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Abstract 

Disturbance Macroecology: An Information Entropy Approach for Cross-System Comparisons 

of Ecosystems in Transition 

by 

Erica Anna Newman 

Doctor of Philosophy in Energy and Resources 

University of California, Berkeley 

Professor John Harte, Co-Chair 

Professor Max Alan Moritz, Co-Chair 

Little is known about how metrics of biodiversity and abundance scale in ecologically disturbed 
and disrupted systems. Natural disturbances have a fundamental role in structuring ecological 
communities, and the study of these processes and extension to novel ecological disruptions is of 
increasing importance due to global change and mounting human impacts. Numerous studies 
have demonstrated the importance of natural disturbance in determining basic ecological 
properties of an ecosystem, including species diversity, membership, and relative abundances of 
those species, as well as overall productivity. Although estimating ecological metrics at both the 
species and community level is of critical importance to conservation goals, predicting the 
impacts of disturbance and disruption, including anthropogenic changes, on ecosystems is a 
major problem for ecological theory for several reasons. Disturbances are diverse in type, create 
patches that are internally heterogeneous, interact with site-specific disturbance legacies, and 
have different effects over multiple spatial and temporal scales. In contrast, empirical studies 
providing the basis for development of models tend to focus on short time-scales and relatively 
homogeneous systems with steady-state dynamics. Sites that experience single disturbances or 
are part of disturbance regimes also pose a challenge to ecological theory because they represent 
open, non-equilibrium systems that are not tractable with equilibrium mathematics. Additionally, 
the spatial scale at which a disturbance is studied will affect the conclusions that are drawn about 
communities or their component species. Nevertheless, the ubiquity and importance of 
disturbance to ecosystems continues to motivate a search for generality in disturbance and 
landscape ecology. In this dissertation, I apply an information entropy based theory of 
macroecology to ecosystems in transition, or have otherwise experienced ecological disruption. 
This leads to comparable results between systems, and forms a basis for cross-system 
comparisons of ecosystems in transition. 

The maximum information entropy inference procedure (MaxEnt) has been proven to produce 
the least-biased estimates of a probability distribution, given prior knowledge of a system. 
Empirical values make up the prior knowledge of the system, and constrain the mean, variance, 
or higher moments of a given distribution. An extension of the MaxEnt procedure, the Maximum 
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Entropy Theory of Ecology (METE) takes a macroecological approach to estimating plot- to 
landscape- to biome-scale species diversity, abundance, and energetics metrics, using only the 
relationships between four non-adjustable state variables S0 (total species), A0 (area under 
consideration), N0 (total abundance), and E0 (total metabolic energy), and no adjustable 
parameters to characterize the scaling of diversity and abundances of species in a system. Until 
this work, METE has mainly been tested in steady-state and minimally disturbed systems.  
 
In Chapter 1, “Disturbance macroecology: a comparative study of plant species’ abundances and 
distributions in different-age post-fire stands of Bishop pine (Pinus muricata),” I investigate how 
metrics of biodiversity and abundance are scale in a plant community that is largely structured by 
a dominant, disturbance-dependent species. We target two different-aged stands in a region of 
high wildfire activity, one a characteristically mature stand with a diverse understory, and one 
more recently disturbed by a stand-replacing fire 17 years previously. We compare the stands 
using various macroecological metrics of species richness, abundance and spatial distributions 
that are predicted by METE, which does not rely on steady-state or equilibrium assumptions, and 
is therefore well-suited to be a null model for ecosystems in transitional states. Ecological 
patterns in the mature stand more closely match METE predictions than do data from the more 
recently disturbed stand. This suggests METE’s predictions are more robust in late successional, 
slowly changing, or steady-state systems than those in rapid flux with respect to species 
composition, abundances, and body sizes. These findings highlight the need for a 
macroecological theory that incorporates natural disturbance and other ecological perturbations 
into its predictive capabilities, because most natural systems are not in a steady state. 

In Chapter 2, “Macroecology for management: Testing an information-entropy-based theory of 
macroecology against anthropogenic disruption of high-Sierra meadows, I investigate the extent 
to which anthropogenic changes to an ecosystem, in the form of grazing by large, introduced 
herbivores, are detectable using METE, and small (<1 ha) replicate census plots. 
Anthropogenically-induced ecological disruptions (anthropogenic disruptions) have been 
overlooked by macroecological theory because they represent ecosystems in various states of 
transition that result from non-natural selection on the community. While critically important to 
understand for conservation reasons, anthropogenic disruptions are, in general, not comparable to 
each other, nor to other ecological disturbances that are natural in origin. Here, we use METE to 
examine the effects of an anthropogenically-induced novel disturbance regime of grazing by 
horses in high Sierra Nevada meadows on the species-abundance distributions (SAD), number of 
singleton species, and the species-level spatial abundance distributions (SSADs) (a measure of 
spatial aggregation) for all species in three pairs of grazed and ungrazed meadows, each meadow 
containing a system of plots set up across a moisture gradient. We find that number of singleton 
species may be a better indicator of ecological disruption than the shape of the SAD in systems 
where the differences in community structure are subtle. We also find that the METE SSAD 
performs better than all other models tested for both grazed and ungrazed plots. We suggest ways 
of augmenting tests of the METE SSAD to refine theory for management relevance. 

In Chapter 3, “Empirical tests of within- and across-species energetics in a diverse plant 
community,” I (with my coauthors) test the metabolic predictions of METE for herbaceous 
plants in a subalpine meadow. METE is an extremely general macroecological theory that 
predicts spatial, abundance and metabolic rate distributions of species, and the interrelationships 
of these metrics for any system defined by a set of basic community state variables. It therefore 
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also predicts body-size distributions if a metabolic scaling relationship between metabolism and 
body size is assumed. Many fundamental properties of ecological systems and interactions are 
tied to body size, and a related metric, the metabolic rate distribution, both within and across 
species. Extensive tests of METE’s macroecological predictions in multiple ecosystems and with 
multiple taxa generally support its species diversity and abundance predictions, but two related 
predictions had not been evaluated against full community census data until this study: the 
distribution of metabolic rates of individuals within species as a function of the abundance of the 
species, and the distribution of average individual metabolic rates across species. We show that 
while METE realistically predicts the distribution of individual metabolic rates across the entire 
community, the within and across species predictions generally fail. We also test the energy-
equivalence type prediction that arises as a consequence of the prediction for the distribution of 
average individual metabolic rates across species. We suggest several possible explanations for 
the empirical deviations from theory, and distinguish between the expected deviations caused by 
ecological disturbance and those deviations that might be corrected within the theory. 
 
Taken together, these results indicate that it is possible to extend macroecological theory to 
ecosystems that experience natural disturbances and other ecological disruptions. Because we 
find that there are regular empirical deviations from theory in ecosystems that have experienced 
some sort of disturbance, we can conclude that the values and ratios of the four state variables 
(A0, S0, N0 and E0) used by METE are not sufficient to describe the dynamics of real ecosystems. 
These regular deviations, however, are interesting in their own right, because they suggest where 
ecological processes may influence the shape of empirical macroecological distributions. This 
will provide a framework for comparing and eventually predicting the various effects of 
disturbance on biodiversity, in the contexts of disturbance regimes, anthropogenic change, and 
mixtures of both. 
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MJK: One of the main things you’ll notice when you start paying attention to your 

environment… is all the synchronicities and overlapping patterns. It’s kind of like nature 

throwing you a bone. 

I: Is that comforting for you? To know that there’s kind of a logic there? 

MJK: It actually makes everything more confusing. 

 

Maynard James Keenan, paraphrased from an interview with Loud 
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Chapter 1: Disturbance macroecology: a comparative study of plant species’ abundances 
and distributions in different-age post-fire stands of Bishop Pine (Pinus muricata) 
 
Abstract  

Previous macroecological studies have largely restricted their scope to relatively steady-state 
systems. How metrics of biodiversity and abundance are expected to scale in disturbance-
dependent ecosystems is unknown. Evidence gathered from systems recovering from recent, 
major ecological disruptions is sparse and likely does not apply to disturbance-dependent 
communities. Furthermore, “disturbance” has often been used as a catch-all phrase to refer to any 
ecological disruption, and ecosystems that have evolved with a natural disturbance regime are 
conflated with those having undergone anthropogenic changes. In this study, we examine 
macroecological patterns in a fire-dependent community of Bishop pine (Pinus muricata). We 
target two different-aged stands in a region of high wildfire activity, one a characteristically 
mature stand with a diverse understory, and one more recently disturbed by a stand-replacing fire 
17 years previously. We compare the stands using various macroecological metrics of species 
richness, abundance and spatial distributions that are predicted by the Maximum Entropy Theory 
of Ecology (METE). METE is an information-entropy based theory that has proven highly 
successful in predicting a wide variety of community- and species-level macroecological metrics 
across a wide variety of systems and taxa, that does not rely on steady-state or equilibrium 
assumptions, and is therefore well-suited to be a null model for ecosystems in transitional states. 
Ecological patterns in the mature stand more closely match METE predictions than do data from 
the more recently disturbed stand. This suggests METE’s predictions are more robust in late-
successional, slowly changing, or steady-state systems than those in rapid flux with respect to 
species composition, abundances, and body sizes. Our findings highlight the need for a 
macroecological theory that incorporates natural disturbance and other ecological perturbations 
into its predictive capabilities, because most natural systems are not in a steady state. 

 

Introduction 

Disturbance is pervasive in ecosystems, and it influences patterns of species diversity, 
abundance, and community membership over space and through time (Turner 1989). However, 
macroecology, the discipline concerned with large-scale patterns of diversity, has primarily 
focused on ecosystems that are perceived to be relatively stable (Fisher et al. 2010), in that they 
exhibit low variance in community structure through time (Turner et al. 1993). Ecosystems (and 
patches within ecosystems) that have recently undergone, or are continuing to undergo, natural 
disturbances (defined as those that are part of a repetitive disturbance regime sensu Turner 
2010), anthropogenic changes, and other ecological disruptions are likely to be in flux with 
respect to species composition and richness, species-area relationships, distribution of 
abundances, and body sizes, and intraspecific spatial distributions of individuals. However, the 
dynamics of disturbed sites and entire disturbance regimes are not captured by standard 
macroecological study systems, which are often chosen because they are in or near steady states 
(e.g. most of the Center for Tropical Forest Science plots represent late-successional, primary 
forest) (Condit 1998 Ch.1).  



	
   3 

Here, we restrict the use of the term “disturbance” to refer to “natural disturbances,” 
which satisfy the following four characteristics: a) they cause mortality of individual organisms 
in a community; b) however, they do not cause mortality of all individuals in the community and 
therefore do not result exclusively in primary succession; c) they are part of a historic and 
repetitive “disturbance regime” (Turner 2010) with well-defined characteristics (Pickett and 
White 1985, Turner et al. 1998, Turner 2010); and d) the disturbance is “absolute” rather than 
“relative” (Pickett and White 1985, White and Jentsch 2001) in that each disturbance event is “a 
relatively discrete event in time that disrupts the ecosystem, community or population structure 
and changes the resources, substrate availability or physical environment” (White and Jentsch 
2001). We differentiate (natural) disturbances from ecological “perturbations” and “disruptions,” 
which will refer to any other processes that restructure an ecological community, including 
events that are natural in origin but not part of repetitive disturbance regimes (e.g., landslides, 
extremely rare weather events), and those that are novel and may be anthropogenic in origin 
(e.g., human impacts). A lava flow or landslide that kills or physically removes all plant 
individuals in the community and results in primary succession would therefore not be a 
disturbance, but rather a perturbation or disruption under our definition (criterion b). This strict 
operational definition of “disturbance” as synonymous with “natural disturbance” is consistent 
with its usage in several influential reviews of disturbance ecology (Pickett and White 1985, 
White and Jentsch 2001, Turner 2010). 

Although natural disturbances have both large- and small-scale structuring effects in all 
ecosystems (Turner 1989), no macroecological study, to our knowledge, has addressed how 
metrics of biodiversity and abundance scale in disturbance-dependent ecosystems. Various 
studies on succession have led macroecologists to invoke “disturbance” broadly (including 
human activities, environmental variability, invasive species and so on) as a factor responsible 
for deviations from theoretical predictions or expected patterns, although it remains unclear 
whether macroecological patterns reported across ecosystems are properties of undisturbed, 
steady-state communities or are properties of all ecological systems. This failure to incorporate 
disturbance into macroecology poses a major challenge to the utility of this field in 
understanding ecological dynamics as well as global change. Synthesizing a “macroecology of 
disturbance” that incorporates quantitative macroecological metrics could have considerable 
consequences for conservation efforts, given that many ecosystems with active disturbance 
regimes (and the species that have evolved in them) rank among the most globally endangered 
(Turner 2010; and see Noss et al. 1995, Schlossberg and King 2015, Batllori et al. 2013). 
Distinguishing the effects of natural disturbances from those of anthropogenic changes is also 
important for predicting future states of ecosystems. 

Past macroecological work that incorporates ecological disturbances of any type has 
predominantly focused on their effects on the shape of the species-abundance distribution 
(SAD). Although the SAD is well-studied (reviewed in McGill et al. 2007; White et al. 2012; 
Baldridge et al. 2015), the underlying shape of a “natural” SAD is debated (see for example Hill 
et al. 1995, Nummelin 1998, Hill and Hamer 1998; Ulrich et al. 2010), and various distributions 
have been proposed. Empirical support for each of these distributions is mixed. For the rank-
abundance form of the SAD, a lognormal distribution is reported from many steady-state systems 
(Whittaker 1965; May 1975; Gray 1981; Ulrich et al. 2010), while other studies (Dennis and 
Patil 1979, Kempton and Taylor 1974) and “big data” methods showing that the log series 
distribution may be the most common across systems and taxa (White et al. 2012; Baldridge et 
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al. 2015). One study suggests the prevalence of the “double geometric” distribution (Alroy 
2015). Disturbance or ecological perturbation is often invoked as responsible for a lognormal 
SAD (Bazzaz 1975; Hill and Hamer 1998; Kempton and Taylor 1974; Death 1996; Newman et 
al. 2014). Kempton and Taylor (1974) show in a comparative study that moth communities in 
undisturbed plots sites in the Rothamsted Insect Survey in England exhibit log series SADs, and 
the plots recovering from agricultural activity exhibit lognormal SAD. Certain ecological factors, 
sampling schema (Ulrich et al. 2010), detection issues (Tokeshi 1993), and mathematical 
processes (such as the central limit theorem) may also produce the lognormal (Tokeshi 1993). 
Work focusing on succession suggests a transition in the shape of the SAD from geometric in 
early successional stages to lognormal and subsequently log series in later stages (Gray and 
Mirza 1979; Whittaker 1975; Bazzaz 1975). Other macroecological metrics are much less well 
studied in the context of ecological disruption, although the species-area relationship (SAR) has 
been examined through experimental work with removal of seed predators (Supp et al. 2012), 
and the effects of ecological disruptions and perturbations are beginning to be investigated more 
broadly (Supp et al. 2014, Mayor et al. 2015).  

The Maximum Information Entropy Theory of Ecology (METE) is a macroecological 
theory (Harte et al., 2008; 2009; Harte 2011; Harte and Newman 2014) that provides a statistical 
framework for linking the SAR, the SAD, and species-level spatial abundance distributions 
(SSADs), a metric quantifying the spatial distribution of individuals in a species over a given 
area. The METE framework is based on the principle of information entropy maximization, 
which allows the derivation of least-biased probability distributions that are constrained by prior 
knowledge. METE incorporates “prior knowledge” of the system being studied in the form of 
empirical values for state variables corresponding to species richness (S0), total abundance (N0), 
area under consideration (A0), and total rate of metabolism of all organisms (E0) as constraints. 

Empirical tests of METE generally support its predicted forms for macroecological 
metrics, including the species-area relationships, species abundance distributions (Harte et al., 
2008; 2009; White et al. 2012), species-level spatial abundance distributions, and certain 
metabolic predictions (Newman et al. 2014, Xiao et al. 2014) (but other spatial distribution and 
metabolic predictions are not strongly upheld; see McGlinn et al. 2015, Newman et al. 2014, 
Xiao et al. 2014). METE has accurately predicted these metrics for a range of natural 
communities, including herbaceous plants, trees, vertebrates and invertebrates, and in temperate, 
tropical, and montane environments, as well as isolated island communities (Harte et al. 2008; 
Harte et al. 2009; Harte 2011; Rominger et al. 2015). This study represents the first assessment 
of these common macroecological metrics for a plant community in a high-intensity natural 
disturbance regime. 

In this study, we ask how well various macroecological metrics that describe community 
structure, specifically the SAR, SAD, and SSADs perform at the stand level, for a forest stand 
that has undergone a recent (17 yr previous) disturbance in Bishop pine forests and for a nearby, 
mature stand in the same disturbance regime (Brown et al. 1999) at Point Reyes National 
Seashore (PRNS) in California, USA. We hypothesize that the METE will more accurately 
predict these community structure metrics in the more mature plot (Mount Vision) because it has 
had a longer time since disturbance to reach steady-state dynamics, and METE’s predictions will 
be less accurate for the more recently disturbed (Bayview) plot. 

If an information-entropy based theory of macroecology (METE) performs equally well 
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for both the mature and disturbed plots, we would have supporting evidence that the information 
contained in the four state variables that constrain the predicted distributions is sufficient to 
describe ecosystems, regardless of what their disturbance status is. This would suggest that 
METE’s successes are independent of the disturbance history of an ecosystem. Alternately, 
METE might not work for one or both of the different-aged plots, which means that the theory’s 
four state variables do not contain adequate information to constrain the predicted distribution to 
the empirical distributions. Because METE is constrained to predict the maximum information 
entropy distributions only, the functional forms are fixed after the state variables are specified. 
Failures of METE to accurately predict ecological metrics in rapidly changing ecosystems would 
indicate the need to characterize deviations of real ecosystems from METE’s predictions, or 
modify the theory to allow prediction of macroecolgical metrics in ecosystems with active 
disturbance regimes, undergoing succession, or experiencing perturbations generally.  

 

Materials and Methods 

Bishop pines: a plant community that experiences natural disturbance 

This study focuses on Bishop pine (Pinus muricata) stands and their associated plant 
communities, which exhibit an unusual natural history. Bishop pine is endemic to the California 
Floristic Province in North America and has a patchy distribution along the coast of California, 
USA and Baja California, Mexico, including the California Channel Islands (Millar 1983, Millar 
1986, Little 1971, Stephens and Libby 2006) (Figure 1). Mature stands (~40-120 years old) may 
have individuals that are widely spaced, and a moderately diverse understory of forbs and shrubs. 
Stand-replacing fires cause regeneration of the Bishop pines into a uniform age and size-class, 
“dog-hair” stand of trees that is nearly a monoculture with almost no understory. Dense stands 
have been shown to undergo a process of self-thinning (Harvey et al. 2011). Alternately, some 
have described additional thinning fires during the lifecycle of the trees that can restore the more 
open canopy and allow some trees to mature into large individuals (Brown et al. 1999, S. 
Stephens, pers. comm.). Although we found no evidence for such a process at our field sites in 
the wildfire records maintained by Point Reyes National Seashore since the establishment of the 
park in 1962, Brown et al. 1999 document frequent wildfires (every 8-9 years, on average) from 
the 1700’s through 1945 for Olema Valley and general Point Reyes area, including 4 large fires 
in the early 20th century (1904, 1906, 1923, and 1945). Of these, we believe the 1923 fire is the 
most likely to have affected our study sites. The fires are thought to be human-caused, and 
surface rather than stand-replacing. More recently, patterns of fire severity leading to landscape 
heterogeneity are described in Forrestel et al. (2011), which focused on vegetation succession, 
especially with respect to Bishop pine communities following the October 1995 Vision Fire, 
which burned 12,354 acres (5000 hectares, or 50 km2) within the National Park unit (NPS 2005). 
Forrestel et al. found that Bishop pines increased in extent by 85% and have an altered spatial 
distribution following this high-severity fire.  

