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ABSTRACT OF THE THESIS

Sparse Stress Structures from Optimal Geometric Measures

by

Dylan Rowe

Master of Science in Computer Science and Engineering

University of California San Diego, 2023

Professor Albert Chern, Chair

The minimal stress reconstruction problem asks for a sparse structure supporting an input

force distribution while obeying obstacle constraints. In geometric measure theoretic terms, this

corresponds to finding a varifold satisfying certain physical constraints on its local and global

structure. This thesis describes a method which realises such varifolds by representing them as

stress matrices which are the optima of an almost-convex optimization problem over a compact

domain. This method is able to successfully generate sparse structures with rich internal structure

that support a wide variety of force distributions and obstacles.
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Chapter 1

Introduction

Geometric measure theory uses varifolds as an abstraction for spaces which act like mani-

folds with branching submanifolds and nonmanifolds. This thesis aims to explore computational

applications of these generalized versions of manifolds, motivated by problems in graphics. In

Chapter 2, a reprint of a paper submitted for publication to SIGGRAPH Asia, varifolds are

realized as non-oriented curves with branching points over R2 that balance a set of given forces,

with potential applications in topology optimization, tensegrity, biology, and even theoretical

computer science. Chapter 3 contains a few supplementary experiments, which further delve

into the properties and extensions of the algorithm in Chapter 2.

Geometric measure theory often employs the language of topology and differential

geometry, and our exploration also uses the language of continuum mechanics to represent

varifolds. The rest of this chapter is therefore dedicated to a brief and informal introduction to

manifolds, varifolds, and stress tensors, which are useful preliminaries for the content in Chapter

2.

1.1 Manifolds

A manifold is a space that “locally looks like Rn”. Slightly more formally, an n-manifold

is a topological space such that any point has an open neighborhood homeomorphic to Rn.

An n-manifold-with-boundary is the same definition, but a point may also have a neighbor-

1



θ

e2iθ

Figure 1.1. G(1,R2) is homeomorphic to the circle by the map taking a line at angle θ to a point
at e2iθ ∈ S1 ⊂ C.

hood homeomorphic to the halfplane Rn
x0≥0; points satisfying the second condition are called

“boundary points”. Boundary points locally look like an “edge” of the manifold-with-boundary.

1.2 Grassmannian Manifold

The Grassmannian manifold, denoted G(k,Rn), is the space where each point is a k-

dimensional subspace of Rn. One family of notable examples is G(1,Rn), each member of

which is homeomorphic to RPn−1. Some of the simplest instantiations of this family are G(1,2),

which is homeomorphic to the circle S1 (the set of all lines through the origin in R2 forms a

topological circle from angles 0 to π ), and G(1,R3), which is homeomorphic to RP2. In general,

G(k,Rn) is a k(n− k) manifold; a proof of this can be found in, for example, [16].

1.3 Varifolds

A varifold is a generalization of a manifold which arises in geometric measure theory.

A m-varifold over an “ambient space” Ω is simply a (Radon) measure over Ω×G(m,Rn). It

is useful to imagine that a delta measure over such a product space acts like a (non-orientable

and possibly singular) k-manifold, where the projection to the Grassmanian part at each point

in the support is analogous to the tangent space of a (differentiable) manifold. In the paper

2



reprinted in Chapter 2, our 1-varifold has ambient space Ω = R2, and a “delta varifold” under

these conditions is simply a planar graph. For a visualization of our varifold over the plane, see

Fig. 2.3.

1.4 Stress Tensors

A (Cauchy) stress tensor σ is an element of Γ(
∧n−1 T ∗M⊗T ∗M), where the first com-

ponent can be considered an “infinitesimal oriented n−1-plane” in the base manifold M, and the

second component can be considered a traction force assigned to that n−1-plane. The Cauchy

stress tensor describes the traction force on a given plane in a material body.

When the stress tensor is singular, there is no stress in the singular directions. The first

eigenvalue of the stress tensor describes tension (negative) or compression (positive), since

inserting the n−1 plane with normal equal to that eigenvalue gives a traction force that either

pulls or pushes (respectively) in the same direction. The Cauchy stress tensor in a material in

equilibrium will always be symmetric, as otherwise there would be torque on an infinitesimal

element of the material.

Another useful fact is that stress tensors can also be considered as the type Γ(T M⊗

T M⊗
∧n T ∗M), where the isomorphism to the previous formulation is given by converting one

tangent space to a cotangent space using a metric on M, and then inserting the other tangent space

into
∧n T ∗M. It can be shown that the two tangent spaces factors are interchangeable, and thus

in Chapter 2 the stress tensor is sometimes written as an element of Γ(T M⊗sym T M⊗
∧n T ∗M).

