression, yielding important predictive markers and thera-

peutic targets. While fusion proteins can be potentially identified by mass spec-

trometry, all previously found fusion proteins were identified using genomic (rather

than Mass Spectrometry) technologies. This lack of MS/MS applications in stud-

ies of fusion proteins is caused by the lack of computational tools that are able to

interpret mass spectra from peptides covering unknown fusion breakpoints (fusion

peptides). Indeed, the number of potential fusion peptides is so large that the ex-

isting MS/MS database search tools become impractical even in the case of small

genomes. We explore computational approaches to identifying fusion peptides,

propose an algorithm for solving the Fusion Peptide Identification Problem, and

analyze the performance of this algorithm on simulated data. We further illustrate

how this approach can be modified for human exons prediction.

6
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2.1 Introduction

Tumor genomes accumulate a large number of rearrangements, many of

which contribute to tumor progression and lead to formation of novel fusion genes

resulting in oncogenic activities [11]. Identification of fusion genes has contributed

significantly to our understanding of cancer progression, yielding important predic-

tive markers and targets for therapeutic intervention such as BCR-ABL, ERBB2,

and TP53 [12]. Indeed, the successful anti-leukemia drug STI-571 was designed to

abrogate the aberrant activity of the BCR-ABL fusion protein resulting from the

Philadelphia chromosome translocation. The breast cancer therapeutic Herceptin

was designed to counteract the activity of the HER2-ERBB2 gene. STI-571 and

Herceptin are examples where knowledge of fusion genes translated to therapeu-

tics. We remark that identification of fusion genes using genomic approaches is

often time-consuming and expensive. In fact, sequence-based analysis of tumor

genomes architectures was nearly impossible, or, at best, extremely laborious until

very recently [13]. However, fusion genes can be potentially identified by a single

mass spectrum provided there exist computational tools that are able to interpret

mass-spectra from fusion peptides, allowing fast and cheap detection of fusion pro-

teins. Therefore, the MS-based computational approaches for the identification of

fusion proteins are crucial for the identification of tumor biomarkers.

Rearrangements often exert their oncogenic effect by disruption of genes

at rearrangement breakpoints [14]. Understanding of cancer is predicated upon

knowledge of the architecture of malignant genomes that accumulate a large num-

ber of genome rearrangements during tumorigenesis. While recent studies suggest

that the known fusion proteins in solid tumors are likely to represent only a tip of an

iceberg [15], SKY and other low-resolution technologies are limited to cytogenetic

resolution for the localization of tumor breakpoints. Collins’s lab (UCSF) recently

developed End Sequence Profiling (ESP) approach that maps genome breakpoints

associated with genome rearrangements elucidating the structural organization of

tumor genomes [16]. ESP recently enabled development of new computational

tools for fine-scale analysis of tumor genomes [17, 18] and increased the resolution

of cancer studies by two orders of magnitude (100 Kb vs. 10 Mb).
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In the last year, other fine-scale techniques for interrogating cancer genomes

emerged, most notably the PET technology [19, 20] and the Solexa array platform.

The transcript ESP (tESP) [16] technique has been recently proposed as an exten-

sion of ESP to the analysis of fusion transcripts. tESP, similarly to ESP, requires

time-consuming validation that may be difficult to scale. For example, application

of tESP to MCF7 [16] resulted in four validated fusion transcripts.1 However, it

remains unclear whether these four transcripts are being translated.

We remark that the existing genome and transcriptome approaches, while

powerful, only generate clues for potential fusion transcripts that need to be fur-

ther validated by other approaches. For example, both ESP and PET technologies

may generate a list of hundreds potential “gene pairs” forming fusion genes (most

of them may be computational or experimental artifacts) and this list needs to

be further winnowed to elucidate the real fusion genes. For example, different

“ESP signatures” can be decoded using combinatorial techniques [17, 18, 16] but

time-consuming downstream sequencing and functional studies are necessary to

distinguish between signatures generated by fusion transcripts (biologically inter-

esting case) and experimental artifacts like chimeric BAC clones. The development

of MS-based methods would complement nucleic acid-based methods because of

the ability of MS/MS to distinguish fusion peptides from nontranslated abnormal

transcripts and experimental artifacts. MS-based proteomic approaches could fa-

cilitate the identification of translocation partners and would be applicable to the

analysis of samples that are limited in quantity, such as clinical biopsies.

Breakpoints in some oncogenic fusion genes are highly variable from patient

to patient, and subtle differences in the positions of BCR-ABL breakpoints may

be crucial for disease phenotype [21]. Moreover, knowing the exact breakpoint

position facilitates disease monitoring. For example, in different leukemia patients,

the breakpoint happens in different introns thus producing the variable junction

between the prefix and suffix of the fusion peptide. From this perspective, MS-

based approaches would be a useful complement to the DNA-based approaches for

the identification of the exact positions of fusion breakpoints.

1It should be noted that only two fusion transcripts were previously known to exist in MCF-7,
while the ESP consortium has validated four additional fusion transcripts.
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The previous attempts at in silico identification of tumor-specific fusion

transcripts using EST data proved problematic [22] thus calling for applications

of an alternative validation technique like mass spectrometry. While MS/MS is

an attractive technology for interrogating cancer proteomes, it is not clear how to

design algorithms to find the fusion peptides. Moreover, rearrangements of tumor

genomes might result in completely novel tumor-specific proteins that are not even

recognizable in human proteome [23].

Although MS/MS is an attractive high-throughput approach to discovery

and validation of fusion proteins, the first successful MS-based validation of fusion

proteins was reported only in 2006 for anaplastic large cell lymphoma (ALCL) often

caused by radiation and chemical agents [24]. ALCL is an aggressive lymphoma

harboring chromosomal translocations involving the ALK tyrosine kinase. The

most common translocation in ALCL leads to formation of a fusion kinase NPM-

ALK that activates signaling pathways resulting in enhanced survival and prolifer-

ation of tumor cells. So far, ten other translocations involving the ALK gene have

been described in lymphomas and a subset of pediatric tumors [25, 26, 27, 28, 29].

For the cases of expressed fusion genes, mass spectrometry is an excellent technique

to detect fusion proteins.

ALK forms chimeric fusions with numerous translocation partners. The

NPM-ALK and TPM3-ALK fusion proteins have been identified [24] in a tumor

biopsy by finding multiple overlapping peptides bridging the breakpoints in the

NPM-ALK and TPM3-ALK fusion proteins. This study demonstrated an ability to

validate the known oncogenic fusion proteins, and the authors raised the problem of

adapting their approach for the identification of unknown fusion partners. However,

no computational details were given on how it can be accomplished. In this paper,

we address the problem of identifying fusion peptides and test the algorithm for

fusion peptide identification in a simulation experiment with real spectra and mock

databases simulating fusion proteins.

Since we failed to find publicly available MS/MS datasets from tumor

genomes with annotated fusion breakpoints, we decided also to test our approach in

a different application domain: finding peptides bridging two consecutive (unan-
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notated) exons. Indeed, if the position of the intron separating these exons is

unknown (or incorrectly annotated) then the problem of finding a peptide bridg-

ing two consecutive exons is not unlike the problem of finding a fusion peptide.

We demonstrated that MS/MS spectra can be used to find introns even if their

positions are unknown (or incorrectly annotated). An approach for analyzing alter-

native splicing via a combination of EST and MS/MS analysis has been recently

developed [30]. While this approach proved to be very valuable it can only be

successful if the same exon junction is supported by both EST and MS/MS data.

Our approach thus complements [30] by demonstrating that high-quality MS/MS

spectra can be used for annotating splicing even in the absence of EST data.

2.2 Methods

2.2.1 Fusion Peptide Identification Problem

A fusion peptide is defined as an amino acid sequence pi . . . pi+kpj . . . pj+l,

where the prefix pi . . . pi+k comes from one protein while the suffix pj . . . pj+l comes

from another protein in the database, and the database is defined as a long amino

acid sequence p1 . . . pn from the concatenation of all protein sequences from the

proteome of an organism. For simplicity’s sake, the identity of each protein is

not encoded in this definition of the database, but in practice this information is

incorporated in the database to enforce the constraint that the prefix must come

from a protein different than that of the suffix. The Fusion Peptide Identification

Problem (FPIP) is to find a fusion peptide in the database that best matches

an experimental spectrum. A brute force approach to solving the FPIP searches

through all pairs of proteins and all potential fusion sites in these peptides. It

results in O(n2) running time, making this approach impractical.

We propose a method to solve the FPIP that runs in O(nd) time, where

n is the number of amino acids in the database and d is the upper bound for the

length of the fusion peptide. In practice, it is reasonable to assume that d is 30

since tryptic peptides longer than 30 amino acids are rare and hard to detect via

MS/MS.
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For simplicity, we represent an experimental spectrum S with precursor

mass m as an m-dimensional vector ~s = s1 . . . sm where si represents the score

at mass i (most MS/MS database search and de novo tools convert experimental

spectra into its scored version, e.g., PRM score [3] or Danč́ık score [31]). This

representation assumes that the spectra are discretized and all masses are integers

(for example, for ion-trap spectra this can be approximated by multiplying all

masses by 10 and taking integer parts). A peptide P with parent mass m can be

represented in a similar way by a binary vector ~π = π1 . . . πm, where a 1 is placed at

every position corresponding to the mass of a prefix of the peptide. The score(S, P )

of a match between the spectrum S and the peptide P is defined as the dot product

~s · ~π, where ~s and ~π are vectors corresponding to S and P (for convenience, we

assume that the score(S, P ) = −∞ if S and P have different precursor masses). In

this framework, the FPIP amounts to finding a fusion peptide P that maximizes

score(S, P ) for all possible fusion peptides in the database, given S.

2.2.2 FPIP Algorithm

Because computing the score for every possible fusion peptide in the database

via the brute force approach is impractical, we propose to compute the score

for the prefix and suffix of the fusion peptide separately. Let P be a peptide

(in a vector representation π1 . . . πt) and S be a spectrum (in a vector repre-

sentation s1 . . . sm) such that the parent mass of P is smaller than or equal to

the parent mass of S (i.e., t ≤ m). Define PrefixScore(S, P ) =
∑t

i=1 siπi and

SuffixScore(S, P ) =
∑t

i=1 si+(m−t)πi. Let Pi,k be the peptide with k amino acids

after position i in the database. The FPIP can be formally defined as follows:

Input A database p1 . . . pn and a spectrum S with parent mass m.

Output A fusion peptide pi . . . pi+kpj . . . pj+l maximizing

PrefixScore(S, Pi,k) + SuffixScore(S, Pj,l) among all fusion peptides of mass

m.

Our algorithm shares some features with the MS-Alignment dynamic pro-

gramming approach for the Mutated Peptide Identification Problem [32] (MPIP).
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Figure 2.1: Spectral alignment for instances of MPIP and FPIP. For clarity, we
only consider b peaks. A) MPIP where the mutation is a deletion of an amino acid
in the database separating prefix FHSA and suffix CWEV. B) FPIP where the prefix
NPLG comes before the suffix CYQT in the database. In this problem, the prefix and
suffix come from different proteins in the database. C) Another instance of the
FPIP where the prefix YWKV comes after the suffix WGPA in the database. In the
FPIP, the jump could potentially go to any position in the database.
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Figure 2.1A illustrates an alignment of a spectrum against a peptide in the database

allowing for an internal deletion (an instance of MPIP). A premium is given for

each pair of peaks that agree (represented by golden stars in the figure). The

peptide that explains the spectrum contains a prefix (before the deletion) and

suffix (after the deletion) separated by one amino acid in the protein database.

The FPIP (Figure 2.1B) fits perfectly in this prefix-suffix framework if we allow

deletions of arbitrary size. Furthermore, it is also possible for the suffix to come

before the prefix in the database (Figure 2.1C). This scenario can be modeled by

an arbitrary deletion in the spectral alignment. However, our solution to the FPIP

is independent of the location of the prefix and suffix in the database.

Given a spectrum S in its vector form s1 . . . sm and peptide P as a sequence

of amino acids p1 . . . pn, we formally define:

PrefixScore(S, Pi,k) =
i+k∑
j=i

smass(pi...pj)

SuffixScore(S, Pi,k) =
i+k∑
j=i

sm−mass(pj ...pi+k)

wherem is the parent mass of S, 0 ≤ k ≤ d, 1 ≤ i ≤ i+k ≤ n, and mass(pi . . . pj) =∑j
a=i mass(pa). We take care of boundary conditions by defining sx = −∞ for

x < 0 or x > m. PrefixScore(S, Pi,k) can be computed efficiently for valid values

of i and k with the following recurrence:

1: for j = 1 to n do

2: PrefixMass(j, 0) = mass(pj)

3: PrefixScore(S, Pj,0) = smass(pj)

4: for k = 1 to d do

5: PrefixMass(j − k, k) = PrefixMass(j − k, k − 1) + mass(pj)

6: PrefixScore(S, Pj−k,k) = PrefixScore(S, Pj−k,k−1) + sPrefixMass(j−k,k)

7: end for

8: end for

Exceptional cases, PrefixScore(S, Pi,k) and PrefixMass(i, k) in which the i

index becomes 0 or a negative number are not defined. Although these cases are
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not handled explicitly in the pseudocode fragment above for simplicity, additional

checks are implemented in practice. Similarly, SuffixScore(S, Pi,k) can be computed

efficiently for valid values of i and k with the following recurrence:

1: for j = n to 1 do

2: SuffixMass(j, 0) = mass(pj)

3: SuffixScore(S, Pj,0) = sm−mass(pj)

4: for k = 1 to d do

5: SuffixMass(j, k) = SuffixMass(j + 1, k − 1) + mass(pj)

6: SuffixScore(S, Pj,k) = SuffixScore(S, Pj+1,k−1) + sm−SuffixMass(j,k)

7: end for

8: end for

Again, for exceptional cases, SuffixScore(S, Pi,k) and SuffixMass(i, k) where

i+ k > n, these terms are not defined.

We can evaluate all possible candidate fusion prefixes and suffixes with the

previous two recurrences in O(nd) time. We also note that the highest scoring

fusion peptide must have the highest score prefix and suffix for all possible break-

points x in spectrum S (0 ≤ x ≤ m). Therefore, this fusion peptide can be found

by using two arrays that keep track of the best prefix and suffix (correspondingly)

for all possible breakpoints of S. Formally, we define:

BestPrefixScore(S, x) = max
i,k

(
PrefixScore(S, Pi,k)

)
BestSuffixScore(S, x) = max

i,k

(
SuffixScore(S, Pi,k)

)
where x = mass(pi . . . pi+k), for all 0 ≤ x ≤ m and valid values of i and k. The

initial optimization problem can be rewritten as computing:

max
0≤x≤m

(BestPrefixScore(S, x) + BestSuffixScore(S,m− x))

The fusion peptide that best explains S is simply the concatenation of the

peptide with the best prefix score to the peptide with the best suffix score.

For our experiments, we chose the Prefix Residue Mass (PRM) spectrum [31,

33] as the vector representation of S and used the InsPect [3] implementation to

convert raw spectra into PRM spectra.



15

2.3 Results

2.3.1 Results on Simulated Data

Our test dataset was constructed from a subset of the Human Proteome

Organization (HUPO) Plasma Proteome Project (PPP [34]). Specifically, we took

the data from Lab 28 which was acquired using an ESI-FTICR instrument. This

dataset contained 6 different samples for a combined total of 46297 spectra. 218,

223, 255, 244, 214 and 218 high confidence protein identifications were previously

reported in each of the samples [35]. The simulation constructs 2 datasets, the

positive set which contains spectra spanning a fusion point, and a negative set

which contains spectra not spanning a fusion point.

First we used InsPect to search2 the spectra using the Human IPI Protein

Database version 3.34. We construct the positive set from spectra that have a

high score. For this experiment, we randomly select 50 spectra that have a Match

Quality Score (MQScore [3]) greater than 3.5 and a molecular weight greater than

2000 Daltons for the positive set. The justification for the molecular weight filter-

ing is to allow significant coverage of the prefix and suffix of the fusion spectra. To

simulate a fusion event, we remove the proteins that contain the peptide sequences

of the spectra in the positive set from the database. We break the proteins at

a position covered by each spectrum as illustrated in Figure 2.2. The newly con-

structed proteins are inserted back into the database. We note that all the peptides

identified by the spectra in the positive set are unique and nonoverlapping. The

negative set contains 1000 spectra randomly selected from the HUPO PPP dataset

that have a molecular weight greater than 2000 Daltons and MQScore no greater

than 3.5. The MQScore filtering is applied to discard those spectra that can be

readily identified by a regular database search.

The spectra of the positive and negative set were searched against the mod-

ified database which is virtually of same size as the original Human IPI Database

(over 67,000 entries). The results for the simulation in which the breakpoint is

2Search parameters: Tryptic sample, precursor mass tolerance of 0.1 Daltons and no modifi-
cations allowed.
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simulated to be located in the middle of the peptide (the length of the prefix and

suffix are the same) are shown in Figure 2.3.

Additionally, fusion events that are not located in the middle of the peptide

were simulated for the positive set. Table 2.1 shows the performance of the fusion

peptide algorithm for different positions of the fusion point.

Table 2.1: Results of the simulation experiment for the FPIP. The Breakpoint
Offset is defined as the distance from the breakpoint to the midpoint of the
peptide. A Breakpoint Offset of 0 indicates the fusion event occurring in the

middle of the peptide. The average length of the peptides in the simulations is 20
amino acids.

Breakpoint Offset Correct Count Incorrect Count
0 46 4
1 41 9
2 40 10
3 21 29
4 12 38
5 3 47

A single spectrum can be searched against a database with over 28 million

amino acids in less than 10 seconds using a modern desktop computer3. We note

that the brute force approach of constructing a database with all possible fusion

events will result in a database in the trillion-amino-acid scale. No database search

algorithm today can handle a database of this size.

2.3.2 Splice Site Detection

The described approach for identification of fusion peptides can be adapted

for identification of splicing events. We argue that a peptide covering exon junc-

tions can be viewed as a fusion peptide pi . . . pi+kpj . . . pj+l, where the prefix pi . . . pi+k

and the suffix pj . . . pj+l come from “close” locations in the six-frame translation

of the genome. Although a search against a six-frame translation of the human

genome is still not feasible, a search against a six-frame translation of genomic

regions of expressed genes can be done.

3Apple Power Mac G5 2.5 Ghz with 4GB of RAM
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Below we demonstrate that splice sites can be detected given that we have

mass spectra bridging two consecutive exons. For simplicity, we only consider splice

sites that do not break codons, i.e., starts/ends of exons correspond to starts/ends

of codons. A splicing event can be modeled as a deletion of an intron in the

database. A spectrum covering a splice site will be explained by a prefix and suffix

peptide coming from a three-frame (we know the direction of the gene) translation

database (Figure 2.4). The FPIP algorithm was modified so that only “jumps”

from different frames or within the same frame of the same protein are allowed.

The same spectra from the previous experiment were used for this experi-

ment. The database was constructed by a three-frame translation of 49 genes (ex-

ons and introns). The 49 genes were selected because an initial search4 returned

at least two high confidence5 unique peptides from the protein. The resulting

database contained over 29 million amino acids. All spectra from the HUPO PPP

were searched against this database and the results are shown in Table 2.2.

2.4 Discussion

While this paper represents the first algorithmic analysis of the fusion pep-

tide identification problem, it falls short of analyzing real tumor samples. This is

a reflection of the fact that MS/MS-based studies of fusion proteins started very

recently and the spectra resulting from these studies are not publicly available [24].

The current method requires high accuracy data because the optimization

routine is very sensitive to parent mass errors. It also requires long peptides that

cover a fusion point. We hope that these shortcomings of the algorithm could be

overcome by the constant improvement of mass spectrometry instruments. We also

note that our simulation used tryptic samples. However, to increase the probability

of recovering a peptide that expands a fusion event with a reasonable prefix and

suffix, multiple proteases may be used for the sample digestion.

One issue that the current implementation of the algorithm does not address

4Search parameters: Tryptic sample, precursor mass tolerance of 0.1 Daltons and no modifi-
cations allowed

5Filtering criteria: MQScore better than 2.5
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Table 2.2: Peptides identified to cover a splice site. The database contained
three-frame translations of the genomic regions (exons and introns) of 49 genes.
The filtering criteria used for these results are: MQScore ≥ 3.5, Precursor Mass
≥ 2000 Da and both prefix and suffix must be at least of length 6. We found a

total of 19 spectra satisfying these conditions. One spectrum returned the
incorrect identification. All results were validated using a regular database search

using the real proteins as opposed to the three frame translations of their
genomic regions. The count column represents the number of spectra for the

given peptide. Protein names with an asterisk (*) next to their name represent
proteins in the reverse frame.

Protein Count
Peptide Prefix Peptide Suffix

Prefix Coordinates Suffix Coordinates

IPI00478003* 3
LHTEAQIQEEGT VVELTGR

chr12:9150355-9150390 chr12:9150189-9150209

IPI00017601* 1
LISVDT EHSNIYLQNGPDR

chr3:150422123-150422140 chr3:150413136-150413174

IPI00017601* 1
GPEEEHLGILG PVIWAEVGDTIR

chr3:150402577-150402609 chr3:150400304-150400339

IPI00022463 3
EDLIWELLNQA QEHFGK

chr3:134958508-134958540 chr3:134959300-134959317

IPI00022463 2
SMGGKEDLIWELLNQA QEHFGK
chr3:134958493-134958540 chr3:134959300-134959317

IPI00029863 2
WFLLEQPEIQ VAHFPFK

chr17:1598755-1598784 chr17:1602630-1602650

IPI00022432 4
ALGISPFHEHAE VVFTANDSGPR

chr18:27429181-27429216 chr18:27432529-27432561

IPI00022434 2
NYAEAKDVFLGM FLYEYAR

chr4:74498181-74498216 chr4:74499617-74499637
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is the event in which the fusion or splicing event breaks a codon. This shortcoming

can be solved once the algorithm has access to the genomic data. This implementa-

tion of the algorithm does not take genomic sequences as an input. The algorithm

can be easily generalized to handle these cases.

Rather than a stand-alone approach to detect fusion events, we believe that

this algorithm will be useful in complementing genomic approaches for fusion gene

detection. For fusion events that are covered by a peptide, the fusion peptide

algorithm can resolve the fusion point within amino-acid resolution.
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21

A BMQScore MQScore

Fr
eq

ue
nc

y 
C

ou
nt

Fr
eq

ue
nc

y 
C

ou
nt

Incorrect Positive Set
Negative Set

Correct Positive Set Positive Set
Negative Set
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Figure 2.4: Schematic representation of the classical database search problem
(A) and our fusion peptide search algorithm applied to splice site detection (B).
A splicing event can be modeled as a jump (red arrow) from different translation
frames. We only illustrate one scenario in (B), but it is also possible to have a
jump in the same frame if the donor and acceptor sites are in the same frame.