Species compositions between plots are not directly comparable as plant communities 
because the sites are exposed to different local climates. However, we are able to use our data to 
test hypotheses about the effects of intense natural disturbance on plant community structure 
from a macroecological perspective identifying overall species-level and community-level 
patterns.  
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Site descriptions 

Field sites were chosen within the boundaries of Point Reyes National Seashore (PRNS), on the 
Pacific coast of California, USA, ~50 km northwest of San Francisco. According to data from 
1964-2012, PRNS experiences a Mediterranean-type climate, with mild winters (monthly lows 
of 2-4 oC and highs of 15-17 oC) and cool summers (monthly lows of 6-9 oC to highs of 18-24 
oC) with most of the ~100 cm annual rainfall occurring in winter, and a substantial amount of 
moisture received from fog drip in the summers (Dawson 1998; Forrestel et al. 2015).  

We placed study plots in two Bishop pine (Pinus muricata) stands, each plot measuring 
256 m2 (16m x 16m), and censused each for all aboveground, live vascular plants ≥1 cm in 
height in April, 2012. At each site, live plants were censused (all individuals counted) as 
completely as possible with double-observers, and each plant’s spatial location in the sampling 
grid was recorded with a cell number, representing a 1 m2 subdivision of the larger plot. Plants 
were identified to species in the field when possible using the Jepson Manual (Baldwin et al. 
2012) and other field guides for the local region (Howell et al. 2007, Keator and Heady 1981). In 
the cases where plants could not be identified to species, “morphospecies” (plants with a large 
number of shared characteristics) were given a unique species identifier for analysis, and 
reference notes and photographs were taken in the field. METE’s predictions are robust to 
sampling only within a given taxonomic category or guild, and the lumping and splitting of taxa, 
provided that such decisions are made consistently (Harte et al. 2013). 

The higher elevation “Bayview” plot at 252 m (825 ft) was placed in an area of PRNS 
that burned in the 1995 Vision fire. We also surveyed, but discarded, a pilot plot (“Hillview”) in 
the 1995 Vision fire burn area because it had less than 10 vascular plant species and was 
therefore unsuitable for analysis by METE (Harte 2011; requirement that S0>>1). Both the 
Bayview and Hillside plots can be characterized as “dog-hair” type stands of thin, closely-
growing trees, in which the ages of the Bishop Pines are uniform, and the understory is sparse or 
absent. Six trees were cored at this site to create a record of variability of widths among the 
center rings of growing trees following an intense fire and a period of rapid growth. The slightly 
lower-elevation “Mount Vision” plot was located at 213 m (698 ft) in a mature Bishop pine stand 
with a more diverse and lush understory. Fourteen trees were cored at this site to determine the 
ages of all trees in the plot, and results were corroborated with aerial photographs of this area in 
the PRNS archive (see below). The two plots, which are 6.1 km (~3.8 mi) apart are shown in 
Figure 2, and locations and characteristics are summarized in Table 1.  

Plant communities within Bishop pine forests at PRNS are highly patchy and exhibit high 
beta-diversity in the understory due to slope, elevation, and various local factors affecting 
climate variation, including exposure to ocean fog (Forrestel et al. 2011). As a result, species 
compositions between plots cannot be considered direct successional stages.  

Establishing disturbance histories 

We examined land-use history records (including aerial photographs, contemporary accounts, 
historical ranch maps, and post-wildfire incident records) in the archives at Point Reyes National 
Seashore, in consultation with National Park Service (NPS) archival staff. Other fire records 
examined include CALFIRE’s Department of Forestry and Fire Protection FRAP Fire Perimeters 
(available online at http://frap.cdf.ca.gov/data, accessed in July 2015). 
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At each plot, trees were cored using increment borers (Haglöf SwedenTM). Cores were 
stored in labeled paper straws until they could be glued into wooden mounts. The number of 
trees cored was severely limited by agreement in the National Parks permit, and a better estimate 
of growth height of initial growth year rings could not be obtained. See Appendix A for more 
information on tree ages, sampling, and curatorial information. 

The maximum information entropy approach 

Macroecology as a discipline has generally avoided studies of disturbed systems for at least two 
reasons: first, that disturbed systems are perceived as being in “transition” and unlikely to 
produce replicable, generalizable results; and second, assumptions of steady-state, equilibrium 
and stabilizing mechanisms in macroecological theory are common and often required in order to 
solve equations (see Hubbell 2001). In contrast, METE relies on the maximum information 
entropy inference procedure (MaxEnt) to predict least-biased probability distributions, given 
empirical constraints (Jaynes 1982), but invokes no explicit physical or ecological mechanisms 
(Harte 2011, Harte and Newman 2014). An application of the MaxEnt procedure, the “ASNE” 
version of METE (Harte and Newman 2014) uses only the relationships between four non-
adjustable state variables that take on values from the system being measured: S0 (total species), 
A0 (total area under consideration), N0 (total abundance), and E0 (total metabolic energy). The 
state variables are static, not dynamic in this formulation, and there are no adjustable parameters 
characterizing the scaling of species diversity, abundances, and energetics in a system. 
Mathematical forms of empirical constraints arise from ratios of the state variables. More 
complete mathematical constructions of distributions are available in Harte (2011). Census data 
from multiple plots within the PRNS Bishop pine community are used here to test METE 
predictions for the species-area relationship (SAR), the species-abundance distribution (SAD), 
and the species-level spatial abundance distributions (SSAD).  

Species-Area Relationship (SAR) and scale collapse 

The Species-Area Relationship (SAR) describes how species diversity increases with increasing 
area. It is represented by , where A is a sampled area within the total A0 under 
consideration, and is calculable from the state variables as:

 
 

   (1) 

Here, is the probability that a cell (or smaller area A within A0) will be unoccupied 
by a given species, and  is therefore the probability of occupancy by that 
species. Scale collapse is a property that emerges from the METE SAR when the local slope of 
the SAR at each spatial scale is graphed against the ratio of N/S measured at that scale (Harte et 
al. 2009), and we test that property for both plots compared to the METE predicted curve (Harte 
2011, Harte et al. 2013, Wilber et al. 2015) with “z-D” scale collapse plots. The SAR calculated 
here is the recursive SAR, which was shown to make more accurate predictions than the non-
recursive version of the same metric (McGlinn et al. 2013).  
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The SAD, , models the distribution of the total abundance of individuals N0, across all species, 
S0.  

    (2) 

Here, n represents the individuals within a given species, and β is related to the Lagrange 
multipliers λ1 and λ2, such that λ1= β-λ2 and λ2 = S0/(E0 – N0); and β satisfies the approximate 
relationship: 

     (3) 

following Harte et al. 2008, Harte et al. 2009, but using exact normalization. An exact expression 
for β, its derivation, and discussion of simplifying assumptions is available in Harte (2011), 
Chapter 7.5. The METE SAD is here compared to the continuous lognormal distribution 
common to many of the studies mentioned previously, although the Poisson lognormal has also 
been suggested as an appropriate comparison (McGill et al. 2007, White et al. 2012). 

 

Species-level Spatial Abundance Distributions (SSADs) 

The spatial distribution of individuals of a given species and their level of aggregation is 
predicted in METE as the SSAD, for which there is some support in the literature (McGlinn et al. 
2015). With (or simply ) defined as the species-level spatial abundance 
distribution, the normalization constraint on the probability distribution for a given species:  

     (4) 

the additional constraint on the mean value of the number of individuals per cell:  

    (5) 

and  representing the Lagrange multiplier associated with that constraint,  is defined to be 
the partition function that normalizes the solutions. We can write down the form of the solution 
that maximizes information entropy (Jaynes 1982): 

     (6) 

The partition function can be obtained by solving for it and the real-valued Lagrange multiplier 
simultaneously: 
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    (7) 

Additional steps in the solution are available in Harte (2011) Chapter 7.4. 

The METE prediction for the SSAD of a given species is an “upper-truncated” (ut) 
geometric series, describing the frequency distribution of cells of the smallest sampled area (A) 
within the larger area A0, which contain the maximum number of individuals n. “Upper 
truncation” or “right truncation” refers to the domain of the predicted distribution being limited 
to its physical maximum, rather than having an unbounded upper tail of probability (see White et 
al. 2012, Appendix A). The METE ut-geometric prediction is here modeled with the number of 
parameters (k) of the distribution equal to 1, which is 1 parameter fewer than a regular truncated 
geometric. This is because the corresponding parameters in the METE distribution, i.e. the 
Lagrange multiplier and the normalization by the partition function, are uniquely determined by 
the same state variable values, and there are no parameters that may be adjusted in this 
arrangement. 

Applying METE to ecosystems in transition 

As applied here, METE might accurately capture “snapshots” of rapidly changing 
ecosystems at an instant in time. The predictions of this ASNE version of METE are static in 
time. A dynamic version, while desirable (Fisher et al. 2010), is not yet available. Here, separate 
plots are placed to capture the macroecological patterns that characterize live, aboveground plant 
communities within separate patches in a disturbed landscape. As is the case for many 
macroecological studies, we here choose to study living, aboveground plants above a certain size 
threshold, which are a high-detectability system, with relatively large, sessile organisms. 
“Propagules” or organisms that persist through major disturbances in some form (as in a seed 
bank) are essential to a complete understanding of the disturbance ecology of a particular system, 
and may make up the larger part of plant abundances in an area. These propagules are not 
included in our measurements, but METE predictions hold for the remaining community of 
interest, and metrics scale with the measured community, rather than the full community. METE 
makes the least biased predictions of the community of interest as characterized by the measured 
state variables (Harte 2011) as a result of its underlying MaxEnt formalism (Jaynes 1982). 
Additionally, limiting METE to a focal taxon or taxa does not prevent accurate predictions 
(Harte et al. 2013), and issues of misidentification of species affect predictions in a minor way 
(Harte et al. 2013). We can therefore state with some certainty that tests of METE in this study 
are (1) robust to biases that arise in low-detectability systems, and (2) able to model the live plant 
community without accounting for other forms of biodiversity present in the system. These 
assumptions are useful to draw attention to, as they differ in important ways between the fields 
of macroecology and disturbance ecology. Moving towards a synthesis of the two fields will 
require careful study design that is informed by knowledge of both fields. 

 

Analyses 
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Analyses for the macroecological metrics considered in this paper were carried out with 
Python (van Rossum, 2001) in the open-source project “Macroeco” (Kitzes et al. 2014, Kitzes 
and Wilber 2016). SAR, SAD and SSAD scripts were available from the beta version of this 
software (accessed June 2015). Other analyses were carried out in “R” versions 3.0.1 and 3.1.1 
(R Core Team 2013, 2015). Models for SADs and SSADs were compared using Akaike’s 
Information Criterion (AIC) value corrected for small sample sizes (AICc). For SAR and z-D 
scale collapse model comparisons, we compare models with R2 values derived from one-to-one 
predicted versus observed graphs (White et al. 2012, Appendix A), because no method is 
available to generate likelihood functions required for AIC comparisons. 

 

Results 

Summary statistics and calculated parameters 

A total of 2330 individual plants in 32 species were censused in the two plots analyzed for this 
study. Species and their presence in each plot are shown in Table 2.  

The Bayview plot, which burned in 1995, was censused at 17 years after the Vision Fire, 
and contained 16 species and a total of 486 individuals (148 of which were Bishop pines). Six 
tree cores showed that trees ranged in raw ring counts (a rough estimate of age) from 7 to 16 
years (mean = 12.3). Density of Bishop pines in this plot was measured to be 0.58 trees/m2 (or 
5800 stems/ha), with a total basal area occupied by trees of 45.15 m2/256 m2 plot. The Mount 
Vision plot contained 27 species and 1844 individuals total (14 of which were Bishop pines). 
Bishop pine density in this plot measured 0.06 trees/m2 (or 600 stems/ha), including the very few 
seedling trees in the plot. The total basal area occupied by trees measured to be 17.74 m2/256 m2 
plot. Tree cores varied in age from an estimated 24 to 43 years old (mean = 34.1; mode = 33). 
Live tree density per hectare estimates are consistent with previous estimates (Harvey et al. 2011, 
2014). 

In both plots, Bishop pines were the only tree in the overstory, and were the largest plants 
in each plot by estimated biomass. See Figure 3 for histograms of dbh measurements for each 
site. For comparison to METE-predicted metrics, we calculate the value of the parameter β = 
6.515 x 10-3 for the Bayview plot for the measured values N0 = 486, S0 = 16, and β = 2.429 x 10-3 
for the Mount Vision plot, with measured values N0 = 1844, S0 = 27. The values for the Lagrange 
multipliers λ1 and λ2 are not independently calculable because state variable E0 was not measured 
for either plot.  

Species-Area Relationship and scale collapse 

Generally, the METE prediction for the SAR appears to be a good fit for both data sets, whereas 
the z-D (scale collapse) predictions show more deviation from the METE prediction for the 
recently disturbed plot. See Figures 4 and 5. 

To determine the best model fits for the SAR and z-D, comparisons of R2 values on a 
one-to-one line for predicted versus observed distributions (White et al. 2012) were carried out 
for both the Bayview and Mount Vision plots. Best-fit power laws were calculated from the SAR 
data for each site (Figure 4) and applied to the z-D graphs (Figure 5). R2 values for the mature 
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Mount Vision plot support METE’s predicted SAR over the best-fit power-law predictions 
(R2

METE= 0.991; R2
PowerLaw= 0.989), whereas the power law fit is a better fit for the recently 

disturbed Bayview plot (R2
METE= 0.977; R2

PowerLaw= 0.998) on a ln-ln graph. The z-D plots show 
the local slope of the SAR plotted against ln(N/S) at every scale; visually each plot confirms the 
better fit of the METE-predicted distribution over the best-fit power-law for the mature plot. 

Species-Abundance Distribution (SAD) 

Model selection comparing AICc values for both the Bayview and Mount Vision plots support 
the METE-predicted log series distribution over the lognormal distribution (Table 3) that is 
sometimes characteristic of disrupted systems. On visual inspection of the SAD graphs (Figure 
6), there is the characteristic pattern of suppression of mid-abundance species in the Bayview 
plot that is characteristic of recently disrupted plots. The METE SAD does not capture this 
deviation, but because it fits the number of singleton species and the abundance of the most 
abundant species in this distribution, it wins out over the lognormal distribution by AICc 
comparisons.  

Species-level Spatial Abundance Distributions (SSADs) 

SSADs were calculated for all species. Results are presented for the higher abundance species 
(with n ≥ 20), comprising 14 species in the older Mt. Vision plot, and 4 species in the disturbed 
Bayview plot (Figures 7-9). In Figure 7, two alternate ways of presenting the same data are 
shown using the species (TRIBOR) as an example; first, a rank abundance plot (with rank 
corresponding to how many cells are occupied by a given level of abundance), and second, a 
cumulative density function (CDF). Note that the Poisson and binomial predictions appear to 
give the same results for each of the SSADs; this is because both models correspond to a null 
hypothesis of random placement, although the binomial has finite support and the Poisson is 
calculated with infinite support. Tables 4 and 5 summarize AICc comparisons between the 
candidate distributions for the SSAD: binomial, Poisson, and METE ut-geometric predictions, 
for the Bayview disturbed and Mount Vision mature plots, respectively (negative binomial fits 
are excluded here because they are “best-fit” and are not characterized by a single shape 
parameter). Figures 8 and 9 show all CDF plots for the high-abundance species in the Bayview 
and Mount Vision plots, respectively. Figure 10 shows the distribution of AICc weights for 
model fits for all species, for the binomial, Poisson, and METE ut-geometric predictions, with 
higher AICc weights corresponding to better model fits.  

We find that for the recently disturbed Bayview plot, SSADs for all 16 species have AICc 
values supporting a Poisson distribution in 11 of 16 cases, with the 5 remaining cases supporting 
METE ut-geometric distribution. No species are best described as having a binomial SSAD. 
Bishop pine distribution is best described by the METE ut-geometric distribution, with next-best 
supported model having ∆AICc= 3.6334. For the 16 most abundant species in the Mount Vision 
mature plot, AICc values support a Poisson distribution in 7 cases, and 9 cases support METE ut-
geometric distribution. For all species in the plot, the Poisson distribution is the best fit for 10 
species, while 17 species’ SSADs are described by the METE ut-geometric distribution (Fig. 10). 
Again, the distribution of Bishop pines is best described by the METE ut-geometric distribution, 
with next-best supported model (Poisson) having ∆AICc=1.3961. 
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Discussion 

Predicted and empirical distributions in different-aged stands 

This study demonstrates how the field of macroecology may benefit from incorporating natural 
disturbance regimes. Macroecological predictions of METE perform well in the mature stand in 
a disturbance-dependent community for the SAR, SAD, and the SSAD of both the dominant 
species (Bishop pine) and general plant community, compared to other candidate distributions. 
These results conform to our expectations, because the mature (Mount Vision) stand exhibits 
similar constancy and demographic stability as the extremely stable Smithsonian plots where 
METE has proven successful previously (Harte et al. 2008, Harte 2011, Xiao et al. 2015). METE 
predictions have variable and lower success in the recently disturbed (Bayview) plot. 

SSAD tests in both plots would benefit from higher sample size, both in terms of number 
of species and individuals within species, and replicate plots. Sampling issues confounded 
certain results: although some two species of vines (RUBURS, TOXDIV) are among the higher 
abundance species at all sites, their physical description was limited to presence or absence in 
cells, rather than true abundance counts. As a result, the physical distribution of these species is 
an artifact of sampling; a high number of cells containing a single individual. This suggests that 
(1) for species where only occupancy can be measured, candidate models for the SSAD make 
degenerate predictions that can not be differentiated, therefore the SSAD is not usefully applied; 
(2) meaningful sampling can only be carried out at a scale where there are multiple individuals of 
the same species of interest in multiple cells; and (3) sampling design for tests against METE 
should exclude species that have this problem (resulting in changes to state variable values that 
will reflect only the remainder, focal community). 

Deviations from METE’s predicted distributions 

METE is an effective approach for “snapshot ecology” type studies where detection rates 
for the taxa studied are high. However, like many forms of macroecology (Fisher et al. 2010), 
METE is not a dynamic theory in the ASNE formulation. Our results from two sites are 
consistent with the idea that ecological perturbation results in lognormal SADs, and may even be 
consistent with the idea that the SAD transforms during successive successional stages from a 
geometric shape through a lognormal to a log series (Gray and Mirza 1979; Whittaker 1975; 
Bazzaz 1975). It is also apparent that time since disturbance affects the shape of the SAD and 
various other metrics in this study, including the shift of SSADs from the Poisson towards the 
METE ut-geometric. 

We believe deviations from METE’s predicted SAD and the more Poisson-type SSAD 
distributions for the general plant community in the younger stand of Bishop pines is likely 
explained by a lack of steady-state dynamics. As an information-entropy based statistical 
framework that employs state variables to describe the “macrostate” of an ecosystem or plot 
within that ecosystem, the static, ASNE version of METE and the MaxEnt mathematics 
underlying it automatically solves for the set of distributions that maximizes information 
entropy. This predicted state always corresponds to a steady-state solution. Although METE does 
not invoke explicit mechanisms of stability, the fixed distributions it predicts for a given set of 
state variables likely closely correspond to mature biological communities experiencing very 
little demographic fluctuations or other large shifts in community composition over time. This in 
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turn may explain why METE works better for the mature stand than for the younger, more 
recently disturbed stand in this study. However, it still leaves open the questions of how 
macroecology can account for disturbance in ecosystems, and what implications this has for 
predicting their ecological effects. 

Other examples of notable deviations from METE’s predictions have been observed in 
the Barro Colorado Island (BCI) forest plot, in the drought-affected Rocky Mountain (RM) 
meadow studied in Newman et al. 2014, and in some Hawaiian arthropod communities 
(Rominger et al. in prep.). For BCI, tree and seed-disperser extirpation on the island following its 
isolation from the mainland was a consequence of the construction of the Panama Canal. Time 
since isolation has been associated with an increasingly lognormal SAD. The lognormal SAD is 
also observed in the RM meadow during a period of unusual drought and high temperatures 
leading to a novel community of wildflowers that exhibited irregular phenology (Newman et al. 
2014). In Hawaii case, the SAD shows higher-than-predicted numbers of singleton species. 
Deviation from the METE in this case may be caused by dispersal limitation and the relatively 
young age of the community (Rominger et al. in prep.). In each case, ecological context suggests 
that these systems are far from steady-state dynamics and provides insight into the ecological 
patterns observed. 

