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Abstract

Utilizing open-close returns, close-close returns and volume data, we examine the reaction of the Treasury
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Heterogeneous persistence from scheduled news vs. non-scheduled news is revealed. Strong asymmetric
effects of scheduled announcements are presented: positive shocks depress volatility on consecutive days,
while negative shocks increase volatility. Announcement-day shocks have small persistence, but great
impacts on volatility in the short run. Investigation into volume data shows that announcement-day
volume has lower persistence than non-announcement-day volume. No statistically significant risk
premium manifests on the release dates. Compared with the implied volatility and realized volatility data,
we find our model successful in forming both in-sample and out-of-sample multi-step forecasts.
Distinctions are made and tested among microstructure theories that differ in predictions of the impact of
scheduled macroeconomic news on volatility and volatility persistence. Asymmetric effects between
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"Among the most puzzling issues is the behavior of volatility, while the
general properties of volatility remain elusive, the most intriguing
feature revealed by empirical work on volatility is its long persistence.
Such behavior has sparked a search, almost akin to that for the Holy
Grail, for the perfect GARCH model, but the underlying question of
why such volatility persistence endures remain unanswered." (Goodhart
and O'Hara,1996)

I. INTRODUCTION

The fact that volatility in financial markets is correlated over time has been well

documented in financial literature2. In contrast with the remarkable progress made in

modeling the autocorrelated volatility process empirically, relatively little is known about

why financial market volatility is autocorrelated.

Various theories have been provided as explanations of the volatility

autocorrelation. The difficulty in distinguishing the true reasons lies in the fact that we do

not directly observe information arrivals, nor can we measure the information content of

news accurately. Analysis of public announcement effects provides a good starting point

for the solution of this question. Macroeconomic announcements are known to drive up

return volatility on the announcement days, e.g. Harvey and Huang (1991) and Ederington

and Lee (1993). Besides the known type and risk, the timing of macroeconomic

announcements is exogenously predetermined. Most macroeconomic news is released

once a month, thus, the arrivals are neither in clusters, nor positively related. The

announced macroeconomic news is instantaneously available to all traders. Moreover, the

periodically released news is widely expected. Some empirical work3 has shown that the

market anticipation of the macroeconomic data is unbiased. These features of

macroeconomic announcements would lead to a different incorporating process than

2 For an earlier discussion, see Fama (1970), and for a comprehensive survey of recent work, see
Bollerslev, Chou and Kroner (1992).
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private information or information of poor quality. As a result, we would expect

heterogeneous persistence of volatility immediately following the announcement.

In the case of Treasury bonds, in which cash flows are fixed in nominal terms and

the underlying variables likely to be relevant for pricing are those that characterize the

general macroeconomic environment. Unlike with stocks or corporate bonds, there is

little, if any, asset-specific information concerning T-bonds. Contrary to the findings of

French and Roll (1986) and Stoll and Whaley (1990), that private information is the

dominant factor in stock return volatility, Ederington and Lee (1993) point to the public

announcements as a major source of price volatility in the T-bond market. Fleming and

Remolona (1997) conclude, “public information clearly plays the dominant role in the

bond market, precisely because much of the relevant information is revealed to the public

at large by means of the regularly scheduled announcements.” Compared with stock

markets, studying how T-bond markets process scheduled announcements provides more

straightforward evidence for market efficiency, volatility persistence, and the size and the

speed of market adjustment to news. The understanding of the T-bond market’s response

to macroeconomic announcements -- a major source of price volatility -- is also crucial to

the volatility forecast of the T-bond market. In the hope of shedding some light on the

sources of persistence in asset price volatility, this paper studies how public information

about macroeconomic fundamentals moves prices of T-bond futures.

In the few studies of market reaction to announcements in terms of volatility,

market expectations are rarely used. Conditional volatility incorporates information

already available to the market, and ARCH models provide approximates of conditional

3 For examples, see Pearce and Roley (1985) and Balduzzi, Elton and Green (1996).
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volatility for a wide variety of volatility processes4. Jones, Lamont and Lumsdaine (1998)

(hereafter JLL) examine the reaction of conditional volatility implied by ARCH models to

the news release in the Treasury bond cash market. They find a risk premium on the

release dates and a lack of persistence of announcement-day volatility. Their evidence

supports the mixture of distribution hypothesis (MDH),i.e. volatility persistence stems

from clustering information arrival. In this paper, we follow JLL’s insightful analysis to

focus on conditional volatility within a generalized ARCH framework and to decompose

volatility on announcement days into two parts, transitory and non-transitory.