Chapter 3

Block Pattern Matching Problem

Matching a mass spectrum against a text (a key computational task in

proteomics) is slow since the existing text indexing algorithms (with search time

independent of the text size) are not applicable in the domain of mass spectrome-

try. As a result, many important applications (e.g., searches for mutated peptides)

are prohibitively time-consuming and even the standard search for non-mutated

peptides is becoming too slow with recent advances in high-throughput genomics

and proteomics technologies. We introduce a new paradigm – the Blocked Pattern

Matching (BPM) - that models peptide identification. BPM corresponds to match-

ing a pattern against a text (over the alphabet of integers) under the assumption

that each symbol a in the pattern can match a block of consecutive symbols in the

text with total sum a. BPM opens a still unexplored direction in combinatorial

pattern matching and leads to the Mutated and Modified BPM (modeling iden-

tification of mutated and modified peptides). We illustrate how BPM algorithms

solve problems that are beyond the reach of existing proteomics tools.

3.1 Introduction

Matching a tandem mass spectrum (MS/MS) to a database is slow as com-

pared to matching a pattern to a database. The fundamental algorithmic advantage

of the latter approach is that one can index the database (e.g., by constructing its

suffix tree [36]) so that the complexity of the subsequent queries is not depen-

23
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dent on the database size. Since efficient indexing algorithms remain unknown in

proteomics1, many important applications, for example, database searches for mu-

tated peptides, remain extremely time-consuming. Moreover, even the standard

applications, such as search for non-modified peptides, are becoming prohibitively

slow with recent advances in genomics and proteomics. On one hand, the total

size of sequenced bacterial proteomes (most of them are derived from genomes

assembled using next generation DNA sequencing technologies) already amounts

to billions of amino acids. On the other hand, Ion Mobility Separation (next gen-

eration proteomics technology) promises to increase the rate of spectra acquisition

by two orders of magnitude.

Tandem mass spectrometry analyzes peptides (short 8-30 amino acid long

fragments of proteins) by generating their spectra. The still unsolved problem

in computational proteomics is to reconstruct a peptide from its spectrum: even

the advanced de novo peptide sequencing tools correctly reconstruct only 30 -

45% of the full-length peptides identified in MS/MS database searches [38, 39].

After two decades of algorithmic developments, it seems that de novo peptide

sequencing “hits a wall” and that accurate full-length peptide reconstruction is

nearly impossible due to the limited information content of spectra.

Recently, with the introduction of MS-GappedDictionary, Jeong et al.,

2010 [8] advocated the use of gapped peptides to overcome the limitations of full-

length de novo sequencing. Given a string of n integers a1, a2, . . . , an (a peptide)

and k integers 1 ≤ i1 < ... < ik < n, a gapped peptide is a string of (k+ 1) integers

a1 + . . . + ai1 , ai1+1 + . . . + ai2 , . . . , aik+1 + . . . + an. For example, if a peptide

LNRVSQGK is represented as a sequence of its rounded amino acid masses 113,

114, 156, 99, 87, 128, 57, 128 then 113+114, 156+99+87, 128+57, 128 represents

a gapped peptide 227, 342, 185, 128. MS-GappedDictionary is a database filtra-

tion approach based on gapped peptides that are both long and accurate. Gapped

peptides have higher accuracy and orders of magnitude higher filtering efficiency

1By efficient indexing we mean indexing that typically reduces spectral matching to a single
look-up in the indexed database rather than a large number of look-ups. While there is no
shortage of useful indexing approaches in proteomics (e.g., fast parent mass indexing like in [37]
or peptide sequence tags indexing like in [3]), such approaches may result in a large number of
look-ups.
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than traditional peptide sequence tags.2 In contrast to a short peptide sequence

tag, a gapped peptide typically has a single match in a proteome, reducing pep-

tide identification to a single database look-up. MS-GappedDictionary generates

25-50 gapped peptides per spectrum (Pocket Dictionary) and guarantees that one

of them is correct with high probability.

MS-GappedDictionary has a potential to be much faster than traditional

proteomics tools because it matches patterns rather than spectra against a protein

database, but algorithms to efficiently match such patterns to a database remain

unknown. Therefore, this paper addresses the last missing piece in the series of

recent developments aimed at the next generation of peptide identification algo-

rithms [41, 10, 9, 8], an efficient algorithm for matching gapped peptides against

a proteome.

Algorithms for matching gapped peptides to a database are unknown be-

cause the pattern and the database are encoded in different alphabets displacing

the problem outside of the realm of traditional pattern matching. Below we present

a fast algorithm for matching gapped peptides against large databases. We demon-

strate that with this algorithm, MS-GappedDictionary becomes the fastest protein

identification tool, while retaining the accuracy of traditional database search tools.

The resulting peptide identification tool is so fast that its running time is domi-

nated by spectral preprocessing rather than scanning the database.3 In practice, it

results in a peptide identification tool that is significantly faster than the state-of-

the-art proteomics tools (two orders of magnitude speed-up over Sequest [1] and

almost one order of magnitude speed-up over InsPecT [3] in scanning the protein

database).

Finally, given the speed advantage of our method, we can now explore

other important applications (e.g., searches for mutated peptides and peptides with

unanticipated modifications) which were prohibitively time consuming in the past.

2While peptide sequence tags are used in many proteomics tools [3, 40], the algorithms for
generating long sequence tags remain inaccurate. As a result, applications of peptide sequence
tags are typically limited to 3 amino acid long tags.

3The running time of the existing proteomics algorithms [1, 3] can be partitioned into spectral
preprocessing time (approximated as α ·#Spectra) and database scanning time (approximated
as β ·#Spectra ·ProteomeSize). For most MS/MS database search tools, the preprocessing time
represents a fraction of scanning time.
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Particularly, we describe a mutation-tolerant and modification-tolerant (rather

than exact) matching of gapped peptides against a database, e.g., detecting mu-

tated and modified peptides. The currently known methods for mutation-tolerant

spectral interpretation [32, 42, 43] are slow since they match each spectrum against

each peptide in the database. We demonstrate that spectra arising from mutated

and modified peptides can be quickly matched to the proteome, providing orders

of magnitude speed-up over MS-Alignment [32].

We describe one of many possible applications of the Blocked Pattern

Matching (BPM) paradigm when formulated to search for mutations. While tradi-

tional MS/MS searches assume that a proteome is known, proteogenomics searches

use spectra to correct the proteome annotations [44, 45, 46, 43]. The previous pro-

teogenomics approaches searched spectra against the 6-frame translation of the

genome in the standard genetic code. However, many species use non-standard

genetic code [47, 48] that is difficult to establish for a newly sequenced species.

In particular, in addition to the standard ATG start codon, GTG and TTG also

code for initial methionine (rather than for valine and leucine as in the standard

genetic code) in many bacterial genomes. The frequency of non-standard start

codons varies widely: in E. Coli, GTG and TTG account for 14% and 3% of start

codons (not to mention extremely rare ATG and CTG start codons), while in A.

pernix GTG and TTG are more common than ATG [49]. After a new bacterium

is sequenced, the propensities of its starts codons are unknown making accurate

gene predictions problematic [50]. Non-standard start codons GTG and TTG (or

whatever other) can be discovered by finding mutated peptides in the six-frame

translation of a bacterial genome (GTG and TTG correspond to valine and leucine

mutated to methionine in the first peptide position). We illustrate applications of

this approach to gene annotations in Anthrobacter sp.
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3.2 Methods

3.2.1 Blocked Pattern Matching Problem

Let T = t1, t2, ..., tn be a text over a finite alphabet Σ ⊂ N and P =

p1, p2, ..., pm be a pattern over alphabet N of all natural numbers. Let S =

ti, ti+1, ..., tj be a substring of T . We define S =
∑j

`=i t` as the mass of substring

S.

Substrings ti, ..., tj and tj+1, ..., tk are called consecutive. A block in T is

a sequence of consecutive substrings. The mass of a block B (denoted B) is a

string comprised of the masses of the consecutive substrings of B. Formally, if

B = S1 · · ·Sk then B = S1, ..., Sk. We say that a pattern P matches a text T if

there is a block B in T with B = P .

Example: Let T = 114, 77, 57, 112, 113, 186, 57, 99, 112, 112, 186, 113, 99

be a text over an alphabet of 18 symbols that represents masses of 20 amino

acids rounded to integers. The consecutive substrings (57, 112, 113), (186, 57), and

(99, 112, 112) define a block B in T with B = 282, 243, 323. Thus, a pattern 282,

243, 323 matches the text T . Below we formulate the Blocked Pattern Matching

Problem:

Blocked Pattern Matching (BPM) Problem

Input: A length-n text T and a length-m pattern P .

Output: All blocks B in the text T such that B = P .

Modern mass spectrometers are capable of producing a million spectra per

day and each spectrum corresponds to 25-80 gapped peptides in its Pocket Dictio-

nary [8]. We therefore are interested in matching multiple patterns to the database,

and the problem can be formulated as follows:

Multiple Blocked Pattern Matching (MBPM) Problem.

Input. A length-n text T and a set P of patterns.

Output. All blocks B in the text T such that B = P , for some P ∈ P .

The following section presents a step-by-step reduction from a brute force

algorithm for the MBPM problem to a more efficient implementation (with search

time independent of the text length) that works for relatively short texts T ’s (a few
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million amino acids). The limiting factor for the algorithm that prevents its scaling

to longer texts is the exponentially growing memory. To address this bottleneck, we

present a practical algorithm that scales to larger proteomes (memory requirements

independent of T ) at the expense of slower search time.

3.2.2 MBPM algorithms

Brute force MBPM algorithm. Since MS/MS searches typically iden-

tify peptides shorter than 30 amino acids, one can limit attention to k-mers in the

proteome with k ≤ 30. From the perspective of the BPM problem, we are only

interested in patterns that match no more than k symbols in the text. There exist

2k−1 ways to break a k-mer into its substrings b1, . . . , bn resulting in 2k−1 possible

partitions b1, . . . , bn of each k-mer. For example, there exist 8 partitions arising

from the 4-mer (114, 77, 99, 57): (114, 77, 99, 57), (114+77, 99, 57), (114, 77+99,

57), (114, 77, 99+57), (114+77,99+57) (114+77+99, 57), (114, 77+99+57), and

(114+77+99+57).

Given a set of strings T , we define KeywordTree(T ) as the keyword tree

of these strings [36] (See Figure 3.8A for an example of a keyword tree). One

can generate all 2k−1 partitions for each k-mer in a text T , construct the keyword

tree of these partitions, and match each pattern against the constructed keyword

tree. This brute force approach can solve the MBPM problem for small proteomes

in time independent of the size of the proteome. However, the approach quickly

becomes impractical with larger proteomes because the number of partitions of the

patterns is large.

Below we describe various improvements over the brute force MBPM algo-

rithm.

MBPM Algorithm: i-unique patterns. In practice, gaps in the gapped

peptides have limited sizes, moreover the maximal gap size is a parameter of MS-

GappedDictionary [8]. We define a d-bounded pattern as a pattern in the alphabet

of integers less than or equal to d. While the number of d-bounded partitions that

can be generated from a k-mer is large, below we describe a BPM algorithm that

does not require generation of all d-bounded partitions of all k-mers in the text.
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Given a position i in a d-bounded pattern P = p1, . . . , pi−1, pi, pi+1, . . . , pn

and a parameter 1 ≤ δ ≤ n−i+1, (i, δ)-extension of P is a pattern p1, . . . , pi−1, pi+

pi+1 + . . . + pi+δ−1, pi+δ, . . . , pn obtained from P by substituting δ symbols in P

(starting from the i-th symbol) by their sum. Given a d-bounded pattern P , we

define its extension P (i, d) as the set of all (i, δ)-extensions of P that result in d-

bounded patterns. For example, for a pattern P = (114, 77, 99, 55, 112), P (2, 300)

consists of patterns (114, 77, 99, 55, 112), (114, 176, 55, 112) and (114, 231, 112).

A pattern P in the set of patterns T is called i-unique if no other pattern in

T has the same prefix of length i (i-prefix) as P . We now describe a more memory

efficient BPM (and MBPM) algorithm (Fig. 3.1). Let T0 be the set of all k-mers

in text T , where each k-mer appears only once. We iteratively construct the set Ti
from the set Ti−1 by considering all non-i-unique patterns in Ti−1 and substituting

each such pattern P by the set of patterns P (i, d). Ti is the resulting set of patterns

with duplicates removed (i.e., each pattern appears only once). The MBPM algorithm

iteratively generates the sets T1, . . . , Ti = T (T, d) and stops when all patterns

in the set Ti become i-unique. We further construct KeywordTree(T (T, d)) and

classify each vertex in this tree as unique or non-unique according to the following

rule: Let q1, . . . , qi be a pattern spelled by the path from the root to the vertex

v in KeywordTree(T (T, d)). The vertex v is unique if the algorithm MBPM(T,P , d)

classified q1, . . . , qi as a prefix of an i-unique pattern at some iteration, and non-

unique otherwise.

To solve the MBPM Problem, we match each pattern p1, . . . , pn against the

constructed keyword tree. In standard searches with the keyword trees, a pattern

p1, . . . , pn matches a tree if there exists a path in the tree that spells p1, . . . , pn,

otherwise the pattern does not match the tree [36]. In contrast, for our application

(with special processing of i-unique patterns), failure to find a path that spells

p1, . . . , pn does not necessarily implies that the pattern p1, . . . , pn does not match

the tree (see PartitionMatch function described in Fig. 3.1).

The above algorithm works well for random texts, but deteriorates for texts

that have k-mers with long common prefixes (common for real proteomes) because

they become i-unique for large i’s resulting in a large number of extensions. The
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MBPM(T,P , d)

1: T ← set of all k-mers in T

2: i← 1

3: while there exist non-i-unique patterns in T do

4: remove duplicates from T
5: for all non-i-unique pattern P ∈ T do

6: substitute P by P (i, d) in T
7: end for

8: i← i+ 1

9: end while

10: construct KeywordTree(T )

11: for all pattern P ∈ P do

12: PartitionMatch(P,KeywordTree(T ))

13: end for

Figure 3.1: MBPM algorithm for matching a set of d-bounded patterns P against
the text T (k is an external variable). For the sake of simplicity, the pseudocode
hides many details and differences from the actual implementation described in
this section. The PartitionMatch function works as follows: Let p1, . . . , pi−1 be
the longest prefix of p1, . . . , pn that matches the tree and let v be the last vertex
of the path labeled by p1, . . . , pi−1 in the tree (i.e., no outgoing edge from v is
labeled by pi). If v is a non-unique vertex, we declare that the pattern p1, . . . , pn
does not match the the text. Otherwise, we attempt to match the suffix pi, . . . , pn
against the path in the keyword tree that start at vertex v. Such matching simply
amounts to checking whether the pattern pi, . . . , pn represents a partition of the
string spelled by this path. If it is the case, the pattern p1, . . . , pn matches the
tree, otherwise there is no match.
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next section relaxes the concept of i-uniqueness.

MBPM Algorithm: (i, w)-unique patterns. A pattern P in the set of

patterns P is called (i, w)-unique if there are w or less patterns in P with the same i-

prefix as P . The notion of (i, w)-unique patterns generalizes the notion of i-unique

patterns (i-unique patterns are (i, 1)-unique). We now describe construction of

KeywordTree(T (T, d, w)) that requires less memory than KeywordTree(T (T, d)).

The only difference in constructing KeywordTree(T (T, d, w)) is that it substitutes

the notion of i-unique patterns by the notion of (i, w)-unique patterns in the pseu-

docode of the MBPM algorithm (Fig. 3.1, line 5).

The algorithm iteratively generates the sets T1, . . . , Ti = T (T, d, w) un-

til all patterns in the set Ti become (i, w)-unique. We further construct

KeywordTree(T (T, d, w)) and classify each vertex in this tree as unique or non-

unique. Let q1, . . . , qn be a pattern spelled by the path from the root to the vertex

v in the keyword tree. The vertex v is unique if the MBPM algorithm classified

q1, . . . , qn as an (i, w)-unique pattern at some iteration, and non-unique otherwise.

PartitionMatch works on the KeywordTree(T (T, d, w)) structure with a single

change. The only difference is when a unique vertex is encountered, we will have

to follow up to w outgoing paths (rather than a single path) and check whether each

of these paths represents a partition of the rest of the unmatched query pattern.

We trade off running time for memory in this case.

Figure 3.2 shows the size of T (T, d, w) for various values of w and illustrates

that (i, w)-unique patterns lead to a reasonable memory-speed trade-off. In addi-

tion, Figure 3.2A illustrates that for a “random” proteome T with 100,000 amino

acids, it takes only 4 iterations to stabilize T (T, 500) at ≈ 5 million patterns. The

memory requirements increase for real proteomes that typically contain repeats.

For example, if a proteome contains two k-mers differing only in the last amino

acid, there may be as many as 2k−2 patterns generated from these k-mers in the

course of the MBPM algorithm with i-unique patterns. As a result, T (T, 500) for

the first 100,000 amino acids of the Shewanella oneidensis proteome has over 10

million patterns, a significant increase over a “random” proteome. This increase in

total number of sequences for the Shewanella proteome as compared to a random
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text is due to the fact that the number of k-mers with the same i-prefix in real

proteomes is large as compared to a “random” proteome (due to proliferation of

repeated segments). This problem can be remedied by using the MBPM on (i, w)-

unique patterns with larger w (Fig. 3.2B) leading to a practical solution for the

entire Shewanella proteome.

Implementing the KeywordTree(T (T, d)). We describe an algorithm to

construct a data structure equivalent to KeywordTree(T (T, d)), without explicitly

building the set of patterns T (T, d). In terms of efficiency, bypassing the set of

patterns construction can save computational resources. Furthermore, the concept

of i-uniqueness does not need to be explicitly defined when this method is used.

The main idea of this algorithm is that first, the keyword tree of all k-mers in T

is built and then extensions are done on the nodes of the tree, selectively.

First, we define operations on nodes of the tree so that the final algorithm

can be compactly described later on this section. Given a keyword tree of a set

of patterns (all k-mers in T ), every edge in tree represents a character pi (in the

integer amino acid alphabet) of a pattern P (see Figure 3.6). Some edges might

represent a character from multiple patterns, given that their preceding characters

(prefixes) are the same.

We define path(ni, nj) to be an integer number as follows: if nj is a child

node of ni, then this is the edge that connect these nodes. if nj is a descendant

node of ni, then this is the sum of the labels of the edges connecting these nodes.

Otherwise, this number is undefined.

Given a node n, n(d) is the set of child nodes, N such that path(n, ni) ≤ d

for each ni in N .

We define MERGE(n1, ..., nk) as an operation that can be applied to a set on

nodes, and that returns a new node with equivalent edges as the outgoing edges

of the initial set of merged nodes. The pseudocode for this function is described

in Figure 3.3. The main problem when merging multiple nodes is the collision of

multiple outgoing edges with the same labels (coming from distinct input nodes).

To resolve this problem, we can recursively merge the sink nodes of the colliding

edges.
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Figure 3.2: Number of distinct patterns generated by the MBPM algorithm for
various parameters and texts. The y-axis represents the number of patterns (in
millions) in the set Ti generated after the i-th iteration of theMBPM algorithm (x-
axis represents the iteration number i). A) Size of Ti for i = 0...14 with k = 15 and
varying parameter w for the first 100,000 amino acids of the Shewanella oneidensis
proteome compared to the size of set Ti for a random sequence of 100,000 amino
acids with w = 1. The complete proteome of Shewanella oneidensis was not used
because the number of sequences were too large to fit in memory for w = 1. B)
Size of Ti for i = 0...14 with k = 15 and varying w’s for the complete Shewanella
oneidensis proteome (1.3 millions amino acids).
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MERGE(n1, ..., nk)

1: E ← ∅
2: for ni ∈ n1, ..., nk do

3: E ←all outgoing edges from ni

4: end for

5: F ← ∅
6: for Ed ∈ E such that Ed is the set of edges with the label d do

7: if |Ed| = 1 then

8: F ← Ed

9: else

10: N ← ∅
11: for e ∈ Ed do

12: N ← sink(e)

13: end for

14: F ← edge(d, MERGE(N))

15: end if

16: end for

17: return node(F )

Figure 3.3: MERGE algorithm for a set of nodes. The function sink(e) returns the
sink node of the given edge e. edge(d, n) creates a new edge with label d and with
sink node n. node(E) creates a new node with the set E as the outgoing edges.
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While the MERGE function operates on a set of nodes, we need to describe the

basic extension algorithm on a given node in the tree. EXTEND is the counterpart

of the extension algorithm for a pattern P (described previously), resulting in

d-bounded patterns. In this case, EXTEND extends all patterns passing through

node n at that position. It is clear that if all nodes of the KeywordTree(P) are

extended, all patterns in P will also be extended. The only trick to complete

algorithm is to state the oder in which the nodes should be traversed. Because the

EXTEND method creates new nodes and edges on the tree, we have to be careful

not to process descendent nodes before the parent node is extended. In order to

guarantee this condition, we keep a priority queue giving higher priority to nodes

that are closer to the root node. The distance measurement can be simply the

label of the path of the current node to the root as defined by the path method.

The complete algorithm for building a the data structure is described in Figure

3.5. An example, of the transformation algorithm is detailed in Figure 3.6. The

last implementation detail is that the resulting data structure can be compressed

(analog of a compressed suffix tree [36]) by starting with a compressed keyword

tree of the set of patterns, and thus applying EXTEND only to nodes with more

than 1 outgoing edge. Essentially, when the EXTEND method is applied to nodes

with more than 1 outgoing edge, this is the equivalent of extending non-i-unique

patterns. The equivalent optimization for (i, w)-unique patterns is that we EXTEND

only on nodes with at least w out degree. The matching algorithm will need to be

updated accordingly and it is not described here because it is trivial.

Matching the keyword tree of patterns against the text. While

T (T, d, w) fits into memory for a bacterial proteome, it is infeasible to store this

data structure in memory for longer proteomes (e.g., the human six-frame transla-

tion). Below we describe a practical solution that scales to proteomes of any size.