One important identity is that contracting with the differential operator along one index

gives the equilibrium force distribution of the material with that stress tensor, i.e.for a force

distribution described in coordinates by f = ∑ f je j,

(∂iσ
i j)e jdA = f je jdA (1.1)

3



or, more succinctly,

divσ = f (1.2)

where f is the equilibrium force distribution on the body. This fact can be interpreted as saying

that the sum of all outgoing forces on an infinitesimal element should be zero everywhere except

at the points with nonzero force distribution, where this sum is equivalent to the force distribution

at that point. In Chapter 2, this fact is exploited to find materials with stress distributions which

balance a given force distribution.

4



Chapter 2

Sparse Stress Structures from Optimal
Geometric Measures

Input: force distribution and obstacles iter = 10

iter = 20 iter = 30

iter = 40 iter = 500

road

support

obstacle

Figure 2.1. A bridge with a hybrid suspension–tied-arch support structure designed by a
simple geometric optimization algorithm derived from geometric measure theory. Given a user
prescribed force distribution to support and obstacles to avoid (top left), the algorithm efficiently
finds a sparse geometric measure (a varifold) representing a sparse stress distribution balancing
the force (left), performing at 25 iterations per second without GPU acceleration. The blue and
red colors visualize the sign of the trace of the stress tensor, indicating tension and compression
respectively. We build a 3D model of the bridge using the optimization result as blueprint (right).

2.1 Introduction

Designing the geometry for a sparse support structure is an important task in topology

optimization and structural design, yet it remains a computational challenging problem. Typically,

the problem is formulated as a large-scale parameter optimization problem over an elastostatic

solver or as a combinatorial problem [21]. In this paper, we approach the subject matter by

considering a geometric graph optimization problem:

5



@
@

@

obstacle

@
@

@

strut

�
�
�

cable

p1 p2

f1 f2

Figure 2.2. Given loading forces fi’s at some nodes pi’s in the presence of obstacles, find a
minimal graph of struts and cables that form a structure capable of supporting the forces while
avoiding obstacles.

Find a minimal network of curves connecting a given set of ends while avoiding
a given set of obstacles, so that it represents a minimal supporting structure for a
given set of loading forces given at the ends.

We refer to this problem as the minimal stress reconstruction problem. Using geometric

measure theory, we demonstrate that this problem can be formulated as a simple and almost-

convex continuous optimization problem. We also show that approximate solutions to this

problem exhibit intricate emergent geometric structures and patterns such as branches, trusses,

and arches (Fig. 2.1). Despite the simplicity of the mathematical model, the phenomenolog-

ical richness of its results suggests numerous potential applications in topology optimization,

architecture and tensegrity structure design, as well as theoretical connections to the study of

branched optimal transport [29, 2, 19] and cytoskeletal networks [25, 12].

This paper focuses on the minimal stress reconstruction problem in the plane with

arbitrary obstacles and weights. The optimization algorithm is a simple iterative scheme involving

only fast Fourier transforms and local calculations.

2.2 Related Work

Topology Optimization

Topology optimization aims to find topology and shape for a structure using bounded

material which also minimizes a physical energy (typically stress-strain energy). The diverse

range of methods used for topology optimization constitute a wide and deep body of literature

6



[21], [22], [7], and include greedy heuristic methods, levelset optimization methods, and genetic

algorithms [20]. While topology optimization methods often enforce the divergence constraint

mentioned here, they tend to manage the material volume using explicit constraints on the

total density. Our method instead directly minimizes the support of our stress tensor, and

thus describes a different class of optimization problems. Compared to traditional topology

optimization, our model is simpler and depends on fewer parameters, and thus we believe our

method could be applied as a lightweight preprocessing step for these methods, which are often

bottlenecked by a stress simulation step.

Tensegrity

Tensegrity, which is short for “tensile integrity” [9], is a mechanical paradigm char-

acterized by cables and struts supporting a structure in equilibrium. It has previously been

posed as a mixed integer program [8], and also has relaxations involving semidefinite programs

[23, 24, 28], with rich connections to the geometric realization of graphs. Tensegrity also has

applications to architecture [10], cell biology [25, 12], robotics [18, 11], and space structures

[26]. Our algorithm’s output can be interpreted as a tensegrity structure whose topology has been

optimized using an Eulerian method.

Varifold Methods

Varifolds are a generalization of manifolds from geometric measure theory which have

appeared in some computer scientific contexts in the past. [4] uses “discrete varifolds” to

approximate the mean curvature of input geometry. [5] employ varifolds to handle registration

for potentially nonorientable shapes. Our method uses a varifold formulation to find potentially

nonorientable and nonmanifold surfaces matching a certain force distribution.