This study reveals heterogeneous persistence from scheduled announcements vs.

non-scheduled announcements. Further in this research, we distinguish negative shocks

from positive ones and investigate their effects separately. Evidence suggests that positive

shocks on announcement days depress volatility on successive days, while negative shocks

on announcement days increase volatility. We find announcement-day volatility plays a

substantial role in short-term volatility forecasts. This is contrary to JLL’s findings that

the announcement-day shocks do not have subsequent impact on daily volatility. We then

extend our research to volume data and find that announcement days have higher volume

and less volume persistence. In contrast with the findings of JLL, our study on the

volatility and volume data indicates the inadequacy of the mixture of distributions

hypothesis in explaining volatility persistence, and we do not find strong evidence that the

scheduled announcement increases the expected open-close daily return significantly. Our

findings do show support of the view that the market learns the content of scheduled

announcements more quickly. In this paper, we make a first attempt at incorporating

4 See Nelson (1990) and Nelson and Foster (1994).
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survey data as market expectation, along with the knowledge of the timing of scheduled

announcements, into a GARCH model in forming market participants’ volatility

expectations. Compared with the implied volatility and realized volatility data, we find our

model successful in forming both in-sample and out-of-sample multi-step forecasts.

Although we focus our research on Treasury bonds since public information plays the

dominant role in the bond market, the research presented here leads us to believe that we

provide a general approach, which could be applied to modeling heterogeneous news

impacts on volatility for other financial instruments.

The paper is organized as follows: in section II, we discuss related theory and

propose a few hypotheses to test in our empirical work. In section III, we describe the

data, while in section IV we provide preliminary analysis. In section V, we develop

models of daily conditional volatility persistence. In section VI, in-sample and out-of-

sample forecasts are conducted and evaluated. Section VII presents conclusions and

suggestions for future work.

II. THEORY AND HYPOTHESIS

One appealing theory explaining the positive autocorrelation of volatility is the

mixture of distribution hypothesis (MDH) proposed by Clarke (1973) and Harris (1987).

This model assumes that individual price changes and the trading size are instantaneous

responses to information arrivals. Volatility and volume are jointly distributed as a

function of the time dependent mixing variable - the rate of information arrival. Therefore,

if the news arrives in clusters, we would expect financial markets to exhibit positively

autocorrelated volatility. Ederington and Lee (1993), Mitchell and Mulherin (1994) and
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Berry and Howe (1994) suggest the number of news items reported in a given period a

meaningful news measure. Utilizing the dataset collected by Mitchell and Mulherin, JLL

find evidence of positive and statistically significant autocorrelation in the news generating

process at daily frequencies. Most macroeconomic news is released once a month, but

there is a possibility that policymakers may react to the news after some delay. JLL find

no evidence that the Fed target changes are more likely to occur on days immediately

following announcement days. Therefore, the news arrivals are neither in clusters nor

positively correlated in this case. If as claimed, the public announcements play a dominant

role in the bond market and the clustering of news arrival is the sole underlying reason, we

would not expect conditional volatility or volume to be positively correlated shortly after

an announcement. Also, we would expect to see the market react to news instantaneously,

thus reaching a new equilibrium without triggering higher volume on announcement days.

The sequential information model (SIM) suggested by Copeland (1976) assumes

that new information is not simultaneously received by all the traders in the market, and it

is the different degrees of information that traders have that generates volume. In the case

of a macroeconomic announcement, the content is immediately available to the public, but

the true implication of the news may not be. Once new information arrives at the market,

a series of trades take place, representing many incomplete equilibria. The market will

reach equilibrium when all traders finally have received the information. Thus, SIM

suggests higher volume after the news arrivals as well as a stronger autocorrelation

structure for both volatility and volume.

Blume, Easley and O'Hara (1994) stipulate a market consisting of informed and

uninformed traders. Traders receive information with differing precision and quality,
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informed traders reveal their private information to the market through trades, and all

traders condition their price expectation on the past trades. Prices alone do not contain

the full information; volume yields additional information on the precision and dispersion

of an information signal. This is contrary to the limitation of SIM that uninformed traders

can not infer the new information signal from informed traders' actions. When prices are

noisy and do not fully reveal all of the traders’ information, the convergence to a

consensus price is slow, hence, volume and volatility persist even when the arrival of

information does not. In He and Wang’s (1995) model, differently informed investors

trade for several rounds after they receive information; in Brock and LeBaron’s (1995)

model, learning gives rise to positively autocorrelated volatility when fundamentals follow

a homoskedastic random walk. This line of research (referred to as the learning model

throughout this paper), suggests that the more widely an information signal is perceived

and the higher the precision of the signal, the smaller the probability of making profitable

trades due to private information. Thus the new equilibrium will be reached faster and the

persistence of volatility and trading volume will be lower.

In particular, Kim and Verrecchia (1991a) (hereafter KV) analyze how the

anticipation of a forthcoming public announcement affects the market reaction to that

announcement. In the pre-announcement period, investors trade based on common prior

beliefs as well as private signals with different levels of precision. By forcing investors to

revise their expectations, a public announcement creates the incentive for them to

endogenously acquire private information. They conclude that information asymmetry is

greater when imperfect disclosure is anticipated than when either a perfect announcement

or no announcement at all is anticipated. Meanwhile, they point out that the variance of
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the price change is greater for a more precise announcement. Also, they claim that if the

average precision of pre-announcement information acquisition is low, the price reaction

at the time of disclosure will be strong. They confirm the intuition that a price change

reflects the average change in investors’ beliefs due to the arrival of information, whereas

volume arises due to differential belief revisions. An important feature in their model is

that the ratio of volume to the absolute value of price change is a measure of the market’s

information asymmetry. KV (1991b) suggest that the average magnitude of market

reaction differ with different types of announcements.

