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Improving the quality of coded still images by post-processing
V. Ralph Algazi, Gary. E. Ford, Hong Chen and R. R. Estes, Jr.

Center for Image Processing and Integrated Computing (CIPIC)
University of California, Davis

ABSTRACT

Coding techniques, such as JPEG and MPEG, result in visibly degraded images at high compression.
The coding artifacts are strongly correlated with image features and result in objectionable structured
errors. Among structured errors, the reduction of the end of block effect in JPEG encoding has received
recent attention, with advantage being taken of the known location of block boundaries. However, end of
block errors are not apparent in subband or wavelet coded images. FEven for JPEG coding, end of block
errors are not perceptible for moderate compression, while other artifacts are still quite apparent and
disturbing. In previous work, we have shown that the quality of images can be in general improved by
analysis based processing and interpolation. In this paper, we present a new approach that addresses
the reduction of the end of block errors as well as other visible artifacts that persist at high image
quality. We demonstrate that a substantial improvement of image quality is possible by analysis based
post-processing.

Keywords: inhomogeneous diffusion, coding artifact removal, image interpolation.

1 INTRODUCTION

The standardization of image coding methods on JPEG and MPEG limits the development of
alternate approaches for improved coding performance. However, wavelet and subband coders continue
to be studied extensively, for their performance or for some implementation advantages, and they are
occasionally incorporated into systems. For both standard and non-standard coding techniques, one
additional option that is always available is the processing of decoded images so as to reduce coding
artifacts. Since at low bit rate and low quality, the image impairments due to coding are strongly
structured, such as occurring only at the end of blocks, new algorithms are being developed to exploit
this error structure. Since the major coding errors are introduced in the quantization process, we use
the quantization equations to provide constraints on the maximum error that can be introduced in
coding.

In Figure 1, we show two decoded images, where one was coded with a JPEG coder and the other
was coded by a subband or wavelet based coder. The coding artifacts in these images are obvious with
blocking effects apparent in the image coded by the DCT-based JPEG method and ringing artifacts
apparent in the image coded by the wavelet based method. It is clear from these two examples that the
coding errors are not well described as random noise, that most errors are structured, and that end of
block errors are not the only image impairment.



Figure 1: Reconstructed images: (a)left: 0.244bpp by JPEG baseline DCT; (b)right: 0.2bpp by subband
or wavelet coder.

2 REDUCING ERRORS ON DECODED IMAGES

Various approaches have been proposed to process the decoded image to reduce coding artifacts.
A space-invariant filter! and space-variant filters®>>® have been used. In these approaches, the decoded
image is filtered without using prior information about the image compression process. Therefore,
there is no guarantee that the resulting filtered image will approximate the original image in some
sense. An image recovery approach has been proposed?® that employs prior information about the image
compression process by using the quantization transformation equation as a constraint

y = Q[TZ], (1)

where z is the reconstructed image, T' represents the DCT transform, Q[.] represents the quantization
operation and y is the transmitted data. However, only a space-invariant low-pass filter has been
considered and the reconstructed image is overly smoothed. In another approach® a Gibbs Huber-
Markov random field image model is assumed, and the compressed image is reconstructed using a
maximum a posterior probability (MAP) method. This results in a convex constrained optimization

2 = argmin, g Z Z pu(z(m,n) — z(k,1)) (2)

1<m,n<N k,l€Nm n

where M and N represent the image width and height, N,, ,, consists of the eight nearest neighbors of
pixel located at (m,n), and py is the Huber function

22, || < H
pi(e) = { H?42H|o - H|, |z|>H (3)

and C'is the constraint set which is given by

C={z:y=0Q[Tz]} (4)



The Huber function py(z) is used to allow relatively large discontinuities by reducing the importance
of the discontinuity when the value of the discontinuity measure exceeds some threshold, H. The
projections onto convex sets (POCS) based recovery algorithm® is used to reconstruct the compressed
image. In this approach, a convex set is proposed to specifically deal with the blocking effects. Therefore,
this approach only works well for blocking effect removal. Furthermore, the reconstructed image still
exhibits blocking effect.® When a perceptually based weight® is included to define the block boundary
continuity constraint sets, a better reconstructed image can be obtained. However, this approach
requires heavy computational effort.”