In the extreme case of trading memory for speed, one can construct the keyword

tree of all patterns from the set P rather than pre-process all k-mers from the text

T while solving the MBPM Problem (this amortizes the time for scanning the text).

Afterwards, one can match all k-mers from the text against KeywordTree(P).

Given a set of patterns P , we define Pi as the set of all i-prefixes (pre-
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EXTEND(n, d)

1: E ← ∅
2: for ni ∈ n(d) do

3: E ← path(n, ni)

4: end for

5: F ← ∅
6: for Ed ∈ E such that Ed is the set of edges with the label d do

7: if |Ed| = 1 then

8: F ← Ed

9: else

10: N ← ∅
11: for e ∈ Ed do

12: N ← sink(e)

13: end for

14: F ← edge(d, MERGE(N))

15: end if

16: end for

17: replace all outgoing edges of n with F

Figure 3.4: EXTEND algorithm for a set of nodes. The function sink(e) returns the
sink node of the given edge e. The MERGE function is detailed in Figure 3.3.
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TRANSFORM(P , d)

1: construct KeywordTree(P)

2: add root(KeywordTree(P)) to N

3: while N is not empty do

4: remove n from N such that path(root(KeywordTree(P)), n) is minimal

5: n′ ← EXTEND(n, d)

6: for e ∈ edges(n′) do

7: add sink(e) to N

8: end for

9: end while

Figure 3.5: TRANSFORM algorithm to construct a data structure encoding for all
the extended patterns of P . The function edges(n) constructs the set of outgoing
edges from node n. The function sink(e) returns the sink node of the given edge
e. The EXTEND function is detailed in Figure 3.4. The set of patterns P is actually
all k-mers in T .

fixes of length i) of patterns from P . A pattern P (that does not necessar-

ily belongs to P) is called (i,P)-compliant if the i-prefix of P belongs to Pi.
Given a d-bounded pattern P , we define its extension P (i, d,P) as the set of all

(i, δ)-extensions of P that result in d-bounded and (i,P)-compliant patterns. For

example, for a pattern P = (114, 77, 99, 55, 112) and a set P consisting of three

patterns (114, 77, 131, 112), (114, 55, 112) and (114, 231, 112, 242, 131), P (2, 300)

consists of patterns (114, 77, 99, 55, 112), (114, 176, 55, 112) and (114, 231, 112).

P (2, 300,P) consists of only (114, 77, 99, 55, 112) and (114, 231, 112) because the

pattern (114, 176, 55, 112) is not (i,P)-compliant for i = 2.

A more memory efficient way to build the set of patterns T in Figure 3.1

can be achieved by changing line 6: “substitute P by P (i, d) in T ” into a line

“substitute P by P (i, d,P) in T ”. We call the final set of patterns T (T, d,P).

In practice, |P (i, d,P)| � |P (i, d)|, and therefore the KeywordTree(T (T, d,P)) is

much smaller than KeywordTree(T (T, d)). However, all patterns T (T, d,P) may

still not fit into memory when both the text T is very large. In this case, we can

break T into shorter segments (so that the data structure for each segment fits
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A
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Figure 3.6: Construction of keyword tree of all suffixes of T = MEPEP (suffix
trie). A) Suffix trie for T . There are 5 suffixes in the trie ending with nodes
with double circles. The labels of the edges are represented as integer masses. B)
Addition of edges (dashed) to the trie in order to represent all gap masses of 2
adjacent amino acids. C) Resolving of conflicting edge PE and EP with the same
mass outgoing from the root resulting in a new (shaded) node. The changes are
propagated to make the trie consistent.
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MBPMopt(T,P , d)

1: for l = 1 . . . |T | do

2: T ← k-mer at Tl

3: i← 1

4: while T is not empty do

5: for all P ∈ T do

6: substitute P by P (i, d,P) in T
7: if i-prefix of P matches Q ∈ P then

8: pattern Q matches text T

9: end if

10: end for

11: i← i+ 1

12: end while

13: end for

Figure 3.7: Memory efficient implementation of the MBPM algorithm for match-
ing a set of d-bounded patterns P against the text T by partitioning T into indi-
vidual k-mers.

into memory) and solve the MBPM Problem separately for each segment.

In the extreme case, we consider each k-mer Ti = ti, ti+1 . . . , ti+k−1 sepa-

rately and construct T (Ti, d,P) (for 1 ≤ i ≤ n − k + 1) resulting in a memory

efficient albeit slower algorithm. The trade-off of this extreme implementation is

that we lose the i-uniqueness optimization because all patterns resulting from ex-

tensions of a single k-mer are i-unique. However, as it turns out, the speed and

simplicity of this implementation work well in practice.

The pseudocode of the algorithm (MBPMopt) is summarized in Figure 3.7.

The pseudocode is written such that it resembles Figure 3.1, but at the implemen-

tation level many optimizations can be applied and some of the input parameters

can be relaxed (see below). Figure 3.8 illustrates the work of the algorithm run

for a single k-mer in T .

Optimizations to the MBPMopt Algorithm. First, keywordTree(T ) does

not need to be explicitly built in order to match a k-mer to a pattern in P . As
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Figure 3.8: Matching a keyword tree of patterns (KeywordTree(P)) against
a k-mer from text T . A) KeywordTree(P) built for a set P of 5 pat-
terns: [129, 147, 97], [129, 147, 113], [204, 128, 226], [260, 97, 226] and
[260, 128, 103]. B) A text T containing k-mer EMPIL ([129, 131, 97, 113,
113]). C) Construction of KeywordTree(T (EMPIL, 300)). D) Intersection of
KeywordTree(T (EMPIL, 300,P)) and KeywordTree(P) shown in bold. The com-
plete KeywordTree(P) is also shown on the background.
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a consequence, PartitionMatching does not need to be invoked in the algorithm

because as soon as we find i-prefix matching a pattern Q ∈ P , we know that

pattern Q matches a prefix of the current k-mer. Additionally, k does not need

to be fixed because it can be dynamically adjusted depending on the value of i

when all patterns in T are non-(i,P)-compliant. Similarly, d does not need to

be fixed because we can substitute P by P (i, d,P) for any value of d without

significant increase in the size of the set of resulting patterns. The result is that

the construction of T is always guided by P .

3.2.3 Mutation-Tolerant Peptide Identification

This section describes an algorithm for mutation-tolerant matching gapped

peptides to a database. Let Ti(a) be a text obtained from a text T = t1, . . . tn by

substituting a symbol a instead of the i-th symbol of T (for 1 ≤ i ≤ n and a ∈ Σ

where Σ is the set of amino acid masses). For example, if T = 57, 112, 113, 113, 186,

T3(99) = 57, 112, 99, 113, 186. To accommodate for insertions and deletions, we

denote Ti(∅) as the deletion of the i-th symbol of T and Ti(a
+) as the insertion

of a symbol a before the i-th symbol of T . For example, T3(∅) = 57, 112, 113, 186

and T3(128+) = 57, 112, 128, 113, 113, 186. A mutated block in the text T is a block

in Ti(a) (for some i and a). For example, substrings (112,128) and (113,113,186)

form a mutated block (240,412) in the text T = 57, 112, 113, 113, 186 because they

form a block in T3(128+). We are interested in solving the following problem:

Mutated Multiple Blocked Pattern Matching (MutMBPM) Prob-

lem

Input. A text T over Σ and a set P of patterns.

Output. All mutated blocks B in the text T such that B = P , for some

P ∈ P .

While the MutMBPM Problem is limited to peptide identified with a single

mutations, this is a reasonable limitation in practice. Indeed, Single Amino Acid

Polymorphisms (SAAPs) are rarely clustered in the same region of proteins im-

plying that the identified peptides (that are typically shorter than 30 amino acids)

are unlikely to have more than one mutation. Also, the false discovery rate in
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searches for peptides with two or more mutations becomes very high due to the

Bonferroni correction to account for a huge size of the resulting (virtual) database

that includes all mutated peptides [51].

To solve the MutMBPM problem, we will modify the pseudocode of MBPMopt

in Figure 3.7. Given a pattern P = p1, . . . , pn, we define its (i, δ, j, a)-extension

as pattern p1, . . . , pi−1, pi + . . .+ pj−1 + a+ pj+1 + . . .+ pi+δ−1, pi+δ, . . . , pn, where

1 ≤ δ ≤ n − i + 1, i ≤ j < i + δ, a ∈ Σ and a 6= pj. We define P (i, d,P)+ of

P as the set of d-bounded patterns resulting from all (i, δ, j, a)-extension’s for all

i ≤ j < i + δ, and all a ∈ Σ such that a 6= pj. Additionally, each pattern P ′

in the set P (i, d,P)+ must be (i,P)-compliant.4 To accommodate for insertions,

we relax the definition of a to pj + b, where b ∈ Σ, and for deletions a can be 0.

Although this definition is not included in the previous description of P (i, d,P)+,

it can be easily adapted. With these definitions in place, Figure 3.9 describes the

pseudocode for the algorithm MBPMmut that solves the MutMBPM problem.

When the algorithm described in Figure 3.9 is implemented, T can be very

large when i is very small (same size as P when i = 1). This can be a performance

bottleneck in practice because T needs to be created for each k-mer. Therefore,

we only substitute P by P (i, d,P)+ when i reaches a threshold. In practice, the

threshold is set to be 3 because gapped peptides have a minimum size of 6. This

significantly reduces the size of T when the algorithm is run, but no matches with

mutations in the first half of the patterns are retrieved. To solve this problem, we

perform the search at a second pass, but in the reverse order. We evaluate the

patterns in P in reverse, matching the last item in the patterns first. In Figure 3.9,

the code can be easily adapted if all the references to prefixes are substituted by

suffixes and T is reversed. The result is that the first pass will retrieve matches with

no mutations in the first half of the patterns and the second pass will complement

the first pass with matches with no mutations in the second half of the pattern.

4Although the set of all (i, δ, j, a)-extension’s could be potentially large because we have to
try all possible values of a, the actual number of valid values of a resulting in a nonempty set of
patterns that are (i,P)-compliant is much smaller. The implementation optimizes the algorithm
so that all values of a are not evaluated.



43

MBPMmut(T,P , d)

1: for l = 1 . . . |T | do

2: T ← k-mer at Tl

3: i← 1

4: while T is not empty do

5: for all P ∈ T do

6: if i-prefix of P forms a block starting at Tl then

7: substitute P by P (i, d,P)+ ∪ P (i, d,P)

8: else

9: substitute P by P (i, d,P)

10: if i-prefix of P matches Q ∈ P then

11: pattern Q matches text T with one mutation

12: end if

13: end if

14: end for

15: i← i+ 1

16: end while

17: end for

Figure 3.9: Mutated MBPM algorithm for matching a set of d-bounded patterns
P against the text T by partitioning T into individual k-mers.
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3.2.4 Modification-Tolerant Peptide Identification

The Modified Multiple Blocked Pattern Matching (ModMBPM) Problem

models identification of peptides with post-translational modifications. These

modifications are characterized by offsets, e.g., offset δ = 16 Da characterizes

oxidation of methionine. Let Ti(δ) be a text obtained from a text T = t1, . . . tn by

adding δ to the i-th symbol of text T (for 1 ≤ i ≤ n). A modified block in the text

T is a block in Ti(δ) (for some i and δ). For example, if T = 57, 112, 113, 113, 186,

T3(16) = 57, 112, 129, 113, 186. A modified block in the text T is a block in Ti(δ)

(for some i and δ). We are interested in the following problem:

Modified Multiple Blocked Pattern Matching (ModMBPM) Prob-

lem

Input. A text T over Σ and a set P of patterns.

Output. All modified blocks B in the text T such that B = P , for some

P ∈ P .

Given a pattern P = p1, . . . , pn, we define its (i, δ, j,m)-extension as pattern

p1, . . . , pi−1, pi+. . .+pj+m+pj+1+. . .+pi+δ−1, pi+δ, . . . , pn, where 1 ≤ δ ≤ n−i+1,

i ≤ j < i + δ and −50 ≤ m ≤ 200, indicating the mass range of the modification.

We define P (i, d,P)∗ of P as the set of d-bounded patterns resulting from all

(i, δ, j,m)-extension’s for all i ≤ j < i+δ, and −50 ≤ m ≤ 200. Additionally, each

pattern P ′ in the set P (i, d,P)∗ must be (i,P)-compliant.5 To solve ModMBPM

problem, we use the set P (i, d,P)∗ instead of the set P (i, d,P)+ at line 7 of the

pseudocode in Figure 3.9. Line 11 of the algorithm should also be updated to

reflect that the algorithm is matching modified blocks.

3.3 Results

We implemented the various algorithms described in the paper, but we only

present results for the MBPMopt, MBPMmut and MBPMmod algorithms.

5The set P (i, d,P)∗ seems very large and its construction seems very inefficient because m
can take on 251 values for each different value of the other parameters. However, in the im-
plementation, valid values of m that result in (i,P)-compliant patterns are unique for each δ.
Furthermore, for modifications, the values of j and m are independent.
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3.3.1 Datasets

For benchmarking the speed of our algorithms, we used spectra from the

organism Shewanella oneidensis, collected with LTQ-FT instruments from Richard

Smith’s laboratory at PNNL. The dataset has been extensively studied previously

by Gupta et al. 2007 [45]. We arbitrarily chose over 200,000 spectra for bench-

marking because the keyword tree of the gapped peptides from such dataset fits

in main memory maximizing the performance of the search. For mutation search,

we used over 200,000 spectra from Arthrobacter sp. strain FB24 generated us-

ing LTQ-FT instruments at PNNL. The organism was arbitrarily chosen to study

alternative start codons in prokaryotes. Finally, for the modification search, we

used the trypsin dataset analyzed by Kim et al. 2010 [52]. The dataset consists

of over 170,000 spectra generated using collisionally induced dissociation (CID)

and electron-transfer dissociation (ETD) fragmentation methods (equal number of

spectra for each method) from human cell lysate. The detailed description of the

dataset can be found in the original study [52].

3.3.2 Benchmarking

We benchmarked MBPMopt against InsPecT [3], one of the fastest algorithms

for standard MS/MS database searches for unmodified peptides. We further bench-

marked MBPMmut and MBPMmod against MS-Alignment [32] (also implemented in In-

sPect). MBPMmut and MBPMmod applied to gapped peptides are equivalent to MS/MS

database searches for mutated peptides or peptides with unexpected modifications,

respectively. MBPMopt results in a peptide identification tool that is an order of

magnitude faster than InsPecT, while MBPMmut and MBPMmod are orders of mag-

nitude faster than MS-Alignment (for large protein databases). To evaluate the

speed of various peptide identification tools, we measure the time to match a mil-

lion spectra against a proteome consisting of a million amino acids (this metric

is measured in secs per mil 2). It is estimated that the speed of Sequest [1] and

InsPecT [3] is ≈ 1.8×105 and ≈ 3×103 secs per mil2 correspondingly (see [10, 8]).

MS-Alignment was run on a small sample of 1,000 spectra from the Shewanella

oneidensis (see below). It took 1,140 seconds for MS-Alignment to complete the
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run agains the proteome (1,375,623 amino acids), resulting in a speed of 8.3× 105

secs per mil2. Due to time constraints, we did not run the test for larger datasets,

but the projected results are accurate as the algorithm scales linearly against larger

datasets.

Our software tool consists of a de novo generation of gapped peptides by MS-

GappedDictionary, followed by a pattern matching stage by one of the algorithms

to solve the MBPM problem. The running time can be divided into preprocessing

spectra (which includes generating the gapped peptides by MS-GappedDictionary)

and matching gapped peptides against the database. The preprocessing stage is

independent of the size of the database and the time is proportional only to the

size of the spectral dataset. In practice, it takes on average 0.2 seconds to process

a spectrum.

The running time of the second stage depends linearly on the size of the

database. MBPMopt has a speed of 308 sec per mil2. The speed was calculated based

on a run of the tool on the Shewanella oneidensis dataset. It took 89 seconds for

MBPMopt to complete a search of 210,192 spectra6 on the proteome of Shewanella

oneidensis consisting of 1,375,623 amino acids. The run was done on a modern

desktop computer (Intel Core i7-965, 3.20 Ghz with 24GB of RAM).

MBPMmut and MBPMmod were run on the same Shewanella oneidensis dataset,

For MBPMmut, it took 1,247 seconds to match the same 210,192 spectra to the She-

wanella oneidensis proteome, yielding a speed of 4.3 × 103 secs per mil2. For

MBPMmod, it took 998 seconds to match the same dataset to the Shewanella onei-

densis proteome, yielding a speed of 3.5× 103 secs per mil2. Figure 3.10 shows the

plot that compares the projected times for our algorithms against InsPecT and

MS-Alignment.

3.3.3 Gene Annotations in Arthrobacter

In this section we use MBPMmut to analyze a dataset of 221,673 spectra

from Arthrobacter sp. strain FB24 generated in Richard Smith’s laboratory at

6MS-GappedDictionary generated 10,724,012 gapped peptides from these spectra (51 gapped
reconstructions per spectrum on average).
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Figure 3.10: Performance of MBPM algorithms against InsPect. MBPMopt out-
performs InsPect as soon as the database size exceeds 75 million amino acids. For
the six-frame translation proteome of human (2.8 billion amino acids), MBPMopt
is around 8 times faster than InsPect. MBPMmod, which searches for unexpected
modifications in the database is only 15% slower than InsPect for regular database
searches with no modifications.
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PNNL using a LTQ-FT tandem mass spectrometer. 68,580 non-modified spec-

tra were identified in search against the six-frame translation of the Arthrobac-

ter genome of ≈ 10.1 Mb amino acids with a spectral probability threshold of

1.7−10 [41] at a 1% FDR. We analyzed the remaining 153,093 spectra using the

MBPMmut algorithm. We transformed spectra into gapped peptides, searched

them against the six-frame translation of Arthrobacter genome using a probability

cut off of 1.5e-15 to achieve a 1% FDR.7

To identify alternative start codons, we collected all identified peptides

with a mutation in the 1st position and with spectral probability better than 1.5e-

15. Out of 189 such peptides, the most prevalent mutations can be alternatively

explained as precursor mass errors (1 or 2 Da offsets), acetylation (42 Da offset)

and oxidation (16 Da offset). For example, a Glu to Gln mutation (≈ 1 Da offset)

can be explained by a precursor mass error, while a Ser to Glu mutation (≈ 42 Da

offset) can be explained as acetylation. These alternative explanations represent

useful peptide identifications (but not mutations) and account for ≈ 70% of the

identified peptides.

The next class of the most prevalent mutations represent amino acids that

mutate into methionine and reveal potential alternative start codons. The most

common mutations among these peptides were valine into methionine (4 peptides

and 37 spectra) and leucine into methionine (3 peptides and 17 spectra) in the

first position. All mutations from valine and leucine to methionine represented

GTG and TTG, potential start codons (See Table 3.1). All seven predictions

were verified to be start codons by mapping back the identified peptides to the

annotated proteome of the organism.

3.3.4 Blind modification search

In this section, we describe the results of the MBPMmod algorithm on the hu-

man CID/ETD trypsin dataset. The dataset contains 179,440 spectra. We iden-

tified 58,419 spectra using the MBPMopt algorithm and matching them against

7The goal of this section is to illustrate the capabilities of the MBPMmut and MBPMmod rather
than to provide a comprehensive re-annotation of Arthrobacter.
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Table 3.1: Peptide matches with mutations resulting in Methionine at the first
position. The first amino acid to the right of the colon represents the amino acid
derived from the genome using the standard translation table. The codon column
represents the original codon in the six-frame translated proteome. The second

column represents the best MSGF spectral probability [41] among all the
identified spectra for the given spectra.

Identification Best Prob Codon # Spec
(V:M)NTPTSVTASPPDLAGEEPK 3.4e-18 GTG 4

(V:M)LIAQRPTLSEEVVSENR 9.4e-19 GTG 13
(V:M)IEETLLEAGDKMDK 2.4e-19 GTG 14

(V:M)STVESLVGEWLPLPDVAEMMNVSITK 2.7e-18 GTG 6
(L:M)LTANAYAAPSADGDLVPTTIER 6.6e-18 TTG 3

(L:M)EGPEIQFSEAVIDNGR 2.6e-18 TTG 12
(L:M)DTTVADTEVTMPEGQGPR 1.4e-21 TTG 2

the human IPI database version 3.78. The identified spectra passed the 1% FDR

with spectra probability better than 4.0e-11. Table 3.2 summarizes the modifica-

tions that are represented by more than 20 sites. We identified an additional 9,387

modified spectra using a 1% FDR with spectra probability better than 1.3e-15.

3.4 Discussion

We introduced a new class of combinatorial pattern matching problems

and proposed various algorithms for their solution. These algorithms represent

the first practical applications of BPM in proteomics. Our results demonstrate

that BPM has a potential to greatly speed up protein identifications, a key task

in computational proteomics.

3.4.1 Fused Blocked Pattern Matching Problem.

In this subsection, we present the possibility of using the MBPM algo-

rithm to find fused peptides, and describe the shortcomings when the approach

is applied to gapped peptides generated by MSGappedDictionary. Given a text

T = t1, . . . tn, we define a text Ti,j = t1, . . . ti−1, ti, tj, tj+1, . . . , tn where i and j are

not consecutive. A fused block is a block in Ti,j (for 1 ≤ i, j ≤ n) that is not a

block in T . For example, substrings (57,112) and (113,186) form a fused block in
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Table 3.2: Observed modifications in the human lysate dataset. The mass shift
represents the average observed mass shift of the identifications and due to mass

errors, it might not correspond to the exact mass of the modification listed in
UNIMOD. We discarded modifications of 1 or 2 Da because they are the result of

parent mass errors rather than meaningful modifications.

Name Mass Spectra Sites Unimod ID [53]
Dethiomethyl -47.994 97 64 526
Loss of ammonia/Pyro-glu from Q -17.018 248 103 385/28
Methylation 14.021 46 20 34
Oxidation or Hydroxylation 16.002 542 236 35
Dimethyl 28.019 39 25 36
Acetylation 42.020 156 53 1
Carbamyl 43.013 296 128 5
Carboxylation 44.008 34 22 299
Carbamidomethyl 57.029 535 261 4
Carboxymethyl 58.020 63 34 6
Phosphorylation 79.967 90 61 21

the text T = 57, 112, 113, 113, 186 because they form a block in T (2, 4). Formally,

the problem can be described:

Multiple Fused Blocked Pattern Matching Problem

Input. A text T over Σ and a set P of patterns.

Output. All fused blocks B in the text T such that B = P , for some

P ∈ P .