Unifying macroecology with disturbance ecology 

Until this study, no macroecological studies have focused on patterns in species diversity, spatial 
and abundance distributions in natural disturbance regimes. This study examines two very 
different successional states in a disturbance dependent ecosystem in an attempt to maximize the 
differences between METE’s predictive abilities in communities with different disturbance 
histories. 

We show that at the plot-scale, METE predictions are generally better supported for the 
more mature, less rapidly changing plot. Although METE has been demonstrated to work at the 
largest scale of ecosystems (Harte et al. 2009, Harte 2011, White et al. 2012, Harte and Kitzes 
2015), it is unclear how well METE would predict various metrics at an intermediate “landscape 
scale” (~50,000-100,000 ha) that landscape contains multiple patches with different disturbance 
histories. Census information for this scale is generally lacking, and understanding biodiversity 
patterns at these large scales is part of the motivation to study macroecology (Brown 1995).  

This study is a first step towards integrating macroecology into the study of landscapes 
undergoing natural disturbances; however, examining single successional states will not capture 
integral aspects of disturbance-dependent ecosystems. For example, the dynamics of the 
“shifting mosaic” of different successional states and patches that themselves may exhibit 
dynamic steady-states with respect to regional climate (Bormann and Likens 1979, Wu and 
Loucks 1995). As a form of “snapshot ecology” that incorporates no dynamics, it is possible that 
the ASNE version of METE may best be applied to patches within a disturbed landscape to 
characterize zones of different ages and disturbance histories. Alternately, using average or 
median values for the state variables S0 and N0 from multiple patches at different successional 
stages (or from plots with a mixture of successional stages) may adequately predict certain 
metrics (such as the SAR and SAD), while failing to predict other metrics (such as the SSADs 
and some or all metabolic metrics). The scaling of macroecological metrics may even provide 
insight into the scales at which disturbance-dependent ecosystems deviate most dramatically 
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from neutral, as patterns in disturbance-dependent landscapes are known to be scale-dependent 
(Wu 2004). These patterns may indeed change between landscapes characterized by large, 
infrequent disturbances (as in this study) and small, frequent disturbances (Romme et al. 1998, 
Turner and Dale 1998). Another opportunity to unify disturbance ecology with macroecology 
would be to use METE to test aspects of the Intermediate Disturbance Hypothesis, a long-
standing idea in disturbance ecology with mixed support (see summaries in Fox 2013, Sheil and 
Burslem 2013). More studies in disturbance-dependent ecosystems would be necessary to 
evaluate these hypotheses. 

Implications for conservation of Bishop pine forests 

Although these Bishop pine forests provide a window onto the macroecology of natural 
disturbances, anthropogenic disruptions have become dominant in this ecosystem. Ongoing 
infestation by a non-native pathogen (Pitch Canker, Fusarium circinatum) is rapidly causing 
Bishop pine mortality over large, continuous areas within the Vision Fire burned area. Mortality 
in some places is close to 100% (Ben Becker, pers. comm.). This pathogen is likely to 
permanently affect stand structure and viability of Bishop pines, and may endanger them as a 
species. Understanding stand structure and heterogeneity in unaffected stands while they are still 
present may be critical to conservation efforts. 

 

Acknowledgements 

I thank Point Reyes National Seashore for providing permits, field sites, logistical support and 
facilities. This study was carried out under PRNS Park-assigned permit PORE-2012-SCI-0014, 
Activity #PORE-00572. I thank B. Becker for permitting assistance, C. Derooy, P.P. Creaseman 
and G. Dove for curatorial assistance, and M. Wilber, D. Hembry, A. Forrestel, M. Moritz, S. 
Beissinger, and S. Stephens for useful discussions and comments on earlier versions of this 
manuscript. I also thank K. Krasnow and S. Stephens for materials and training, and M. Wilber 
and K. Wilkin for field assistance. This research is funded in part by the Gordon and Betty 
Moore Foundation, and by the NSF through the Graduate Research Fellowship and grant NSF-
EF-1137685.  

 



	
   15 

 

 

 

Chapter 1 Tables and Figures 

 

 

 

 

 



	
   16 

Tables. 

 

Table 1. Locations and other descriptive metrics for research plots used in this study 

Site name Bayview Mount Vision 

GPS coordinates 38.0593628°, -122.8507065° 
(+/- 3.6m) 

38.1028328°, -122.8933785° (+/-1.8m) 

Elevation 251.46 m (825 ft)  212.75 m (698 ft)  

Time since major 
disturbance 

17 years No recorded disturbance history, 
although tree age is maximum 
estimated 43 years 

Slope, aspect 0o, S 32o, NE 

Tree density/m2 0.578 0.055 

Trees cored;  

(cores available) 

4; (6) 13; (14) 

PRNS catalog 
numbers 

PORE 18080 through PORE 
18083; PRNS Accession 
number: PORE-00866 

PORE 18084 through PORE 18096; 
PRNS Accession number: PORE-
00866 

Total species (S0) 16 27 

Total abundance (N0) 486 1844 

Total area (A0) 256 m2 256 m2 
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Table 2. Presence of species by plot in two Pinus muricata stands of different ages. Species 
marked with a single asterix (*) are non-native.  

Higher taxon Common name Species name Analysis 
code 

Presence 
in Bayview 

Presence 
in Mt. 
Vision 

Ferns and fern 
allies 

Sword fern Polystichum munitum POLMUN x x 

 Bracken fern Pteridium aquilinum PTEAQU x x 

      

Gymnosperms  Bishop pine Pinus muricata PINMUR x x 

      

Eudicots California lilac Ceanothus thyrsiflorus CEATHY x – 

 Cape ivy* Delairea odorata* DELODO – x 

 Wood strawberry Fragaria vesca FRAVES  x 

 California 
coffeeberry 

Frangula californica 
(syn. Rhamnus 
californica) 

FRACAL – x 

 Bedstraw Galium sp. (possibly 
porrigens) 

GALIUM x x 

 Cow parsnip, 
pushki 

Heracleum maximum HERMAX x x 

 Cat's ear* Hypochaeris radicata* HYPRAD – x 

 Red henbit* Lamium purpureum* LAMPUR – x 

 California 
honeysuckle 

Lonicera hispidula LONHIS x x 

 False Solomon's 
seal, Slim 
Solomon 

Maianthemum stellatum MAISTE – x 

 California man-
root, wild 
cucumber 

Marah fabacea MARFAB x – 

 Coast man-root Marah oregana (syn. 
Marah oreganus) 

MARORE – x 

 Wax myrtle Morella californica MORCAL – x 

 Tanoak Notholithocarpus 
densiflorus (syn. 
Lithocarpus densiflorus) 

NOTDEN x – 

 Coast live oak Quercus agrifolia QUEAGR x – 

 Canyon live oak Quercus chrysolepis QUECHR – x 
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 Flowering 
currant 

Ribes sanguineum RIBSAN x x 

 California 
blackberry 

Rubus ursinus RUBURS x x 

 Sheep's sorrel, 
sour weed 

Rumex acetosella* RUMACE  x 

 Red elderberry Sambucus racemosa SAMRAC  x 

 Starflower Trientalis borealis TRIBOR  x 

 Poison oak Toxicodendron 
diversilobum 

TOXDIV x x 

 California 
huckleberry 

Vaccinum ovatum VACOVA x x 

 UNKSP3 UNKSP3 UNKSP3 x  

 UNKSP5 UNKSP5 UNKSP5  x 

      

Monocots Unknown grass UNKPOA1 UNKPOA1 x x 

 Unknown grass UNKPOA2 UNKPOA2  x 

 Unknown grass UNKPOA2/3 UNKPOA3  x 

 Unknown sedge Carex sp. CAREX  x 
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Table 3. Model comparisons of candidate Species Abundance Distributions (SADs) for the 
Bayview (disturbed) and Mount Vision (mature) plots. Here and following, k = number of 
parameters in model; AICc = Akaike’s Information Criterion value corrected for small sample 
sizes; wi = AICc weight (a measure of strength of evidence for each model); ∆AICc= difference 
of AICc value compared to the next best-supported model. 

Plot Model k AICc ∆AICc wi 

Bayview Lognormal 2 125.3246 5.1485 0.0708 

 METE log series 1 120.1761 0 0.9292 

Mount Vision Lognormal 2 271.9128 3.7173 0.1349 

 METE log series 1 268.1956 0 0.8651 
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Table 4. Model comparisons of Species-Specific Abundance Distributions (SSADs) for all 
species in the Bayview (17 years since disturbance) plot.  

Species (rank in plot; 
total abundance) 

Model k AICc ∆AIC wi 

RUBURS binm 2 503.8415 1.2021 0.3541 

(r=1; n=204)  pois 1 502.6394 0 0.6459 

  tgeo 1 633.8046 131.1651 0.0000 

PINMUR binm 2 538.7206 5.8831 0.0434 

(r=2; n=148)  pois 1 536.4710 3.6334 0.1338 

  tgeo 1 532.8375 0 0.8228 

TOXDIV binm 2 336.8804 1.8586 0.2826 

(r=3; n=72)  pois 1 335.0217 0 0.7158 

  tgeo 1 347.2462 12.2244 0.0016 

RIBSAN binm 2 145.8996 1.9218 0.2068 

(r=4; n=20)  pois 1 143.9778 0 0.5407 

  tgeo 1 145.5011 1.5233 0.2524 

PTEAQU binm 2 83.8498 3.2739 0.1094 

(r=5; n=9) pois 1 81.6494 1.0735 0.3286 

  tgeo 1 80.5759 0 0.5620 

MARFAB binm 2 53.3378 1.9804 0.1598 

(r=6; n=5) pois 1 51.3574 0 0.4303 

  tgeo 1 51.4544 0.0970 0.4099 

CEATHY binm 2 53.3378 1.9804 0.1598 

(r=7; n=5) pois 1 51.3574 0 0.4303 

  tgeo 1 51.4544 0.0970 0.4099 
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Table 4. (continued) 

Species (rank in plot; 
total abundance) 

Model k AICc ∆AIC wi 

VACOVA binm 2 45.2554 1.9844 0.1584 

(r=8; n=4) pois 1 43.2711 0 0.4273 

  tgeo 1 43.3332 0.0622 0.4142 

QUEAGR binm 2 45.2554 1.9844 0.1584 

(r=9; n=4) pois 1 43.2711 0 0.4273 

  tgeo 1 43.3332 0.0622 0.4142 

NOTDEN binm 2 45.2554 1.9844 0.1584 

(r=10; n=4) pois 1 43.2711 0 0.4273 

  tgeo 1 43.3332 0.0622 0.4142 

UNKPOA1 binm 2 36.6677 1.9883 0.1573 

(r=11; n=3) pois 1 34.6794 0 0.4250 

  tgeo 1 34.7144 0.0350 0.4177 

LONHIS binm 2 36.6677 1.9883 0.1573 

(r=12; n=3) pois 1 34.6794 0 0.4250 

  tgeo 1 34.7144 0.0350 0.4177 

GALIUM binm 2 27.4003 1.9922 0.1564 

(r=13; n=2) pois 1 25.4081 0 0.4234 

  tgeo 1 25.4235 0.0153 0.4202 

UNKSP3 binm 2 17.0864 2.0000 0.1555 

(r=14; n=1) pois 1 15.0904 0.0039 0.4218 

  tgeo 1 15.0864 0 0.4227 

POLMUN binm 2 17.0864 2.0000 0.1555 

(r=15; n=1) pois 1 15.0904 0.0039 0.4218 

  tgeo 1 15.0864 0 0.4227 

HERMAX binm 2 17.0864 2.0000 0.1555 

(r=16; n=1) pois 1 15.0904 0.0039 0.4218 

  tgeo 1 15.0864 0 0.4227 
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Table 5. Model comparisons of Species-Specific Abundance Distributions (SSADs) for the 16 
most abundant species in the Mount Vision mature plot. 

Species (rank in plot; 
total abundance) 

Model k AICc ∆AIC wi 

TRIBOR binm 2 1973.8237 888.4117 0.0000 

(r=1; n=657) pois 1 1964.8166 879.4045 0.0000 

  tgeo 1 1085.4121 0 1.0000 

RUBURS binm 2 514.9987 0.9987 0.3777 

(r=2; n=256) pois 1 514.0000 0 0.6223 

  tgeo 1 711.7827 197.7827 0.0000 

LAMPUR binm 2 624.1456 109.7404 0.0000 

(r=3; n=139) pois 1 620.0188 105.6136 0.0000 

  tgeo 1 514.4051 0 1.0000 

TOXDIV binm 2 448.9876 1.6406 0.3057 

(r=4; n=128) pois 1 447.3470 0 0.6943 

  tgeo 1 490.8429 43.4959 0.0000 

PTEAQU binm 2 408.4793 1.6378 0.3060 

(r=5; n=107) pois 1 406.8415 0 0.6940 

  tgeo 1 442.2202 35.3787 0.0000 

LONHIS binm 2 369.6808 1.7291 0.2964 

(r=6; n=87) pois 1 367.9517 0 0.7036 

  tgeo 1 390.4842 22.5325 0.0000 

UNKPOA2 binm 2 372.1632 1.9420 0.2726 

(r=7; n=83) pois 1 370.2212 0 0.7199 

  tgeo 1 379.3697 9.1485 0.0074 
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Table 5. (continued) 

Species (rank in plot; 
total abundance) 

Model k AICc ∆AIC wi 

UNKPOA3 binm 2 368.9714 6.8254 0.0291 

(r=8; n=77) pois 1 366.7755 4.6295 0.0873 

  tgeo 1 362.1460 0 0.8836 

FRAVES binm 2 324.0194 38.7963 0.0000 

(r=9; n=53) pois 1 320.6878 35.4647 0.0000 

  tgeo 1 285.2231 0 1.0000 

RUMACE binm 2 338.0478 78.3158 0.0000 

(r=10; n=46) pois 1 331.2333 71.5012 0.0000 

  tgeo 1 259.7321 0 1.0000 

FRACAL binm 2 221.2431 5.3742 0.0534 

(r=11; n=35) pois 1 219.0305 3.1615 0.1616 

  tgeo 1 215.8689 0 0.7850 

VACOVA binm 2 186.7350 2.0360 0.1589 

(r=12; n=28) pois 1 184.6991 0 0.4399 

  tgeo 1 184.8831 0.1840 0.4012 

UNKPOA1 binm 2 175.5172 4.8365 0.0654 

(r=13; n=25) pois 1 173.2849 2.6042 0.1998 

  tgeo 1 170.6807 0 0.7347 

HYPRAD binm 2 168.6391 12.8185 0.0016 

(r=14; n=22) pois 1 165.8832 10.0626 0.0065 

  tgeo 1 155.8206 0 0.9919 

POLMUN binm 2 140.7537 1.9257 0.2026 

(r=15; n =14) pois 1 138.8281 0 0.5307 

  tgeo 1 140.2046 1.3765 0.2667 

PINMUR binm 2 143.7426 3.5380 0.1022 

(r=16; n=14) pois 1 141.6007 1.3961 0.2983 

  tgeo 1 140.2046 0 0.5995 
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Figures. 

Figure 1. Map of Point Reyes National Seashore region in central coastal California, USA, 
showing study plot location and local distribution of Bishop Pines.  
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Figure 2. Photographs of (A) interior of mature Bishop pine stand at Mt. Vision site, and (B) side 
view of mature stand; (C) interior view of Bishop pine stand that burned in the 1995 Vision Fire 
at Bayview plot, and (D) exterior view of stand structure 17 years after the Vision Fire. 
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Figure 3. Distribution of dbh measurements in cm for Pinus muricata in the Bayview disturbed 
plot (17 years since fire) and the Mount Vision mature plot (~43 years max tree age). 
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Figure 4. Species-Area Relationships for (a) the recently disturbed Bayview plot, and for (b) the 
mature Mount Vision plot. Empirical data are shown against the METE upper-truncated (ut) 
geometric prediction, and the ut binomial distribution for comparison. 
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Figure 5. Universal scale collapse graphs, with METE-predicted and observed values illustrated 
at scales of N/S (total abundance/total species) for each plot each plot. The best-fit power law is 
shown for comparison. 
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Figure 6. Empirical and METE-predicted ranked Species-Abundance Distributions and 
cumulative density functions for fire-adapted Pinus muricata stand in two plots: Bayview (a-b), 
the more recently disturbed, even-aged “dog-hair” stand that experienced a stand-replacing fire 
in the 1995 Vision fire, and (c-d) Mount Vision, the less recently disturbed, open stand mature 
trees with a more diverse understory.  
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Figure 7. SSAD Example. Species shown is Trientalis borealis (TRIBOR) from the Mount 
Vision plot. In this example, binomial and Poisson distributions give the same predictions for the 
SSAD. 
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Figure 8. SSADs (shown as cumulative density functions) of the four most abundant species in 
the Bayview plot, which burned in the Vision Fire of 1995. Observed data are compared with a 
METE-predicted truncated geometric distribution and a Poisson distribution.  
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Figure 9. SSADs (shown as cumulative density functions on log10-transformed axes) of the most 
abundant species in the Mount Vision plot, a mature stand. Observed data are compared with a 
METE-predicted truncated geometric distribution and a Poisson distribution.  
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Figure 10. Histograms comparing SSAD models for all species by their AICc weights. By 
column: (A) Bayview plot (site of Vision Fire) and (B) Mount Vision mature plot. Higher AICc 
weights indicate better model fits. 
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Chapter 2: Macroecology for management: Testing an information-entropy-based theory 
of macroecology against anthropogenic disruption of high-Sierra meadows 
 

Abstract  

Anthropogenically-induced ecological disruptions (anthropogenic disruptions) have been 
overlooked by macroecological theory because they represent ecosystems in various states of 
transition that result from non-natural selection on the community. While critically important to 
understand for conservation reasons, anthropogenic disruptions are, in general, not comparable to 
each other, nor to other ecological disturbances that are natural in origin. The Maximum Entropy 
Theory of Ecology (METE) has demonstrated general applicability across a variety of systems, 
and including plant, arthropod and vertebrate taxa. Here, we use METE to examine the effects of 
an anthropogenically-induced novel disturbance regime of grazing by horses in high Sierra 
Nevada meadows on the species-abundance distributions (SAD), number of singleton species, 
and the species-level spatial abundance distributions (SSADs) (a measure of spatial aggregation) 
for all species in three pairs of grazed and ungrazed meadows, each meadow containing a system 
of plots set up across a moisture gradient. We find that number of singleton species may be a 
better indicator of ecological disruption than the shape of the SAD in systems where the 
differences in community structure are subtle. We also find that the METE SSAD performs 
better than all other models tested for both grazed and ungrazed plots. We suggest ways of 
augmenting tests of the METE SSAD to refine theory for management relevance.  

 
Key words 

Subalpine meadows, Sierra ecosystems, ecological perturbation, anthropogenic disruption, horse 
grazing, pack stock, species-abundance distributions, spatial distributions 
 
Introduction 

Macroecology, as a discipline, has historically focused on questions of species diversity, 
abundances, and how plot-level data can be scaled up to make predictions about diversity 
patterns at the scale of ecosystems or entire biomes (Brown 1995, Gaston and Blackburn 2008, 
Harte 2011). In contrast, many management-oriented studies have begun to emphasize 
ecosystem attributes such as dynamic landscapes and patchiness (Noss 1983, Pickett and White 
1985, Pickett and Rogers 1997), which have been largely overlooked by macroecology (Fisher et 
al. 2010) despite occurring at spatial scales that have been the focus of much macroecological 
research. Adapting macroecology for biodiversity conservation and management at plot-to-
landscape scales may be desirable because macroecological predictions scale well over space by 
design, and many macroecological metrics of interest can be measured with a simple census grid. 
In principle, macroecological methods would be able to reveal that ecosystems are lacking rare 
species that they should have, or differ in structure and composition from more desirable states 
(such as the differences between primary and secondary forests, or vegetation communities 
differing in their degree of invasion by non-native species). Ultimately, macroecological metrics, 
in aggregate, may yield a “signature of disturbance” or “signature of ecological disruption” in 
ecosystems that may be similar from ecosystem to ecosystem, and provide insight into how 
macroecological patterns change together under a variety of stressors.  
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A recently developed macroecological theory, the Maximum Entropy Theory of Ecology 
(METE), shows great potential as a framework for revealing patterns of biodiversity in a form 
that would be useful in support of land management decision-making. METE has been 
successful in making accurate predictions of many macroecological metrics, in a variety of 
ecosystems and for multiple taxa. These metrics include those we will examine in this chapter, 
all of which may be relevant to management issues: the species-abundance distribution (SAD; 
Harte et al. 2008, Harte 2011, White et al. 2012, Newman et al. 2014), the numbers of singleton 
species in study plots (or “singletons”; referring to those species represented by a single 
individual; Harte 2011, White et al. 2012, Harte and Kitzes 2015), and the species-level spatial 
abundance distribution (SSAD) of each species in each study area (Harte et al. 2008, Harte 2011, 
Newman et al. manuscript [Chapter 1 of this dissertation]). The SAD (and resulting measures of 
rarity) and SAR are metrics that measure biodiversity, while the SSAD is a measure of spatial 
clustering of individuals of a species in a given area. We choose these metrics from a large 
number of possible ones that could be calculated with the same methods because they are 
independent of area, and instead only rely on two of METE’s “state variables”: N, the total 
abundance of individuals, and S, the total number of species in the study plot (see Harte et al. 
2008, Harte et al. 2009, Harte 2011, Harte and Newman 2014). 