3 CONSTRAINED INHOMOGENEOUS DIFFUSION

In this section, we describe a constrained inhomogeneous diffusion based approach to image improve-
ment. In this approach, the reconstruction is based on both the received data and on prior knowledge
that complements the available data. In our approach, inhomogeneous diffusion is employed to remove
the coding artifacts. Unlike the pass filtering, which results in the smoothing of edges,* inhomogeneous
diffusion can reduce coding artifacts and, at the same time, maintain the discontinuities of the original
image.

For transform coding, since the original image satisfies the quantization transformation equation
(1), it is reasonable that this be used as a constraint in the inhomogeneous diffusion process. The
idea is that within the constraint set: C' = {z : y = Q[T'z]}, an inhomogeneously smoothed image is
sought as the final reconstructed image. That means that the transform coefficients for processed images
have to remain within the same quantization range as for unprocessed images. Here T represents the
transformation which is a block DCT transformation in JPEG coding and a wavelet transformation in
subband or wavelet coding. Q represents the specific quantization procedure used in the coding process.

Inhomogeneous diffusion was first proposed by Perona and Malik? for scale space analysis and edge
detection and is based on the partial differential equation

W =V - (c([IVf(2.y, )NV f(z,y,1)), ®)

where V- is the divergence operator, V the gradient and f(z,y,t) represents the inhomogeneously
diffused image at time ¢. The diffusion coefficient ¢(||V f(z,y,1)||) € [0,1] is required to be a decreasing
function of the magnitude of local gradient such that (5) diffuses more in regions of small gradients
and less around edges where the gradients are large. Two functions, Gaussian and Cauchy have been

C(||Vf($7@/,t)||) = exp (_(Vf(xk—’zy’t))z)

c([IVf(z,y, 1)) = 1+ (Vf(xl,y,t))Q/kz (7)

However, these inhomogeneous diffusions have been shown to be ill-posed processes in the sense that
images close to each other are likely to diverge during the diffusion process.!®!' A well-posed inhomoge-
neous diffusion has been introduced by El-Fallah and Ford!?!'3 and later further studied and expanded

proposed?

(6)

to constrained inhomogeneous diffusion for image interpolation and for coding artifact removal by Chen

and Ford.!? The diffusion coefficient in this work was chosen to be:

IV 1900 = e (%)




The well-posedness of this inhomogeneous diffusion has been explained from two different points of
view, and its desirable properties have also been described.!*13

For coding artifact removal, the following constrained inhomogeneous diffusion is applied.

W =V (e(IVf(z,y, D))V f2,y,1)) )
y = Q[T f(x,y,1)] 1o
ep.0)= Ty (11)

using the diffusion coefficient ¢(||V f(z,y,t)||) of (8). Here y is the image decoded from either a JPEG
coder or a wavelet coder. The initial step f(z,y,0) in the iterative diffusion is chosen to be the decoded
image y.

4 IMPLEMENTATION AND EVALUATION

An iterative approach is used to implement the constrained diffusion algorithm. FEach iteration
includes two steps: inhomogeneous diffusion smoothing and constraint space mapping. The inhomoge-
neous diffusion step is implemented as follows. First, the first order derivatives in the z and y directions
are approximated on a 3 X 3 window in a manner similar to that of the Sobel operator.

Jolind) = 05(f(i+ 1) = f(i = 1.j))
F025(f(i+ 1,j+1) = f(i = Lj + 1))
F025(f(i4+ 1,j = 1) = f(i = 1,j - 1)) (12)

Jid) = 05(f(ij+1) = flij—1))
F025(f(i+ Lj+ 1) = f(i+1,j - 1))
F025(f(i = Lj+ 1) = f(i— 1,j - 1)) (13)

This approximation is chosen because of its symmetric structure and good response to diagonal fea-
tures. By substituting f(¢,j,n+1)— f(7, j,n) to the left side of (9) and the approximate differentiations
of (12) and (13) into the right side of (9), we get

Here ¢(¢,7,n) can be shown to have eight terms:

g(i,j,n) = ng(i,j, n) (15)
k=1

with Jeli=1,j—Ln)— fyi—1Lj—1n)
.. _ —Jz0 — 7]_ 7n — yl_ 7‘]_ 7n 16
gl(lvjvn) 8\/1‘|’f9?(l_ 17]'— 1,n)+fy2(l— 17j_ 1,71) ( )
g2(i. j.m) = —Jali=1.j,n) (17)