Computational Geometric Measure Theory

A recent method uses geometric measure theoretic formulations to find area-minimizing

surfaces over 3-dimensional domains [27]; extensions to this work used deep learning to increase

7



resolution and generalize the method to arbitrary shapes with boundary [17]. Critically, unlike

these methods, our method is able to handle nonorientable submanifolds with branch points.

2.3 Theory

Given V0 = {p0, . . .pm} ⊂ R2 and f0, . . . fm ∈ R2, the minimal stress reconstruction

problem asks for an R2-embedded undirected graph (V,E), V ⊃V0, and tensions (λi j)i j∈E ∈ R

such that for every vertex i ∈V

∑
j∈Nbr(i)

λi j
p j−pi

|p j−pi|
+ fi = 0. (2.1)

Here, fi is considered to be 0 on V \V0. This is the condition that the graph forms a structure in

equilibrium which exerts the prescribed forces on vertices in V0. We also seek to find the graph

with minimal edge length among all graphs satisfying these properties, where edge length is

denoted ℓi j = |pi−p j|:

minimize ∑
i j∈E

ℓi j subject to (2.1). (2.2)

In the language of geometric measure theory, any planar weighted graph is a 1-dimensional

weighted varifold in the plane, which is a signed measure over the Grassmannian bundle

R2×G(1,R2). Here, the Grassmannian manifold G(1,R2) is the collection of 1-dimensional

subspaces in R2, which is the space of all unsigned planar directions. Note that G(1,R2) ≃

S1. We denote the measure (i.e. weighted varifold) corresponding to our weighted graph

ρ ∈M (R2×G(1,R2)). The total length of the edges in the planar embedding of this graph is

given by the volume of the support of this measure, i.e.,

∑
i j∈E

ℓi j =
∫
R2×G(1,R2)

supp(ρ). (2.3)

8



G(1,R2)

R2

ρ

Figure 2.3. A varifold representing a planar graph is a distribution over R2×G(1,R2)

The problem can now be viewed as searching a measure over the nonlinear manifold R2×

G(1,R2). Next, we work with the varifold linear algebraically by invoking the Veronese map

V : G(1,R2) ↪→ R2×2
Sym = R2⊗sym R2, which takes an element in G(1,R2) represented by unit

tangent vector eθ = (cosθ ,sinθ)⊺ ∈ R2 to the symmetric matrix eθ e⊺
θ
∈ R2×2

Sym. This Veronese

map induces a linear map from weighted varifolds to symmetric-matrix-valued measures over

the plane:

V# : M (R2×G(1,R2))→ Γ(TR2⊗sym TR2⊗
∧2 T ∗R2), (2.4)

which takes each basis element δ(x,θ) ∈M (R2×G(1,R2)) to V#δ(x,θ) := eθ e⊺
θ

δx. Physically,

V#ρ represents the stress distribution of the weighted varifold ρ . On the space of symmetric

matrix measures, we have the divergence operator

div : Γ(TR2⊗sym TR2⊗
∧2 T ∗R2)→ Γ(TR2⊗

∧2 T ∗R2) (2.5a)

9



given by contracting the differential operator and the tensor along one index:

div
(
σ

i jeie jdA
)

:= (∂iσ
i j)e jdA. (2.5b)

The divergence of the symmetric tensor represents the net traction force from the stress. In other

words, the stress equilibrium condition

divV#ρ = f (2.6)

is the varifold equivalent of (2.1). Here, f := ∑
m
i=0 fiδpi ∈ Γ(TR2⊗∧2T ∗R2) represents the force

distribution as a vector-valued measure. Using the above representation, we find (2.2) equivalent

to the optimization problem

minimize
ρ∈M (R2×G(1,R2))

∫
R2×G(1,R2)

supp(ρ)

subject to div(V#ρ) = f.
(2.7)

We recognize this as an instance of the sparse basis pursuit problem, which aims to find a sparse

linear combination of atoms in a dictionary which satisfy underdetermined linear constraints.

Here, the atom set consists of the point measures±δ(x,θ) ∈M (R2×G(1,R2)), and the objective

on the support of our measure encourages sparsity with respect to this basis.

By performing a change of variables σ = V#ρ via the linear map (2.4), Problem (2.7) is

equivalent to finding a symmetric stress tensor field σ ∈ Γ(TR2⊗sym TR2⊗∧2T ∗R) satisfying

divσ = f which uses a sparse combination of atoms ±V#δ(x,θ).