A small number of studies have shown that deviations from METE occur. Some of these 
deviations suggest that METE may be used to distinguish between steady-state and systems in 
transition. Others do not appear to be related to processes that may be of interest to biodiversity 
management, as not all deviations from METE might be considered a “signatures of disturbance” 
(some deviations may occur due to incomplete sampling, for example). Previous studies have 
demonstrated that recent natural ecological disturbance in a fire-adapted forest (Newman et al. 
manuscript [Chapter 1]), drought in Rocky Mountain meadows (Newman et al. 2014 [Chapter 
3]), and isolation of a rainforest community at Barro Colorado Island in Panama resulting from 
construction all have SADs that show marked deviations from the METE-predicted Fisher log-
series distribution (Harte 2011). The shape of the SAD is important in ecosystem and species-
level management decisions because it has direct relevance to how many rare species can be 
maintained in an area. Similar studies focused on dominance and evenness in local communities 
describe these mediate inter- and intraspecific interactions with effects on coexistence and 
maintenance of rare species (Hillebrand et al. 2008). 

For small scaling plots (<1 ha) to be useful as a macroecological tool, their results must 
distinguish between different ecological states, and either individual metrics or metrics in 
combination with one another must reveal a signature of disturbance or other ecological 
perturbation, that changes regularly between impacted and unimpacted plots. Here, we use an 
extensive novel dataset to examine fits to and deviations from METE in Sierra subalpine 
meadows. We focus in particular on the shape of the species-abundance distributions, predicted 
numbers singleton species, and the functional form of SSADs as determinants of how well 
METE performs in and distinguishes between unimpacted and heavily perturbed patches or 
communities within ecosystems. We compare community structure at the plot-level in subalpine 
Sierra Nevada meadows that have a recent history of grazing by horses (grazed plots) to those 
with no recorded history of use by horses or other “pack stock” animals non-native to the 
ecosystem (ungrazed plots). Effects of pack stock use have been indicated as drivers of 
ecological change in this ecosystem (DeBenedetti & Parsons 1979, McClaran and Cole 1993, 
Ostoja et al. 2014).  
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Because the METE SAD and SSAD work extremely well for natural systems in large-
scale contexts (≥50 ha) and many of its metrics are explicitly designed to scale with area, we 
expect that METE will also make accurate predictions for the majority of unimpacted (ungrazed) 
small-scale plots we measure. The metrics we choose to focus on here are independent of area, 
and small-scale plots have the benefit of being replicable and easy to construct. However, small-
scale plots have the potential downside of not capturing beta diversity and landscape 
heterogeneity well, which might limit the usefulness of METE’s predictions. Based on previous 
cases of deviations from METE’s predictions, we expect that METE will be more accurate in its 
predictions of metrics in ungrazed plots than grazed plots, which would mean that results 
between plots exposed to different environmental stressors would be distinguishable. If this is the 
case, there is potential for small-scale plots to be a useful management tool. Specifically, we 
predict (1) grazed plots’ SADs will be more lognormal than their ungrazed comparison or control 
plots, regardless of moisture level (because grazed plots represent systems in transition, often 
associated with the lognormal SAD; Kempton and Taylor 1974, Bazzaz 1975, Gray and Mirza 
1979), and therefore (2) grazed plots will contain fewer singleton species than their ungrazed 
comparison plots. METE should therefore (3) accurately predict the number singleton species 
within the ungrazed plots, but overestimate singletons in the more lognormal grazed plots. 
Finally, (4) METE’s SSAD predictions should be the best fit in ungrazed plots when compared 
to other models, but may not be the best model in aggregate for all species when tested in grazed 
plots. 

 

Methods 

Site descriptions 

Sierra Nevada subalpine meadows are found between the latitudes of 35-40o N in eastern 
California and western Nevada, USA. These meadows generally occur in an elevation range of 
2,450–3,600 m (Fites-Kaufman et al. 2007), and are characterized by their diverse, herbaceous 
flora, often comprising multiple plant communities, as well as two abiotic conditions: a shallow 
water table (generally <1m) and fine-textured soils (Weixelman et al. 2011). Occupying only 
~3% of the land area (Keeler-Wolf et al. 2012, Viers et al. 2013), meadows are host to the 
majority of biodiversity in the Sierra Nevada (Ostoja et al. 2014). Water is known to be a 
limiting factor in Sierran meadows (Benedict 1983, Ratliff 1985, Fites-Kaufman et al. 2007, 
Berlow et al. 2003), and is a key determinant of plant community composition (Halpern 1985, 
Allen-Diaz 1991) and diversity (Benedict 1983). Sierra Nevada meadows are subject to multiple 
stressors (Lee 2013) affecting soil moisture levels, at least two of which are major conservation 
concerns, the first being a long-term drying trend (Darrouzet-Nardi et al. 2006) with 
exceptionally dry recent years (Dai 2013), and the second being animal grazing, including pack 
stock use. Agricultural grazing by sheep, cows, and horses has occurred since 1862, with use for 
sheep discontinued by 1900 (DeBenedetti & Parsons, 1979, Odion et al. 1988). Shortly after its 
inception, agricultural grazing by cows was described as having strikingly obvious effects on 
Sierran meadows, specifically denuding, degrading, and eroding them (Odion et al. 1988). The 
effects of pack stock animals (horses, mules and burros) for travel and recreation are not as clear. 
Recently, many studies have highlighted a complex impact of pack stock on meadows, such as 
an increase in bare ground (Moore et al. 2000, Cole et al. 2004, Lee 2013), a decrease in 
productivity (Cole et al. 2004) and in soil moisture (Shryock 2010, with similar findings for 
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cattle grazing in Berlow et al. 2002), and an increase in the incursion of woody species 
(D’Antonio et al. 2004, Darrouzet-Nardi et al. 2006). Meadow responses to grazing and pack 
stock use also vary with within-meadow water gradients (Lee in prep.), and drier local vegetation 
communities have lower resilience to these perturbations (Génin in prep.). Pack stock use has 
also been shown to have indirect effects including changes in soil chemistry; these and many 
other effects are reviewed in Ostoja et al. (2014). However, some studies show little or no effects 
of pack stock use in the longer term (on plant assemblages: Hopkinson et al. 2013, and arthropod 
communities: Holmquist et al. 2010). This may be a result of the inherent variability of meadows 
(Allen-Diaz 1991), and the dominant control of large-scale climatic and hydrologic factors 
(Wood 1975), as well more local processes. Due to this complex response to ecological 
processes and perturbations, Sierra Nevada meadows are an ideal system for using novel 
methods to assess the effect of perturbations on ecosystems. 

Our study sites were located in subalpine meadows in Sequoia National Park in Tulare 
County, California (36o33’53”N, 118o46’24”W). Figure 1 shows study meadow locations within 
the Sequoia & Kings Canyon National Parks management unit (SEKI). Our study meadows were 
surrounded by conifer forests typical to this region (Fites-Kaufman et al. 2007), dominated by 
Lodgepole pine (Pinus contorta), also containing a mixture of Whitebark pine (Pinus albicaulis), 
Foxtail pine (Pinus balfouriana), and Sierra juniper (Juniperus occidentalis var. australis).  
 

Pack stock use and plant community comparisons 

Study meadows were chosen from a subset of a comprehensive National Parks Inventory of 
Sierra Nevada meadows (Berlow et al. 2013, Pyrooz 2015) based on aerial imagery, with pack 
stock use records that are compiled and maintained by the National Park Service (Holmquist et 
al. 2010, Matchett et al. 2015), and through expert opinion of the National Plant Ecologist, also 
in charge of pack stock monitoring in SEKI (Sylvia Haultain). In particular, our study meadows 
were pulled from a larger set of paired meadows identified in a concurrent study to have 
matching characteristics (through a method of optimizing Mahalanobis generalized distances), 
according to 27 geospatial, hydro-climatic, and vegetation covariates (Lee 2013), including pack 
stock use history, elevation, and proximity. After this initial selection of paired meadows, plots 
were placed within a meadow by matching the three species with highest percent cover between 
grazed and ungrazed comparisons at the same estimated soil moisture level. Relative moisture 
levels of plots were qualitatively estimated by soil composition and texture in three categories: 
mesic, mesic transition and xeric. Soil water content could have been measured in the field, but 
because soil moisture fluctuates over the course of a day, between precipitation events, and 
between years in these meadows, any measurements made over the course of one season in a 
single meadow would not adequately characterize average soil moisture levels. We therefore 
used a comparative approach between our data and an existing, longer-term data set that includes 
measurements of soil volumetric water content (VWC; Lee 2013, Lee in prep.) over two years 
and on a larger number of meadows (47). In the Lee (2013) study, VWC was measured at 12cm 
depth with a soil probe in an array of plots across individual meadows, and plot means were 
converted to a standardized measure to minimize potential effects of intra- and inter-annual 
variation in soil moisture between meadows.  

For each plot in this study, we estimated the underlying moisture level that would have 
produced the plant communities we measured by comparing our data set with data available from 
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Lee (2013) for many of the same meadows. This was accomplished by merging the two datasets 
and using a non-metric multidimensional scaling (NMDS) to ordinate the combined data on a 
two-axis plane. NMDS is an ordination procedure that projects sites (species composition in one 
cell) onto a Euclidian plane while conserving to an extent the rank of dissimilarities between 
these sites. It extends classic ordination methods (e.g. CCA, PCA) by improving robustness to 
outliers and zeros, and allows the use of other dissimilarities beyond classic Euclidian distance 
that are known to pick up better the variations of vegetation communities along environmental 
gradients. NMDS was performed in R version 3.2.1 (R Core Team 2015), using functions 
provided by the R package vegan (Oksanen et al. 2015), using the square-root-transformed 
covers of the 10 most abundant species and a Bray-Curtis distance for the dissimilarity matrix.  

Based on the ordination results, a 2D spline surface with VWC as the response variable was fit 
on the ordination results (effectively equivalent to fitting a Generalized Additive Model with 
VWC as response variable and the two axes ordination scores as explanatory variables). This 
allowed us estimate soil water content based on the species content for all sites of the ordination 
including sites where no VWC was measured (this work’s dataset). 
 

Data collection 

Three sets of meadows were chosen as grazed and ungrazed pairs (those with known history of 
pack stocking, and those without), for a total of six study meadows spanning 22 km. Grazed and 
ungrazed meadows were selected to be within ≤3.5 km of one another, have similar elevations 
and size, and similar plant communities, differing mainly in intensity of use by pack stock 
animals (horses and mules), which are not native to the continent. Within each meadow, a series 
of three plots were set up at increasing distance from a stream (but within 100 meters of the 
stream edge), in order to capture a moisture gradient, for a total of 18 plots in six study 
meadows. Originally, the moisture gradient was conceived of as three moisture levels, from 
moist to dry: mesic, mesic transition, and xeric. These were later reclassified into 12 
“intermediate” moisture-level plots (comprising mesic and mesic transition), and 6 “dry” plots 
(comprising the original xeric plots) based on plant community analyses; see Results. Plant 
communities in plots within each meadow were chosen in the field to be comparable between 
grazed and ungrazed meadows by matching the three most dominant species at each moisture 
level.  

Data collection was carried out in the spring and summer of 2012. The three plots in each 
study meadow measured 4m x 4m (16 m2) and were subdivided into 64 cells, each measuring 0.5 
m x 0.5 m (0.25m2). Two observers counted all live, aboveground plants above 1 cm. Observers 
estimated percent cover of all live plants by species, and bare ground, by cell in each plot. Bare 
was measured in an absolute range between 0-100%, but cover measurements of live plants was 
allowed to exceed 100% if plants overlapped in a top-down perspective (relative cover). Every 
species present in each cell as well as all species’ abundances were recorded. Clumps and 
clusters of some grasses and other forb species were considered “individuals” in these surveys; 
this is permitted within the assumptions of METE, as any “individual” will scale up to more of 
the same type of count over space, i.e. counts of single stems will scale up to estimates of stems; 
counts of grass clumps will scale up to estimates of grass clumps. Plants that could not be 
identified to species level were photographed and described, and given a unique “unknown 
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species” designation for analysis. METE’s predictions are tolerant to some unintentional lumping 
and splitting of taxa included in input data (Harte et al. 2013). 
 

Macroecological metrics 

We examine three predictions of METE in the context of grazed and ungrazed Sierra meadows: 
the SAD, and a discrete portion of the SAD: the number singleton species; and the SSAD for 
each species in each plot. Mathematical forms of these distributions are available from multiple 
sources (Chapters 1 and 3 of this dissertation, Harte et al. 2008, Harte 2011, Newman et al. 2013, 
Harte and Kitzes 2015 for SAD and abundance-related metrics; Chapter 1, Harte 2011 for the 
SSAD). As mentioned in the Introduction, we expect these metrics to change in predictable ways 
with ecosystem disruption, and potentially give differing patterns between grazed and ungrazed 
plots.  

For fully-nested census data (as measured with gridded plots used in this study), the 
species abundance distribution (SAD), METE predicts the Fisher log-series distribution, which is 
a distribution with one parameter. We compare this to predictions of the lognormal distribution, 
with 2 parameters. We refer to the predictions of SSADs by METE as an upper-truncated (ut) 
geometric distribution, which models the ranked distribution of abundances of a species across 
cells in a plot. The ut-geometric has one parameter that constrains the shape of the distribution 
(and in the case of METE, this same parameter determines the point of upper truncation), and is 
identical to a negative binomial distribution with the shape parameter = 1. This shape parameter, 
called k, is not the same k as represents the number of parameters of a distribution, required for 
model comparisons. For clarity, we will refer to the shape parameter as k(nbd) in later 
discussion. 

Analyses for METE SAD and SSAD predictions and comparison distributions were 
performed in Python (van Rossum, 2001) in the open-source project “Macroeco” (Kitzes et al. 
2014, Kitzes and Wilber 2016). SAD and SSAD scripts from the beta version of this software 
(accessed June 2015) were used in this manuscript. Models for SADs and SSADs were 
compared using Akaike’s Information Criterion value corrected for small sample sizes (AICc). 
Singleton species predictions were calculated in Mathcad (version 7.0), using the exact 
expression for calculating METE’s Lagrange multipliers and term  as shown in equation (7.27) 
in Harte (2011).  

 

Results 

Pack stock use and plant community comparisons 

Pack stock use in our study sites was available from 2004-2009. Use ranged from 527 stock-
nights (number of animals*number of nights in a meadow) in a 5.2-ha meadow (meadow 4313), 
635 stock-nights in a 4.7 ha meadow (meadow 3597), to 881 stock-nights in a 1.2 ha meadow 
(meadow 9054). Eighteen gridded plots were surveyed in this study, comprising 3 plots at 
different target moisture levels (mesic, mesic transition, and xeric) in 3 pairs of ungrazed and 
grazed meadows (at Rock Creek, Tyndall Creek, and Crabtree). Fifty-nine species present in all 
plots are listed in Table 1. In total, 100,491 individual plants were counted. Details of individual 

€ 

β



	
   43 

plots, including geographic locations, number of species and number of individuals counted, and 
absolute cover values (compared to bare ground) are available in Table 2. Photographs of 
example cells from plots, and plots situated in their larger environment are shown in Fig. 2 and 
Fig. 3, respectively. Adjusting plant cover measured in each plot to “relative cover” equaling 
100%, the dominant species with respect to relative cover are visualized in Figure 4, where we 
show these values for the 10 most dominant species by cover for each plot, arranged by moisture 
category. Vertical columns within graphs denote 64 cells within the plot, which are arranged by 
similarity to one another. We note the dominance of Calamagrostis breweri in most of the mesic 
and mesic-transition plots, and some of the xeric plots as well. Xeric plots contain a large amount 
of cover by Carex filifolia, which is much less dominant or completely absent from the moister 
plots.  

We performed NMDS analyses on the species present and their abundances in each plot, 
and compared these results to a larger dataset (Lee 2013, Lee et al. in prep.) in order to estimate 
standardized volumetric water content for our plots (Fig. 5). From these analyses, we were able 
to group our plots into two categories: “intermediate” and “dry” moisture levels, corresponding 
to a previous description of the Sierra meadow plant community (Lee 2013). These categories 
correspond exactly to the original categories of mesic and mesic transition (both in intermediate) 
and xeric (in the new category of dry). All further analyses use this categorization.  
 

Macroecological comparisons 

The SAD was evaluated for each plot. Two candidate models were considered: the 
METE log series, and the log normal. We assessed model fits with AICc values AICc weights 
(Table 3). When collectively considering all plots, the METE distribution is a better fit than the 
log normal in 11 of 18 cases. “Wins,” or best model fits assessed by AICc weights, were 
considered grouping plots by grazing history, by moisture level, and then by both factors. 
Pearson’s Chi-squared tests show that a lack of statistical significance in the proportion of wins 
by either METE or the lognormal distribution for any grouping of results (Fig. 6). 

Considering only the right tail of the SAD, we expected METE to make highly accurate 
predictions of the number singleton species in ungrazed plots, and make less accurate predictions 
in grazed plots. We find this to be the case. Regression lines imposed on ln-ln graphs of 
predicted versus observed singleton species are shown in Fig. 7 for ungrazed and grazed plots. A 
regression line for ungrazed plots has a slope of 0.693 and an R2 value of 0.598. For grazed plots, 
the slope of the regression line is 0.263 and its corresponding R2 value is 0.317. A slope and R2 
value equal to 1 would indicate a perfect fit to data. Here, the proportion of variance explained in 
the ungrazed plots is about twice that explained in grazed plots. 

SSADs were generated for every species in all 18 study plots. To compare model fits, 
AICc values and AICc weights were calculated for each of 3 models tested against data: the 
binomial, the Poisson, and the METE ut-geometric distributions. Following Baldridge et al. 
(2015), we consider the model with the highest AICc weight to be the best-fit model, and 
compare the distribution of AICc weights by model. We repeat this for intermediate ungrazed 
and grazed plots (Fig. 8) and xeric ungrazed and grazed plots (Fig. 9). We find that the METE 
ut-geometric distribution is the best model, based on multiple trials, to describe the SSADs of 
species for both moisture levels and both grazed and ungrazed plots. For ungrazed plots, AICc 
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models support METE’s prediction for 151 out of 174 cases; for grazed plots, METE has 149 
wins of 170 cases (Poisson distribution has 23/174 and 21/170 wins for ungrazed and grazed 
plots, respectively, while the binomial distribution has 0 wins in both cases). The distributions of 
AICc weights of all models are remarkably similar for all categories of plots.  

 

Discussion 

Because of their high ecological variability (Allen-Diaz 1991) and their complex 
responses to ecological processes including disruptions and perturbations (Wood 1975), Sierra 
Nevada meadows are a prime system for testing innovative methods assessing the effects of 
disturbance and disruption on ecological systems, such as methods presented in this work. The 
full effects of pack stock use in Sierra Nevada meadows are difficult to measure because soils, 
plant and animal communities are differentially affected (DeBenedetti & Parsons 1979, 
McClaran and Cole 1993, Holmquist et al. 2010, Hopkinson et al. 2013, Ostoja et al. 2014), and 
effects may vary from meadow to meadow. Effects of pack stock use on rare species are 
statistically complicated to determine (Matchett et al. 2015) and need to be assessed on a species-
by-species basis for conservation needs to be addressed. Here, we find that small (<1 ha) census 
plots can be used to measure community-level metrics, and that these plots can produce 
replicable results related to the presence of singleton species in a given area. Specifically we find 
that grazing by pack stock animals reduces the number of singleton species compared to 
ungrazed areas. It appears that pack stock grazing reduces the overall diversity and persistence of 
rare species in a local community. 