AU = L)+ f2 = 1)



_fx(l — 17]"’ 17”) + fy(l — 17]"’ 17”)

g(t-3,m) = 81+ f2(i— L+ Ln) + f2(i— 1L,j+ 1,n) "
S o :>1+ﬂ?5<m +1n) v
e
i f(i(ljic)irr;)( +Lgm) -
i Fli+ 1,5+ 1,n)+ f,(i+ 1,5+ 1.n) (23)

S UH i+ L+ L)+ 2+ L+ L)

We now consider the mapping onto the constraint space: C' = {z:y = Q[T'z]}. We form vector
f(n + 1) by concatenating f(7,j,n+ 1) row by row sequentially. In projecting the image f(n 4 1) onto
the constraint space C', we are seeking p(n + 1) € C for which ||p(n+ 1) — f(n 4 1)|| is a minimum. If
f(n+1) e C, then p(n+1)=1f(n+1) and ||p(n+ 1) — f(n 4 1)|| = 0. Since T is unitary, we have

1Tp(n+1) = Tf(n+ 1| = |[p(n + 1) = f(n + 1)]] (24)

and the projection can be carried out in transform domain.

When () is a uniform scalar quantization of the transform coeflicients, the projection onto the
constraint space is rather simple. From the quantization matrix and the original decoded image, we
know into which quantization bin each transform coefficient falls. Assuming one transform coefficient
should fall between [ and h, then if the transform coefficient in Tf(n + 1) is in this bin, simply keep
it, otherwise change its value to one of the two boundary points of the bin. That is, the projected
coefficient w in T'p(n + 1) is determined by

I ow<l
u=< w I<w<h (25)
h h<w

This will minimize ||Tp(n+1)—Tf(n+1)|| while insuring that y = Q[T'p(n + 1)]. The constraint space
mapped image is obtained by performing the inverse transformation on T'p(n + 1). Now we set the
new f(n+ 1) = p(n + 1), and continue the iterative inhomogeneous diffusion (14). Iteration on the two
described steps continues until ||[f(n) — f(n + 1)|] is less than some prescribed value.

To reduce a blocking artifact, the conduction coeflicient in the inhomogeneous diffusion can be
effectively designed to include information on the location of the blocking artifact. That is, instead of
(8), we now define the conduction coefficient as

1 |V f(z,y,t)] < Eand z,y ablock boundary
(19 £ (5, )I]) = ! S (26)
VI (Vf(z,y.1))?



The purpose of (26) is to increase smoothing at the block boundary to decrease the blocking effects.
The threshold F is used to separate the real image activities and block effects along the block boundary,
since a relatively large F is likely due to the existence of real image edges or corners. The value of F is
obtained by analysis of the histogram of the image local gradient.

In this way, the image activity and blocking artifact location information are automatically joined in
the inhomogeneous diffusion process. Therefore, there is no need to specifically calculate the weights”
to capture the local activities of an image in order to achieve a spatially adaptive smoothness. In
our approach, while the true image discontinuities are preserved, the blocking effect discontinuities are
smoothed.

The proposed recovery algorithm was evaluated by applying it to the 512 x 512 Lena image com-
pressed with a DCT-based JPEG coder and with a wavelet coder, with decoded images shown in Figure
1.

For blocking effect removal, the upper bound E'in (26) has to be determined. From observations, we
found that there are two peaks in the histogram of the gradient image with the one of zero corresponding
and the other due to the blocking effects. Therefore, F was estimated from the blocky image in Figure
1(a) by: calculating the histogram of the gradient along block boundaries and setting the bound £ to
the gradient value associated with the peak of the histogram other than 0.

The images recovered by using our algorithm are shown in Figure 2. For comparison purposes, we
show results in Figure 3 from other algorithms. Figure 3(a) shows the results from the Zakhor’s algo-
rithm,* which smoothes the image excessively around edges. In Figure 3(b), we show the reconstructed
image using the POCS based approach,® where some blockiness can still be seen in the reconstructed
image.