The approach to solving the Fused Pattern Matching Problems is based on

the observation that for every pattern p1, . . . , pn matching a fused block in the text,

its prefix p1, . . . , pm and its suffix pm+1, . . . , pn matches a (non-mutated) block in

the text. It is trivial to see that all partial prefix matches can be retrieved using

the algorithm in Figure 3.7 by storing all i-prefixes that match a prefix in P (lines

7 and 8). To retrieve all partial suffix matches, we can also use the algorithm in

Figure 3.7, but we need to reverse the k-mer and substitute all references of prefixes

with suffixes (in addition to changes to line 7 and 8). After all the partial prefixes

and suffixes are stored, we find all blocks Bprefix (i) matching the prefix p1, . . . , pi−1

and all blocks Bsuffix (i) matching the suffix pi+1, . . . , pn, correspondingly (for all

1 < i < n) and for all patterns P = p1, . . . , pi−1 ∈ P . Notice that retrieving

all fused blocks, Bprefix (i) and Bsuffix (i), takes time proportional to the length
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of the pattern (plus the time for constructing all results) because all the partial

matches are pre-computed during the matching stage. We remark that in practice,

the identification of fused peptides is typically limited to long peptides with the

fusion break located closely to the middle of the peptide [42]. In such cases, both

p1, . . . , pi and pi+1, . . . , pn are rather long and thus the sets Bprefix (i) and Bsuffix (i)

are expected to be small.

One additional detail is that the fusion point is not required to coincide

with the boundary of pi and pi + 1. Therefore, we also allow reconstructions of

Bprefix (i − 1) and Bsuffix (i), where pi partially matches the prefix and the suffix

text.

However, this algorithm does not scale well with large proteomes. One of

the requirements for reliable identifications is that the peptide, and consequently

the spectrum, must be large. The gapped peptide reconstructions from these

peptides typically have very large gaps at the prefix or suffix ends (greater than

2000 daltons). As a result, the fusion point is covered by the large gap at one of the

ends making either the set Bprefix (i) or Bsuffix (i) unmanageably large. The Fused

BPM algorithm will only be practical for gapped peptides that are more symmetric

(e. g. all gaps are no greater than 300 Da), but for the current implementation of

MSGappedDictionary, this algorithm is not practical.

3.5 Acknowledgements

This chapter is in preparation for publication as “Blocked Pattern Matching

Problem and its Applications in Computational Proteomics”. J. Ng, and P. A.

Pevzner 2011, in preparation. The dissertation author is the primary author of

this paper.



Chapter 4

Dereplication and De Novo

Sequencing of Nonribosomal

Peptides

Nonribosomal peptides (NRPs) are of great pharmacological importance,

but there is currently no technology for high-throughput NRP dereplication and

sequencing. We used multistage mass spectrometry followed by spectral alignment

algorithms for sequencing of cyclic NRPs. We also developed an algorithm for

comparative NRP dereplication that establishes similarities between newly isolated

and previously identified similar but nonidentical NRPs, substantially reducing

dereplication efforts.

4.1 Introduction

The classical protein synthesis pathway (translation of template mRNA) is

not the only mechanism for cells to assemble amino acids into proteins or peptides.

Nonribosomal peptide synthesis is performed by nonribosomal peptide (NRP) Syn-

thetases that represent both the mRNA-free template and building machinery for

the peptide biosynthesis [54]. NRP synthetases produce NRPs that are not di-

rectly inscribed in genomes and thus cannot be inferred with traditional DNA

sequencing. NRPs are of great pharmacological importance as they have been

52
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optimized by evolution for chemical defense and communication. Starting from

penicillin, NRPs and other natural products have an unparalleled track record in

pharmacology: most anticancer and antimicrobial agents are natural products or

their derivatives [55]. NRPs include antibiotics, antiviral and antitumor agents,

immunosuppressors and toxins.

Most NRPs contain nonstandard amino acids, increasing the number of pos-

sible building blocks from 20 (in standard ribosomal peptides) to several hundred

(See Table A.1). Previous methods for NRP characterization are based on nu-

clear magnetic resonance (NMR) spectroscopy and are time-consuming and error-

prone [56, 57, 58, 59]. Therefore, there is a need for the efficient structure elucida-

tion of NRPs. Furthermore, substantial efforts in activity screening can be saved

if newly isolated compounds can be rapidly associated to a known compound by

dereplication [60]. Dereplication refers to the process of screening for active com-

pounds in a mixture discarding those that have been previously studied to avoid

recharacterization.

In a pioneering study [61], a cyclic algal peptide had been linearized and

manually sequenced using tandem mass spectrometry (MS2). This approach, al-

though successful, did not result in a robust NRP sequencing technique as most

NRPs evade linearization attempts. Characterization of hormothamnin A is an-

other example of mass spectrometrybased NRP sequencing [62]. Furthermore,

structural variants of antimicrobial agent tyrothricin had been characterized from

a mixture of NRPs [63], using tandem mass spectrometry. In a similar experi-

ment [64], new variations of streptocidins had also been sequenced. However, no

automatic tool had been created from these studies.

We compared spectra of similar but nonidentical NRPs, enabling compar-

ative dereplication that establishes the similarity between a newly isolated and a

previously identified similar (rather than identical) compounds. This is in con-

trast to the classical definition of dereplication, which only considers identical

compounds. Because many NRPs are produced as related analogs (for example,

61 out of 90 cyanopeptides recently identified in drinking water are variants of

known peptides [65]), comparative dereplication can reduce NRP characterization
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efforts from weeks to minutes. For example, cyanopeptide X was an unknown

bioactive compound (currently known as desmethoxymajusculamide C) when our

project started in 2007, but was sequenced using NMR spectroscopy in 2008. The

effort invested in analyzing this NRP in 2007 would have been saved if our al-

gorithm, NRP-dereplication, were available. Indeed, NRP-dereplication revealed

that cyanopeptide X is related to majusculamide C. Another example is com-

pound 879 that had been assumed to be new but was found to be known during

the patent application. NRP-dereplication revealed that compound 879 is neoviri-

dogrisen. NRP-dereplication derives a sequence of an unknown compound given

a database of known cyclic peptides (provided a related peptide is known). In

the cases when no related NRPs are known, we performed de novo sequencing

with NRP-sequencing, a self-alignment-based algorithm, and NRP-tagging, an ap-

proach that uses frequently occurring amino acid tags for peptide reconstruction.

We also reconstructed cyanopeptide X, which is to our knowledge the first report

of automated de novo reconstruction of a cyclic peptide by mass spectrometry.

4.2 Methods

4.2.1 Data acquisition and preprocessing

Seglitide, tyrocidines, BQ-123, destruxin A and microcystin LR were pur-

chased from Sigma-Aldrich. H-3526 and H-8405 were purchased from Bachem.

Cyanopeptide X, cyclomarins and compound 879 were provided by Gerwick’s,

Moore’s and Fenical’s laboratories at University of California, San Diego, respec-

tively.

Time-of-flight (TOF) mass spectrometry data was acquired for tyrocidine A,

A1, B, B1, C, C1; cyclomarin A, C; dehydrocyclomarin A, C; BQ123; microcystin

LR; compound 879; and H8405. Ion-trap mass spectrometry data were acquired

for seglitide, cyanopeptide X, destruxin A and H3526.

For the ion-trap data acquisition, each compound was prepared to 1 µM

solution using 50:50 MeOH:water with 1% AcOH as solvent, and underwent nano-

electrospray ionization on a Biversa Nanomate (pressure: 0.3 p.s.i., spray voltage:
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1.4-1.8 kV). Ion trap spectra were acquired on a Finnigan LTQ-MS (Thermo-

Electron Corporation) running Tune Plus software version 1.0. For the MSn data

collection, spectrum ion trees were collected in both automatic mode and manual

mode. In automatic mode, the [M+H]+ of each compound was set as the parent

ion. MSn data were collected with the following parameters: maximum breadth,

20; maximum MSn depth, 3. At n = 2, isolation width, 4; normalized energy,

50. At n = 3, isolation width, 4; normalized energy 30. For manually collected

data, the [M+H]+ ion of each compound was isolated with an isolation width of

3 mass to charge (m/z) units and fragmented with normalized collision energy of

30. Top 20 intense ions within the spectra were isolated with an isolation width of

3 m/z units and fragmented with normalized collision energy of 30. The Thermo-

Finnigan files (in RAW format) were then converted to an mzXML file format

using the ReAdW (http://tools.proteomecenter.org/).

For the TOF data collection, the cyclic peptides were prepared in a 50%

methanol, 0.5% AcOH at 1 pmol/µl. The samples were then infused into an ABI

QSTAR XL QTOF using nanospray source I for ionization at 0.5 l/min. The

instrument was then set up in automatic acquisition mode to collect one MS scan

to detect the calibrants (CsCl (Sigma) and cPDI inhibitor (Bachem)) and one

product ion scan for the parent mass of the peptide in the experiment. Each

scan time was 30 s and the method length was 2 min. The acquisition was set

to enhance for the scanned ranges. The collision energy for each compound was

determined using direct infusion in tune mode to find out the optimal collision

energy required to produce ideal fragmentation for MS2. The collected spectra

were calibrated using the first mass spectrometry scan and the calibration was

applied to the entire file.

All spectra were preprocessed before the sequencing algorithms were ap-

plied. The initial filtering steps were to ensure that the low-intensity peaks are

removed. The standard procedure of keeping the top 5 peaks within a window of

50 Da was applied to all compounds.
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4.2.2 Mass Spectra of a Cyclic Peptide

When analyzing a cyclic peptide using mass spectrometry, the MS2 stage

amounts to breaking (linearizing) the cyclic peptide into linear peptides with the

same parent mass (Figure 4.1A-E). The next stage of mass spectrometry (MS3)

breaks the different linearized versions of the cyclic peptide, resulting in the difficult

problem of interpreting a MS3 spectrum of different (but related) peptides. The

theoretical MS3 spectrum, Spectrum(P ) of the cyclic peptide P = p1 . . . pn is thus

the superposition of the theoretical spectra, Spectrum(Pi) of n linear peptides

Pi = pi . . . pnp1 . . . pi−1 for i = 1 . . . n (Figures 4.1 and 4.2).

4.2.3 Comparative Dereplication

Comparative dereplication can be formulated as the Cyclic Peptide Derepli-

cation Problem (CPDP): Given an experimental spectrum S, a cyclic peptide P ,

and a parameter k (maximum number of mutations/modifications), find a cyclic

peptide P ′ with at most k mutations/modifications from P that maximizes the

number of shared masses between S and the theoretical spectrum of P ′.

We address the CPDP problem for the most relevant case k ≤ 1. Given

the MS3 spectrum of an unknown peptide P ′, and the sequence of a known pep-

tide P that differs from P ′ by a single mutation at an (unknown) position x,

NRP-Dereplication derives P ′. NRP-Dereplication is based on the observation

that most peaks shared between the experimental spectrum of P ′ and theoretical

spectrum P correspond to subpeptides that do not contain position x (0-correlated

subpeptides). Conversely, most peaks in the experimental spectrum P ′ that dif-

fer from the peaks in the theoretical spectrum of P by δ = Mass(P ′) −Mass(P )

correspond to subpeptides that contain position x (δ-correlated subpeptides). The

coverage of a position x is defined as the number of 0-correlated subpeptides con-

taining that position, plus the number of δ-correlated subpeptides not containing

that position. Thus, correlated subpeptides (both 0-correlated and δ-correlated)

have a potential to reveal the differing amino acid as the amino acid with the min-

imum coverage. For example, the drop in coverage at ornithine (Figure 4.3) allows

one to dereplicate the experimental spectrum of tyrocidine C1 using sequence of
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spectra spectrum(Pi) of n linear peptides Pi¼ piypnp1ypi"1

for i ¼ 1yn (Fig. 1a–e and Supplementary Fig. 1).
Comparative dereplication can be formulated as the cyclic

peptide dereplication problem: given an experimental spectrum
S, a cyclic peptide P and a parameter k (maximum number of
mutations or modifications), find a cyclic peptide P ¢with at most k
mutations or modifications from P that maximizes the number of
shared masses between S and the theoretical spectrum of P ¢.
We addressed the cyclic peptide dereplication problem for the

most relevant case kr 1. Given the MS3 spectrum of an unknown
peptide P ¢, and the sequence of a known peptide P that differs from
P ¢ by a single mutation at an unknown position x, NRP-dereplica-
tion derives P ¢. NRP-dereplication is based on the observation that
most peaks shared between the experimental spectrum of P ¢ and
theoretical spectrum P correspond to subpeptides that do not
contain position x (0-correlated subpeptides). Conversely, most
peaks in the experimental spectrum P ¢ that differ from the peaks
in the theoretical spectrum of P by d ¼ mass(P ¢) " mass(P)
correspond to subpeptides that contain position x (d-correlated
subpeptides). The ‘coverage’ of a position x is defined as the
number of 0-correlated subpeptides containing that position,
plus the number of d-correlated subpeptides not containing that
position. Thus, correlated subpeptides (both 0-correlated and
d-correlated) have a potential to reveal the differing amino acid
as the amino acid with the minimum coverage. For example, the
drop in coverage at ornithine (Supplementary Fig. 2) allows one
to dereplicate the experimental spectrum of tyrocidine C1 using
sequence of tyrocidine C.

As the peptide P to be used for dereplication is not known in
advance, every NRP spectrum needs to be compared to a database
of known cyclic peptides such as Norine12. NRP-dereplication can
localize the single mutation using the top-scoring peptide in the
Norine database (Supplementary Table 2).
The tyrocidine family presents an ideal test forNRP-dereplication

because tyrocidine A, B and C are in the Norine database, whereas
tyrocidines A1, B1 and C1 are not. NRP-dereplication showed that
spectra from tyrocidine A, B and C had top hits corresponding to
Norine-database peptides, whereas their A1, B1 and C1 counter-
parts were mapped to high-scoring matches with one mutation
(Supplementary Table 2). The correct mutated position is also
localized by NRP-dereplication as the position with minimum
coverage for all compounds we analyzed that had a closely related
compound in the NRP database. NRP-dereplication generated
only two high-scoring false hits representing very short peptides
(H8495 and BQ123), but closer examination revealed that the
matches were correlated to the query peptides. We conducted
additional experiments that demonstrated that NRP-dereplication
can localize the correct position of the mutation when k ¼ 1
(Supplementary Fig. 3).
In the case where no related peptide is known (and thus

NRP-dereplication is not applicable), we formulated the cyclic
peptide sequencing problem: given an experimental spectrum S,
find a cyclic peptide P maximizing the number of shared masses
between S and the theoretical spectrum of P. Reconstructing
the cyclic peptide P from its theoretical spectrum, spectrum(P),
amounts to the cyclic version of the partial digest problem13.
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Figure 1 | Experimental and theoretical spectra of seglitide. (a) Cyclic diagram of seglitide. Ala+14 represents methylated alanine. The integer residue masses are
85, 163, 186, 128, 99 and 147 Da corresponding to cyclic A+14YWKVF. (b) Representation of the six different theoretical linear peptides after MS2 fragmentation
of seglitide (cyclic). (c) Superposition of the theoretical linear fragments from b. (d) Experimental spectrum of seglitide (the peaks corresponding to fragment
masses in the theoretical spectrum of segtilite in c are shown in red). (e) Autoconvolution of the spectrum in insert d showing prominent peaks for offsets
corresponding to masses of amino acids (shown in red). The peak at 0 is truncated. (f) Three identical theoretical spectra of seglitide annotated as A+14YWKVF
(blue), FA+14YWKV (red) and VFA+14YWK (green) illustrating the occurrences of amino acid tags. The frequent 2-amino-acid tag Tyr-Trp was observed in three
different locations in the spectrum. Additionally, the offsets between three consecutive locations of tag Tyr-Trp revealed the masses of amino acids phenylalanine
and valine. (g) The gapped peptide constructed from f combines Tyr-Trp (derived from a frequent tag) with Val-Phe (derived from the inter distances between tag
locations). Ala+14 and Lys were inferred from the flanking masses of Tyr-Trp and Val-Phe. The complete sequence A+14YWKVF was recovered for seglitide, but gaps
may be generated for larger compounds.
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Figure 4.1: Experimental and theoretical spectrum of seglitide, Cyclic(N-methyl-
Ala–Tyr-D–Trp–Lys–Val–Phe), a somatostatin receptor antagonist. A) Cyclic di-
agram of seglitide. Ala+14 represents methylated alanine. The integer residue
masses are 85, 163, 186, 128, 99 and 147 Da corresponding to cyclic A+14YWKVF.
B) Representation of the six different theoretical linear peptides after MS2 frag-
mentation of seglitide (cyclic). C) Superposition of the theoretical linear frag-
ments from (B). D) Experimental spectrum of seglitide (the peaks corresponding
to fragment masses in the theoretical spectrum of segtilite in (C) are shown in
red). E) Autoconvolution of the spectrum in insert (D) showing prominent peaks
for offsets corresponding to masses of amino acids (shown in red). The peak at
0 is truncated. F) Three identical theoretical spectra of seglitide annotated as
A+14YWKVF (blue), FA+14YWKV (red) and VFA+14YWK (green) illustrating
the occurrences of amino acid tags. The frequent 2-amino-acid tag Tyr-Trp was
observed in three different locations in the spectrum. Additionally, the offsets
between three consecutive locations of tag Tyr-Trp revealed the masses of amino
acids phenylalanine and valine. G) The gapped peptide constructed from f com-
bines Tyr-Trp (derived from a frequent tag) with Val-Phe (derived from the inter
distances between tag locations). Ala+14 and Lys were inferred from the flank-
ing masses of Tyr-Trp and Val-Phe. The complete sequence A+14YWKVF was
recovered for seglitide, but gaps may be generated for larger compounds.
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Figure 4.2: Annotation of the experimental spectrum of seglitide. The x-axis
represents m/z values, while the y-axis represents relative intensity. The number
to the right of the y-axis (1.03e+6) represents the absolute intensity at 100%. The
Offset column lists the neutral losses considered when annotating the spectrum.
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tyrocidine C.

As the peptide P to be used for dereplication is not known in advance,

every NRP spectrum needs to be compared to a database of known cyclic peptides

such as Norine [66]. NRP-Dereplication can localize the single mutation using the

top-scoring peptide in the Norine database (See Table 4.2).

The tyrocidine family presents an ideal test for NRP-Dereplication because

tyrocidine A, B and C are in the Norine database, whereas tyrocidines A1, B1 and

C1 are not. NRP-dereplication showed that spectra from tyrocidine A, B and C had

top hits corresponding to Norine-database peptides, whereas their A1, B1 and C1

counterparts were mapped to high-scoring matches with one mutation (Table 4.2).

The correct mutated position is also localized by NRP-Dereplication as the position

with minimum coverage for all compounds we analyzed that had a closely related

compound in the NRP database. NRP-Dereplication generated only two high-

scoring false hits representing very short peptides (H8495 and BQ123), but closer

examination revealed that the matches were correlated to the query peptides. We

conducted additional experiments that demonstrated that NRP-Dereplication can

localize the correct position of the mutation when k = 1 (Figure 4.4).

While Figure 4.3 demonstrates that drops in coverage reveal the differing

amino acid, we need to ensure that “random” pairs of peptides do not exhibit

similar drops (otherwise dereplication will fail when comparing a spectrum against

a database of known NRPs). The number of correlated subpeptides for random

peptides pairs is much smaller than for related peptide pairs. In each dereplication

experiment, we compared the tyrocidine C experimental spectrum to an (incorrect)

peptide that differed from the correct peptide by a fixed number of amino acids.

While there are 32 correlated subpeptides between the experimental tyrocidine C1

spectrum and the tyrocidine C peptide (differing by a single amino acid), the num-

ber of these subpeptides quickly decreases as the peptides diverge (Figure 4.4A).

Our simulations revealed that NRP-Dereplication is correct in over 90% of cases

in case of a single amino acid difference (Figure 4.4C). As expected, the number of

correlated subpeptides drops as the number of differing amino acids increases (see

the Average Worst Rank plot in Figure 4.4B).
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Figure 4.3: Dereplication results of tyrocidines. A) NRP-Dereplication output
for experimental spectrum of tyrocidine C1 (VKLFPWWNQY) given peptide se-
quence of tyrocidine C (VOLFPWWNQY). Concentric red-gray circles represent
0-correlated subpeptides (with peptide shown red and its complement shown gray)
and δ-correlated subpeptides (with peptide shown gray and its complement shown
red). Given this coloring convention, the amino acid coverage (number of red arcs
covering an amino acid) represents supporting evidence that an amino acids did
not change from the known to the unknown compound. The thick black circle
separates 0-correlated subpeptides (shown inside) from δ-correlated subpeptides
(shown outside). The outer counts represent the coverage for a given amino acid
by red arcs and reveals the differing amino acid (O) as the amino acid with min-
imum coverage (2.5 vs. 7 for the next runner-up). The counts are normalized by
the number of subpeptides per peak. For example, if a peak has two alternative
subpeptide annotations, it will contribute 1

2
to the coverage. The width of the arcs

are proportional to this weighting factor. The number in the center of the graph is
the total number of correlated subpeptides. B) Alternative representation of (A)
as a histogram that reveals the changed amino acid O. C) Additional dereplication
results for the tyrocidine family.
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Figure 4.4: Dereplication results for the experimental spectrum of tyrocidine C
(VOLFPWWNQY) compared against peptides with varying number of differing
amino acids. All experiments were ran 1000 times randomly choosing a different
offset(s) on a random amino acid(s). Each of the differing masses have a randomly
chosen offset in the range of 15 to 43 Daltons (the sign of offset is also chosen
randomly). A) The number of correlated subpeptides as a function of the number
of differing amino acids. B) The average worst rank of the known differing amino
acid(s). The worst rank is the highest rank for all the differing amino acids when
sorted in the increasing order of their coverage. For example, if amino acids A
and B were modified, and after the dereplication experiment, their coverage ranks
were 1 and 3, the worst rank would be 3. In the case of k differing amino acids, a
rank of k means that the dereplication experiment was successful. C) For case of a
single amino acid difference, NRP-Dereplication algorithm is correct in over 90%
of cases. We note that for the cases in which the differing amino acid has rank 2,
the position with the lowest coverage is usually a neighboring position.
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4.2.4 De Novo Sequencing

In the case where no related peptide is known (and thus NRP-Dereplication

is not applicable), we formulated the Cyclic Peptide Sequencing Problem (CPSP):

given an experimental spectrum S, find a cyclic peptide P maximizing the number

of shared masses between S and the theoretical spectrum of P . Reconstructing

the cyclic peptide P from its theoretical spectrum, Spectrum(P ), amounts to the

cyclic version of the partial digest problem [67].