Returning to our original hypotheses, we find mixed support for them. We did not find 
that grazed plots had more lognormal SADs than their ungrazed counterparts, but instead found 
highly variable results. METE performed at least as well as the lognormal, or better for all 
categories and all groupings of data, by moisture level and pack stock use. Elsewhere in 
macroecology, the lognormal distribution has previously been associated with systems in 
transition (Kempton and Taylor 1974, Whittaker 1975, Bazzaz 1975, Gray and Mirza 1979, 
Chapter 1 of this dissertation) and we therefore thought it might be a good model for 
anthropogenically-disrupted (i.e. grazed) plots. However, if the lognormal works as a descriptor 
of ecosystems in transition, then these results might imply that the new, grazed communities are 
more stable that we thought, and may be in a semi-permanent state of lower productivity (based 
on absolute cover measurements of bare ground). Alternately, the lognormal may be a good 
descriptor of temperate systems with many factors determining community structure, for reasons 
not related to the system being in a state of transition. 

As hypothesized, we found that grazed plots contain fewer singleton species compared to 
ungrazed comparison plots, and that METE more accurately predicts the number of singleton 
species within the ungrazed plots than the grazed ones. However, METE generally overestimates 
singletons in both ungrazed and grazed plots. Given the extreme accuracy of predictions of 
singleton species among trees and arthropod communities (Harte and Kitzes 2015) and bird 
communities (White et al. 2012) from larger datasets, this result suggests that the number of 
singleton species shows promise as a discriminant of level of ecological disturbance or 
disruption in plots. This metric would be more powerful as a macroecological indicator if it 
varied with another indicator (like the METE or lognormal SAD) in predictable ways. By itself, 
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the number of singletons in this study (being overestimated by METE), may indicate that both 
sets of plots (grazed and ungrazed) are subject to larger-scale perturbations impacting overall 
community structure, like the ongoing drought in California during the year we conducted this 
survey, that swamps out the local differences between plot-types. This kind of hierarchical 
response to drivers of soil moisture has been mentioned previously in the literature (Allen-Diaz 
1991, Wood 1975). 

We also hypothesized that METE’s SSAD should be the best fit model for species in 
ungrazed plots, but perform as well in grazed plots; we found that METE’s SSAD was the best 
model, by number of wins, for all situations: grazed, ungrazed, dry and intermediate moisture 
levels. In contrast to the difference in patterns detected in different-aged stands in a disturbance-
adapted pine forest [Chapter 1], the METEs predictions of the SSADs of the majority of plots in 
this study either indicates that METE is not sensitive to anthropogenic changes to systems 
(possibly because the grazed plots are not in transition, but rather, in a new stable state), or 
indicates that pack stock effects are too subtle to be picked up in the SSAD.  

Analyses not presented in this manuscript (Newman, unpublished) indicate that best-fit 
negative binomial models, each with a different k(nbd) value, can provide model fits on a case-
by-case basis. In this study, k(nbd) values were generally less than 1, indicating a more clustered 
SSAD than is predicted by METE. In the future, METE’s SSAD could theoretically be extended 
to include density dependence, which would lead to a variable k(nbd) value, but the version of 
METE used in this manuscript (Harte 2011, Harte and Newman 2014) has a fixed k(nbd) value 
of 1.  

 

Conclusions 

Although macroecological methods are not typically used for management purposes, the 
technique of using macroecological scaling-plots can be adapted to small scales. Through use of 
relatively small scaling plots (on the order of 10’s to 100’s of m2), macroecological estimations 
of community structure, including SADs, singleton species present in an area, and SSADs, can 
be compared between sites with differing land-use history, or in future applications, to judge the 
efficacy of restoration efforts. Traditionally, macroecological plots are large (~50 ha, such as the 
Smithsonian plots) and single plots are used to estimate ecological metrics of entire ecosystems, 
but the use of small plots can equally well be used to estimate metrics of smaller parts of an 
ecosystem, as we applied this method to a particular moisture zone in meadows. This method can 
provide support for conservation and land management decisions: small-scale plots with 
replicates, that can be deployed and measured over short timescales, on limited budgets, and 
without specialized equipment.  

We assessed the applicability of METE’s scaling-plot technique for small-scale plots in 
Sierra meadows, and found that the number of singleton species is a reliable indicator of 
ecological differences at the plot level. By itself, the SAD is not a good indicator of the 
ecological perturbations we studied in the Sierran meadow system, which may indicate that the 
impacted meadows are not in a state of transition or recovery, but rather, in a new stable state 
with lower productivity. Alternately, pack stock use may have low impacts on the system that do 
not affect the shape of the SAD or the spatial distribution of species generally (as assessed by 
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SSADs), but an effect is still detected in the number of singleton species measured compared to 
METE’s predictions. The SSAD, a measure of spatial clustering of individuals in a species over 
space, is too-well predicted by METE in the majority of plots compared to the other models we 
tested to discriminate between different states (ungrazed or grazed) in the system we examined. 
This metric may show promise as an indicator of disturbance or disruption if tested more 
thoroughly against other candidate models, in particular, negative binomial models with fixed 
k(nbd) values. Like other plot-level studies, we found variance among results of plots, and 
suggest that if this technique is to be applied in a management context, replicate plots are 
required for lowering uncertainty in measurement results. 

 

Acknowledgements 

We thank Sequoia National Park, the National Parks Service, and the United States Geological 
Survey (USGS) for providing permitting and logistical support. Contributions of S. Haultain 
(NPS), J.R. Matchett (USGS), S. Ostoja (USFS) and Lucas Joppa (Microsoft Research) were 
critical for multivariate matching of meadow pairs for shared attributes. I thank Ori Chafe and 
Henry Houskeeper for their work in the field, and Eric Berlow for contributions in the early 
phase of this project and comments on this manuscript. Mark Wilber provided modeling support 
and development during various stages of this project, as well as manuscript comments. Alex 
Génin contributed to plant identifications and design of analyses. Steve Lee provided comparison 
data and many helpful comments. I thank Alex Génin and David Hembry, who also provided 
useful comments on this manuscript. I thank Marco Paliza-Carre for his many months of careful 
data entry. This research was funded by the Gordon and Betty Moore Foundation and a National 
Science Foundation Graduate Research Fellowship Program grant to EAN, and grant NSF-EF-
1137685. This study was carried out under SEKI Park-assigned permit SEKI-2012-SCI-0436, 
Activity #SEKI-00348. 

 



	
   47 

 

 

 

Chapter 2 Tables and Figures 

 

 

 

 

 



	
   48 

Tables. 

Table 1. Plant species recorded in this study 

Category 6-Letter code Species name Common name 

Fern    

 BOTSIM Botrychium simplex Little grapefern/ Yosemite 
moonwort 

Gymnosperms    

 CON1UN Unknown conifer seedling   

Monocots    

(grasses) CALBRE Calamagrostis breweri Shorthair reedgrass 

 ELYELY Elymus elymoides Squirrel tail grass/ 
bottlebrush squirreltail 

 MUHFIL Muhlenbergia filiformis Pullup muhly/ slender muhly 

 PHLAPL Phleum alpinum Alpine timothy 

 TRISPI Trisetum spicatum Spike trisetum 

 GRA1UN Unknown bunchgrass sp.1  

 GRA2UN Unknown bunchgrass sp.2  

 GRA3UN Unknown bunchgrass sp.3  

 GRA5UN Unknown grass sp.5  

 GRA7UN Unknown bunchgrass sp.7  

 GRA8UN Unknown bunchgrass sp.8  

(sedges) CARFIL Carex filifolia Threadleaf sedge 

 CAR1UN Carex sp.  

 SED1UN Unknown sedge sp.1  

 SED2UN Unknown sedge sp.2  

(unknowns) MON1UN Unknown monocot sp.1  

 SPP5UN Unknown gramminoid sp.5  

Eudicots    

 ACHMIL Achillea millefolium Yarrow 

 ANTROS Antennaria rosea Rosy pussytoes 
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 BOCLYA Boechera lyallii (syn. Arabis 
lyallii var. lyallii) 

Lyall's rockcress 

 CYMTER Cymopterus terebinthinus Turpentine cymopterus 

 DODALP Dodecatheon alpinum Alpine shooting star 

 ERIINC Eriogonum incanum Frosted buckwheat 

 ERI1UN Eriogonum unknown sp.1  Buckwheat 

 ERI2UN Eriogonum unknown sp.2  Buckwheat 

 ERILON Erigeron lonchophyllus Shortray fleabane 

 FRA1UN Fragaria virginiana Scarlet strawberry/ Virginia 
strawberry/ mountain 
strawberry 

 GAYDIF Gayophytum diffusum Spreading Groundsmoke 

 GENHOL Gentianopsis holopetala Sierra fringed gentian 

 GENNEW Gentiana newberryi var. 
tiogana 

Tioga gentian 

 IVECAM Ivesia campestris Field ivesia/ field mousetail 

 KALPOL Kalmia polifolia Mountain laurel/ bog laurel 

 LUPLEP Lupinus lepidus Dwarf lupine 

 MIMPRI Mimulus primuloides Primrose monkeyflower 

Oreostemma alpigenum  OREALP 

syn. Aster alpigenus 

Tundra aster 

Oreostemma peirsonii  OREPEI 

(syn. Aster peirsonii) 

Peirson's aster 

 PEDATT Pedicularis attollens Little elephant's head 

 PENHET Penstemon heterodoxus Sierra beardtongue 

 PERBOL Perideridia bolanderi ssp. 
bolanderi 

Bolander's yampah 

 PLA1UN Plantaginaceae sp. Plantain 

 POLDOU Polygonum douglasii Douglas' knotweed 

 POTGRA Potentilla gracilis var. 
fastigiata 

Slender cinquefoil 

 PYRLAN Pyrrocoma lanceolata Lanceleaf goldenweed/ 
intermountain pyrrocoma 

 RANALI Ranunculus alismifolius Plantainleaf buttercup 
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 RUM1UN Rumex sp.  Dock 

 SENINT Senecio integerrimus Tall western groundsel/ 
lambstongue ragwort 

 SIBPRO Sibbaldia procumbens Creeping sibbaldia 

 SOLMUL Solidago multiradiata Alpine goldenrod 

 STELON Stellaria longipes Goldie's starwort/ longstalk 
starwort 

 TRIMON Trifolium monanthum Mountain carpet clover 

 VIOADU Viola adunca Western dog violet/ sand 
violet 

(unknowns) AST2UN Unknown Asteraceae 2  

 SPP2UN Unknown forb 2  

 SPP3UN Unknown forb 3  

 SPP6UN Unknown forb 6  

 SPP7UN Unknown forb 7  

 SPP8UN Unknown forb 8  
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Table 2. Attributes of 18 plots distributed over 6 sites in this study 

Site name Meadow 
number 

GIS lat/long 
[and elevation 
centroid] 

Treatment Original 
moisture zone 
category 

Total 
number of 
species (S) 
in plot 

Total 
abundance 
(N) in plot 

Absolute 
percent 
cover 

Pair A: Rock 
Creek 

4313 36°29'31.64" Grazed mesic 17 8583 72.66 

  118°18'36.92"  mesic transition 23 7983 66.88 

   [3056 m]   xeric 17 1011 16.48 
 505 36°28'38.90" Control mesic 23 9803 95.39 
  118°18'48.78"  mesic transition 16 8044 62.5 
    [3216 m]   xeric 12 1719 28.52 
Pair B: Tyndall 
Creek 

3597 36°37'39.52" Grazed mesic 27 8356 70.7 

  118°23'33.19"  mesic transition 26 5439 59.77 
   [3221 m]   xeric 13 1811 18.67 
 3440 36°38'56.55" Control mesic 21 10261 93.75 

  118°25'21.70"  mesic transition 21 9149 77.19 
    [3355 m]   xeric 11 1567 26.09 
Pair C: Crabtree 9054 36°33'17.65" Grazed mesic 18 7706 70.78 
  118°20'53.95"  mesic transition 18 5103 53.44 
   [3195 m]   xeric 11 1486 20.31 
 5053 36°33'35.16" Control mesic 27 7647 86.09 
  118°20'38.68"  mesic transition 22 4049 53.28 
    [3233 m]   xeric 21 774 18.63 
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Table 3. Model comparisons for the species abundance distributions of each plot measured in this study  

Treatment Site Meadow 
number 

Original 
moisture zone 

Model k AICc wi ∆AIC 

Grazed Rock Creek 4313 mesic Lognormal 2 238.1365 0.4639 0.2895 

       METE log series 1 237.8469 0.5361 0.0000 

 Tyndall Creek 3597 mesic Lognormal 2 338.2366 0.3122 1.5799 

       METE log series 1 336.6567 0.6878 0.0000 

 Crabtree 9054 mesic Lognormal 2 224.1658 0.7143 0.0000 

       METE log series 1 225.9985 0.2857 1.8327 

 Rock Creek 4313 mesic transition Lognormal 2 306.5469 0.3253 1.4591 

       METE log series 1 305.0879 0.6747 0.0000 

 Tyndall Creek 3597 mesic transition Lognormal 2 281.5527 0.0031 11.5464 

       METE log series 1 270.0063 0.9969 0.0000 

 Crabtree 9054 mesic transition Lognormal 2 235.3046 0.7310 0.0000 

       METE log series 1 237.3037 0.2690 1.9991 

 Rock Creek 4313 xeric Lognormal 2 178.6891 0.3264 1.4491 

       METE log series 1 177.2400 0.6736 0.0000 

 Tyndall Creek 3597 xeric Lognormal 2 153.1703 0.5325 0.0000 

       METE log series 1 153.4305 0.4675 0.2602 

 Crabtree 9054 xeric Lognormal 2 127.5642 0.0934 4.5450 

        METE log series 1 123.0192 0.9066 0.0000 
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Ungrazed Rock Creek 505 mesic Lognormal 2 322.6324 0.9128 0.0000 

       METE log series 1 327.3290 0.0872 4.6966 

 Tyndall Creek 3440 mesic Lognormal 2 286.9196 0.0537 5.7389 

       METE log series 1 281.1806 0.9463 0.0000 

 Crabtree 5053 mesic Lognormal 2 358.1710 0.3480 1.2560 

       METE log series 1 356.9150 0.6520 0.0000 

 Rock Creek 505 mesic transition Lognormal 2 226.6055 0.7093 0.0000 

       METE log series 1 228.3891 0.2907 1.7836 

 Tyndall Creek 3440 mesic transition Lognormal 2 280.6535 0.3375 1.3492 

       METE log series 1 279.3044 0.6625 0.0000 

 Crabtree 5053 mesic transition Lognormal 2 269.4951 0.0037 11.1865 

       METE log series 1 258.3086 0.9963 0.0000 

 Rock Creek 505 xeric Lognormal 2 138.2299 0.4216 0.6327 

       METE log series 1 137.5972 0.5784 0.0000 

 Tyndall Creek 3440 xeric Lognormal 2 135.8331 0.9831 0.0000 

       METE log series 1 143.9638 0.0169 8.1308 

 Crabtree 5053 xeric Lognormal 2 200.6889 0.6818 0.0000 

        METE log series 1 202.2127 0.3182 1.5238 
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Figures. 

Figure 1. Locations of high-Sierra meadow study sites in Sequoia National Park, California 
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Figure 2. Examples of cells from sites in this study. (A) Intermediate ungrazed (meadow 505, 
plot closest to stream); (B) intermediate ungrazed (meadow 505, plot mid-distance from stream); 
(C) intermediate grazed (meadow 4313, plot mid-distance from stream); (D) xeric grazed 
(meadow 4313, plot furthest from stream). 
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Figure 3. Photographs of two intermediate moisture plots and their immediate surroundings for: 
(A) meadow 505, ungrazed; and (B) meadow 3597 grazed (note horses in background). 
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Figure 4. Relative percent covers of the 10 most dominant species, and all other species in each plot, by cell 
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Figure 5. Comparative vegetation community structure and moisture levels of sites from this study (dots) and a larger data set 
incorporating hydrology measurements (background graph, Lee, 2013 and Lee, in prep.). Only the 12 most common species are 
shown here. Vegetation communities were compared between studies using a non-metric multidimensional scaling analysis. 
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Figure 6. Number of model wins for species-abundance distribution candidate models, applied to 
18 plots in this study. Results for all plots are first grouped by grazing history (GR=grazed, 
UNG=ungrazed), then by moisture level (INT=intermediate, DRY=dry), and finally, both by 
grazing history and moisture level. Pearson’s Chi-squared tests (2-tailed tests with df=1) reveal 
no statistically significant differences between model performance in any category. 
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Figure 7. Observed versus predicted singleton (n=1 individual) species for all plots in this study, 
separated by (A) ungrazed, and (B) grazed plots. Predicted numbers arise from the METE 
species-abundance distribution. Data points on graphs each represent one plot (not jittered in 
these graphs). Open circles represent plots of intermediate moisture levels, and open squares 
represent dry plots. Equation and R2 values are calculated for regression line. 
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Figure 8. Histograms comparing SSAD models for all species by their AICc weights. By 
column: (A) intermediate ungrazed and (B) intermediate grazed plots in this study. 
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Figure 9. Histograms comparing SSAD models for all species by their AICc weights. By 
column: (A) xeric ungrazed and (B) xeric grazed plots in this study. 
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Chapter 3: Empirical tests of within- and across-species energetics in a diverse plant 
community 
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Chapter 3: Empirical tests of within- and across-species energetics in a diverse plant 
community 

 
Abstract 
Many fundamental properties of ecological systems and interactions are tied to body size, and a 
related metric, the metabolic rate distribution, both within and across species. A previously 
proposed Maximum Entropy Theory of Ecology (METE) predicts numerous interrelated 
macroecological patterns, including spatial distributions of individuals within species, abundance 
distributions across species, species area relationships, and distributions of metabolic rates of all 
individuals within a community. Extensive tests of METE’s macroecological predictions 
generally support the theory, but two related predictions have not been evaluated against full 
community census data: the distribution of metabolic rates of individuals within species as a 
function of the abundance of the species, and the distribution of average individual metabolic 
rates across species. We test the metabolic predictions of METE for herbaceous plants in a 
subalpine meadow and show that while this theory realistically predicts the distribution of 
individual metabolic rates across the entire community, the within and across species predictions 
generally fail. We also test the energy-equivalence type prediction that arises as a consequence 
of the prediction for the distribution of average individual metabolic rates across species. We 
suggest several possible explanations for the empirical deviations from theory, and distinguish 
between the expected deviations caused by ecological disturbance and those deviations that 
might be corrected within the theory.  

 
Key words 
metabolism, macroecology, scaling laws, Maximum Entropy Theory of Ecology, METE, 
information entropy, energy equivalence 

 
Introduction 

Many fundamental properties of ecosystems are tied to body sizes of their component 
members, both at the individual and species level. Within a species, body size often correlates to 
fitness and metabolism, whereas considering all species in a community, body size will correlate 
to metabolism, abundance, trophic activity, ecological and life history traits, and community 
stability. The distribution of body sizes within a community is potentially important for 
understanding community properties and function, as well as predicting conservation 
implications of invasive species or changes that will result following species extirpation in a 
community. Accordingly, body size distributions have attracted much theoretical and empirical 
attention (Damuth 1981, Damuth 1987, Niklas and Enquist 2001, Brown et al. 2004, Muller-
Landau et al. 2006, White et al. 2007, Clauset et al. 2009, Mori et al. 2010, Harte 2011). 
Macroecologists have attempted to connect body size to abundances of species using power law 
models and experimental observations, but despite these efforts, there had not been an 
overarching theoretical framework for connecting metrics that describe abundance and 
metabolics until the development of the Maximum Entropy Theory of Ecology (METE) (Harte et 
al. 2008, 2009; Harte 2011).  
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METE is an extremely general macroecological theory that predicts spatial, abundance 
and metabolic rate distributions of species, and the interrelationships of these metrics for any 
system defined by a set of basic community state variables. It therefore also predicts body-size 
distributions if a metabolic scaling relationship between metabolism and body size is assumed. 
Unlike other unified theories of ecology and diversity (Hubbell 2001, de Aguiar et al. 2009, 
McGill 2010), METE uses no adjustable parameters, and is instead formulated using the 
procedure of maximizing information entropy, a technique that has been proven to yield least-
biased probability distributions that are consistent with prior knowledge in the form of 
constraints on those distributions (Jaynes 1979; 1982; 2003). Constraints may take the form of 
the empirical ranges, means, or higher moments of values of one or more independent variables 
of a system, or outcomes of system measurements (Harte et al. 2008, Harte and Newman 2014). 