In compressive sensing, a standard approach converts such problems to norm minimiza-

tion subject to linear constraints. Namely, define a linearly homogeneous function1 (referred to

as a “norm”) ∥ · ∥ whose unit ball has sharp corners containing the atom set (Fig. 2.4). Under

1On a real vector space V , a linear homogeneous function ∥ · ∥ : V → R≥0 satisfies ∥λ v⃗∥= |λ |∥⃗v∥ for all v⃗ ∈V
and λ ∈ R. That is, it is a norm except that it does not need to satisfy the triangle inequality.

10



atoms

optimal solution

unit ball

constraint
plane

Figure 2.4. When the unit ball has sharp corners containing the atom set, constrained norm
minimization leads to sparse solutions.

linear-constrained norm minimization, these sharp corners generally lead to sparse solutions, as

it is likely that the constraint affine plane will be tangential to the norm levelsets at these corners,

which consist of few atoms.

One can design such a unit ball by, for example, taking the convex hull of the atom set;

this choice corresponds to the L1 convex relaxation. Even sparser results can be obtained by using

sharper star shapes, mildly sacrificing convexity. Our method adopts the (nonconvex) (p,q)-

spectral norm with 0 < p < 1,0 < q < 1. With the singular value decomposition σ = (UΣV ⊺)dA,

the spectral p-norm2 is the p-norm applied to the singular values (|σ |p := (trΣp)
1
p ). Then, our

(p,q)-spectral norm is

∥σ∥p,q :=
(∫

R2
|σ |qp dA

) 1
q

. (2.8)

Finally, our optimization problem takes the form

minimize
σ∈Γ(⊗2

symTR2⊗∧2T ∗R)
∥σ∥p,q

subject to divσ = f.
(2.9)

2|σ |p is also known as the Schatten p-norm.

11



2.3.1 Divergence and the Killing Operator

Here, we analyze the divergence operator (2.5) for symmetric tensor measures, as it is

the linear operator central to our optimization problem (2.9). The divergence operator is a linear

operator from the space of symmetric tensor measures to the space vector measures. Its adjoint

is minus the Killing operator K [1, 6]

K : Γ(T ∗R2)→ Γ(T ∗R2⊗sym T ∗R2), (2.10a)

K (αidxi) := (∂iα j +∂ jαi)dxidx j, (2.10b)

completing the canonical duality diagram:

Γ(TR2⊗sym TR2⊗∧2T ∗R2)
div //

dual

Γ(TR2⊗∧2T ∗R2)

dual

Γ(T ∗R2⊗sym T ∗R2) Γ(T ∗R2).
div∗=−Koo

(2.11)

The dual pairing between an element σ ∈ Γ(TR2⊗sym TR2⊗∧2T ∗R2) and an element τ ∈

Γ(T ∗R2⊗sym T ∗R2) is given by 1/2 of the integrated Frobenius pairing of their matrix represen-

tations

⟪τ|σ⟫= ⟪τi jdxidx j|σ kℓekeℓdA⟫= 1
2
∫
R2 ∑i j τi jσ

i jdA, (2.12)

and the dual pairing between f ∈ Γ(TR2⊗∧2T ∗R2) and α ∈ Γ(T ∗R2) is given by

⟪α|f⟫= ⟪αidxi| f je jdA⟫= ∫
R2 ∑i αi f idA. (2.13)

Using this establishment of the duality relation, we can describe the solvability of the

12



linear constraint in (2.9)

divσ = f. (2.14)

The linear constraint (2.14) admits a solution σ if and only if f ∈ im(div) = ker(K )⊥ where

(·)⊥ denotes the annihilator space. Note that the kernel of the operator K is the collection

of the ♭R2 of Killing vector fields, which generate isometric flows on the domain. On R2,

these Killing vector fields are the generators for rigid body transformations. In particular,

ker(K ) = span{dx,dy,xdy− ydx}, where (x,y) = (x1,x2). Therefore, we have the following

characterization for the valid f for (2.14).

Theorem 1 Eq. (2.14) admits a solution σ if and only if the prescribed force distribution

f = fieidA satisfies the conditions of vanishing net force and vanishing total torque



∫
R2 f1 dA = 0∫
R2 f2 dA = 0∫
R2(x f2− y f1)dA = 0.

(2.15)

In our problem, we assume that the prescribed force distribution f satisfies the physically

intuitive necessary and sufficient conditions (2.15). Even if we are handed in with a force

distribution f that violates (2.15), it is straightforward to project it to fulfill the conditions by

adding a suitable rigid motion vector field.

2.3.2 Representing Tensors and Differential Operators

We can represent symmetric tensors as arrays of their matrix elements. For instance, in

the 2×2 case, a tensor with elements σi j can be represented as a vector (σ11,σ22,σ12)
⊺ ∈ R3.