However, it is not clear how to extend the algorithms for the partial digest

problem [67, 68] to a cyclic setup. Furthermore, reconstructing P from its experi-

mental MS3 spectrum S is a difficult problem because the contributions of different

linear versions of P to the experimental spectrum are nonuniform. However, spec-

tral convolution and spectral alignment [69] can reveal similarities between related

spectra. Because an MS3 spectrum of a cyclic peptide is a superposition of spectra

of related linearized peptides, spectral autoconvolution and autoalignment reveal

key features of the cyclic peptide.

Autoconvolution of a spectrum S with offset x is defined as the number of

masses s in S such that s − x is also a mass in S. We defined the cyclic auto-

convolution, conv(S, x), as the number of masses s in S such that either (s − x)

or (s − x) + precursorMass(S) is also a mass in S. For example, high-scoring

positions of the autoconvolution of seglitide revealed masses of amino acids of the

NRP (Figure 4.1E). Furthermore, the largest peak conv(S, 85) = 14 corresponded

to the mass of the methylated alanine (Ala+14). The other five amino acids in segli-

tide are also represented by prominent peaks at positions 99, 128, 147, 163 and

186 with conv(S, x) ≥ 8, corresponding to their integer masses in daltons. Spec-

tral autoconvolution (Figure 4.1E) is a computational approach to derive residue

masses of cyclic peptides.

Autoalignment of a spectrum S with offset x is defined as the set of peaks

Sx = {s : s ∈ S and (s − x) ∈ S}. Autoalignment can be viewed as a virtual

spectrum with parent mass precursorMass(S)− x (Figure 4.5). For seglitide, S85

(x = 85 maximizes conv(S, x) for seglitide) corresponds to the alignment between

A+14YWKVF and YWKVFA+14.
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Figure 4.5: Autoalignment S85 of the theoretical spectrum of seglitide (85 Da rep-
resents the most prominent peak in auto-convolution). All peaks with mass s that
have a related peak with mass s+85 are enclosed in red circles. A) Representation
of the theoretical spectrum for seglitide. Each horizontal line represents a different
linear version of seglitide (prefix ladder). The linearized version A+14YWKVF is
shown twice. The diagonal lines represent the suffix ladders. If we stay on a di-
agonal, and walk from left to right, we read out the mass sequence of seglitide in
reverse. The vertical axis is drawn at half the scale of the horizontal axis to save
space. B) Shows the cyclic theoretical spectrum of seglitide by compressing all
breaks of (A) into a single line. There are two set of peaks that are 85 Da apart.
First, those peaks in the first and second horizontal lines (aligned prefixes) and
second, those peaks in the red and cyan diagonals (aligned suffixes). These sets
are highlighted with the blue and red arcs in the cyclic theoretical spectrum, re-
spectively. C) Autoalignment of (B) with offset of 85 Da. All matching peak pairs
(identified by arcs) will be reflected in the consensus spectrum. The autoalignment
spectrum contains the prefix and suffix ladder of the overlapping linearized segli-
tide sequences. Note that in reality, prefix and suffix ladders are not separated in
the autoalignment spectrum.
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Using the concepts of autoconvolution and autoalignment, we created NRP-

Sequencing, an algorithm to solve the cyclic peptide sequencing problem that does

not require prior knowledge of the amino acid masses in the compound. NRP-

Sequencing first uses the MS3 autoconvolution to derive the set of possible amino

acid masses and then uses the MS3 autoalignment using the top k possible offset

masses, x, to construct a consensus spectrum Sx for each x. NRP-Sequencing

then generates all possible reconstructions for each Sx and reranks all generated

cyclic peptides according to their matches to the MSn spectra (for n = 3, 4 and 5).

Details on the NRP-Sequencing algorithm are as follow:

Input MS3 spectrum S of an (unknown) cyclic peptide, set of MSn spectra, pa-

rameter k (maximum number of candidate aa-masses) and p (minimum per-

centage of top de novo score to report a suboptimal peptide).

Output Ranked list of candidate peptide reconstructions

1: PeptideList = ∅
2: Select top k peaks x1 . . . xk in the autoconvolution conv(S, x) in the [57, 200]

Da interval

3: for i = 1 to k do

4: Set x = xi and construct the auto-alignment Sx

5: De novo sequence Sx and find highest scoring peptide P

6: For every suboptimal peptide P ′ such that score(P ′) ≥ p · score(P )

7: Append x to P ′ and add the resulting cyclic peptide to PeptideList

8: end for

9: Rescore each peptide P ′ in PeptideList by matching P ′ against all MSn spectra

10: Output peptides from PeptideList in the decreasing order of their scores

In default mode, NRP-Sequencing selects the masses of the top 20 auto-

convolution masses in the interval 57-200 Da and combines them with the masses

of standard amino acids. NRP-Sequencing could generate the correct sequence

(among the set of generated reconstructions) in all cases when the resulting set

of masses contained all amino acid masses in the NRP (11 out of 18 compounds).
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Moreover, in almost all cases the correct sequences were ranked as the top-scoring

reconstruction (See Table 4.3). However, the success of NRP sequencing is con-

strained by the ability to determine all amino acid masses by autoconvolution.

Because some positions are less prone to breakage than others, recovering all

amino acid masses in an NRP using autoconvolution may be an unattainable goal.

NRP-Tagging attempts to reconstruct gapped peptides from MS3 spectra of cyclic

peptides (Figure 4.1G). Spectra of cyclic peptides are superpositions of related

(cyclically shifted) linear peptides that tend to have the same tags repeated in the

spectrum. Given an MS3 spectrum, we found all 2-amino-acid tags XY (defined

by triplets of peaks s, s+X, s+X + Y in the spectrum) and selected all frequent

tags (for example, tags repeated 3 or more times). For example, if a tag XY starts

at positions s, s + A and s + A + B, then masses A and B may represent two

other (adjacent) amino acids in the cyclic peptide (Figure 4.1G). NRP-Tagging

first constructs a gapped peptide (for example, 85, 163, 186, 128 and 246 Da for

seglitide, indicating integer masses of single or combined amino acids) and then

attempts to extend it into full-length de novo reconstructions (for example, 85, 163,

186, 128, 99 and 147 Da, indicating integer masses of amino acids in seglitide). As

gapped peptides often contain masses representing combined masses of adjacent

amino acids (for example, 246 = 99+147 Da), NRP-Tagging attempts to partition

each mass in the gapped peptide into smaller masses. Details on the NRP-Tagging

algorithm are as follow:

Input MS3 spectrum S of an (unknown) cyclic peptide, a minimum tag frequency,

a recursion depth, and a scoring function score(S, peptide).

Output Ranked list of candidate gapped peptides.

1. Find all tags in S:

1: tags(x, y) = {} for all 0 ≺ x, y ≺ 200

2: for all s, s′, s′′ ∈ S such that si ≺ sj ≺ sk do

3: mass1 = s′ − s
4: mass2 = s′′ − s′

5: add s to tags(mass1,mass2)
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6: end for

2. Generate gapped peptides from frequent tags:

1: gappedPeptides = {}
2: for all mass1,mass2 with |tags(mass1,mass2)| > frequency do

3: for all {0 ≺ s1 ≺ . . . ≺ sn ≺ mass(S)−mass1 −mass2}
⊆ tags(mass1,mass2) do

4: gappedPeptide = [m1, ...,mn,mass1,mass2,mn+1] where mi = si −
si−1, for 2 ≤ i ≤ n, m1 = s1 andmn+1 = mass(S)−mass1−mass2−sn

5: Add gappedPeptide to gappedPeptides

6: end for

7: end for

3. Iteratively attempt to split masses larger than 200 Da:

1: results = depth top-scoring peptides from gappedPeptides

2: candidates = results

3: repeat

4: sequences = {}
5: for all gappedPeptide in candidates do

6: intermediates = {}
7: for all mass > 200 Da in gappedPeptide do

8: for all mass1 such that 0 ≺ mass1 ≺ 200 Da do

9: split mass in gappedPeptide into (mass1,mass−mass1) and add

the resulting peptide to intermediates

10: end for

11: end for

12: add depth top-scoring peptides from intermediates to sequences

13: end for

14: candidates = sequences

15: Add sequences to results

16: until sequences is empty
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17: return results

tags(mass1,mass2) contains the starting positions of all tags formed by

amino acids with masses mass1 and mass2. The notation |tags(mass1,mass2)|
refers to the number of locations of a 2-amino-acid tag with masses (mass1,mass2).

The notation x ≺ y denotes that y−x ≥ 57 (57 Da represents the mass of the small-

est amino acid Gly). For a given set of starting positions in tags(mass1,mass2),

all possible combinations ({s1 ≺ . . . ≺ sn} ⊆ tags(mass1,mass2)) of starting

positions of tags are considered during the gapped peptide reconstruction. The

precursor mass of S is denoted as mass(S). While the pseudocode above attempts

to split each mass > 200 Da into all possible pairs (mass1,mass − mass1 with

0 ≺ mass1 ≺ 200, the real implementation only considers mass1 as a splitting mass

if it is supported by some peaks in S. There are 2 threshold parameters, frequency

(minimum number of occurrences of a tag in S), and depth (limits the number of

high scoring gapped peptides per an iteration of the mass splitting). The scor-

ing function score(S, peptide) is used to rank the intermediate peptides and select

those for the next iteration.

Similar to algorithms for sequencing linear peptides, NRP-Tagging typically

brings the correct peptide close to the top of the list of the high-scoring peptides

(Table 4.4). This feature facilitates subsequent analysis of NRPs, for example, it

allows one to correlate high-scoring reconstructions with NMR spectroscopy data.

Moreover, the top-scoring peptide returned by NRP-Tagging typically have minor

differences as compared to the correct peptide, for example, combining masses of

adjacent amino acids or choosing a mass with known offset.

Lastly, we address a possible concern that NRP-Tagging may erroneously

use a spectrum of a linear peptide to dereplicate a cyclic peptide. We show that if

NRP-Tagging were to be run on a mass spectrum of a linear peptide, the resulting

gapped peptides would have a much lower score than those of a spectrum of a cyclic

peptide. Table 4.1 shows the top 5 tags for a spectrum of linear peptide Glu-1-

Fibrinopeptide (glufib), a standard linear peptide used for instrument calibration,

of sequence EGVNDNEEGFFSAR and the top 5 tags for tyrocidine C1. Both

spectra were acquired using the same experimental settings. These results indicate
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that NRP-Tagging may distinguish spectra from linear and cyclic peptides.

Table 4.1: NRP-Tagging results for linear peptide glufib and tyrocidine C1. %
cuts is the percentage of observed fragment ions in the experimental spectrum

out of all theoretical peaks in the cyclic peptide. % int is the percentage intensity
explained by the annotated peaks in the spectrum (including possible neutral

losses).

Glufib
Sequence % Cuts % Int

65.95, 72.12, 646.54, 111.05, 342.09, 332.22 33 20
156.10, 115.00, 513.55, 542.20, 160.06, 83.05 30 19
64.94, 74.08, 643.78, 113.02, 341.13, 333.05 33 18
97.01, 132.05, 285.42, 114.04, 656.26, 285.18 37 16
57.02, 129.03, 757.67, 440.22, 114.98, 71.08 30 16

Tyrocidine C1
Sequence % Cuts % Int

128.06, 146.04, 504.21, 283.12, 186.05, 114.03 50 58
128.06, 163.05, 487.20, 283.12, 186.05, 114.04 53 57
146.01, 99.07, 405.16, 283.13, 186.06, 242.12 53 54
128.06, 163.06, 99.02, 388.19, 283.12, 300.09 57 53
128.03, 163.06, 487.23, 300.10, 169.05, 114.05 50 52

4.3 Results

4.3.1 NRP-Dereplication

The results of the NRP-Dereplication algorithm are summarized in Ta-

ble 4.2. The Score is defined as the product of the fraction of explained in-

tensity and the fraction of explained fragment masses of a dereplicated peptide.

Dereplicated matches have monomers (shown in red) where the candidate muta-

tion is placed with the integer mass of the offset enclosed in square brackets in

their monomer composition description. See Table A.1 for the complete list of

monomers. Compounds that are in the database (tyrocidine A, B, C, H3526, mi-

crocystin LR and compound 879) or have a closely related compound (tyrocidines

A1, B1, C1, cyanopeptide X, destruxin A) have higher scores than compounds

that are not in the database and do not have closely related compounds (seglitide,
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cyclomarin A, C and dehydrocyclomarin A, C). Dereplicated compounds have the

mass difference of the experimental spectrum and the mass of the peptide enclosed

in square brackets next to their name. The compounds are sorted by score in

Table 4.2 and each dereplicated compound is in bold and separated by double hor-

izontal lines. Compounds H8405 and BQ123 (representing the shortest peptides in

the sample) returned incorrect matches (false positives). However, a close exami-

nation of the results revealed that these false positives are nevertheless correlated

with the correct peptide sequences. For H8405, the correct sequences is [113, 71,

129, 186, 113], while the database match is [184, 186, 129, 113]. For BQ123, the

correct masses are [113, 186, 115, 97, 99], while the database match is [71, 228,

71, 97, 143]. For seglitide and the family of cyclomarins, no high-scoring matches

were returned by NRP-Dereplication because their sequences are not in NORINE

yet. However, if we introduce any cyclomarin in NORINE, we readily dereplicate

all other cyclomarins.
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Table 4.2: NRP-Dereplication results. Each
dereplicated compound is in bold followed by its top

dereplicated matches with the name, score and
dereplicated sequence. See the text for additional

information.

Destruxin A

Destruxin A[+14] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, C4:1(3)-OH(2)[+14]

HydroxyDestruxin B[-18] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, iC5:0-OH(2.3)[-18]

Destruxin D[-32] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, iC5:0-OH(2)-CA(4)[-32]

Destruxin E diol[-20] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, C4:0-OH(2.3.4)[-20]

Destruxin C[-18] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, iC5:0-OH(2.4)[-18]

Destruxin F[-4] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, C4:0-OH(2.3)[-4]

Destruxin B[-2] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, Hiv[-2]

Destruxin E[-2] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, C4:0-OH(2)-Ep(3)[-2]

Destruxin E chlorohydrin[-38] 0.45

Pro, Ile, NMe-Val, NMe-Ala, bAla, C4:0-OH(2.3)-Cl(4)[-38]

Tyrocidine C

Tyrocidine C 0.45

D-Phe, Pro, Trp, D-Trp, Asn, Gln, Tyr, Val, Orn, Leu

Tyrocidine B[+39] 0.45

D-Phe, Pro, Trp, D-Phe[+39], Asn, Gln, Tyr, Val, Orn, Leu

Tyrocidine D[-23] 0.45

D-Phe, Pro, Trp, D-Trp, Asn, Gln, Trp[-23], Val, Orn, Leu
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Table 4.2: NRP-Dereplication results. Continued from previous page

Tyrocidine B1

Tyrocidine B[+14] 0.44

D-Phe, Pro, Trp, D-Phe, Asn, Gln, Tyr, Val, Orn[+14], Leu

Tyrocidine C1

Tyrocidine C[+14] 0.40

D-Phe, Pro, Trp, D-Trp, Asn, Gln, Tyr, Val, Orn[+14], Leu

Tyrocidine A1

Tyrocidine A[+14] 0.37

D-Phe, Pro, Phe, D-Phe, Asn, Gln, Tyr, Val, Orn[+14], Leu

Tyrocidine B

Tyrocidine B 0.37

D-Phe, Pro, Trp, D-Phe, Asn, Gln, Tyr, Val, Orn, Leu

Tyrocidine A[+39] 0.37

D-Phe, Pro, Phe[+39], D-Phe, Asn, Gln, Tyr, Val, Orn, Leu

Tyrocidine C[-39] 0.37

D-Phe, Pro, Trp, D-Trp[-39], Asn, Gln, Tyr, Val, Orn, Leu

Tyrocidine A

Tyrocidine A 0.33

D-Phe, Pro, Phe, D-Phe, Asn, Gln, Tyr, Val, Orn, Leu

Tyrocidine B[-39] 0.33

D-Phe, Pro, Trp[-39], D-Phe, Asn, Gln, Tyr, Val, Orn, Leu

Compound 879

Neoviridogrisein 0.28

(Thr+Hpa), NMe-Ph-Gly, Ala, NMe-bMe-Leu, NMe-Gly, D-4OH-Pro, D-Leu

H8405

Beauverolide Ka[-18] 0.27

C10:0-Me(4)-OH(3), Trp, Phe[-18], D-aIle

BQ123

Halipeptin B[-20] 0.26
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Table 4.2: NRP-Dereplication results. Continued from previous page

C10:0-Me(2.2.4)-OH(3.7), Ala, aMe-Cys[-20], NMe-OH-Ile, Ala

H3526

hymenistatin I 0.35

Pro, Tyr, Val, Pro, Leu, Ile, Ile, Pro

hymenamide G 0.25

Pro, Tyr, Val, Pro, Leu, Ile, Leu, Pro

Cyanopeptide X

Majusculamide C[-30] 0.23

Map, Ala, Ibu, NMe-OMe-Tyr[-30], NMe-Val, Gly, NMe-Ile, Gly, Hmp

Dolastatin 11[-30] 0.23

Gly, NMe-Val, NMe-OMe-Tyr[-30], Ibu, Ala, Map, Hmp, Gly, NMe-Leu

Microcystin LR

Microcystin LR 0.20

D-Ala, Leu, D-bMe-Asp, Arg, Adda, D-Glu, NMe-Dha

[Dha7]microcystin-LR[+14] 0.20

D-Ala[+14], Leu, D-bMe-Asp, Arg, Adda, D-Glu, dh-Ala

Microcystin LAib[+71] 0.19

D-Ala, Leu, D-bMe-Asp[+71], Aib, Adda, D-Glu, NMe-Dha

Seglitide

Microsclerodermin F[-3] 0.13

C12:3(7.9.11)-Me(6)-OH(2.4.5)-NH2(3)-Ph(12), Pyr[-3], NMe-Gly, D-Trp, Gly, OH-4Abu

Cyclomarin C

Aureobasin C[-60] 0.13

D-Hmp, NMe-Val, Phe, NMe-Phe, Pro, Val, NMe-Val, Leu, bOH-NMe-Val[-60]

Cyclomarin A

Aureobasidin F[-44] 0.12

D-Hmp, NMe-Val[-44], Phe, NMe-Phe, Pro, aIle, Val, Leu, bOH-NMe-Val

Dehydrocyclomarin A

Hymenamide J[-74] 0.12
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Table 4.2: NRP-Dereplication results. Continued from previous page

Pro, Tyr, Asp, Phe, Trp[-74], Lys, Val, Tyr

Dehydrocyclomarin C

PF1022E[+44] 0.11

D-Lac, NMe-Leu, 4OH-D-Ph-Lac, NMe-Leu, D-Lac, NMe-Leu[+44], D-Ph-Lac, NMe-Leu

4.3.2 NRP-Sequencing

The sequencing results of the NRP-Sequencing algorithm are summarized

in Table 4.3. The reconstructed NRPs are represented as sequences of masses. For

the sake of brevity, masses are rounded to integers. Composite masses (2 or more

amino acids) are enclosed in square brackets. For example, [163+99] in tyrocidine

A means that NRP-Sequencing returned 262 (composite mass of 163 and 99 (Tyr

and Val)). Best reconstruction is the highest scoring completely correct (i. e. no

incorrect b-ions) de novo sequence returned by NRP-Sequencing.

Table 4.3: NRP-Sequencing results. See text for discussion of the results.

Compound Best reconstruction Rank
Tyrocidine A [163+99], 114, [113+147], [147+147], 147, [114+128] 1
Tyrocidine A1 [163+99], 128, [113+147], [147+147], 147, [114+128] 1
Tyrocidine B [163+99], 114, [113+147], 97, [186+147], 114, 128 14
Tyrocidine B1 99, 128, [113+147], [97+186], 147, [114+128] 1
Tyrocidine C 113, 147, 97, 186, 186, 114, [128+163], [99+114] 125
Tyrocidine C1 [163+99], [128+113], 147, [97+186], 186, [114+128] 1

Seglitide 85, [163+186], 128, 99, 147 1
Cyanopeptide X 57, 113, 161, 141, 71, [113+114+57], 127 1

BQ123 113, 186, 115, [97+99] 1
H3526 97, [97+163], 99, [97+113], 113, 113 2
H8405 129, 71, 113, 113, 186 1

4.3.3 NRP-Tagging

The sequencing results of the NRP-Tagging algorithm are summarized in

Table 4.4. The reconstructed NRPs are represented as sequences of masses. For the

sake of brevity, masses are rounded to integers, e.g. NRP-Tagging reconstruction
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for tyrocidine A is 99.06, 114.07, 113.07, 147.06, 97.05, 147.05, 147.05, 114.06,

128.03, 163.06, which is more accurate that the integer representation given in the

first row of the Table. Composite masses (2 or more amino acids) are enclosed

in square brackets. For example, [114+57] in cyanopeptide X means that NRP-

Tagging returned 171 as the mass of an amino acid instead of the correct masses

114 and 57 (2-hydroxy-3-methyl-pentanoic acid and glycine). Incorrect masses are

enclosed in curly brackets and expressed in terms of their offses from correct masses.

For example, {97+1} in H3526 means that NRP-Tagging returned 98 while the

correct mass is 97 (Pro). In this case the isotopic peak (rather than a b-ion) was

chosen as the best spectral interpretation. Lastly, cases in which the algorithm

splits a mass are enclosed in angle brackets with the correct mass followed by the

masses returned by the algorithm. A single mass 286 in cyclomarin A is split as

129, 157. A single mass 222-18 (water loss) in compound 879 is split into 100 and

104. The reconstructions given in the table represent a complete reconstruction of

the compound, or a reconstruction with composite masses and/or masses with a

known offset. The “Best reconstruction” column presents the high-scoring peptide

with a specified rank (“Rank column”) that is selected from the list of all top-

scoring peptides as the most similar to the correct peptide.

4.4 Discussion

Using mass spectrometry for NRP interpretation is a Catch-22 situation.

On the one hand, there are no algorithms for interpretation of NRP spectra, thus

providing little incentive for generating NRP spectra. On the other hand, shortage

of NRP spectra slows down development of algorithms for NRP interpretation be-

cause spectral datasets are needed to develop such algorithms. Here we attempted

to break this unfortunate cycle that will hopefully motivate the natural-product

researchers to begin generating NRP spectra.