As inputs, METE uses four measured state variables: S0, the total number of species; N0, 
the total number of individuals; E0, the total metabolic rate of all individuals, and A0, an arbitrary 
but specified spatial scale. Mathematical forms of macroecological metrics are derived from 
constraints arising from ratios of the four state variables. Various empirical tests of species-area 
relationships (SARs), endemics-area relationships (EARs), and species abundance distributions 
(SADs) indicate support for theoretical predictions of those metrics (Harte et al., 2008; 2009; 
White et al. 2012), but the metabolic predictions of METE require more empirical validation, 
including tests of the predicted within-species distribution of metabolic rates, and the predicted 
distribution of species’ average metabolic rates across all species (see Xiao et al. 2013). In this 
study, we examine the diverse plant community of a subalpine meadow in the Rocky Mountains 
to investigate the extent to which METE makes realistic predictions about the metabolic rate 
distributions, both within and across species. 

 
Methods 

Site description 

Sampling was carried out in the summer of 2012 in Gunnison National Forest, Gunnison 
County Colorado at a site located 6.8 km (4.2 mi) north of the Gothic townsite (plot location 39° 
0' 20.29"N, 107° 1' 54.67"W), at an elevation of 3189 m. The study plot was sited in an area that 
minimized the extent of disturbance in the forms of Northern pocket gopher (Thamomys 
talpoides) mounds, and anthropogenic disturbance including cattle grazing, human presence, and 
invasive grasses and forbs. We chose a site that received constant moisture from a nearby creek 
to offset effects of the drought occurring in 2012, but overall disturbance level was still 
moderate. The dominant trees of this area are primarily Engelmann spruce (Picea engelmannii) 
and Subalpine fir (Abies bifolia), in stands surrounding but distinct from the meadow 
communities. Open meadows contain shrubby Potentilla fruticosa and large patches of the 
herbaceous Veratrum californicum, while moister areas of the meadow have large patches of 
mixed-species shrubby willows (dominated by Salix planifolia).  
 
Sampling 

A 4m x 4m plot was gridded into 1 m cells. Plants were censused and recorded with both 
a cell number and an x and y spatial coordinate reference within the cell for ease of relocating 
individual plants. After locating all individuals, we assigned each a unique identification and 
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counted all living leaves. We clipped a representative fraction of the living aboveground biomass 
at ground level from each plant for analysis (Cornelissen et al. 2003). We collected 20-50% of 
the live biomass of large plants, and collected small plants whole (see Appendix A for more 
detail). We placed samples into plastic bags and transported them to a lab in a cooler with ice to 
prevent leaf area shrinkage (following the methods of Blonder 2012), where they were 
rehydrated and placed on a flatbed scanner. We analyzed and recorded leaf and stem area 
separately for each sample using the software ImageJ 1.46 (Abramoff et al. 2004). We calculated 
total photosynthetic area of an individual plant by applying mean area per leaf sampled from that 
plant to its total leaf count, and adding its total stem area. This was done on an individual basis in 
order to take into account all plants’ life stages and leaf size variation. Because only living 
material was included in this study, we excluded plants with all leaves senesced at the time of 
sampling, which excluded some individual plants and may have excluded one or more early 
blooming species altogether. Similarly, we excluded immature plants that measured less than 1 
cm in height and breadth at the time of sampling.  
 
Metabolic calculations 

Allometric work by Niklas and Enquist (2001) has established that leaf area (AL) scales as body 
mass (M) to the ¾ power (AL∝M3/4) across species. Subsequent studies confirm this relationship 
between simple metrics of leaf area (or photosynthetic area, including green stems), leaf mass, 
body mass, and metabolic rates (Reich et al. 2006, Deng et al. 2008, Makarieva et al. 2008). 
Metabolic scaling theory states that B∝ M3/4, where B is metabolic rate (Niklas and Enquist 
2001). By this logic, it follows that AL∝B; that is, the relationship between leaf area and 
metabolic rate is approximately linear. Although the metabolic rate should in fact represent the 
instantaneous metabolism of each plant, simultaneous measurements of whole-plant 
photosynthetic processes were infeasible. A measure of total photosynthetic area, which is the 
result of the energy an individual has accrued over time (time integrated energy), is therefore 
suitable as a proxy of the time-averaged metabolic rate. Similar justification in other 
macroecological studies allows the estimation of metabolism from diameter at breast height 
(dbh) with scaling assumptions (see for example Muller-Landau et al. 2006, Rüger and Condit 
2012, Xiao et al. 2013), and by organisms’ mass (Glazier 2006). 

Using the proportional relationship between total leaf area and total metabolic energy of a 
plant AL∝B, we can then estimate the METE state variable Energy (E0), and the metabolic rate of 
an individual, ε, by units of normalized photosynthetic area for the herbaceous plants considered 
here. E0 is related to ε by the relationship E0 = ∑(i = 1 to No) εi , with the continuous variables ε and 
E0 normalized through a linear transformation such that the individual with the lowest metabolic 
rate has ε = 1 (that is, εi = ai/min(ai), where ai is photosynthetic area for individual i, and min(ai) 
is the total photosynthetic area of the smallest individual in the community). We note that the 
quantity historically referred to in the metabolic literature as either “energy,” “metabolic 
energy,” or “respiratory metabolic rate” actually have physical units of power. We choose to use 
the term “metabolic rate distribution,” and note that all “energy” labels and metrics of energy are 
actually in units of power. 

We test three metrics predicted by METE for the subalpine plant community: the 
distribution of metabolic rates of all individuals in a community, the distribution of average 
individual metabolic rates across species (both of these being community-level metrics), and the 
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distribution of metabolic rates of individuals within species as a function of the abundance of the 
species (a species-level metric). See Fig. 1. 

(1) The Individual-level Energy Distribution (IED) describes the distribution of metabolic 
rates over all of the individuals in the community, and is represented by Ψ(ε): 

€ 

Ψ(ε | S0,N0,E0) = λ2 ⋅ β
e−γ

(1− e−γ )2
     (1) 

 
Where ε is the metabolic rate of an individual, γ = λ1 + λ2ε; λ1 and λ2 are the Lagrange 
multipliers given by λ1= β-λ2 and λ2 = S0/(E0 – N0) respectively; and β satisfies the approximate 
relationship βln(1/β) ≈ S0/N0 (Harte et al. 2008, Harte et al. 2009). A derivation of this 
expression and discussion of simplifying assumptions is available in Harte 2011, where a more 
exact expression for β is given. Ψ(ε) is a continuous distribution on the domain of 1 to E0. The 
integral of Ψ(ε) from 1 to E0 is 1, and so Ψ(ε) is the normalized probability density function for 
metabolic rates of all individuals in the community. 

(2) The Average Species Energy Distribution (ASED) is the distribution, across all the 
species in the community, of metabolic rates averaged over individuals within species, and is 
represented by ν( ). The predicted form of the ASED of a community is: 
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where ( ) is the average metabolic rate of the individuals for the species under consideration, 
and is defined on the continuous domain from 0 to N0 (Harte et al. 2008, Harte et al. 2009). This 
exact expression replaces the approximate expression in Harte, 2011 (eq. 7.46) because the 
simplification used in Harte 2011, ln(1/β) >> ln(S0), or equivalently β⋅S<<1 , does not hold for 
our data. Here, the term ln(S0/β) = ln(1/β) + ln(S0) replaces ln(1/β).  

A key relationship for understanding the ASED is the inverse relationship between the 
expected energy,  for a species, and its abundance n (Harte et al. 2008, Harte 2011 Ch. 7): 

 

      (3) 
 

Although  is not exactly inversely proportional to n, it is the case for those species for which n 
<< 1/·λ2, and therefore 1/(n·λ2) >>1. For our study system, the inequality holds for all species, 
and so the added 1 can be neglected. 

Using this relationship between  and n, we derive a probability distribution for  from 
the species-abundance distribution. This probability distribution is the ASED itself (see Harte 
2011, p.155). As a result of the functional form of Eq. (3), the smallest values of average energy 
per individual in a species are expected for the most abundant species, and conversely, the 
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largest values of average energy per individual within a species are expected for species with the 
lowest abundances.  

Because the SAD is a continuous function of a discrete variable (n), the constructed 
ASED distribution reflects this discrete component. The predicted ASED is only defined for 
values of  = (1+(1/(n·λ2)), where n (the number of individuals of a species) is in the range [1, 
N] (and where N = nmax); however, empirical values of  can take on any continuously defined 
value between 1 and E0 . This leads to artificial effects described in Appendix F.  

(3) The Species-level Energy Distribution (SED) is the distribution of metabolic rates across 
the individuals in a single species of abundance n. The SED is represented by Θ(ε|n), and is 
derived from the SAD, represented by 

€ 

Φ(n) (from Harte 2011): 
 

€ 

Θ(n |ε) =
R(n,ε)
Φ(n)

    (4) 

 
where R(n,ε) is the “ecosystem structure function,” a joint, conditional probability that a chosen 
species will have the abundance n, and that a given individual picked from that species will have 
a metabolic rate equal to that of the smallest individual (Harte 2011). The form of the ecosystem 
structure function is uniquely predicted by MaxEnt when the numerical values of the state 
variables are known. The approximation below is the form of the function used to predict SEDs 
by species (Harte 2011, Ch. 7): 
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Θ(ε | n,S0,N0,E0) ≈ λ2ne
−λ2n(ε −1)    (5) 

 
Summing Θ(ε|n)·ε over all possible values of ε recovers Eq. (3). Predictions of SEDs by species 
incorporate the overall constraint that the smallest, lowest-energy individual in the entire study 
system must equal the actual value normalized to ε = 1. The SED metric is related to the ASED, 
in that the predicted distribution of the means of the SEDs is the ASED. 

Letting r denote rank, the rank-metabolism relationships are derived from the SED and 
IED, assigning the rank of r = 1 for the individual with the largest metabolic rate. A maximum 
rank of r = n (by species) for the SEDs, and r = N0 for the IED is assigned to the individual with 
the lowest metabolic rate. Ranked metabolic distributions for the SED and IED are given by the 
following equations, respectively (Harte 2011, Ch.7): 
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where εmax is the individual in that species with the maximum metabolic rate (largest 
photosynthetic area) individual. To calculate εmax, Eq. 7 is calculated with r = 1, yielding: 
 

€ 

εΨ,max = εΨ(r =1) ≈ 1
λ2
log(2βN0)    (8) 

 
(Harte 2011). This equation refers to the entire individuals pool for the IED, but can be easily 
modified for the SEDs, so that for the SEDs, εmax = log((2n)/n)). The rank-metabolism 
predictions for the SED is modified from Harte 2011 not to contain simplifying assumptions as 
described for Eq. 2, above.  
 
Analysis 

Many analyses and calculation of differential equations for the metrics considered in this 
paper were carried out with Python (van Rossum and Drake 2001) in the open-source project 
“Macroeco” (Kitzes et al. 2014). Analyses were carried out with ASED, IED and SED 
“metabolic analysis” scripts in the Beta version of this software. Predictions from Eqs. (2), (6) 
and (7) are compared to the measured metabolic rate and rank-metabolism data using slope and 
R2 values on log(observed) vs. log(predicted value) graphs, and Kolmogorov–Smirnov tests are 
performed to determine the quality of METE predictions in the subalpine plot.  

 
Results 

A total of 877 plants comprising 31 species are included in this study. A complete species 
list for the plot and species’ abundances are shown in Table 1. Calculated values for the 
Lagrange multipliers are λ1= 7.0463 x 10-3 and λ2 =3.3806 x 10-5 for N0 = 877, S0 = 31 and E0 = 
917871.975, and the parameter β = 7.0801 x 10-3. The range of total photosynthetic areas for 
individuals (a surrogate for body sizes) represented by our study system is greater than 38,200:1, 
that is, a 4-orders of magnitude range (comparable to the ranges represented by the trees of the 
Smithsonian datasets, which are often used to test macroecological theory). Minimum 
photosynthetic area for an individual plant is amin = 0.2793 cm2. Results for the IED, ASED, and 
SEDs are discussed in detail below. Graphs of the species- and community-level energy metrics 
are shown in Fig. 2, IED; Fig. 3, ASED; and Fig. 4, SEDs of the 12 most abundant species. SED 
results for all species with n ≥ 5 are available in Appendix B with a summary of derived values 
in Appendix C, and results of the 15 most abundant species in order by average metabolic rate of 
an individual within a species are shown in Appendix D. Goodness of fit tests, including 
Kolmogorov–Smirnov (K-S) tests, are presented for all metrics in Appendix G.  
 
Individual-level energy distribution 

The METE prediction of the IED, the metabolic rate distribution for all individuals in a 
community, shows fairly good agreement with empirical data as a smooth, monotonically 
decreasing function of ranked metabolic rate, with increasingly negative slope (Fig. 2). Because 
the normalization of the IED requires the total predicted metabolic rate to equal the total 
metabolic rate of the empirical data, the curves necessarily intersect on this graph. 
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To test similarity between empirical and predicted curves of the IED, we construct a 
graph of log(observed) vs. log(predicted value) and note that a slope of nearly 1 and a high R2 
value (slope = 0.8362; R2 = 0.9742) indicates that the IED performs well in predicting the 
metabolic rate distribution for all individuals in the community. However, a K-S test performed 
on 1000 bootstrapped samples does not support the null hypothesis that the observed and 
theoretical distributions are the same (D = 0.1653, P < 0.0001). But, whereas the K-S test may be 
more appropriate because it is less sensitive to normality of a distribution than some other 
goodness-of-fit metrics (like Shapiro-Wilk and Anderson-Darling), it tends to reject the null 
hypothesis at a high rate based on deviant values and has been criticized for producing 
misleading results (Babu and Feigelson 2006). 
 
Average Species Energy Distribution 

The distribution of average metabolic rates across species, the ASED, is predicted to have 
increasingly negative slope as a function of ranked energy if ln( ) is plotted against rank, r, from 
largest average metabolic rate per species to smallest. Empirical data deviates from this pattern 
strongly, showing an inflected shape (Fig.3). A K-S test does not support the null hypothesis of 
no difference between observed and theoretical distributions (D = 0.5484, P < 0.0001, 1000 
bootstrapped samples). Appendix H contains the predicted probability distribution for the ASED 
(Nu) and additional tests of goodness-of-fit. A notable feature of the ASED is that the empirical 
and predicted distributions do not have the same mean. 
 
Species-level Energy Distributions 

The METE-predicted distributions of metabolic rates across all individuals in a single 
species of abundance n are the SED distributions shown in Fig. 4 (for the 12 most abundant 
species in the plot). Graphs of SEDs are shown in order from smallest average photosynthetic 
area (ANDSEP, Androsace septentrionalis) to largest (HELQUI, Helianthella quinquenervis). 
Visual inspection of graphs of SEDs for these 12 most abundant species reveals a particular 
trend: METE overpredicts metabolic rates for species with low average size (size measured in 
normalized photosynthetic area), does well in approximating the shape and variance of mid-sized 
species, and underpredicts metabolic rates for species with large average size. This trend holds 
for all of the 12 most abundant species when ranked by average size of an individual by species, 
but is not generally upheld when all species are included (see Appendix D). Here we note a 
strong effect of abundance, in that this pattern is not upheld for species with 15-20 or fewer 
individuals (a limit which may be related to the log-normality of the empirical SAD, see 
Discussion).  

This trend in the data is evident when the slopes of the log(observed) vs. log(predicted) 
values for each species are calculated, and then graphed in order from largest average metabolic 
rate to smallest average metabolic rate. See Fig. 5 and Appendix E, Figs. E.1-2. Species with 
individuals that are large on average are more likely to have slopes close to 1, and species that 
are smaller on average have much larger log(observed) vs. log(predicted) slopes. When 
log(slopes) are graphed against species ranked by average metabolic rate, a straight line 
regression is obtained with an R2 value of 0.71. This regular deviation in slopes of predicted 
versus observed data on a log-log scale may reveal a bias in the theoretical prediction of the 
SEDs that is correlated to the average metabolic rate (or alternately, rank) of each species.  
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Discussion 

The distributions IED, ASED, and SED 

From goodness-of-fit tests, there is mixed evidence that the IED, a community-level 
metric that predicts the distribution of metabolic rates of all individuals, is successful. Although 
the IED fails the stringent K-S test, the shape of the predicted distribution is correctly 
monotonically decreasing with increasingly negative slope. The predicted IED is also 
constrained to have the same mean and total energy as the empirical data. The IED therefore 
shows promise as a candidate null model for an Individual Size Distribution (ISD) -type 
prediction, as discussed in White et al. 2007. 

In its current mathematical formulation, the SED metric is not flexible enough to capture 
the range of body-sizes in the system we test here. Because the empirical data can be 
approximated with a decreasing linear fit on log(rank) vs. metabolic rate graphs (see Fig. 4), the 
exponential form of the SED predictions appears to be an adequate model, however, there is a 
clear pattern of bias in the slopes of the predicted SEDs related to average body size of a species 
as described above. This suggests that the exponential form of the SED may indeed be an 
adequate null model, but because the slopes of the predictions are incorrect, that the exponent 
itself could be adjusted to include information about the rank of the average metabolic rate of the 
species being considered (see Appendix E for further discussion). A modification of the 
exponent of the SED would give predictions closer to empirical values; however, tests of the 
SED with more than one dataset might better justify a change of the theoretical form.  

Problems with the SED are expected to translate to problems with the ASED, because the 
ASED is the predicted distribution of the means of the SEDs. This, by itself, is a large enough 
effect to cause the ASED to fail, however, we also find that the means of the predicted and 
observed ASED do not match for unrelated reasons, and is the METE prediction therefore does 
not provide a function that is a useful description of this metric. This problem led us to look at a 
related metric, which we call the Total Species Energy Distribution (TSED), which has more 
tractable qualities as a community-level metabolic metric and reproduces results similar to 
energy equivalence as predicted by Damuth (1987). See Appendix K for a discussion of the 
failure of the ASED, and the properties and predictions of the TSED metric. 
 
Distinguishing the role of disturbance from the failure of theory 

Data from the subalpine meadow system show a log-normal trend in the empirical SAD rather 
than the predicted Fisher log-series curve (AIC evidence ratio = 20.09 in favor of the log-
normal), with fewer than predicted singleton species (1 rather than 5); see Appendix I. A log-
normal distribution of cover by species (Bazzaz 1975) or abundances is often observed in 
systems that have experienced recent ecological perturbations or natural disturbances (Hill and 
Hamer 1998, Kempton and Taylor 1974, Newman et al., in preparation, but see Ulrich et al. 
2010). During our study year, unusually high early-season temperatures and lower than average 
snowpack in the previous winter likely had a perturbing effect on the plant community. In 
surrounding areas, novel plant communities arose in the year of this study as some plants failed 
to develop after early freezes, others developed according to photoperiod triggers (David Inouye, 
pers. comm.), and some plants showed advanced phenology due to higher than average growing-
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season temperatures, and earlier than average snowmelt, a major influence on plant phenology in 
the region (Dunne et al. 2003).  

From this empirical deviation from theory, we could conclude that the values and ratios 
of the four state variables (A0, S0, N0 and E0) are not sufficient to describe the dynamics of a real 
system, such as natural disturbance and post-disturbance. It has been suggested elsewhere that 
evolutionary processes including diversification and extinction may influence the shape of 
empirical macroecological distributions (Hubbell 2001, Harte 2011, Harte et al. 2013). These 
explanations, while plausible, would not allow us to distinguish between the role of disturbance 
in causing theory to fail, versus an inherent flaw with the mathematical construction of theory, so 
we investigate incorporating the empirical SAD into the METE predictions here.  