In Figure 2.5, we use this R3 representation to depict the unit ball under our spectral p-norm as

well as the image of G(1,R2) under the Veronese map V . By representing a symmetric matrix

13



using these coordinates, the dual pairing (2.12) becomes

⟪τ|σ⟫=
∫
R2

[
τ11 τ22 τ12

]
1/2

1/2

1




σ11

σ22

σ12

dA, (2.16)

and the differential operators div and K can be written as matrices of differential operators:

div =

∂x ∂y

∂y ∂x

 , K =


2∂x

2∂y

∂y ∂x

 . (2.17)

[
1 0
0 0

]

[
0 0
0 1

]

[
0 1
1 0

]

imV

Figure 2.5. The | · |p unit ball (grey), and the image of the Veronese map (red) in the 3-
dimensional space of symmetric 2×2 matrices. Solutions tend towards the sharp rims of this
unit ball.

2.3.3 Obstacles

An extension to our optimization problem (2.9) allows us to construct varifolds which

avoid “obstacles” placed in the domain. Let w : R2→ R>0 be a function over the base space R2

14



which takes the value 1 on obstacle-free areas of the domain, and takes the value B≫ 1 on areas

filled with obstacle. Then the objective

minimize
σ

∫
R2

w|σ |qpdA subject to divσ = f (2.18)

encourages solutions to avoid obstacles. Given large enough B, solutions tend to pass around the

obstacle-filled regions.

2.4 Algorithm

In this section, we describe an optimization algorithm equivalent to applying the Lin-

earized Augmented Lagrangian Method [30] to our problem. This algorithm is best described as

a Backward Euler discretization of a continuous gradient flow that optimizes the objective. The

backward Euler steps are further translated into a sequence of variational problems using the

method of incremental potential [15, 3, 13].

The aforementioned constrained optimization problem (2.18) takes the minimax form

min
σ

max
λ

∫
R2

w|σ |qpdA+
∫
R2
⟨λ |divσ − f⟩ (2.19)

where the type of the Lagrange multiplier λ is Γ(T ∗R2). The optimal solution can be found

by following the coupled gradient descent and ascent flows with respect to σ and λ . These

continuous gradient flows are


G1

∂σ

∂ t =−w∂ |σ |qp
∂σ

+K λ

G2
∂λ

∂ t = divσ − f
(2.20)

where G1,G2 are linear operators describing metrics for the space Γ(TR2⊗sym TR2⊗∧2T ∗R2)

of primal variables σ and the space Γ(T ∗R2) of Lagrange multipliers λ , respectively. These

15



metrics will be chosen suitably later during our derivation.

We discretize the flow (2.20) temporally using the backward Euler method. Replace the

time derivatives ∂ (·)
∂ t by (·)(n+1)−(·)(n)

∆t with a step size ∆t, evaluate the right-hand sides of (2.20)

at time step (·)(n+1), and approximate λ (n+1) on the right-hand side by λ (n+1) ≈ λ (n)+∆λ (n)

using ∆λ (n) = λ (n)−λ (n−1) from the previous step to avoid a joint root finding system. The

equations become:

G1
σ (n+1)−σ (n)

∆t =−w
(

∂ |σ |qp
∂σ

)(n+1)
+K

(
λ (n)+∆λ (n)), (2.21a)

G2∆λ (n+1) = ∆t
(

divσ (n+1)− f
)
, (2.21b)

λ
(n+1) = λ

(n)+∆λ
(n+1). (2.21c)

Let

z(n+1) := σ
(n)+∆tG−1

1 K (λ (n)+∆λ
(n)), (2.22)

which simplifies (2.21a) into

1
∆t G1

(
σ (n+1)− z(n+1))+w

(
∂ |σ |qp

∂σ

)(n+1)
= 0. (2.23)

Solving (2.23) is equivalent to solving the optimization problem

σ
(n+1) = argmin

σ

1
2∆t
∥σ − z(n+1)∥2

G1
+

∫
R2

w|σ |qpdA. (2.24)

We choose G1 as the L2 Frobenius metric ∥σ∥2
G1

:=
∫
R2 ∑i j σ2

i jdA. Effectively, G1 is the identity

map on the tensor coefficients; in particular, we can omit G1 in (2.21a) and (2.22). With this

choice of L2 Frobenius metric, the sub-optimization problem (2.24) has an explicit solution given

as a local shrinkage step on singular values [30]: Let UΣV ⊺ be the singular value decomposition
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for z(n+1); then the solution to (2.24) is

σ
(n+1) =U max

(
Σ−w∆t pqΣ

(p−1)(q−1)
p ,0

)
V ⊺. (2.25)

Finally, to complete (2.21) we choose the metric G2. Observe that combining (2.22) and

(2.21b) yields an expression that involves adding to σ (n) by a term ∆t2K G−1
2 divσ (n). To better

precondition this update, we note that G2 should be chosen to “cancel out” the derivatives K

and div. Thus a good choice is G2 =−µ div◦K = µ divdiv∗ for any scale factor µ > 0.