All software tools and spectral annotations described in the paper can be

accessed at http://bix.ucsd.edu/nrp/index.html
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Chapter 5

Dereplication of Noncyclic

Peptides

Since the publication of the manuscript “Dereplication and de novo sequenc-

ing of nonribosomal peptides”. J. Ng, N. Bandeira, W.-T. Liu, M. Ghassemian, T.

L. Simmons, W. H. Gerwick, R. Linington, P. C. Dorrestein, and P. A. Pevzner.

Nature Methods, vol. 6, pp. 596-599, 08 2009, additional developments have been

implemented in the NRP-Dereplication algorithm described in Chapter 4.

5.1 Introduction

The results for cyclic peptide identification, especially those of database

search (NRP-Dereplication), are very encouraging to extend the methods to non-

cyclic structures (Figure 5.1). In particular, partial cyclic structures represent the

second most common class of nonribosomal peptides (NRPs) in Norine [66] (see

Table 5.1). Being able to generalize the NRP-Dereplication algorithm will greatly

help the natural product community to identify more new natural products (that

are closely related to known ones).

Before generalizing NRP-Dereplication to noncyclic structures, it is worth

describing existing methods of linear peptide identification and strategies to score

a mass spectrum from a linear peptide. The essence of database search consists of

finding the best match among all entries in the database. The database consists

77
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Decaplanin (other) Vibriobactin (branched)

Cyclosporin A (cyclic) Theonegramide (double cyclic)

Chrysobactin (linear)

Pholipeptin (partial cyclic)

Figure 5.1: Examples of structures of NRPs in the Norine database.

Table 5.1: Distribution of NRPs in Norine according to their structure. The
other class includes fairly complex compounds with many cycles and branches.

Structure Entries
Cyclic 434
Partial Cyclic 281
Linear 254
Double cyclic 26
Other 71
Branched 5
All 1071
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of sequence data, which does not have fragmentation information. Therefore, the

strategy is to predict a theoretical spectrum from the sequence data, and compute

a cross-correlation coefficient between the experimental and theoretical spectrum.

With this approach, it is straightforward to find the best match, because one can

create a theoretical spectrum for all peptide entries in the database and compute

all the cross-correlation coefficients between the experimental and a theoretical

spectrum. The critical step in database search is the ability to predict a theoretical

spectrum that closely resembles a experimental spectrum, maximizing the cross-

correlation coefficient (or score).

For linear peptides, the theoretical spectrum can be easily constructed by

creating prefix and suffix fragments (b and y-ion for collision induced dissocia-

tion mass spectra). This approach is backed by the mobile proton fragmentation

model [70, 71] and the great body of validated experimental data. The most naive

approach for the creation of a theoretical experimental spectrum is simply creat-

ing a peak for each position corresponding a prefix and suffix ion. In here, the

intensity of the peaks in the theoretical spectrum is ignored because all peaks have

a uniform intensity. The most popular database search tool for mass spectra of

linear peptides SEQUEST [1] uses this simple model with the addition of neutral

loss peaks. This method works reasonably well in practice and is capable of iden-

tifying correctly spectra from linear peptides, but it is obvious that more reliable

identifications can be obtained if the intensity information is used when creating

the theoretical spectrum because not all fragments are equally likely to be created

in an experimental spectrum. To this end, the main approaches for fragment in-

tensity prediction rely on the fact that a correlation can be established between

sequence data (amino acid composition, theoretical peak position, theoretical peak

type, etc) and the intensity of the given fragment ion.

Zhang et al. [72] developed a kinetic model to generate theoretical spectra

from sequence data. All fragmentation pathways can be modeled as a chemical

reaction and a kinetic constant encapsulates the rate in which the reaction carries

out. Under the kinetic model, all fragmentation pathways are in competition

during the peptide fragmentation, and the intensity of a given peak is correlated
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to the rate in which the pathway generating that peak is carried out. The set

of fragmentation pathways can be compiled from the literature, and the kinetic

constants can be derived from experimental data. Given a large corpus of validated

data, this becomes an optimization/machine learning problem, in which the set of

parameters (kinetic constants) need to be trained so that the maximum number

of true positives are observed for the training set. For the intensity prediction

problem specifically, the relative intensity of the peaks in the theoretical spectrum

need to match those of the experimental spectrum.

The theoretical framework for peptide fragmentation is very complex, and

not well understood. Although Zhang et al. [72] created a kinetic model by compil-

ing known fragmentation pathways in the literature, the set of pathways considered

is not complete or exhaustive. Therefore, other approaches do not try to explain all

the mechanisms of fragmentation, but formulate the problem as a purely machine

learning problem (optimize the parameters). The number of parameters required

for a model to predict the peak intensities of a theoretical spectrum is typically

quite large [73], indicating that the fragmentation process is very complex, but the

advantage of formulating the problem in the framework of machine learning is that

the mechanisms of fragmentation do not need to be understood.

5.2 Methods

The work in fragment prediction is directly applicable to the

NRP-Dereplication algorithm. In fact, for linear NRPs existing database search

tools can be readily applied with little or no modifications. However, for non-linear

NRPs, the prefix-suffix fragment ion model is no longer applicable. To draw a par-

allel to database search of linear peptide mass spectra, the first step is to predict

a theoretical spectrum that closely resembles the experimental spectrum of the

peptide ignoring the peak intensities.

Theoretical Spectrum Prediction Problem. Given the primary sequence of a

peptide S = s1, . . . , sn (series of monomers) and their connectivity E = e1, . . . , em

(ei indicates a chemical bond between two monomers), return a list peak positions
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T = t1, . . . , tl as a theoretical spectrum of S. Additionally, an input parameter

b is needed to indicate the maximum number of breaks allowed in the original

structure.

For linear peptides, the typical assumption is that b = 1. In fact, any prefix

or suffix ion is the result of 1 break of the linear sequence. Cases of b = 2 are

usually ignored because internal fragments account for a much smaller percentage

of the total intensity of the spectrum. Any theoretical spectra created with b > 2

is no different than with b = 2 because no new peaks can be created if we allow

more breaks on the structure.

For purely circular structures, the theoretical spectrum for b = 1 only has

one peak with mass equal to the parent mass of the compound because for b = 1,

the only event modeled is the linearization of the circular compound. For a mass

spectrum to encompass sequence information, b = 2 needs to be used. Similar

to theoretical spectra of linear peptides, for b > 2 does not add new peaks to the

theoretical spectrum. Intuitively, experimental mass spectra from circular peptides

require additional energy to break because we require to collect spectra with at

least 2 breaks. Note that the algorithms described in Chapter 4 for the sequencing

for circular NRPs make the assumption that there are two breaks in the spectrum.

To create theoretical spectra for peptides with more exotic structures (par-

tially cyclic, branched and other) a combinatorial approach to generating candidate

fragments needs implemented. For partially cyclic structures, it is reasonable to use

b = 2 when generating the theoretical spectrum because this is the smallest b that

encapsulates sequence information in the cycle part of the peptide. The creation of

a theoretical spectrum with b = 2 is feasible because the maximum number of dis-

tinct fragments is strictly less than (2 * ‖E‖ choose 2) + 2 * ‖E‖ = ‖E‖2 + ‖E‖,
where ‖E‖ is the number of edges of the structure. For a NRP with 10 edges, the

maximum number of theoretical fragments is less than 100. If neutral losses are

considered, a multiplicative factor of the number of neutral losses needs to be fac-

tored into the calculations. ‖E‖ choose 2 is the number of fragments that can be

obtained with 2 breaks to the structure. The 2 coefficient is needed because for

each configuration a complementary fragment is also generated with (potentially)
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distinct mass. ‖E‖ is simply the upper bound for the number of fragments that

can be generated with a single break. For branched peptides, a theoretical spec-

trum constructed with b = 1 contains enough information to identify its peptide.

Figure 5.2 shows fragment created from a partially cyclic and a branched NRP. Un-

like linear and cyclic peptides, theoretical spectra of more complex structures add

additional peaks for b > 2 adding complexity to the resulting theoretical spectrum.

C10:0-OH(3)

C10:0-OH(3) _ D-Leu

C10:0-OH(3) _ D-Leu _ Asp

C10:0-OH(3) _ D-Leu _ Asp _ Thr

D-Leu _ Asp _ [Thr _ D-Leu _ D-Leu _ D-Ser _ D-Leu _ D-Ser _ D-Leu _ Ile _ D-Asp]

Asp _ [Thr _ D-Leu _ D-Leu _ D-Ser _ D-Leu _ D-Ser _ D-Leu _ Ile _ D-Asp]

[Thr _ D-Leu _ D-Leu _ D-Ser _ D-Leu _ D-Ser _ D-Leu _ Ile _ D-Asp]

C10:0-OH(3) _ D-Leu _ Asp _ Thr _ D-Asp _ D-Leu

D-Leu _ D-Leu _ D-Ser _ D-Leu _ D-Ser _ D-Leu

...

Pholipeptin (partial cyclic) Vibriobactin (branched)

DMOG

diOH-Bz

DMOG _ NSPD _ diOH-Bz

DMOG _ NSPD _ DMOG

DMOG _ NSPD

NSPD _ diOH-Bz

Figure 5.2: Theoretical fragment ions of the theoretical spectrum for 2 NRPs.
The blue fragments are derived with one break while the red fragments are derived
with two breaks. Not all theoretical peaks for pholpeptin are shown.

5.3 Results

The NRP-Dereplication for general structures was implemented and all pep-

tides of the Norine database are considered in the search (as opposed to only cyclic

structures in the previous implementation). In particular, viridogrisein (Figure 5.3)

was initially included in the database by combining the monomers Thr and Hpa

as a single unit, making the peptide completely cyclic. Compound 879 (Table 4.2)

was dereplicated after adding viridogrisein to the database. However, with the
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new NRP-Dereplication algorithm, this structure can be incorporated in its native

form, and the additional fragments in the theoretical spectrum can be generated.

However, no fragments missing the Hpa monomer were observed in the experimen-

tal spectrum (data not shown), meaning that no additional experimental fragments

we explained with the new fragmentation model.

Figure 5.3: Structure of viridogrisein

5.4 Discussion

The proposed method for creation of theoretical spectra for general NRPs

with different structures is not without shortcomings. Again, by drawing a par-

allel to database search of linear peptides, the proposed method uses a similar

approach to SEQUEST. For instance, the peak intensity information is not used
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when establishing the similarity between the experimental and theoretical spec-

trum. Two roadblocks still remain for the creation of more elaborated theoretical

spectra. First, validated mass spectrometry data of NRPs is almost nonexistent in

the field making the creation of statistical models impossible [31, 39, 74]. Second,

the number of building blocks (monomers) is considerably higher for NRPs (vs

20 standard amino acid). This impedes using existing scoring models that predict

peak intensity based on local amino acid composition of the fragment ion. However,

a simple methodology (using uniform intensity) gave encouraging results for purely

cyclic NRPs. Fortunately, the number of entries in Norine is quite small compared

to protein databases used for linear mass spectrum searches. With accumulation

of more mass spectrometry data from NRPs, we expect that more sophisticated

models can be bootstrapped in the near future.

The generalized dereplication problem for arbitrary peptide structures can

be directly extended to the framework previously described. In this case, we would

exhaustively change the masses of the monomers in the peptide in the database

and identify the modified version of the peptide that maximizes the similarity of

the experimental and theoretical spectrum.

Finally, this approach for characterization of NRPs using mass spectrom-

etry is not limited NRPs. Mass spectrometry data from polyketides, a group of

secondary metabolites, could be analyzed given a database of polyketides.



Chapter 6

Interpretation of Tandem Mass

Spectra Obtained from Cyclic

Nonribosomal Peptides

Natural and non-natural cyclic peptides are a crucial component in drug

discovery programs because of their considerable pharmaceutical properties. Cy-

closporin, microcystins, and nodularins are all notable pharmacologically impor-

tant cyclic peptides. Because these biologically active peptides are often biosyn-

thesized nonribosomally, they often contain nonstandard amino acids, thus in-

creasing the complexity of the resulting tandem mass spectrometry data. In

addition, because of the cyclic nature, the fragmentation patterns of many of

these peptides showed much higher complexity when compared to related counter-

parts. Therefore, at the present time it is still difficult to annotate cyclic peptides

MS/MS spectra. In this current work, an annotation program was developed

for the annotation and characterization of tandem mass spectra obtained from

cyclic peptides. This program, which we call MS-CPA is available as a web tool

(http://lol.ucsd.edu/ms-cpa v1/Input.py). Using this program, we have suc-

cessfully annotated the sequence of representative cyclic peptides, such as seglitide,

tyrothricin, desmethoxymajusculamide C, dudawalamide A, and cyclomarins, in

a rapid manner and also were able to provide the first-pass structure evidence of

a newly discovered natural product based on predicted sequence. This compound

85
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is not available in sufficient quantities for structural elucidation by other means

such as NMR [75]. In addition to the development of this cyclic annotation pro-

gram, it was observed that some cyclic peptides fragmented in unexpected ways

resulting in the scrambling of sequences. In summary, MS-CPA not only provides

a platform for rapid confirmation and annotation of tandem mass spectrometry

data obtained with cyclic peptides but also enables quantitative analysis of the

ion intensities. This program facilitates cyclic peptide analysis, sequencing, and

also acts as a useful tool to investigate the uncommon fragmentation phenomena

of cyclic peptides and aids the characterization of newly discovered cyclic peptides

encountered in drug discovery programs.

6.1 Introduction

Ribosomally as well as nonribosomally derived cyclic peptides are an impor-

tant group of compounds because of their wide range of biological, toxic, and phar-

macological activities, and they often exhibit unique chemical structures [76, 77].

For example, the cyclic toxins microcystins and nodularins produced by cyanobac-

teria (blue-green algae) can wipe out entire fisheries and can cause death in hu-

mans [78, 79]. In addition, it is now becoming increasingly clear that these nat-

urally occurring cyclic peptides have biological roles in quorem sensing [80, 81],

gliding [82, 83], prevention of aerial growth [84], or cell adherence regulation [85]

and that they can be used as a diagnostic markers for disease [86]. In addition,

many cyclic peptides are used in the clinic. Well-known examples of cyclic natural

products are cyclosporine, an immunosuppressant drug used to prevent organ re-

jection [87], seglitide, a potent growth factor release inhibitor [88], and ramoplanin,

a novel antibiotic [89]. Because of the importance of their therapeutic applications,

there is a continued development of strategies to generate cyclic libraries for drug

screening programs [90, 91, 92, 93, 94]. In fact, many cyclic natural products

with potent therapeutic properties are discovered every week [75, 95, 96, 97, 98].

Therefore it is important to continue developing methods not only for isolating or

preparing such cyclic peptides but also to characterize such peptides.
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Despite a lot of effort by mass spectrometrists [61, 99, 100, 101, 102, 103,

104, 105, 106, 107, 108, 109, 110], we are still exploring the way cyclic peptides

behave in a mass spectrometer, in particular during collision-induced dissocia-

tion (CID). Bioinformatics tools such as MASCOT, SEQUEST, and InsPecT are

capable of robust interpretation of tandem MS spectra and also enable protein

identification with the equipped database search engines [1, 2, 3]. However, few

tools are designed for cyclic peptides with a user-friendly interface at a level ac-

cessible to non-mass spectrometrists. In addition most of the bioinformatics tools

are based on somewhat refined fragmentation models, i.e., they may only anno-

tate b and y ions. Both of these are the likely reasons why most scientists that

isolate cyclic natural products and that develop cyclic peptide libraries for drug

screening programs ignore all but only annotate a small amount of the ions that

are typically observed from cyclic peptides in their structural elucidation efforts,

leaving tens to hundreds of ions unaccounted for [103]. We became interested in

this problem because when we attempted to annotate the tandem mass spectra

of cyclic natural products isolated from marine organisms by manual means, we

observed that a large proportion of the spectral intensity remained unaccounted

for and that the annotation was very time-consuming. Although a program that

predicts theoretical fragmentation patterns such as PFIA may assist in manual

annotation of cyclic peptides by providing all possible b ions [111], MS-CPA is

capable of direct annotation of the actual input cyclic peptide MS spectra and is

also the first program that take into account the fragments that are a result of

sequence-scrambling fragmentation pathways.

To improve our understanding of the fragmentation behavior of cyclic pep-

tides we have developed a program that readily annotates a mass spectrum result-

ing from the collision-induced dissociation of cyclic peptides. In addition, we have

created a user-friendly web interface so that other scientist that are noncomputer

experts can easily use it to annotate their tandem mass spectra of cyclic peptides.

Using this program, we observed that much of the spectral intensity of a MS2 mass

spectra of a cyclic peptide could not be explained. Upon further analysis, we re-

alized that unanticipated fragmentation pathways were involved in cyclic peptides
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when the standard fragmentation rules were applied. The data suggested those

unanticipated fragments resulted in scrambling of the sequence. These unusual

fragments were first described by Harrisons et al., as nondirect sequence (NDS)

ions based on the scrambling of the original peptide sequence in contrast to the di-

rect sequence (DS) ions derived from typical fragmentation pathways [103]. While

initially surprising to the authors that NDS are observed, the mechanistic details

toward the formation of NDS ions have recently been described in detail [107]. We

have included NDS in our annotations. Therefore, our program, MS-CPA, not only

provides evidence for the existence of these NDS ions but also enables quantitative

analysis of the spectral abundance that match to DS and NDS ions.

In order to demonstrate the utility of this program, we have not only ap-

plied it to the representative testing peptides, seglitide and the tyrocidines, but

also used it to confirm the sequence of two newly discovered natural products,

desmethoxymajusculamide C (DMMC) and dudawalamide A, both isolated from

marine cyanobacteria Lyngbya majuscule (Figure 6.1). In addition, the program

was used to verify the structure of desprenylcyclomarin C, a natural product iso-

lated from a prenyltransferase mutant of the marine bacteria Salinispora arenicola

CNS-205. This marine natural product could not be isolated in sufficient quanti-

ties to confirm its structure by NMR; therefore, this program was critical in the

confirmation of its structure. Finally, during these studies we discovered three

additional dehydrated cyclomarin analogues and used our program to localize the

site of dehydration.

6.2 Methods

6.2.1 Sample Preparation

Seglitide was purchased from Aldrich and was dissolved to a concentration

of 20 µg/mL in 50:50 methanol (MeOH)/water with 1.0% acetic acid (AcOH).

Dudawalamide A and DMMC were isolated from cyanobacteria and prepared in a

solution of 50 µg/mL concentration in 50:50 MeOH/ water with 1.0% AcOH and

was infused into the mass spectrometer. Cyclomarins were isolated from a marine
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Figure 6.1: Structures of cyclic peptides discussed in this chapter.
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actinomycete and desalted with C18 ZipTip pipet tips (Millipore) following the

manufacturer’s protocol to a final concentration of 50 µg/mL.

6.2.2 Mass Spectrometry

All samples were subjected to electrospray ionization on a Biversa Nano-

mate (Advion Biosystems, Ithaca, NY) nanospray source (pressure, 0.3 psi; spray

voltage, 1.4-1.8 kV). Seglitide, tyrothricin, and DMMC were analyzed on a Finni-

gan LTQ-FTICR MS instrument (Thermo-Electron Corporation, San Jose, CA)

running Tune Plus software version 1.0 and Xcalibur software version 1.4 SR1. Du-

dawalamide A was analyzed on a Thermo LTQ-Orbitrap-MS instrument (Thermo)

running Tune Plus and Xcalibur software version 2.0. Activation time and q ex-

periments, low-resolution spectra of seglitide, tyrothricin, and cyclomarins were

acquired on a Finnigan LTQ-MS (Thermo- Electron Corporation, San Jose, CA)

running Tune Plus software version 1.0. The final spectrum was obtained by aver-

aging MS2 scans with QualBrowser software version 1.4 SR1 (Thermo). Generally,

the instrument was first autotuned on the m/z value of the ion to be fragmented.

Then, the [M + H]+ ion of each compound was isolated in the linear ion trap

and fragmented by collision induced dissociation (CID). Sets of consecutive, high-

resolution, full MS/MS scans were acquired in centroid or profile mode and av-

eraged using QualBrowser software (Thermo). The Thermo-Finnigan RAW files

containing the average spectra were then converted to mzXML file format using

the program ReAdW (tools.proteomecenter.org).

6.3 Results

6.3.1 Complexity of Cyclic Peptide Fragmentation

Because so many researchers work with cyclic peptides, the annotation of

tandem mass spectra from cyclic peptides is important. The annotation, however,

of tandem mass spectra of cyclic peptides is often difficult for mass spectrometrists

and natural product scientists alike. The difficulty in the annotation of cyclic pep-
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tides arises from the nature of cyclic peptides itself. A cyclic peptide with n amino

acid residues, theoretically, will yield n series of b ions but not any y ions [105].

If there are other ions such as a ions, internal fragments, and small neutral losses

such as H2O and NH3, this complexity increases significantly. Therefore, it is

difficult to annotate each and every ion in the spectrum of cyclic peptides and

thus becomes an informatics problem. To overcome some of the complexity in

the annotation of these peptides, we have developed a program that assists in the

annotation of tandem mass spectrometry data based on input amino acid values

and an experimental tandem mass spectrometric data set in .dta and .mzXML

formats.

While we have presented, at a conference, that de novo sequencing of these

nonribosomal peptides can be accomplished with near perfect mass spectral data

sets using spectral alignments and a combination of de novo and database searching

algorithms [112], it quickly became clear that when we applied our first generation

de novo sequencing algorithms to nonperfect mass spectrometry data sets typically

encountered with more complex nonribosomally encoded peptides or symmetric

cyclic peptides that these algorithms often identified a slightly different sequence.

To improve the de novo sequencing algorithms that can be used to confirm the

structures of isolated natural products, we need to improve our understanding

of the resulting ions from a tandem mass spectrometry experiment. This is, in

particular, important when it comes to complex cyclic peptides.

Cyclic Peptide Annotation Program. To aid in the sequencing as well as

to improve our understanding of the fragmentation behavior of cyclic peptides

of nonribosomal origin, we developed a program named the MS-Cyclic Peptide

Annotation program (MS-CPA) that readily annotates a mass spectrum resulting

from the CID of a cyclic peptide. In particular, this program annotates b ions, a

ions (losses of CO), and b0 ions (losses of H2O). However, y ions are not included,

because cyclic peptides do not yield such ions [105]. The annotation program

started as a Python script to mark b, a, and b0 ions given a mass spectrum.