Because of the aforementioned ecological perturbation and the community restructuring 
effect it may have had, we incorporate the empirical SAD in the elements of the SEDs and 
ASED that are explicitly dependent on the SAD (see Eq. 4). Predictions of the SEDs and ASED 
that result from using the empirical SAD and calculating the metrics numerically are presented in 
Appendix J, with the ASED and example SED shown in Figs. 6a-b. These analyses, while 
debatably not a direct test of METE’s predictions, have allowed us determine that the log-
normality of the empirical SAD does not greatly change the shape of the predicted SEDs and 
ASED, and merely shift the predictions by some normalization constant. The empirical SAD is 
therefore not the cause of the mismatch between data and theory. We conclude that the problem 
is likely located within the prediction of the SED because its exponential form appears to be 
correct except for the predicted slopes and intercepts of the SEDs (see Figs. 4 and 5). We 
therefore suspect that the predicted exponent of the SED equation is incorrect. This would 
further explain why the SEDs and ASED jointly fail. In spite of this, the IED remains a largely 
successful metric because it is free of this particular problem. These results are consistent with an 
independent study of tree communities (Xiao et al. 2013), suggesting that the observed 
relationships between the theoretical predictions and empirical data may be general, at least 
within plants. 

 
Conclusions 

The Maximum Entropy Theory of Ecology provides a theoretical basis for estimating 
various metrics of energetics in biotic communities. Empirical data from a subalpine meadow 
provide the first explorations of the realism of two of these predictions in a fully-censused 
community. Although we chose an herbaceous plant community because of its tractability and 
similarity of growth forms within the community, predictions of the community- and species-
level metrics considered in this paper should hold generally for any taxon or group of taxa. 
Future work may reexamine the predicted forms of the metabolic metrics presented here. The 
IED, the metabolic rate distribution for all individuals in a community, appears successful as a 
theoretically-predicted measure of the individual energy distribution by linear comparisons of 
predicted versus observed data.  

Given the poor performance of the METE SAD for this system, we incorporated the 
empirical, lognormal SAD and found that functional forms of the predicted SEDs are not highly 
affected by the empirical SAD. By association, METE’s metabolic predictions should hold in 
ecosystems where the shape of the SAD is altered due to natural disturbance or ecological 
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perturbation, succession, or a variety of other ecological factors (Dornelas et al. 2009). Because 
it appears that the SED is exponential in form, the exponent itself (

€ 

λ2n ) is a likely cause of the 
highly regular pattern in mismatch between theory and data. The information included in the 
exponent therefore becomes the target for more theoretical inquiry and empirical testing. 

Finally, considering the ASED, we show that the incorporation of the empirical SAD 
may provide predictions that are closer to empirical data; however, it METE fails to predict the 
correct form of this community-level metric, likely due to the ASED relationship to the SEDs. 
The predicted ASED also does not necessarily have the same mean as the empirical distribution. 
A simple conversion of the ASED recovers an energetic-equivalence prediction, the TSED, that 
is well-normalized and similar to the Damuth Rule. The TSED might be an effective prediction 
of global-scale metabolic rate distributions, but does not perform well for plot-level metabolic 
rate distributions.  
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Tables. 

Table 1. Species names, abundances, rank, and leaf-area measurements of 31 species of plants in a sub-alpine plot. All metabolic rates 
are in normalized units of leaf area. 
 
6-Letter code Species Common name Rank in 

plot by n 
n Minimum 

metabolic 
rate 

Maximum 
metabolic 
rate 

Average 
metabolic 
rate 

BOEDRU Boechera stricta (syn. 
Boechera drumondii) 

Tower mustard 1 103 4.694 191.013 33.97 

HELQUI Helianthella quinquenervis Five nerve heliantella 2 94 77.013 38251.85 4680.185 

VIONUT Crocion nuttallii (syn. 
Viola nuttallii) 

Yellow montaine violet 3 93 1 1224.081 227.33 

LUPARG Lupinus argenteus Silvery lupine 4 85 6.734 28164.32 736.251 

ANDSEP Androsace septentrionalis Northern rock jasmine 5 62 1.134 35.431 8.193 

HYMHOO Hymenoxys hoopesyii Sneezeweed 6 55 32.363 5719.091 956.284 

FRAVES Fragaria vesca Alpine strawberry 7 54 15.119 1223.867 207.54 

POTGRA Potentilla gracilis var. 
nuttallii (syn. Potentilla 
gracilis) 

Slender cinquefoil 8 47 8.443 4171.999 728.91 

LIGPOR Ligusticum porteri (syn. 
Ligusticum porteri var. 
brevilobum) 

Osha 9 38 3.424 21632.616 3171.588 

VICAME Vicia americana American vetch 10 33 6.248 582.964 128.913 

IPOAGG Ipomopsis aggregata Scarlet gilia 11 23 7.075 467.952 72.744 
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Table 1 (continued) 
 
6-Letter code Species Common name Rank in 

plot by n 
n Minimum 

metabolic 
rate 

Maximum 
metabolic 
rate 

Average 
metabolic 
rate 

THLMON Thlaspi montanum (syn. 
Noccaea montana) 

Candytuft, Alpine 
pennycress 

12 20 5.821 1494.01 118.013 

SENCRA Senecio crassulus Thick-leaved groundsel 13 19 8.018 1115.985 262.59 

DELBAR Delphinium barbeyi Tall larkspur 14 16 73.235 17051.759 2243.05 

ERIFOR Erigeron formosissimus Beautiful fleabane  15 14 14.089 14552.655 1578.719 

LATLEU Lathyrus leucanthus (syn. 
Lathyrus lanzwertii var. 
leucanthus) 

Peavine, Rocky 
Mountain sweetpea 

16 13 63.034 1857.99 564.596 

SOLMUL Solidago multiradiata Goldenrod 17 12 7.449 408.856 109.939 

POLDOU Polygonum douglasii Douglas's knotweed 18 12 5.862 157.921 35.843 

ERIELA Erigeron elatior Pink-headed fleabane 19 11 15.921 1443.983 477.113 

AGOGLA Agoseris glauca Mountain dandelion 20 11 20.513 714.54 192.236 

DRASPE Draba spectabilis Showy draba 21 10 27.369 159.939 73.597 

CASSUL Castilleja sulphurea Sulphur paintbrush 22 10 12.864 1805.139 537.313 

EUCENG Eucephalus engelmannii 
(syn. Aster engelmannii) 

Englemann’s aster 23 8 70.823 1589.375 607.619 
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Table 1 (continued) 
 
6-Letter code Species Common name Rank in 

plot by n 
n Minimum 

metabolic 
rate 

Maximum 
metabolic 
rate 

Average 
metabolic 
rate 

ERISPE Erigeron speciosus Showy fleabane 24 8 65.799 1415.119 573.524 

SENAMP Senecio amplectens (syn. 
Ligularia holmii) 

Showy alpine ragwort 25 7 39.841 1108.729 282.468 

VIGMUL Heliomeris multiflora (syn. 
Viguiera multiflora) 

Showy goldeneye 28 2 294.612 458.466 376.539 

OSMOCC Washingtonia occidentalis 
(syn. Osmorhiza 
occidentalis) 

Sweet cicely 29 2 4972.977 32451.402 18712.189 

AQUCOE Aquilegia flavescens (syn. 
Aquilegia coerulea) 

Colorado columbine 30 2 24.894 23956.678 11990.786 

TAROFF Taraxacum officinale‡ Common dandelion 31 1 9.537 9.537 9.537 

‡ indicates an exotic species 
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Figures. 

Figure 1. Visual representation of what is modeled by (a) the Individual-level Energy 
Distribution (IED), (b) the distribution of average metabolic rates across species or Average 
Species Energy Distribution (ASED), and (c) one example of the distribution of metabolic rates 
across the individuals in a single species of abundance n, also known as the Species-level Energy 
Distribution (SED).  
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Figure 2. Comparison of empirical data to METE Individual-level Energy Distribution 
predictions for a subalpine plant community. This graph shows empirical and predicted IED 
values on a log(rank) versus log(metabolic rate) graph for all individuals in the plot. 

 

 



	
   82 

Figure 3. ASED predictions and empirical data for a subalpine plant community where species 
are ranked by average metabolic rate on a rank-log(metabolic rate) plot.  

 

 

 



	
   83 

Figure 4. METE predicted and observed Species-level Energy Distributions (SED) for all 
individuals of the 12 most abundant species in the subalpine plot. Individuals are ranked from 
largest to smallest metabolic rate within the species, and graphs are presented in order from 
smallest to largest average metabolic rate per species. 
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Figure 5. Slope of predicted versus observed data for all SEDs with n ≥ 5 on a log-rank graph. 
Each point represents one species. A good fit would be characterized by a trendline with slope = 
0. 
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Figure 6(a-b). ASED and example SED showing a comparison of observed values, the METE 

prediction including the empirical adjustment, and the METE prediction. (a) Cumulative Density 

Function (CDF) of the ASED. (b) CDF of the SED for Boechera stricta. 

 (a) 
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Appendix A: Tree coring data and metadata 

Twenty cores were sampled from 17 individual trees, under National Park Service permitting.  

Park-assigned Study or Activity #: PORE-00572 and  

Park-assigned Permit #: PORE-2012-SCI-0014 

The accession number for all of the specimens is PORE-00866, with catalog number range 
PORE 18080-PORE 18096. 

Tree core specimens are property of the National Park Service, and are housed under a long-term 
loan agreement with the Laboratory of Tree-Ring Research (LTRR) at the University of Arizona.  

 

Terms 

tree_coring_code – Unique code given to each tree cored at Point Reyes  

row – The row of the plot in which the tree was found 

column – The column of the plot in which the tree was found 

dbh_cm – The diameter at breast height (dbh) in cm of the tree 

date – The date which the tree was cored in (MM/DD/YYYY) format 

height_to_core_cm – the height from the ground at which the core was taken (in cm) 

core_type – either a half-core or a through-core. Half core is sampled to halfway through the 
diameter of the tree at breast height; through-core is a full core sampled all the way through 
the tree’s diameter at breast height 

corer  – initials of the person who did the coring 

notes – notes describing particular aspects of the tree or coring procedure 

rings – number of tree rings counted in tree-core sample 

raw_date_sprout – raw year of germination of the tree based on number of rings counted 

estimated_date_sprout – estimated year of germination of the tree based on (number of rings 
counted + estimated missing rings from years of growth not apparent at height of coring). This 
measure accounts for first growth ring only growing to ~35 cm height. 
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A1. Site Information: Bayview Trailhead 

Location: Point Reyes National Seashore, California 
Dates: Site sampled from April 15th to April 16th 2012 
Samplers: LS, BC, JH, EAN, MQW 
 
Notes: This was the second site that we sampled at the Bayview Trailhead. This site represents 
the more recently disturbed site used to test METE predictions. At this site, we made a 16m X 
16m grid and gridded every 1m for a total of 256 cells. Within each cell we counted the 
abundance of every plant. For plants such as Rubus ursinus (California blackberry, field code 
RUBURS) that were vines and occurred everywhere, we recorded their presence only (rather 
than abundance) within the cell. We measured the dbh (cm) of all Pinus muricata (Bishop pine, 
field code PINMUR) within the grid. PINMUR trees were cored near (but not within) the plot. 
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Table A1. Records for Bayview site tree core data.  

TREE_CORING_
CODE 

DBH
_CM 

DATE HEIGHT_
TO_CORE
_CM 

CORE_TYPE CORER NOTES RINGS RAW_DATE
_SPROUT 

ESTIMATED
_DATE_SPR
OUT 

PTRY001 (PORE 
18080) 

N/A 4/15/12 32 through-core MQW none 11 2001 (2001) 

PTRY002 (PORE 
18081, "A") 

N/A 4/15/12 28 half-core BC Sample came 
from the same tree 
as PTRY003 

12 2000 (1998) 

PTRY003 (PORE 
18081, "B") 

N/A 4/15/12 131 half-core EAN Sample came 
from the same tree 
as PTRY002 

13 1999 (1998) 

PTRY004 (PORE 
18082) 

4.4 4/15/12 134 through-core EAN Thin tree. Tree 
was cored at 
breast height. 
Core broke at far 
end. 

7 2005 (2003) 

PTRY005 (PORE 
18083, "A") 

20 4/15/12 120 half-core LS Approximately 
150-200m from 
BayviewTH site. 
Same tree as 
PTRY006 

15 1997 (1996) 

PTRY006 (PORE 
18083, "B") 

22 4/15/12 32 half-core LS Sample came 
from the same tree 
as PTRY005 

16 1996 (1996) 
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A2. Site Information: Mt. Vision 

Location: Mount Vision Road, Point Reyes National Seashore, California 

GPS: 10 S 0509348, 4217230 ±1.8m for center of the site. 27 degrees from center point of plot  

Elevation: 698 ft 

Clinometer reading: -32 degrees from the horizontal 

Dates: Site sampled from April 19th to April 20th 2012 

Samplers: EAN, MQW 

 

Notes: This was the third site that we censused during the macroecology project at Point Reyes. 
This site was located on Mt. Vision Road and was an undisturbed stand of mature Bishop Pine 
(PINMUR). At this site, we made a 16m x 16m grid and gridded every 1m for a total of 256 
cells. Consistent with the methods applied to the first field plot, within each cell we counted the 
abundance of every plant. For plants such as Rubus ursinus (California blackberry, field code 
RUBURS) that were vines and occurred everywhere, we recorded their presence only (rather 
than abundance) within the cell. We measured the dbh (cm) of all Pinus muricata (Bishop pine, 
field code PINMUR) within the grid. PINMUR trees were cored near (but not within) the plot. 

 

There are 14 mature Pinus muricata (PINMUR) in the site. This file only contains 13 unique 
cores (PTRY020 is a core from the same tree as PTRY009). The PINMUR located in cell I3 
(dbh: 28cm) was not cored.  
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Table A2. Records for Mount Vision site tree core data.  

TREE_CORING_C
ODE 

ROW COLUMN DBH_
CM 

DATE 
(M/D/Y) 

HEIGHT_TO_
CORE_CM 

CORE_
TYPE 

CORER 

PTRY007 (PORE 
18084) 

3 C 50.1 4/20/12 62.5 half-
core 

MQW 

PTRY008 (PORE 
18085) 

10 C 28.5 4/20/12 55 half-
core 

MQW 

PTRY009 (PORE 
18086, "A") 

11 C 44.5 4/20/12 69.5 half-
core 

MQW 

PTRY010 (PORE 
18087) 

6 H 27.7 4/21/12 73 half-
core 

MQW 

PTRY011 (PORE 
18088) 

13 G 34.6 4/20/12 66 half-
core 

MQW 

PTRY012 (PORE 
18089) 

2 L 41.3 4/20/12 73 half-
core 

MQW 

PTRY013 (PORE 
18090) 

5 L 48.7 4/20/12 62.5 half-
core 

MQW 

PTRY014 (PORE 
18091) 

13 J 36.5 4/20/12 51 half-
core 

MQW 

PTRY015 (PORE 
18092) 

2 P 43.3 4/20/12 80 half-
core 

EAN 

PTRY016 (PORE 
18093) 

2 P 45.5 4/21/12 82 half-
core 

MQW 

PTRY017 (PORE 
18094) 

9 O 34.1 4/21/12 49.5 half-
core 

MQW 

PTRY018 (PORE 
18095) 

14 N 45.5 4/20/12 65 half-
core 

MQW 

PTRY019 (PORE 
18096) 

16 M 40 4/20/12 61 half-
core 

MQW 

PTRY020 (PORE 
18086, "B") 

11 C 44.5 4/20/12 46.5 half-
core 

MQW 
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Table A2. continued. Records for Mount Vision site tree core data (continued). 

TREE_CORING_
CODE 

NOTES RINGS RAW_DATE
_SPROUT 

ESTIMATED_
DATE_SPROU
T 

PTRY007 (PORE 
18084) 

Tree slanting downhill. Cored on downhill 
side 

35 1977 (1976) 

PTRY008 (PORE 
18085) 

Tree slanting uphill 23 1989 (1988) 

PTRY009 (PORE 
18086, "A") 

Cored from downhill slope 42 1970 (1969) 

PTRY010 (PORE 
18087) 

Tree branches to a Y at ~35-40cm from the 
ground. One branch of the tree is broken 
and the other is a full-grown PINMUR. 
Cored the full-grown PINMUR 

30 1982 (1981) 

PTRY011 (PORE 
18088) 

Cored on uphill side 41 1971 (1970) 

PTRY012 (PORE 
18089) 

Cored on downhill side. Tree is sloping 
slightly left 

37 1975 (1974) 

PTRY013 (PORE 
18090) 

Tree asymmetrical. Cored on downhill side 36 1976 (1975) 

PTRY014 (PORE 
18091) 

Tree has lots of bends in its trunk 33 1979 (1978) 

PTRY015 (PORE 
18092) 

Merged with another tree. Cored on 
opposite side of neighboring tree. 

33 1979 (1978) 

PTRY016 (PORE 
18093) 

Tree splits into two distinct trunks at 
~40cm from the ground.  Cored at 82 cm 
from the ground to get a trunk that is 
distinct from PTRY015 

38 1974 (1973) 

PTRY017 (PORE 
18094) 

Tree has lots of branches near the base that 
affected where it could be cored. Pith was 
hit exactly. 

26 1986 (1985) 

PTRY018 (PORE 
18095) 

Tree is misshapen 3m up the trunk 36 1976 (1975) 

PTRY019 (PORE 
18096) 

Tree trunk is pretty straight. Cored on the 
uphill side. Core has some rot or insect 
damage that makes rings unclear. 

~29 ~1983 (1982) 

PTRY020 (PORE 
18086, "B") 

Same tree and PTRY009. Tree is possibly 
diseased to two samples were taken. This 
sample was taken 90 degrees from the 
previous sample towards the nearest edge 
of the plot. A few rings close to the bark 
may have been lost. Inner rings intact. 

33 1979 (1978) 
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Appendix A. Measurements and calculations of photosynthetic area 
 

Identification of individuals and calculation of photosynthetic area of each individual 
plant was done on a species-by-species basis. For species that grow by rhizomes or from other 
underground attachments, such as Vicia americana, Fragaria vesca, and Boechera drumondii, 
we uncovered roots to see which aboveground plant structures were part of the same individual, 
or assumed that leaf structures emerging from the ground in a line were attached underground 
and therefore part of the same individual. For other plants, we distinguished annuals from 
perennials. The annuals Androcase septentrionalis and Taraxacum officianale were counted as 
individuals by rosette unless there were shared root structures. For perennials, aboveground 
structures were assumed to be part of the same plant if they were growing in patches or clumps. 
Distances between structures considered part of the same “clump” varied by species, such that 
rosettes of the small Ipomopsis aggregata were considered separate individuals if their centers 
were more than 3 cm apart and there was no sign of attachment between roots, whereas stems of 
the much larger Lupinus argentus were counted as individuals if they were 20 or more cm apart. 
Individuals were assessed during counting, and validated during collection of aboveground 
biomass. 

 
In all cases of plants with both leaves and stems, the leaves were counted and scanned 

separately from the stems. Both types of structures were scanned separately and included in the 
final accounting for photosynthetic area (because of significant contribution of stems; Pfanz and 
Aschan 2001, Valladares et al. 2003, Flexas et al. 2012), defined as leaves + green stems (see, 
for example Boutin and Keddy 1993), or simply all aboveground biomass for these herbaceous 
plants. Leaves collected from rosettes were counted, labeled, and scanned separately from leaves 
growing on stems. For example, we counted rosettes and stems for Thlaspi montanum, which 
grows in large mats containing thousands of individual leaves. Rosettes were counted 
individually for a mat considered to be an individual plant, and stems were counted separately. 
At least 7-10 rosettes were plucked and each individual leaf was counted, resulting in an 
estimation of leaves/rosette. Similarly, leaves/stem was calculated from at least 7-10 stems. 
Calculated averages of individual leaf area obtained from scans of collected leaves were then 
applied to the total number of rosettes x leaves/rosette. Total photosynthetic area was then 
calculated as (area per leaf) x (rosettes) x (leaves/rosette) + (area per stem leaf) x (total stems) x 
(leaves/stem) + (area per stem) x (total stems). We applied similar methods to other plant species 
based on their growth form using similar reasoning. 