We obtain our final algorithm:

Algorithm 1. Minimax flow with backward Euler method

1: z(n+1)← σ (n)+∆tK (λ (n)+∆λ (n))

2: σ (n+1)← Eq. (2.25)

3: ∆λ (n+1)← ∆t
µ
(−divK )−1(divσ (n+1)− f)

4: λ (n+1)← λ (n)+∆λ (n+1)

Our algorithm matches the Linearized Augmented Lagrangian Method for our optimiza-

tion problem [30].

Spectral method for K and div

To invert and apply differential operators like div and K to tensors, we can take the Fast

Fourier Transform (FFT) to these tensors defined on a rectangular domain of size L1×L2 with

periodic boundary condition. FFT converts each partial derivative ∂i to i 2πki
Li

, where ki is the

integer index in the Fourier domain in the i-th direction. All div and K operations (2.17) as well

as (−divK )−1 can thus be performed in the Fourier domain as frequency-wise small complex

matrices. An artifact of this procedure is the introduction of periodic boundary conditions on our

domain; however, these can be nullified by placing boundary obstacles using our method.
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2.5 Results

We implement3 our algorithm in VEX in Houdini FX 18.5. All results were computed

using a grid with resolution 256×256, a constant large time step ∆t = µ = 30, a fixed exponent

p = q = 1/2 (except for an ablation study), and 500 iterations. The computation were performed

on a 2019 MacBook Air using a 1.6 GHz Dual-Core Intel Core i5. Each iteration takes about

40 ms with the FFT being the main bottleneck.4 That is, each example is obtained within 20

seconds.

0.0

tension compression

Figure 2.6. The sign of the only nonzero eigenvalue of the stress tensor represents tension or
compression.

The visualization of the results shows the trace of the stress tensor σ at each grid cell.

When σ at a cell is rank 1 (i.e. it is in the image of the Veronese map), this trace shows the value

of the only nonzero eigenvalue of σ . Blue strands represent tension, and can be interpreted as

cables; red strands represent compression, interpreted as struts.

2.5.1 Numerical Tests, Validation, and Ablation

Single cable

Consider a simple setup where the force distribution is given by two impulses on two

points, and the force vector points radially away from each other (Fig. 2.7). The optimal support

structure mediating this force distribution is the line segment joining the two points, representing

a cable pulled by the forces. Fig. 2.7 shows the result of our algorithm over a few iterations,

demonstrating that our method successfully reproduces a sharp line segment connecting the

given points.

3The implementation is included in the supplementary material.
4This performance is without any GPU acceleration.
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iteration = 50 iteration = 100 iteration = 500

Figure 2.7. A cable emerges as the result of running our algorithm for 500 iterations on f defined
on two points, pointing radially outward.

iteration = 50 iteration = 100 iteration = 500

Figure 2.8. The result of running our algorithm for 500 iterations on f evenly distributed on two
sheets, pointing horizontally away from the center line. See also Fig. 2.9.
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Figure 2.9. Sparse support structures found by our algorithm. Left: The force is set to evenly
distribute over two sheets; this is the same result shown in Fig. 2.8 but the color axis is rescaled
to display detailed support structures. Right: Pair of point forces with an obstacle (shaded region)
blocking in between the points (cf. Fig. 2.2).

Force sheets

Instead of prescribing forces concentrated on point sets, we test our algorithm for force

distributed over one-dimensional sets. Fig. 2.8 shows the result of our algorithm when the

force is evenly distributed over two sheets facing each other. Despite the denseness of the force

distribution, our method is able to find a sparse network of cables and struts supporting the

given load. After a tone mapping, Fig. 2.9 (left) reveals the emergent detailed branches and

reinforcement structure.

Obstacle

Fig. 2.9 (right) shows the setup of Section 2.5.1 with an additional circular obstacle

placed in between the points, similar to the illustration Fig. 2.2. The obstacle is prescribed

through a large weight w = 1000 in the obstacle and w = 1 elsewhere. The algorithm finds a

realistic structure which avoids the obstacle.