The current implementation is capable of handling .dta and .mzXML file formats

as this data format is becoming the standard format for reporting or depositing
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mass spectra and/or proteomic data sets [113, 114] as spectrum inputs. For the

reason that many cyclic peptides contain unusual or modified amino acids, we

leave the freedom for users to input the amino acid masses manually. There is

no size limitation to the mass of the amino acid that can be manually imported.

Additionally, default standard amino acids masses are provided. Finally, the amino

acid sequence is specified by the user in the order that they are encountered in

the peptide. For example, seglitide has a methylation on the nitrogen of alanine.

This is a nonstandard amino acid; therefore, we can input 85.05280 for methyl-

alanine rather than the alanine mass 71.03711. In addition, once it was recognized

that even for mass spectrometrically well behaved peptides, a large proportion of

the ion intensity remained unexplained, and the capabilities of this program was

expanded to consider neutral amino acid losses from the b ion ladder as well as

evaluation of possible rearrangements based on the series of masses initially given.

The current program has thousands of lines of code to annotate a spectrum for

the generation of a graphical and tabular output on a web server.

We have made the MS-CPA program publicly available as a web tool

(http://lol.ucsd.edu/ms-cpa v1/Input.py). In this work, we demonstrate the

utility of MS-CPA for the characterization of the cyclic peptides shown in Fig-

ure 6.1. The cyclic peptides in Figure 6.1 are representative of the type of cyclic

peptides encountered in drug screening programs.

6.3.2 Pre-analysis Data Processing of the Tandem Mass

Spectrometry Input File

While the main code for this program is thousands of lines, the main chal-

lenge in the annotation process is actually the generation of a spectrum in which

most peaks can be interpreted. Because of the great variance of experimental

settings, instrumentation, and fragmentation properties of the compounds, pre-

processing steps of the data that is required for each compound and experiment

can vary a lot. To this end, we implemented a series of filters to enhance the

signal-to-noise ratio of the experimental spectrum. Our current implementation

regarding preprocessing includes centroid filtering, rank filtering, water filtering,
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isotope filtering, peak tolerance, and symmetrization. Given that noise peaks are

unavoidable in a real mass spectrometry experiment, the main goal of the filters is

to eliminate ions that are likely noise or ions that are uninformative without losing

the important data. In addition, this gives the users of this program the flexibility

to annotate their spectra in a manner they prefer. For example, the user may only

want to annotate the top 10 ions in the spectrum. This is possible with this inter-

face. In addition it is possible to annotate unfiltered spectra but results in a much

longer computational processing time. In many cases, in natural product research,

the samples are available in limited quantities or the peptide does not fragment

well and therefore it is not always possible to produce the best mass spectra. The

filters will allow us to work with these spectra, instead of repeating the experiment,

which might not be possible in real world drug discovery applications where there

is often a limited supply.

6.3.3 Nomenclature of Ions

For discussion purposes of the results in this paper, we have adapted the

nomenclature forwarded by Ngoka and Gross to describe the cyclic peptides in

this paper [115]. The nomenclature developed by Ngoka and Gross describes the

ions with a four-part descriptor with the general formula xnJZ, where x is the

designation for the type of ion (b, a, etc.) and n is the number of amino acid

residues that makes up the ion. J and Z are the one-letter codes for the two

amino acid residues connecting the backbone amide bond, J-Z, which is broken

to form the linear ion. J is the N-terminal amino acid residue and Z is the C-

terminal amino acid residue. To illustrate the nomenclature, we use seglitide,

a six-amino acid residue cyclic peptide illustrated in Figure 6.2 as an example.

In seglitide and tyrocidines, the one letter amino acid abbreviation was used to

represent each residue, while in other compounds we assigned letters in order of

their sequence using the standard alphabet since they contained too many modified

residues. For example, in this paper we describe DMMC for which 6 out of 9

are modified or nonstandard amino acids, while dudawalamide A has 4 out of

7 that are nonstandard, mantillamide has 5 out of 9, and cyclomarins have 5
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out of 7 (Figure 6.1). Because the alanine in seglitide has methylation in the

nitrogen position, we use A’ to represent this methylated residue. Seglitide using

this nomenclature would likely undergo random ring-openings following by the bn

→ bn-1 pathway45 resulting in the formation of 6 (n = 6) different series of b ions

(Figure 6.2).

!

Figure 6.2: Schematic representation of ions in seglitide. According to the con-
ventional pathway for fragmentation of cyclic peptides, seglitide first undergoes
random ring-opening at each amide bond, yielding six different linear peptides.
Sequential C-terminal amino acid cleavage results in six series of ions, for a total
30 b ions.

6.3.4 Cyclic Peptide Annotation Program on Seglitide

We first illustrate the application and utility of MS-CPA using a simple

cyclic peptide, seglitide, a somatostatin receptor antagonist consisting of six amino

acids, and described the results using the nomenclature defined above (Figure 6.1).

Seglitide was analyzed by Fourier-transform ion cyclotron resonance mass spec-

trometry (FTICR MS). A singly protonated ion was observed at 808.4247 Da,

which is within 3 ppm of the theoretical mass of seglitide (808.4272 Da). This

ion was subjected to CID in a linear ion trap, and the product ions were again

analyzed by FTICR MS (Figure 6.3). The resulting MS2 spectra were then ana-
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lyzed by MS-CPA. The spectrum was subject to standard filtering procedures to

increase the signal-to-noise ratio. First, because the raw spectrum was collected

in profile mode, only the top peak was retained in a window of ±0.05 Da. Sec-

ond, the top 200 most intense peaks were retained. Lastly, isotopic and water-loss

peaks were filtered out, yielding 146 final peaks. As shown in Figure 6.4, the out-

put of MS-CPA includes input residues and the parent mass that is obtained as

user input or directly obtained from the input .dta or .mzXML file (A), summary

of input filtering parameters and resulting ions counts (B), quantitative statistics

of cleavage and total explainable ion intensity (C), a spectrum with color-coded

matches (b ions are showed in red; water loss are green; a ions are cyan; NDS’s

are blue; unannotated ions are yellow) (D), a plot of mass errors of the annotated

ions (E), and a list of matched fragment ions in tabular format (E).

For seglitide, the MS-CPA output indicates that 28 out of the 30 possible

b ions were matched to observed masses. The explainable ion intensity of the b

ions combined with possible a ions and loss-of-water ions was 71.5% of the total

ion intensity. The absolute difference between the calculated and the experimental

masses was less than 0.004 Da. Among the annotations, some of the ions with high

intensity contained water loss even though there was no serine or threonine in the

sequence. In addition, masses corresponding to addition of 28 Da (plus CO) were

observed. These ions were not expected, thus we subjected these ions to additional

rounds of tandem mass spectrometry (MS3 and MS4) to verify if the annotations

were real or not. With these additional rounds of fragmentation, the authenticity

of MS-CPA annotations was verified and these ions are indeed correctly annotated

(MSn spectra data not shown). Although the mechanisms behind the formation

of these unusual fragments are still elusive, MS-CPA enabled us to discover the

existence of these ions.

6.3.5 Observation of NonDirect Sequence Ions in Seglitide

Because more than 28% of the ion intensity remained unexplained, we ex-

plored the nature and significance of the remaining ion intensity. Because these

data were acquired with high-resolution, the molecular mass of each ion could be
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Figure 6.3: Seglitide MS and MS2 spectrum. MS and MS2 spectrum were col-
lected by ESI-LTQ-FTICR MS. A) Broadband spectrum. B) Spectra obtained
with an isolation window set for the seglitide parent ion (M + H)+. C) MS2

spectrum of seglitide. D) Zoom in spectrum of the 600-750 m/z region.
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Figure 6.4: MS-CPA output from analysis of seglitide MS2 data. A) and B) MS-
CPA input parameters summary, number of cleavages, and explainable intensity.
C) Annotation; the * indicates an ion that cleaves here was annotated in the
spectrum. D) Annotated spectrum. E) Accuracy analysis. F) Annotated ions list
(unsymmetrized) (to save space, only the top 30 intensity ions were displayed). In
the output spectrum and annotation list, the b ions are showed in red; H2O loss
is green; a ions are cyan; NDS’s are blue; and unannotated ions are yellow in the
spectrum and unlisted in the table. Symmetric ions are not shown in parts D or
F.
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determined. First, we analyzed these for alternate combinations of amino acids

that would result from peptide residues rearrangements. We found 58 such ions

comprising roughly 10% of the total ion intensity. Each of these scrambled se-

quence ions had mass errors within 0.004 Da, in agreement with all of the other

masses we had annotated. The fact that so many of the ions could be explained

by a rearrangement of the amino acid sequence is unlikely be coincidental or due

to noise. In fact, some of these scrambled ions are of relatively high abundance.

In seglitide, the most abundant NDS ion was up to 16% of the normalized ion

intensity when the most intense ion was set to 100%. These kinds of scrambled se-

quence ions have previously been observed in peptides and described as nondirect

sequence ions [101, 103, 104, 105, 107, 108, 109, 110]. Because of their relatively

high abundance, they are included into our annotation program MS-CPA. By

their inclusion, the accountable signal intensity increases from 71.5% to 82.1%.

Notably, some ions still remain unannotated, these ions are likely a result of side

chain fragmentations, unknown fragmentations, or noise inherently present in the

mass spectrometry data set.

To confirm the presence of NDS ions from seglitide, the two most intense of

these ions, AYWV and YKVF (b5AF-K, b5YA-W), and each b5 ion (i.e., the parent

ion minus one amino acid) were isolated and subjected to an additional round of

CID. The b5 ions were chosen for comparison and were anticipated to be linear by

conventional fragmentation pathways bx→ bx-1 [116]. Surprisingly, the MS3 spectra

indicated that none of these selected ions simply followed the conventional rules for

fragmentation which state that cyclic peptides sequentially lose amino acid residues

from the C-terminus after the initial ring-opening event (Figure 6.5) [99]. Instead,

we observed a mixed series of b ions (Figure 6.2) which suggest that the precursors

for the MS3 experiment are still cyclic. For example, if the b5 ion FAYWK was

of linear structure, only the bnFK ion series should be present in the associated

MS3 spectrum (Figure 6.5A); however, we observed the relatively intense bnYA and

b2WY ions. These additional ion fragments most likely originate from cyclic peptide

precursors.

To explore these NDS ions behavior, we first compared the total ion inten-
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Figure 6.5: MS3 spectra of representative seglitide sequence ions. The presence
of daughter b ions from different linearized parent ions suggests that the parent
ion is cyclic (as opposed to linear, as initially assumed). MS3 spectra were col-
lected by ESI-LTQ MS. A-E) b5 ions. F) and G) top two NDS ions observed.
Expected sequence ions of a linear peptide are shown in black. The expected ions
for the cyclic peptide are showed in green combined with the black ones. The red
represents NDS ions.
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sities explained by assuming a linear precursor with those explained by assuming

a circular precursor. For example, CID on the ion b5KW (KVFAY) would yield

K, KV, KVF, KVFA, Y, AY, FAY, and VFAY fragments if the b5KW ion was lin-

ear. However, if this ion was circular, we would observe 20 possible fragments. In

the case of b5KW (Figure 6.5C), the ions annotated as AYKV, FAYK, and YKVF

show high intensity and are easily explained if the precursor ion is considered to

be circular. In fact, 88% of total ion intensity can be explained by assuming a

circular precursor, while only 42% can be explained by assuming a linear precur-

sor. Table 6.1 summarizes the analysis of the seven MS2 ions that were subjected

to additional CID and annotated as either linear or circular. Among these seven

MS2 ions, the only one that gave poor fragmentation is b5VK (VFAYW), with 12

cleavages out of 20. However, this ion produced a very intense peak (b4AF) that

corresponds to loss of phenylalanine. This peak would not have been the most

intense ion in the MS3 spectrum if the initial cyclic peptide had first undergone

linearization and then eliminated the C-terminal residue (i.e., tryptophan) as pre-

dicted by conventional fragmentation rules [99, 115]. While all of the foregoing

results strongly support the cyclic nature of the MS2 ions resulting from CID of

seglitide, it is likely that a mixture of cyclic and linear forms ultimately contribute

to the MS3 spectrum.

Table 6.1: MS-CPA analysis of the two most intense NDS ions and b5 ions of
seglitide. Results were analyzed by isotope removal, water removal, NH3 removal,

and window filtering with width 10 Daltons and top 10 peaks. The fragments
column represents the fragments that cover the linear breakpoint.

Ion
Linear Circular

Fragments
cuts intensity cuts intensity

b5FV 6/8 64.75% 13/20 89.24% 3
b5VK 5/8 20.46% 12/20 88.82% 4
b5KW 4/8 42.39% 11/20 88.36% 4
b5YA 6/8 46.15% 14/20 92.54% 6
b5AF 5/8 55.19% 8/20 82.01% 1
b5AF-K 4/6 73.16% 7/12 85.38% 2
b5YA-W 4/6 50.47% 8/12 76.81% 3

Although the formation of these NDS ions have been recognized since

2003 [103], the actual mechanisms behind them are still a hot research topic.
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Several groups have argued the importance of understanding this phenomenon in

the development of de novo sequence programs. Therefore, a few mechanisms have

been proposed to account for NDS ions [101, 103, 104, 105, 107]. The general con-

sensus involves a cyclic intermediate occurring by recyclization. The presence of

recyclized intermediates have been verified by Riba-Garcia and co-workers using

ion-mobility MS [109, 110]. The tendency of generating NDS ions was also studied

under N-acetylation modification or various activation energies [108]. Recently,

just after this current manuscript was submitted, a more thorough mechanism and

pathway was published by Bleiholder et al., in which a sequence-scrambling frag-

mentation pathway was proposed describing the mechanism of NDS ions based on

experimental and energetic calculations in agreement with the cyclic NDS ions we

observed [107]. Therefore, our program, MS-CPA, provides solid evidence showing

the existence and abundance of these NDS ions with nonribosomally derived cyclic

peptides.

6.3.6 Capability of MS-CPA in Analyzing an Antibiotic

Mixture

In addition to seglitide, we investigated the antibiotic mixture tyrothricin,

which contains more than 28 different compounds and is readily available commer-

cially due to its clinical utility as a typical antibiotic. Some of these compounds,

individually called tyrocidines, are known to be cyclic peptides [117]. We used

MS-CPA to analyze several ions from this mixture (Figure 6.6). In the case of

tyrocidine A, the program successfully annotated 74 b ions out of 90 possible.

In contrast, only 17 b ions were identified through manual annotation of tandem

mass spectra from tyrocidine A, despite this being one of the most thorough stud-

ies of cyclic peptides available to date in the literature demonstrating a significant

advantage of spectra using our approach [118].
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!

Figure 6.6: Tyrocidines MS and MS2 spectra. MS and MS2 spectra were collected
by ESI-LTQ MS. A) Broadband spectrum showing different species of tyrocidines
in tyrothricin antibiotic mixture. B) Isolation of tyrocidine A (protonated form).
C) MS2 spectrum of tyrocidine A.
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6.3.7 Using MS-CPA to Annotate Cyclic Peptides Con-

taining Nonstandard Subunits

Seglitide and the tyrocidines have a uniform peptidic backbone with stan-

dard amino acids. However, many nonribosomal cyclic peptides are cyclized via

lactone formation and include nonstandard amino acids [119]. Theoretical calcula-

tions suggested that cyclic peptides favor a lactone bond as the initial ring-opening

site, and also the fragmentation pathway of cyclic peptides differs when lactone

bond(s) were involved [102]. It is therefore important to establish how these other

structural features impact the fragmentation data and the results analyzed by the

MS-CPA program. Thus, we analyzed several nonribosomal cyclic peptide natu-

ral products containing lactone linkages and nonstandard amino acids by tandem

MS followed by MS-CPA (Table 6.2). These included three marine cyanobacte-

rial depsipeptides: desmethoxymajusculamide C (DMMC), mantillamide, and du-

dawalamide A, all three of which were isolated because of their biological activity

to cancer cells or malaria parasites (Figure 6.1). Analysis of DMMC by MS-CPA

uncovered 36 of the 72 b ions expected from standard fragmentation. Including

NDS ions, the proportion of explained total ion intensity increased from 71.1% to

78.3%. Similar results were obtained for mantillamide. These data indicate that

nonstandard residues and ester linkages do not diminish the program’s ability to

insightfully annotate a tandem mass spectrum.

Dudawalamide A was isolated from the marine cyanobacterium Lyngbya

majuscula, and its structure was determined by NMR methods. A high-resolution

MS2 spectrum of this compound was submitted to MS-CPA for annotation. The

program was also provided with the masses of the dudawalamide subunits deter-

mined by NMR. The fragmentation behavior of dudawalamide, also a lactone, was

found to be very different from the fragmentation behavior of mantillamide and

DMMC. Although 96.0% of the total ion intensity was explained by b ions with

absolute mass errors smaller than 0.008 Da, only 18 of the predicted 42 b ions

were identified by the program. Thus, a high proportion of total ion intensity was

accounted for by a small fraction of the expected b ions. This phenomenon can

be explained by the presence of labile connections between residues within du-
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dawalamide. Such weak connections are represented in normal peptides by amides

N-terminal to prolines, amides C-terminal to Asp and Glu, or amides involving

tertiary amines [101]. Three such linkages are present in dudawalamide: one at

the N-terminus of proline and the other two at the N-termini of the N-methylated

phenylalanine and the N-methylated isoleucine. Because of these three labile con-

nections, the fragmentation of dudawalamide produced only a few ions, which were

consistent with the known structure of dudawalamide but provided little sequence

coverage.

Lastly, we used MS-CPA to investigate the structures of cyclomarin A,

cyclomarin C, and desprenylcyclomarin C. The natural products cyclomarin A and

C were originally isolated, based on their strong anti-inflammatory activity, from

the marine bacterium Streptomyces sp. CNB-982 [120]. Subsequently, desprenyl-

cyclomarin C was isolated from a prenyltransferase mutant of Salinispora arenicola

CNS-205, but could not be produced in amounts sufficient to enable structural

characterization by NMR [75]. We therefore subjected all three cyclomarins to

mass spectrometry and acquired MS2 spectra of each analogue. The broadband

mass spectra of each of these cyclomarins showed a protonated ion species and

a even much more stronger species corresponding to dehydrated forms (data not

shown), providing evidence that these natural products are prone to water loss.

The MS2 spectra of both the protonated and dehydrated forms of each cyclomarin

analogue were collected and subjected to MS-CPA.

Analysis by MS-CPA consistently revealed the presence of strong b5GF and

b4AG ions in the MS2 spectra of all of these cyclomarin species (Table 6.2), thus

confirming that desprenylcyclomarin C is structurally related to cyclomarin A

and C. Overall, these analyses of cyclomarins identified from 8 to 16 b ions out

of 34 possible b ions. The fraction of explained total ion intensity ranged from

37.0 to 50.3% when NDS ions were excluded and from 47.2 to 72.5% when NDS

ions were included. On the other hand, this fraction was much higher for the

dehydrated forms of cyclomarins, ranging from 72.2 to 79.1% without NDS ions

and from 76.4 to 91.8% with NDS ions. In addition, we have successfully localized

the dehydration site to the tryptophan-derived residue. Because cyclomarins are
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so prone to dehydration, it is possible that this is the form that provides its anti-

inflammatory activity. The most likely path leading to dehydration is the formation

of an imine on the tryptophan residue, yielding a conjugated system upon loss

of water. These examples highlight the usefulness of MS-CPA to assist in the

structural characterization of cyclic nonribosomally encoded natural products even

when limited quantities are available.

6.4 Discussion

Because cyclic peptides are an important class of therapeutics and tox-

ins, we have developed a program, MS-CPA, to facilitate the structural charac-

terization of these types of natural products. Users can easily access the pro-

gram on the World Wide Web in order to annotate their tandem mass spectra

of cyclic peptides. Using this program, we solidified the amino acid sequence

of several recently discovered bioactive natural products, such as dimethoxyma-

juscalide (DMMC), mantillamide, dudawalamide A, and verified the structure of

desprenycyclomarin C as well as dehydro-desprenylcyclomarin C that were isolated

from a des-prenyltransferase knockout S. arenicola CNS-205 strain. This analysis

demonstrates the strength of this program when combined with tandem mass spec-

trometry, as well as a candidate structure enables the structural characterization

of cyclic peptides produced in such low quantities that normally prohibit the use

of other structural methods such as NMR.

Using our annotation program, we observed that cyclic nonribosomal pep-

tides fragment in unusual ways. This kind of sequence-scrambling fragmentations

results in a spontaneous recyclization event. The observation of NDS ions makes

the problem of de novo sequencing of cyclic peptides even more challenging than

was previously anticipated. Therefore, the annotation and understanding of the

fragmentation patterns will, undoubtedly, facilitate and improve de novo sequenc-

ing algorithm development.

In summary, our current developed program provides a rapid annotation

platform for tandem MS spectra of cyclic peptides. Also, although not designed
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for this, it can likely also be used to analyze the cyclization phenomenon of linear

peptides. We are currently using this program to annotate peptides that have

been isolated from marine organisms that have potent cancer, malarial, and an-

tibiotic resistant bacterial inhibitory activities. The approach described in this

paper should be useful to the studies of cyclic peptide virulence factors, the chem-

ical ecology of cyclic peptides, as well as cyclic peptides in drug screening pro-

grams [75, 121, 122, 123, 124].
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Table 6.2: Summary of MS-CPA analysis of cyclic peptide natural products.
“des” represents Desprenyl. “dehy” represents dehydrated. For the cyclomarins,

manual annotations for ions reflecting loss of methanol were included in the
calculations of explainable ion intensity.

Name Cuts
Explained intensity

Without NDS ions With NDS ions
DMMC 36/72 71.10% 78.30%
Dudawalamide A 18/42 96.00% 97.30%
Mantillamide 34/72 65.21% 81.99%
Cyclomarin A 12/42 50.34% 72.48%
Cyclomarin C 16/42 36.98% 47.20%
Descyclomarin C 8/42 46.74% 55.48%
Dehycyclomarin A 16/42 73.79% 87.88%
Dehycyclomarin C 12/42 76.35% 91.83%
Dehydescyclomarin C 12/42 72.16% 79.09%



Chapter 7

Web Interface for Annotation and

Interpretation of Cyclic Peptides

7.1 Introduction

The tools described for annotation and analysis of cyclic peptides can be ac-

cessed and run through our webserver (accessible via

http://proteomics.ucsd.edu/). The main advantage of providing a webserver

to run the tools is that, as a developer, one is freed from deploying the software on

multiple platforms. However, significant efforts were invested into creating a web

interface for a friendly and intuitive user-experience. A snapshot of the current

version of the webserver is illustrated in Figure 7.1.