Figure 2: Reconstructed images by proposed approach: (a)left: for JPEG baseline DCT decoded image;
(b)right: for wavelet decoded image



Figure 3: Reconstructed images: (a)Left: Zakhor’s method; (b)Right: POCS method

5 IMPROVEMENT OF IMAGE QUALITY BY
INTERPOLATION

At high quality, substantial loss of quality in the color images is due to the sub-sampling of the
chrominance. The NTSC standards which affect the choice of representation and sampling parameters
treats lower chrominance bandwidth as perceptually acceptable. This premise is only approximately
correct, and often the image quality will be degraded by color bleeding along luminance contours. We
use constrained inhomogeneous diffusion to perform chrominance interpolation. We show in Figure 4(a)
the chrominance component U interpolated by factor 4 by 4 pixel replication. In Figure 4(b), we show
the result of performing constrained inhomogeneous diffusion based interpolation. This second approach
is aimed at avoiding color leakage across high contrast luminance edges. The results from color images
show clear advantages of the constrained inhomogeneous diffusion based approach.

6 DISCUSSION AND CONCLUSIONS

In this paper, we have described a constrained inhomogeneous diffusion based approach for removing
coding artifacts. Experiments demonstrate that our approach works well for removing both the blocking
effects due to DCT based coding and the ringing artifacts that occur in wavelet coding. Comparison
with other approaches shows the advantages of the proposed method. We have also presented a method
of improving color image quality by interpolation of chrominance components using the constrained
inhomogeneous diffusion based approach. For color image processing, further study needs to be carried
out on a vector constrained inhomogeneous diffusion. That is, using the gradient information from
luminance component as well the chrominance components to obtain a better interpolated result for
the chrominance.



Figure 4: Interpolated U component: (a)left: by pixel replication; (b)right: by constrained inhomoge-
neous diffusion

7 ACKNOWLEDGMENTS

This research was supported in part by the University of California MICRO program, Pacific Bell,
Lockheed and Hewlett Packard.

8 REFERENCES

[1] H. C. Reeves and J. S. Lim, “Reduction of blocking effects in image coding,” Opt. Eng., pp. 34-37,
1984.

[2] B. Ramamurthi and A. Gersho, “Nonlinear space-varient postprocessing of block coded images,”
IFFEFE Trans. Acoust., Speech, Signal Processing, pp. 1258-1267, 1986.

[3] K. Sauer, “Enhancement of low bit-rate coded images using edge detection and estimation,” Com-
put. Vision Graphics Image Processing: Graphical Models Image Processing, pp. 52—62, 1991.

[4] A. Zakhor, “Iterative procedures for reduction of blocking effects in transform image coding,” IEEE
Trans. on Circuits and Systems for Video Technology, pp. 91-95, 1992.

[5] R. L. Stevenson, “Reduction of coding artifacts in transform image coding,” in Proc. IFEFE Int.
Conf. Acoust., Speech, Signal Processing, pp. 401-404, 1993.



[6]

[10]

[11]

[12]

[13]

[14]

Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Regularized reconstruction on reduce blocking
artifacts of block discrete cosine transform compressed images,” IFEF Trans. on Circuits and
Systems for Video Technology, pp. 421-432, 1993.

Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Projection-based spatially adaptive recon-
struction of block-transform compressed images,” IFEFE Trans. on Image Processing, pp. 896-908,
1995.

G. L. Anderson and A. N. Netravali, “Image restoration based on a subjective criterion,” IFFF
Trans. on Syst., Man and Cybern., pp. 845-853, 1976.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IFEFE Trans.
Pattern Analysis and Machine Intelligence, pp. 429-439, 1990.

L. Alvarez, P. L. Lions, and J. M. Morel, “Image selection smoothing and edge detection by
nonlinear diffusion I1,” STAM J. Numer. Anal., pp. 845866, June 1992.

R. T. Whitaker and S. M. Pizer, “A multi-scale approach to nonuniform diffusion,” C'VGIP:Image
Understanding, pp. 99-110, January 1993.

A. 1. El-Fallah, G. E. Ford, V. R. Algazi, and R. R. Estes, Jr., “The invariance of edges and corners
under mean curvature diffusions of images,” in Image and Video Processing III, R. L. Stevenson
and S. A. Rajala, Fds., Proc. SPIE, pp. 2-14, 1995.

A. 1. El-Fallah and G. E. Ford, “The evolution of mean curvature in image filtering,” in IFEE First
Int. Conf. on Image Processing, pp. 298-302, 1994.

H. Chen, Image restoration based on properties of human vision. PhD thesis, University of Cali-
fornia, Davis, 1996.