We also test the algorithm for a more challenging obstacle configuration. In Fig. 2.12, we

place a large obstacle in between the force sheets of Fig. 2.8. The algorithm automatically finds

a shockingly sophisticated system of cables and struts to wrap around the obstacle, held together
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Figure 2.10. The convergence of the loss function in the example of Fig. 2.8.

by emergent “tied arch bridges” reaching beyond the convex hull of the support of the force.

Convergence

Fig. 2.10 shows a typical convergence plot of the loss function for our algorithm. Note that

there is no procedure in the optimization such as line-search that would shrink the optimization

step size ∆t. With a fixed step size, the plot reflects an asymptotic stability of the flow (2.20).

(p,q) dependency

Fig. 2.11 shows the force sheet setup for several combinations of parameters p and q in

our (p,q)-spectral norm. In general, small q enforces global sparsity, while small p enforces

local low-rank quality. In the case when p = q = 1, our objective reduces to L1–nuclear norm

minimization, and our solutions do not achieve the same sparsity. For all other experiments, we

choose p = q = 1/2.
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2.5.2 Miscellaneous Examples

Bridge Designs

We test that our algorithm is able to generate reasonable results for common engineering

problems. Fig. 2.13 shows our algorithm’s output for a force distribution on a horizontal “road”

applying uniform downward force, with two point support forces a distance below the road. A

rectangular obstacle is placed a small distance below the road, to allow for vehicles or pedestrians

to pass under the resulting structure. Our algorithm identifies an arch of struts with attached

cables, similar to a real-world bridge design.

A similar setup is tested in Fig. 2.14, with a longer road, a thinner obstacle, and upward

point forces a further distance below the road. Under these conditions, our algorithm generates a

more organic bridge structure. This result is also presented in Fig. 2.1.

Fig. 2.15 demonstrates another setup with two roads stacked vertically. Our algorithm

generates a hybrid arch-suspension bridge with one tall arch.

Cantilever Beam

The cantilever beam is a common test case in topology optimization research. In Fig. 2.16,

we design a similar setup by placing a weight force at the end of a beam, and balancing forces on

the other end representing points where the beam attaches to a wall. Our algorithm develops a

series of curved cables and struts which support the weight at the end of the beam. These results

appear similar to outputs from standard topology optimization routines.

2.6 Conclusion and Discussion

We develop an optimization algorithm which employs geometric measure theoretic

techniques to find a sparse network of (potentially non-manifold) curves connecting a prescribed

force distribution over a given domain. We have shown that our algorithm handles complex force

distributions with obstacles in the domain using a series of Fast Fourier Transform and shrinkage
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Figure 2.11. The result of our algorithm for the “bars” f for varying p,q in the objective.

steps. With the Fast Fourier Transform in our algorithm being the most costly step, we obtain

each result less than half a minute.

Though each solution obtained from our algorithm provides a physically plausible design,

the method still demands rigorous theoretical guarantees. We have not proven convergence

properties for our non-convex optimization problem. It is likely that concrete statements about

convergence can be made by analyzing our Sobolev gradient flow. Moreover, we have not

shown the mechanical stability of our results in addition to the equilibrium condition, though we

speculate that our variational approach to the problem may imply stability.
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Figure 2.12. A stress-minimizing structure for the same f distribution as in Fig. 2.8, but now
with an additional disk obstacle between the force sheets. The algorithm avoids the obstacle and
constructs “tied arch bridges” to maintain the stress-free condition.

We also note that our (p,q)-spectral norm minimization formulation is only a non-convex

continuous relaxation of the original combinatorial graph minimization problem. This can lead to

suboptimal solutions in comparison to known minimal graphs (Fig. 2.17). It would be interesting

to draw relation between our minimal stress reconstruction problem to the Steiner tree problem

and the branched optimal transport problem [29, 2, 19].

The scope of this paper is limited to 2 dimensions with a Euclidean metric. Extending

the theory to respect arbitrary Riemannian metrics requires replacing the derivatives in (2.5b)

and (2.10b) by covariant derivatives, compromising the diagonalizability by Fourier Transform.

Additionally, a 3-dimensional version of our algorithm has yet to be experimented thoroughly.

Higher dimensions introduce visualization and storage challenges. These challenges can likely

be resolved using techniques of [14] or [17].

Finally, our treatment’s use of low-rank stress tensors as varifolds opens new avenues in

geometric measure theory. We hope that this physical representation and interpretation leads to

further developments in computational applications of geometric measure theory.
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Figure 2.13. A tied arch bridge discovered by our algorithm. f points downward on a horizontal
“road”, and points northeast and northwest at the lower left and lower right points respectively.
An obstacle is placed in the bottom center, to allow boats or highways to pass under the bridge.