 
A note on taxonomy: lupine individuals were grouped into the category “Lupinus sp.” for 

analysis, as the taxonomy of that group is in flux (although Lupinus argentus is likely the 
dominant species). 
 
Literature cited 
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Appendix B. SED predictions and observed values for all species with 5 or more individuals, 
including comparisons of predicted vs. observed values 
 
Figure B.1 SED predictions and observed values for all species with 5 or more individuals are 
arranged from smallest to largest by average metabolic rate of an individual of a species. Within 
each graph, individuals are ranked from largest to smallest individual on the x-axis. Predicted vs. 
observed values on a linear scale are included for each species (open circles), with a linear 
regression line (solid black line). 
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Appendix C. Table. Species included in this study, ranked by average metabolic rate per species 
(a normalized measure of photosynthetic area), from largest to smallest  
 
Slopes, intercepts, and R2 values of a linear regression of predicted SED values versus observed 
data are shown. Metrics are not calculated (NC) for species with fewer than 5 individuals. 
 
Table C.1 

6-Letter 
code 

Rank by 
ave. 

metabolic 
rate of 
species 

Intercept Slope R2 Rank by 
abundance 

Abundance Ave. 
metabolic 

rate 

ANDSEP 31 -159.043 77.446 0.9687 5 62 8.193 

(TAROFF) 30 NC NC NC 31 1 9.537 

BOEDRU 29 -28.243 9.287 0.9865 1 103 33.97 

POLDOU 28 744.391 46.067 0.8768 18 12 35.843 

IPOAGG 27 419.74 11.659 0.8266 11 23 72.744 

DRASPE 26 -1844.204 63.888 0.9582 21 10 73.597 

SOLMUL 25 181.127 20.142 0.9628 17 12 109.939 

THLMON 24 1076.99 3.199 0.5263 12 20 118.013 

VICAME 23 181.74 5.479 0.9402 10 33 128.913 

AGOGLA 22 289.64 12.05 0.8932 20 11 192.236 

FRAVES 21 88.762 2.2 0.9653 7 54 207.54 

CASSOC 20 -4142.9 42.72 0.5108 27 5 226.134 

VIONUT 19 54.631 1.158 0.9702 3 93 227.33 

SENCRA 18 78.885 5.525 0.9582 13 19 262.59 

SENAMP 17 1582.521 8.633 0.8775 25 7 282.468 

(VIGMUL) 16 NC NC NC 28 2 376.539 

GERRIC 15 168.053 8.79 0.8787 26 7 438.361 

ERIELA 14 470.67 4.476 0.9189 19 11 477.113 

CASSUL 13 254.251 4.845 0.9819 22 10 537.313 

LATLEU 12 81.52 3.781 0.9639 16 13 564.596 

ERISPE 11 470.842 5.353 0.8347 24 8 573.524 

EUCENG 10 257.171 5.404 0.9012 23 8 607.619 

POTGRA 9 79.31 0.749 0.9788 8 47 728.91 

LUPARG 8 295.3 0.071 0.4064 4 85 736.251 
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HYMHOO 7 135.787 0.418 0.9456 6 55 956.284 

ERIFOR 6 1373 0.436 0.7053 15 14 1578.719 

DELBAR 5 979.284 0.37 0.7676 14 16 2243.05 

LIGPOR 4 352.8 0.132 0.8976 9 38 3171.588 

HELQUI 3 65.659 0.053 0.8906 2 94 4680.185 

(AQUCOE) 2 NC NC NC 30 2 11990.786 

(OSMOCC) 1 NC NC NC 29 2 18712.189 
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Appendix D. SED predictions and observed values for the 15 most abundant species 
 
Figure D.1 SED predictions and observed values for 15 most abundant species are arranged from 
smallest to largest by average metabolic rate. Individuals are ranked from largest to smallest 
individual by metabolic rate on the x-axis. 
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Appendix E. Additional analysis of SEDs 
 
Figure E.1. Slopes of predicted versus observed data for all SEDs of species with n ≥ 5, 
organized by average photosynthetic area (equivalent to average metabolic rate) of an individual 
within a species. Each point represents one species, and species are in rank order from largest to 
smallest average photosynthetic area (equivalent to ranking by metabolic rate) of the individuals 
of that species. An exponential trendline is shown on the graph. A good fit of the predicted 
versus observed data points would be a slope of 1, however, we see variable, increasing slope 
here.  
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Figure E.2. R2 values for predicted SED distributions versus observed data. Species are in 
rank order from largest to smallest average photosynthetic area (metabolic rate). Outlier points 
with low R2 values are Lupinus argentus (rank 6 by average size) and Thlaspi montanum, (rank 
20 by average metabolic rate), both of which have one very large outlying individual. High R2 
values naturally result from ranked data that falls along a straight line on a log-log graph of an 
exponential distribution. 

 
One way to interpret these results is to say that the exponential model is a good model, 

however, the slopes are incorrect. We note that the intercepts are also incorrect for this model, 
which may indicate that one or more important constraints are missing from the model.  
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Appendix F. The functional form of the ASED (Nu) as derived from a discrete cumulative 
distribution function 
 

Because the SAD is a discrete distribution, the theoretical ASED distribution will reflect 
that discrete nature. However, as a function of a continuous variable, , the empirical ASED 
may take on any value in the range of 1 to εmax. The METE-predicted ASED is only defined for 

values given by  = (1+(1/(n·λ2)), where n (the number of individuals of a species) is in the 
range [1,N] (and where N = nmax). Although we would ultimately like to model metabolic rate as 
a continuous distribution (conforming to our understanding of metabolic “energy” as a 
continuous variable in nature), there is no closed form rank-metabolic rate distribution for the 
ASED. The method suggested in Harte, 2011 (eq. 7.44, p. 155), allows us to calculate the ASED 
numerically and create a model that is close to a continuous distribution. We use this 
numerically-estimated continuous formulation of the ASED for the all analyses in this paper, and 
discuss the problems of doing so below. 

 
Various artifacts arise from trying to predict a continuous variable, metabolic “energy” 

(or metabolic rates, defined in units of power), from a rank-metabolic rate distribution 
constructed from a discrete probability distribution. For example, when using a discrete ASED 
graphed on rank-metabolic rate and rank-log(metabolic rate) graphs, predicted values for 
multiple species with large average metabolic rates have a maximum predicted value, and values 
in the mid-range may be repeated. A continuous probability distribution would instead predict 
the ASED to be a strictly decreasing function (rather than a stepped function) of ranked average 
metabolic rates.  

 
Graphically, the values 

€ 

ε 1, 

€ 

ε 2, ... 

€ 

ε N  (where 

€ 

ε 1 is the smallest value and 

€ 

ε N  is the largest 
value) get progressively more spread out approaching 

€ 

ε N . With this in mind, we build a rank-
metabolic rate distribution using the cumulative distribution function (CDF) through the 
following steps: (1) calculate an observed CDF for the observed energy values, and (2) use the 
cumulative probability values in the observed CDF and find the  in the METE-predicted CDF 
with the same cumulative probability value. This is the predicted metabolic rate value. Therefore, 
constructing a CDF from this type of probability distribution causes large steps on the x-axis 
between each gain in probability at large .  

 
For example, as in Figure F.1, for three observed probability values of 0.81, 0.88, and 

0.92, the continuous CDF (blue line) estimates a different  for each probability value, while a 
discrete CDF (green line) has  falling in the gap between two defined metabolic rate values and 
therefore must be assigned to either the lower or higher energy value. Therefore, different CDF 
values may end up with the same predicted , leading to a step-like, artifactual pattern that may 
not resemble patterns of natural systems. This explains why it is a general feature of the 
predicted, discrete ASED that we see a flat line of predicted values for the first few ranks, i.e. the 
highest  values, on rank abundance graphs, and may see repeated values elsewhere in the 
distribution.  
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Figure F.1. Discrete predictions of Nu distribution compared to idealized continuous curve. 
These example distributions were generated with N = 200, S = 20, and total energy E = 5000. 

 
 

 
Literature cited 
Harte, J. 2011. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and 
Energetics. Oxford Univ. Press, Oxford UK.  
 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 50 100 150 200 250 300 

P
ro

ba
bi

lit
y 

Average metabolic rate 

Discrete CDF Continuous CDF 



 

	
   124 

 
Appendix G. Kolmogorov-Smirnov goodness-of-fit tests for ASED, IED, and all SEDs  
 
Table G.1. The following goodness-of-fit tests represent how well theoretical distributions fit 
empirical data. Kolmogorov-Smirnov (K-S) average statistics for 1000 bootstrapped samples for 
the ASED, IED, and all SEDs with n ≥ 5 individuals are presented here. Metabolic distributions 
that produced K-S bootstrapped p-values > 0.05 are marked with an asterisk. P-values less than 
0.05 are considered not to support the null hypothesis that the predicted and observed 
distributions are the same.  
 

Metric Species K-S statistic 
(bootstrapped 

average) 

K-S 
bootstrapped 

p-value 

Number 
observed (n) 

ASED all 0.5806 0.0001 31 

IED all 0.1653 0 877 

SED AGOGLA 0.8182 0.0007 11 

 ANDSEP 0.9355 0 62 

 BOEDRU 0.6893 0 103 

 CASSOC* 0.8 0.0794 5 

 CASSUL* 0.6 0.0524 10 

 DELBAR* 0.1875 0.9523 16 

 DRASPE 0.9 0.0002 10 

 ERIELA* 0.5455 0.0747 11 

 ERIFOR 0.5714 0.0188 14 

 ERISPE* 0.625 0.087 8 

 EUCENG 0.625 0.087 8 

 FRAVES 0.4074 0.0002 54 

 GERRIC* 0.7143 0.053 7 

 HELQUI 0.766 0 94 

 HYMHOO* 0.1818 0.3255 55 

 IPOAGG 0.8261 0 23 

 LATLEU* 0.4615 0.1265 13 

 LIGPOR 0.3684 0.0109 38 

 LUPARG 0.3059 0.0006 85 

 NOCMON 0.85 0 20 

 POLDOU 0.9167 0 12 
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 POTGRA* 0.1277 0.8439 47 

 SENAMP* 0.7143 0.053 7 

 SENCRA 0.6316 0.0007 19 

 SOLMUL 0.8333 0.0002 12 

 VICAME 0.6061 0 33 

 VIONUT* 0.1828 0.0894 93 
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Appendix H. Additional information on the Average Species Energy Distribution, including 
tests of goodness-of-fit 
 
Figure H.1. Predicted continuous probability distribution for the ASED (Nu) based on state 
variable values. Here,  (“epsilon_bar”) represents the average metabolic rate of an individual in 
a species, estimated by normalized photosynthetic area. The continuous distribution was 

estimated numerically, and normalized on the range [

€ 

ε min =1+
1

N ⋅ λ2
, 

€ 

ε max =1+
1
λ2

 ]. 
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Figure H.2 ASED predictions and empirical data for a subalpine plant community where species 
are ranked by average energy: (a) discrete predicted versus observed values on a log-log graph; 
and (b) continuous predicted versus observed values on a log-log graph. Although we use the 
discrete values for all analyses in this paper, we note that use of the continuous ASED does not 
change the fit to the predicted versus observed values in a major way.  
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Figure H.3 Comparison of empirical data to METE Individual-level Energy Distribution 
predictions for a subalpine plant community. The figure shows predicted (discrete) versus 
observed values on a log-log graph. A high R2 value is expected as a fit to rank-order data. 
 

 

y = 0.8362x + 0.5299 
R² = 0.97424 

-1 

0 

1 

2 

3 

4 

5 

6 

0 1 2 3 4 5 

Lo
g(

P
re

di
ct

ed
) 

Log(Observed) 



 

	
   129 

Appendix I. The Species-Abundance Distribution (SAD) of a subalpine plant community 
 

METE predicts a Fisher log-series distribution for the SAD, but many ecosystems show a 
more log-normal pattern. Figure I.1 shows the comparison of empirical ranked abundances 
against the METE prediction and the lognormal distribution for the subalpine system. AIC 
weights for comparison to the distributions are: 

 
Distribution  Number of Parameters AIC(weight) 

  Lognormal   2   0.9526 
  Log-series   1   0.0474 
 
This yields an evidence ratio of 20.09 in favor of the log-normal distribution. 
 
 
Figure I.1. The Species-Abundance Distribution (SAD) of a subalpine plant community. 
Observed values on a rank-log(n) plot are closer to a log-normal distribution than they are to the 
METE-predicted log-series distribution. 
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Appendix J. Incorporating the empirical SAD into ASED and SED predictions 
 

Both the SED and the ASED METE predictions explicitly incorporate the METE-
predicted SAD in their derivations. While METE predicts a log-series SAD, the empirical SAD 
from a community does not necessarily follow this prediction. If the shape of the empirical SAD 
does not match the predicted SAD, one may expect that the ASED and SED METE predictions 
would not match empirical observations. To account for this possible source of error, we 
computationally derive the ASED and SED predictions using the empirical SAD rather than the 
METE-predicted SAD.  

 
To obtain the empirically-based SED, we first computed the empirical SAD using 

Gaussian kernel density estimation (Jones et al. 2001), discretized, and renormalized the density 
estimate such that it has support from 1 to N. We then applied equation 7.7 from Harte (2011), 
restated here: 

 

€ 

Θ(ε | n) =
R(n,ε)
Φ(n)

     (J.1) 

 
and used our renormalized density kernel in place of Phi(n). The resulting SED distribution was 
not normalized, and normalizing the empirically-derived SED gives exactly the same distribution 
as the METE SED. This is obvious from the above equation because Phi (the SAD) influences 
the predicted SED of a species through a single value, Phi(n), where n is the abundance of the 
species. This value is the normalization factor of the SED and, because R(n,ε) in Eq. J.1, above, 
is the same for the METE and empirically-derived SED, it has a single, unique value if the SED 
is properly normalized. Therefore, regardless of the shape of the SAD, all properly normalized 
SEDs will be identical. If the SED is not normalized, the resulting psuedo-distribution will have 
the same shape as the METE SED, but will be shifted by some factor (see Figure J.1). To change 
the shape of the SED (i.e. make it not an exponential distribution) one would have to alter the 
bivariate distribution R(n,ε). Considering that R(n,ε) is the foundation of METE and our goal in 
this paper is to test the energy predictions of METE, altering R(n,ε) to incorporate the 
information from the empirical SAD would no longer be a test of METE. 

 
Note: some figures in this section are printed in the main manuscript, and are reprinted 

here for comparison.  
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Figure J.1 SEDs by species, METE predictions, and empirically-adjusted METE predictions. 
Data are shown in blue squares, METE predictions are shown as a solid, black line, and METE 
predictions that incorporate the empirical SAD are shown as red, dotted lines. 
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  Log(SED metabolic rates)  

 

    

  Log(SED metabolic rates)  

 
To obtain the empirically-based ASED, we computed the empirical SAD using the 

method described above and then applied equation 7.44 from Harte (2011). The resulting 
empirically-derived ASED distribution had the same general shape as the METE-predicted 
ASED and is a better fit to to the observed ASED, especially in that it shows an inflection point, 
which is consistent with a unimodal Nu distribution (Figure J.2).  
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Figure J.2 Cumulative Density Function of the discrete ASED, showing a comparison of the 
observed ASED, the ASED including the empirical SAD, and the METE-predicted ASED. 
 

 
 
These results strongly demonstrate that the non-METE empirical SAD we observed in 

this study is not the reason that the METE-predicted SED and ASED failed to match empirical 
data. Both the ASED and the SED predictions appear to be robust to the shape of the SAD, in 
that the functional form of the distributions do not change, but are only shifted away from 
empirical data by some (unknown) factor related to improper normalization. Although it may be 
too broad a claim to state that the SED is a metric that is robust to the effects of ecological 
perturbation on a community, it is valid to state that the SED is robust to factors that change the 
shape of the SAD. 

 
We conclude that either the functional form of the exponent for the SED is incorrect, 

and/or there may be some fundamental information that the METE ASED and SED are missing. 
One solution that has been proposed is that higher taxonomic levels pose additional constraints 
on the energy distributions, a topic currently being explored by Harte and Rominger, et al. (in 
preparation). Both solutions point to problems with theory, which leaves open certain theoretical 
questions for further research. 
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Appendix K. Discussion of the normalization of the ASED, and exploration of a related metric, 
the Total Species Energy Distribution 
 

Although it was expected that the ASED should be normalized such that the predicted 
and observed distributions should represent the same total metabolic rates, and the means of 
those distributions should be E0/S0, neither of these expectation were upheld for reasons that 
were not obvious immediately, but are discussed below.  

The non-normalized ASED lead us to investigate a community-level metric that is 
normalized and should, by design, have a mean equal to E0/S0. The total species energy 
distribution (TSED) is similar to the ASED but equation 7.42 in Harte (2011) is multiplied by n 
to obtain the total energy per species (see Eq. 3 in the main text): 

 

€ 

εTot = nε ≈ n +
1
λ2      (K.1)

 

 
The distribution for the total energy per species, the TSED, is then obtained using the change of 
variable formula for a discrete probability distribution (as the ASED was calculated without the 
Jacobian and was considered discrete in this analysis). The TSED, represented here by 

€ 

ω , is 
given by the equation: 

€ 

ω =Φ(n(εTot ))     (K.2) 
 
where: 

€ 

n(εTot ) = εTot −
1
λ2

     (K.3) 

 
We confirmed that the mean of the observed and predicted TSED are equal to E0/S0. We 

compare empirical data to the METE predictions and an “energy equivalence” prediction 
(Damuth 1987), which is a model that specifies that each species in a given area will have the 
same total energy, or total metabolic rate. See Figure K.1. 
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Figure K.1 METE TSED prediction compared to empirical data and to an energy-equivalence 
prediction. The METE TSED is almost indistinguishable from the energy-equivalence prediction 
for this dataset. 

 
 

There is a simple justification for why the Nu predicted ASED does not have to have the 
same mean as the observed ASED, even though observed and predicted TSEDs must have the 
same means. To illustrate, consider two vectors, t1 and t2, of finite length m, which will represent 
the observed and predicted TSED, respectively. The vector t1 can be thought of as the TSED 
obtained by sampling a community of m species: each element in the vector is a species, and the 
value of the element is the total energy observed across all individuals in that species. The vector 
t2 is the TSED predicted by some theory (in our case METE), which can be directly compared to 
t1. Using the METE prediction for t2, t1 and t2 must have the same mean. Let's then take another 
vector of length m called s1. In our case, s1 will be the empirical SAD where m is the number of 
species in the community. If we divide (using element-wise division) each of the original vectors 
(t1 and t2) by the new vector (s1), we produce something that has the property of the empirical 
and observed ASEDs: a1 = t1/s1 and a2 = t2/s1. Although it might appear that the means of a1 and 
a2 have to be equal because the means of t1 and t2 are equal, straightforward algebra shows that 
this is only the case in a few unique situations. In general, the difference in the means of a1 and 
a2 varies as a function of the difference in the variance between t1 and t2. As the difference in the 
variance between t1 and t2 increases, the difference in the mean between a1 and a2 increases 
following a power-law (see Figure K.2). For our results, the difference in the variance between 
the observed and predicted TSEDs is very large, and the variance in the SAD is also large. 
Although not shown on the graph, the difference between the means of the two vectors a1 and a2 
is also influenced by the variance of s1, or in our case, the empirical SAD. This demonstrates 
why the means of the observed and predicted ASED do not have to match in practice. 
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Figure K.2 The difference of the means of two simple functions a1 = t1/s1 and a2 = t2/s1, resulting 
from the variance of their component vectors t1 and t2, as plotted on a log-log graph. 

 
Finally, comparing the predictive value of METE versus energy equivalence, we expect 

METE makes predictions that are consistent with energy equivalence where variation in body 
size (or energy of individuals) is small, and expect METE to make more accurate predictions 
when the range of body sizes (or energy) in a community or within a species is large. Energy 
equivalence will only hold under conditions where n << 1/λ2, alternately written as n << (E0-
N0)/S0 (see discussion in Harte 2011). The predicted TSED will often be very close to a 
horizontal line (energy equivalence) because n is typically small compared to 1/λ2, which is what 
we observe in this dataset. 
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