The work of developing a webserver was inspired by the philosophy that

the user should be able to do all the analysis with a web browser. The model

of delivering an executable to the end user (as opposed to making the software

runnable through a web interface) has prevented most biologists from installing

the software, let alone running the software. Hosting the software in a server, also

has the advantage of having the most current version available to the user. Bugs

fixes and updates can also be issued immediately to the version of the software

being hosted in the webserver.

108
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Figure 7.1: Snapshot of the homepage of the cyclic peptide software tools.
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7.2 Methods

The webserver is implemented using the Common Gateway Interface (CGI)

script module of the Python programming language. The webserver has two main

workflows. The first workflow called NRP-Annotation, annotates a spectrum in

a circular fashion [125] given a sequence of amino acids. The second workflow is

a multistep called NRP-Analysis, which analyses the spectrum using the NRP-

Dereplication and NRP-Tagging algorithms [125].

7.2.1 NRP-Annotation

The main page for the NRP-Annotation algorithm is presented in Fig-

ure 7.2. The user is asked to input the name of the run, the tolerance used

for the annotation, an email for job completion notification, the file in mzXML or

dta format and the peptide sequence. Once the file is uploaded, the user has the

option to correct the parent mass manually by filling the form once the spectrum

file is uploaded. If the uploaded file is in mzXML format, the user can choose

the spectrum to be annotated in the XML tree (see Figure 7.3). Once the job

is submitted the user is redirected to an auto-refreshing transition page that will

direct the user to the result page. The result page (not shown) contians a series

of tables that contain information about the number of breaks and percentage of

annotated intensity for the spectrum. A sortable peak list is also shown with can-

didate annotations given the input amino acid masses and tolerance. A custom

JavaScript (http://bix.ucsd.edu/projects/files/sorttable.js) was written

to manipulate and sort the elements of the table.

In terms of user-friendly visualizations, a spectrum image is generated il-

lustrating the circular annotations and relative intensity of the annotation (see

Figure 7.4). The image is generated with the help of the Python graphics package

(PyX). The resulting image is a high quality vector graphics image that is pub-

lication ready. All the drawing software was written from ground up to provide

maximum flexibility in the placement of the annotated elements. The code for

the drawing portion of this project contains code from rendering the spectrum to
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Figure 7.2: Snapshot of the main page of the NRP-Annotation.
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Figure 7.3: NRP-Annotation input parameters. The sample input parameters
are shown for seglitide. Standard amino acid masses are automatically pre-filled
according to their single uppercase letter representation. Nonstandard amino acids
(lower case letters) need to be inputted manually. The user can force the program
to use a specific parent mass for the spectrum by filling in the input form.



113

placement of the annotation labels.
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Figure 7.4: Annotated spectrum of seglitide.

7.2.2 NRP-Analysis

The input page of NRP-Analysis is very similar to the input page of NRP-

Annotation. This page allows the user to run both NRP-Dereplication and NRP-

Tagging. NRP-Dereplication attempts to match the spectrum against the Norine

database [66], while the NRP-Tagging algorithm generates de novo reconstruc-

tions of cyclic peptides. The details of the algorithms are described elsewhere in

this document and also as published work [125]. NRP-Dereplication generates an

HTML table of candidate matches (Figure 7.5). The table is sortable according to

the percentage of explained intensity, percentage of breaks or score of the recon-

structions. Additionally, using the tooltip feature of HTML, all amino acid masses

have their accurate masses displayed when the user hovers the mouse cursor over

the name of the amino acid. Lastly, the user can examine the quality of the re-
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construction by following the link to the annotation page, using the dereplicated

sequence and the input spectrum.

Figure 7.5: NRP-Dereplication results from the webserver.

The NRP-Tagging results are grouped by length of the reconstructed se-

quence. For example, Figure 7.6 shows the de novo reconstructions of length

9 for a sample run of the algorithm. The user can examine the quality of the

reconstruction, and specifically the quality of each amino acid mass by clicking

on the sequence inside the table. An interactive graph is presented to the user

(Figure 7.7) with each peak indicating a candidate place for an amino acid mass

boundary. Therefore, any distance between two peaks is a possible amino acid

mass. The peak height is proportional to the confidence that there is a break at

the given position, based on the input spectrum. The user can interactively dis-

play sequences using more or fewer peaks by hovering the mouse on the peaks. For

example, the user can use the top 3 peaks to display a three-mass sequence, or use

the top 6 peaks to display a six-mass sequence. In Figure 7.7, all 9 peaks are used

to display the nine-mass sequence.

The interactivity of Figure 7.7 was achieved using only HTML, JavaScript

and Cascading Style Sheets (CSS). The main advantage of using these technologies

is that any modern web browser can display the figure without any plugins. As

opposed to static vector graphic images generated with PyX, the HTML image

displays several layers of information interactively.
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Figure 7.6: NRP-Tagging results from the webserver.
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7.3 Discussion

The work in this chapter centers on user-friendly interfaces and data rep-

resentation to aid researchers make the most out of the algorithms for analysis of

cyclic peptides. The use of JavaScript and CSS to generate interactive figures is a

novel way to represent results that is cross-browser compatible. The other advan-

tage of this method of data presentation is that the only requirement from the user,

is a web browser, available in any computer running any operating system. The

code written to generate the interactive figures can be adapted for other applica-

tions that normally generate static images allowing for better content organization

with minimal software dependencies. For example, annotated mass spectra are

usually static images that cannot display annotated peaks selectively (i.e. only

b-ions or y-ions). As a result, the resulting image can be cluttered with text an-

notations when all peaks are displayed. On the other hand, annotation programs

that do allow for interactivity are usually part of a proprietary software package

from instrument vendors runnable only on computers that have the application

installed.
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Figure 7.7: De novo sequence represented as an interactive profile.



Appendix A

Additional Tables

A.1 List of Monomers in Norine

Table A.1 lists all the monomers in the Norine database.

Table A.1: List of masses of amino acids (monomers)
in NORINE sorted by mass (504 amino acids with 288

unique elemental compositions).

Mass Name

57.02 Gly

67.04 Pyr

69.02 dh-Ala

70.01 Pya

70.04 C4:0

70.09 Put

71.04 Ala

71.04 D-Ala

71.04 NMe-Gly

71.04 bAla

72.02 D-Lac

72.02 Lac

73.05 Serol

118
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Table A.1: List of monomers. Continued from previous page

83.04 HseL

83.04 NMe-Dha

83.04 OH-Pyr

83.04 dhAbu

84.02 C4:1(3)-OH(2)

84.06 C4:0-Me(2)

85.02 aFo-Gly

85.05 Abu

85.05 Aib

85.05 D-3OMe-Ala

85.05 D-Abu

85.05 NMe-Ala

85.05 NMe-bAla

85.09 Ivalol

85.09 Valol

86.04 C4:0-OH(3)

86.05 Dpr

87.03 D-Ser

87.03 Iser

87.03 Ser

94.04 C6:2(t2.t4)

95.04 Me-Suc

96.07 ProC

97.05 2Dh-Mabu

97.05 D-Pro

97.05 Pro

97.05 norCMA

98.07 C6:0

98.07 Me-Vaa

99.03 D-NFo-Ala
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Table A.1: List of monomers. Continued from previous page

99.03 NFo-Ala

99.07 C5:0-NH2(3)

99.07 D-Ival

99.07 D-Nva

99.07 D-Val

99.07 Ival

99.07 Mab

99.07 NdMe-Ala

99.07 Nva

99.07 Val

99.10 Ileol

99.10 Leuol

100.02 C4:0-OH(2)-Ep(3)

100.05 D-Hiv

100.05 Hiv

100.06 D-Dab

100.06 Dab

100.99 dhCys

101.05 D-Hse

101.05 D-Thr

101.05 D-aThr

101.05 Hse

101.05 NMe-Ser

101.05 OH-4Abu

101.05 Thr

101.05 aThr

102.03 C4:0-OH(2.3)

103.01 Cys

103.01 D-Cys

104.03 Bz
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Table A.1: List of monomers. Continued from previous page

110.03 NMe-Gly-Thz

110.08 NMe-Gln

111.03 4oxo-Pro

111.03 pGlu

111.07 3Me-Pro

111.07 4Me-Pro

111.07 5Me-Pro

111.07 CMA

111.07 Hpr

112.05 C6:0-Ep(2)

112.05 k-Leu

112.06 D-OH-cOrn

112.06 OH-cOrn

112.09 C7:0

112.09 iC7:0

113.01 Azd

113.05 3OH-Pro

113.05 4OH-Pro

113.05 D-4OH-Pro

113.05 NFo-D-Abu

113.08 D-Ile

113.08 D-Leu

113.08 D-NMe-Nva

113.08 D-NMe-Val

113.08 D-aIle

113.08 D-t-Leu

113.08 Ile

113.08 Leu

113.08 Map

113.08 NMe-Val
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Table A.1: List of monomers. Continued from previous page

113.08 aIle

113.08 t-Leu

113.13 NSPD

114.03 Hap

114.03 Pda

114.04 Asn

114.04 D-Asn

114.04 NFo-Dpr

114.07 4Me-D-Hva

114.07 C6:0-OH(3)

114.07 D-Hmp

114.07 Hmp

114.08 D-Orn

114.08 Orn

115.03 Asp

115.03 D-Asp

115.03 NFo-Iser

115.06 D-bOH-Val

115.06 NMe-Thr

115.06 OMe-Thr

115.06 bOH-Val

116.05 iC5:0-OH(2.3)

116.05 iC5:0-OH(2.4)

117.02 aMe-Cys

117.04 4OH-Thr

118.03 C4:0-OH(2.3.4)

118.04 Pha

120.02 pOH-Bz

120.06 C8:3(t2.t4.t6)

121.02 Hpa
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Table A.1: List of monomers. Continued from previous page

122.07 C8:0:1(7)

122.07 C8:2(2.t4)

125.05 4oxo-5Me-Pro

125.05 4oxo-Hpr

125.05 NFo-Pro

126.10 C8:0

126.10 iC8:0

127.04 bU-dAla

127.06 3OH-5Me-Pro

127.06 Ac-Aib

127.06 NFo-Val

127.10 C6:0-Me(2)-NH2(3)

127.10 D-NMe-Leu

127.10 D-NMe-aIle

127.10 Dov

127.10 Et-Nva

127.10 Hil

127.10 NMe-Ile

127.10 NMe-Leu

127.10 NMe-aIle

127.10 bMe-Ile

127.15 Spd

128.06 D-Gln

128.06 D-N2Me-Asn

128.06 Gln

128.06 N2Me-Asn

128.06 NAc-Dpr

128.06 NMe-Asn

128.06 bMe-Asn

128.08 C6:0-OMe(3)
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Table A.1: List of monomers. Continued from previous page

128.08 C7:0-OH(3)

128.09 D-Lys

128.09 Lys

128.09 N-OH-Hta

128.09 bLys

129.04 Ac-Ser

129.04 D-Glu

129.04 D-bMe-Asp

129.04 Glu

129.04 bMe-Asp

129.04 bOMe-Asp

129.08 3OH-Leu

129.08 Aco

129.08 Ria

129.08 bOH-NMe-Val

129.08 gOH-NMe-Val

130.03 iC5:0-OH(2)-CA(4)

130.04 D-OH-Asn

130.04 OH-Asn

130.05 gSer

130.06 aC6:0-OH(2.3)

130.07 D-OH-Orn

130.07 OH-Orn

130.07 OH-bLys

131.02 D-OH-Asp

131.02 OH-Asp

131.04 Met

132.04 Ara

132.04 D-Ara

132.04 Lyx
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Table A.1: List of monomers. Continued from previous page

132.08 Oli

133.05 D-ph-Gly

133.05 Ph-Gly

133.09 Pheol

135.01 4Cl-Thr

135.99 C4:0-OH(2.3)-Cl(4)

136.02 diOH-Bz

136.09 C8:0:1(7)-Me(2)

136.09 iC9:2(2.t4)

137.06 His

138.04 dPyr

139.06 2Me-3Me-pGlu

140.08 C6:0-Me(5.5)-oxo(2)

140.11 Argal

140.12 C9:0

140.12 aC9:0

140.12 iC9:0

141.00 MCP

141.08 4oxo-Van

141.08 Ac-Ival

141.08 Ac-Val

141.08 Ibu

141.08 NFo-Ile

141.08 NFo-Leu

141.12 NMe-OMe-Ile

141.12 NMe-bMe-Leu

141.12 NdMe-Leu

141.12 OAc-Leuol

142.07 D-bMe-Gln

142.10 C6:0-Me(2.2)-OH(3)
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142.10 C7:0-Me(2)-OH(3)

142.10 C8:0-OH(3)

143.06 3Me-Glu

143.06 Aad

143.06 D-MeO-Glu

143.06 MeO-D-Glu

143.06 MeO-Glu

143.09 Act

143.09 Ere

143.09 NMe-OH-Ile

143.09 Nst

143.09 Van

144.05 N2Me-bOH-Asn

144.05 bOH-Gln

145.04 OMe-Asp

145.07 C6:0-OH(3.5)-NH2(4)

146.06 Rha

147.04 O-Met

147.05 Cl-Ile

147.07 D-Phe

147.07 D-bPhe

147.07 NMe-Ph-Gly

147.07 Phe

147.07 bPhe

148.02 Hpoe

148.05 D-Ph-Lac

148.05 Ph-Lac

149.05 D-Hpg

149.05 Hpg

150.10 iC10:2(2.t4)
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150.99 CysA

150.99 D-CysA

151.04 D-F-ph-Gly

151.10 C8:0:1(7)-Me(2)-NH2(3)

152.08 C8:0:1(7)-Me(2)-OH(3)

152.12 C9:1(8)-Me(2)

153.05 OH-His

153.12 NMe-hv-Val

154.02 Ala-Thz

154.09 Cap

154.09 D-End

154.09 End

154.14 C10:0

154.14 aC10:0

154.14 iC10:0

155.09 NAc-Leu

155.09 dDap

155.13 Me-AOA

156.05 NFo-Gln

156.08 Hip

156.09 3Me-4Me-Gln

156.10 Arg

156.10 D-Arg

156.12 C8:0-Me(4)-OH(3)

156.12 C9:0-OH(3)

156.12 aC9:0-OH(3)

156.12 iC9:0-OH(3)

156.14 NtMe-Leu

157.09 Cit

157.09 D-Cit
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157.11 Ist

157.11 Sta

158.07 D-Fo-OH-Orn

158.07 Fo-OH-Orn

159.05 Ahad

159.07 NMe-dPhe

160.07 2OMe-Rha

161.08 3Me-Phe

161.08 D-NMe-Phe

161.08 Hph

161.08 NMe-Phe

162.05 D-Gal

162.05 D-Glc

162.05 D-Man

162.05 Glc

162.05 bD-Gal

163.03 D-OH-dHpg

163.03 O2-Met

163.03 OH-dHpg

163.04 PT

163.06 D-Tyr

163.06 NMe-Hpg

163.06 Ph-Ser

163.06 Tyr

163.06 bTyr

164.05 4OH-D-Ph-Lac

164.06 PALOA

164.97 Cl2-Pro

165.04 Dhpg

166.09 ck-Arg
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166.10 C8:0:1(7)-Me(2.2)-OH(3)

167.09 Choi

167.13 3d-NMe-Bmt

168.04 OMe-bAla-Thz

168.12 C8:1(7)-Me(2.2)-OH(3)

168.15 aC11:0

169.11 Bmt

169.11 Dap

169.17 GSpd

170.08 5OH-Cap

170.09 Hysp

170.12 Har

170.13 C10:0-OH(3)

170.13 C8:0-Me(2.2)-OH(3)

170.13 C9:0-Me(2)-OH(3)

170.13 iC8:0-Me(2.4)-OH(3)

171.09 NOMe-Ac-Val

171.13 aC9:0-OH(2)-NH2(3)

171.13 dDil

172.08 Ac-OH-Orn

172.08 D-Ac-OH-Orn

172.10 Trpol

174.96 MdCP

175.07 bbMe2-O-Met

175.10 Apv

177.08 Hty

177.08 NMe-Tyr

177.08 bOH-NMe-Phe

178.07 PAOA

178.14 C10:0:1(9)-Me(2.4)
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178.14 iC12:2(2.t4)

179.06 bOH-Tyr

179.06 diOH-Phe

180.04 Pro-Thz

180.15 C12:1(5)

181.07 Aca

182.08 D-Har

182.12 v-Arg

182.17 C12:0

182.17 iC12:0

183.01 Cl-Hpg

183.13 NMe-Bmt

184.06 dh-Trp

184.08 U4oxo-Van

184.10 k-Arg

184.15 C10:0-Me(2)-OH(3)

184.15 C10:0-Me(4)-OH(3)

184.15 C11:0-OH(3)

184.15 iC11:0-OH(3)

185.08 Dpy

185.14 Dil

186.06 Doe

186.08 D-Trp

186.08 Trp

186.11 hk-Arg

187.06 dv-Tyr

188.09 diOH-Arg

189.08 Ac-Phe

189.08 v-Tyr

190.07 D-Kyn
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190.07 Kyn

190.10 CFA

190.11 NMe-MeA-Phe

190.11 NMe-OMe-TyrC

191.09 3Me-Hty

191.09 Ahv

191.09 D-NMe-OMe-Tyr

191.09 NMe-Hty

191.09 NMe-OMe-Tyr

191.09 e-Tyr

192.15 aC13:2(2.t4)

193.01 Cl2-NMe-dhLeu

193.07 bOMe-Tyr

194.02 OSu-Hmp

194.14 MeOx-Ile

194.17 aC13:1(3)

194.17 iC13:1(3)

195.02 Cl2-NMe-Leu

196.15 C10:0-Me(2.4)-oxo(9)

196.15 C12:1(5)-OH(3)

196.15 C9:1(4)-Me(2.4.6)-OH(8)

196.18 aC13:0

197.02 Cl-Tyr

197.11 C10:0-NH2(2)-Ep(9)-oxo(8)

197.14 Me2-Bmt

198.16 C11:0-Me(2)-OH(3)

198.16 C12:0-OH(3)

198.16 iC12:0-OH(3)

200.08 NAc-Fo-OH-Orn

200.09 1Me-Trp
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202.07 OH-Trp

202.07 pTrp

204.13 NMe-Me2A-Phe

205.07 v-OH-Tyr

205.11 Amv

206.04 NMe-Lan

208.18 C14:1(7)

208.18 iC14:1(3)

210.00 D-PO-Asn

210.05 PMST

210.13 C9:1(Me4)-Me(2.4.6)-OH(8)-Oxo(5)

210.20 C14:0

211.04 Cl-NMe-Tyr

211.04 D-Cl-NMe-Tyr

211.19 C13:0-NH2(3)

212.18 C13:0-OH(3)

212.18 aC13:0-OH(3)

212.18 iC13:0-OH(3)

213.02 bOH-Cl-Tyr

214.10 Ahp

216.09 NMe-OH-Trp

216.11 Daz

216.12 Agdha

216.97 Cl2-Hpg

219.05 DMOG

219.09 NOMe-Ac-D-Phe

220.04 D-Cl-Trp

221.01 DHPT

222.20 aC15:1(3)

224.14 C13:2(t4.t6)-OH(2.3)
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224.14 aC11:2(4.6)-Me(2.6)-OH(2.3)

224.98 Br-Phe

225.21 C14:0-NH2(3)

225.21 iC14:0-NH2(3)

226.19 C14:0-OH(3)

226.19 iC14:0-OH(3)

226.97 Cl3-NMe-dhLeu

228.09 Ac-Trp

228.13 bbMe-NMe-Trp

228.17 C10:0-Me(2.2.4)-OH(3.7)

228.98 Cl3-NMe-Leu

230.05 Phe-Thz

230.07 D-COOH-Trp

234.06 NMe-Cl-Trp

236.21 C16:1(7)

236.21 C16:1(9)

238.16 C11:2(t2.t8)-Me(2.6.8)-OH(5.7)

238.16 C14:2(t4.t6)-OH(2.3)

238.23 C16:0

238.99 bMe-Br-Phe

239.22 C15:0-NH2(3)

239.22 aC15:0-NH2(3)

239.22 iC15:0-NH2(3)

240.21 C15:0-OH(3)

240.21 aC15:0-OH(3)

240.21 iC15:0-OH(3)

240.97 Br-Tyr

240.97 bOH-Br-Phe

242.14 bbNMe-NMe-Trp

242.19 C10:0-Me(2.2.4)-OH(3)-OMe(7)
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242.19 C14:0-OH(3.4)

243.13 C8:2(5.7)-Me(6)-OH(4)-NH2(3)-Ph(8)

244.98 Cl3-2OH-NMe-Leu

244.98 Cl3-5OH-NMe-Leu

250.05 NMe-Cl-OH-Trp

252.17 C15:2(t4.t6)-OH(2.3)

252.21 C16:1(9)-OH(3)

253.24 C16:0-NH2(3)

253.24 iC16:0-NH2(3)

254.22 C16:0-OH(3)

254.22 iC16:0-OH(3)

254.99 D-Br-NMe-Tyr

258.10 N1-COOH-bhTrp

259.10 ChrI

259.10 ChrP

261.11 ChrD

263.05 D-Cl-CONH2-Trp

263.12 C8:1(7)-OH(2.4.5)-NH2(3)-Ph(8)

263.99 Br-Trp

264.25 C18:1(9)

266.19 DHMDA

267.26 aC17:0-NH2(3)

267.26 iC17:0-NH2(3)

268.24 aC17:0-OH(3)

268.24 iC17:0-OH(3)

270.22 C16:0-OH(3.4)

272.06 PTTA

278.01 NMe-Br-Trp

279.98 Br-OH-Trp

280.24 C18:1(9)-OH(3)
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285.07 ChrA

299.19 DMAdda

302.98 D-I-NMe-Tyr

310.06 ChrAct

313.20 Adda

321.04 C8:2(5.7)-Me(6)-OH(4)-NH2(3)-brPh(8)

329.16 C12:3(7.9.11)-Me(6)-OH(2.4.5)-NH2(3)-Ph(12)

333.16 C10:2(7.9)-OH(2.4.5)-NH2(3)-ePh(10)

341.20 ADMAdda

343.18 C12:3(7.9.11)-Me(6.10)-OH(2.4.5)-NH2(3)-Ph(12)

363.20 C12:1(11)-Me(6)-OH(2.4.5)-NH2(3)-mPhe(11)
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