Chapter 2, in full, has been submitted for publication of the material as it may appear in

ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH Asia, 2023, Rowe,

Dylan; Chern, Albert. The thesis author was the primary investigator and author of this paper.
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Figure 2.14. A hybrid suspension-tied arch bridge discovered by our algorithm. The horizontally
distributed downward force represents a road, and two upward forces at the two lower points
represent supports. An obstacle is placed in the bottom center to allow boats or highways to pass
under the bridge.

Figure 2.15. A hybrid arch-suspension bridge discovered by our algorithm. f represents the
weight from two decks of roads, and normal force from two supports. There is a rectangular
obstacle in the bottom center.
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Figure 2.16. The cantilever beam problem (left) is a common topology optimization test case.
Our result (right) reproduces a pattern similar to the iconic Michell structure (left). We believe our
algorithm can be used as a lightweight preprocessing step for more costly topology optimization
methods.

Figure 2.17. Effect of our continuous relaxation to the original graph minimization problem.
The result of our algorithm (right) for 4 point forces, pointing at 60◦ from the horizontal at each
point, is a sparse graph that deviates from the classical minimal Steiner tree (left).
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Chapter 3

Additional Results

3.1 Introduction

This section contains additional results not part of the original paper.

3.2 Circle

Our algorithm gives interesting and nontrivial results on a circular force distribution, with

forces pointing outwards radially. The most interesting results arise in the low-q regime (i.e.in

Fig. 3.1), where rich structures form in the interior of the circular distribution, reminiscent of

axis-aligned snowflakes. Fig. 3.2 studies outputs for varying p and q.

Figure 3.1. The result of our algorithm on a circular force distribution for p = 1,q = 0.25.
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Figure 3.2. The result of our algorithm for a circular force distribution f for varying p,q in the
objective.

3.3 Further Evidence of Sparsity

The trace is useful as an indicator of the first eigenvalue of the stress tensor only when

the stress tensor is known to be rank 1. Here, we visualize the results of the same optimization

process shown in Fig. 2.8, but using the determinant of the stress tensor, which is the product

of the eigenvalues, rather than the sum. When the determinant is 0, the stress tensor at that

point is low rank. Otherwise, the stress tensor will be full rank. In Fig. 3.3, it is evident that our

optimization process encourages low rank stress tensors – at iteration 50, the rank is full in many
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iteration = 50 iteration = 100 iteration = 500

Figure 3.3. The same setup as Fig. 2.8, but visualizing the determinant rather than the trace of
the stress tensor.

parts of the structure; at iteration 500, the rank is full only at a few points.

3.4 Solutions on the p,q-spectral Unit Ball

By mapping individual symmetric tensors in the algorithm’s output to 3 dimensions using

the coordinates described in Chapter 2, we can visualize the solutions’ coalescence at the rims

of the unit ball. Here, solutions from the force sheets (depicted in the final frame of Fig. 2.8)

and diagonal points (shown in the final frame of Fig. 2.7) are converted to point sets which are

then projected onto the unit ball to normalize the scales of each tensor. Then, the alpha value of

each point is normalized by the maximum p,q-norm in the dataset. It is clear that solutions tend

towards the rims of the unit ball, as predicted. Fig. 3.4 shows the output of this process for the

force sheet distribution, whereas Fig. 3.5 shows the output for the diagonal points.

3.5 Three Dimensional Results

It is natural to ask what happens to our algorithm when moving to the third dimension.

Below, the results of running our algorithm with analogous parameters are shown. Fig. 3.6

shows an isosurface of the Frobenius norm of the stress tensor at 50, 100, and 500 iterations

for a distribution at two points with force pointing radially outward. Fig. 3.7 and Fig. 3.8 show

the same visualization for a distribution of 8 points on the corners of a cube. Rich and sparse
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Figure 3.4. Tensors in the “force sheets” distribution tend towards the rims of the unit ball.

Figure 3.5. Tensors in the “diagonal points” distribution prefer a specific spot on the backside of
the unit ball; note the camera rotation.
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Figure 3.6. Optimization of a distribution analogous to the diagonal points force distribution in
2 dimensions. An isosurface is shown at 50, 100, and 500 iterations (from left to right).

Figure 3.7. Optimization of a force distribution situated at the corners of a cube, pointing radially
outward. An isosurface of the Frobenius norm of the stress tensor is shown at 50, 100, and 500
iterations (from left to right).

structures form at the faces of the cube, but the structures change as the isosurface threshold

changes, and smoke/cloud visualizations do not show such structures at the same strength.

Visualization and experimentation with this extension is thus left to future work.
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Figure 3.8. The final image (iteration 500) from Fig. 3.7, expanded to highlight the internal
detail.
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