Compared with unscheduled interest rate news and policy announcements,

DeGennaro and Shrieves (1997) find the regularly scheduled macroeconomic news

releases result in a dramatic increase in the forex rate volatility. We study a subset of

macroeconomic news announcements that cause significant belief revisions in this paper.

MDH assumes the market clears instantaneously, hence there is no significant increment in

volume on announcement days and no positive autocorrelation in volatility after a news

disclosure. Though macroeconomic news is observed with high precision, its implication

is nevertheless imperfectly revealed at the disclosure. Also the news impact is unlikely to

dominate all beliefs and thus eliminate trading opportunities. SIM allows traders to

understand the implication of news at different degrees but prevents traders from learning;

it predicts stronger autocorrelation of volatility and volume after news arrival along with

higher volume. The learning model suggests lower persistence in volatility and volume

after the macroeconomic announcement. According to KV, the variance on the

announcement day would be higher than average, the information asymmetry (ratio of

volume to the absolute value of price change) would be lower on announcement days
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while higher on pre-announcements days. Their work prompts two other hypotheses that

the market reacts differently to good news versus bad news and that the market reacts

more strongly to big shocks (when the average precision of pre-disclosure information is

lower). In summary, these theories provide testable hypotheses. We will proceed to test

them and incorporate the results in forming our own volatility forecasts.

III. DATA

A. Futures data

The previous literature shows evidence that the futures market leads the cash

market in its reaction to news. Thus, it is more interesting and relevant to study the

futures market than the cash market. The US T-bond future is the most heavily traded

long-term interest rate contract in the world. The T-bond contract, which calls for

delivery of a US Treasury bond with fifteen or more years to maturity, possesses a March,

June, September and December delivery cycle. During March, the prices of the June

contract are taken for the continuous series until the first business day in June, when the

September contract takes over even if the June contract is still trading. It has both a day

and a night session. The night session was instituted for the Japanese market and operates

when the cash bond market is closed in the United States. Most volume occurs during the

day session, which is traded at the Chicago Board of Trade (CBOT). There are more than

1,000 registered traders in the market. As for the cash market, primary dealers conduct the

majority of trades. Daigler (1997) indicates that a large portion of the trades in the futures

market is traded as a hedge by traders in the cash market. This suggests a low noise level

in the futures market as well. On November 7,1988, CBOT moved the trade starting time
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of T-bond futures from 9:00AM Eastern time to 8:20AM Eastern time, allowing one to

better determine the effect of the macroeconomic public announcements made at 8:30AM

Eastern time. Until 1988, there was a clear upward-sloping trend in the trading volume of

the T-bond futures, and the volume has stabilized since then.

In this study we use the daily data of the T-bond futures day session obtained from

Data Stream. The data set begins November 9, 1988 and ends December 31, 1997.

B. Announcement data

Announcement effects of the consumer price index (CPI) are among those most

frequently identified as significant in the bond market5. Announcements of the producer

price index (PPI) have effects at least as significant as those of CPI, which have been

documented by Urich and Wachtel (1984), Dwyer and Hafer (1989), McQueen and Roley

(1993), Harvey and Huang (1993), JLL (1998) and Edison (1996). The recent studies by

Cook and Korn (1991), Krueger (1996) and Edison (1996) emphasize the importance of

employment numbers since the late 1980s. The sample of JLL runs from October 9, 1979

to December 31, 1993, and they find strong evidence that releases of employment data

have an effect on bond cash market volatility. In this study we focus our interest on CPI,

PPI and employment announcements. With only one exception, the employment report is

issued on Friday. The PPI data is mostly issued on Thursday and Friday, while the CPI

announcement is made almost evenly from Tuesday to Friday. For the time period we

study, no announcements were observed on Mondays.

5 See for examples, Hardouvelis (1988), McQueen and Roley (1993), Harvey and Huang (1993), Becker,
Finnerty and Kopercky (1996) and Edison (1996).



10

C. Survey data

Theory suggests that it is the surprise in the announcement to which the market

reacts. We are interested in testing whether big shocks cause different volatility

persistence following the major announcements. The data on expectations are from

Money Market Services (MMS), a San Francisco-based company, which has conducted

telephone surveys normally one week or less before any news release since late 1977.

Pearce and Roley (1985) find MMS forecasts unbiased and efficient. Balduzzi, Elton and

Green (1996) conclude that the expectation-revision between the time of the survey by

MMS and the time of the announcement does not substantially affect measure of surprise,

and that the MMS survey data is an accurate representation of the consensus expectation

in the market. We calculate the innovations by the difference between the survey and

actual data. The unbiasedness cannot be rejected at the 5% level of significance for all of

the data. To test for efficiency, we regress those shocks on the lagged values of all the

announced data, and the coefficients are found to be insignificantly different from zero.

IV. PRELIMINARY ANALYSIS

Table 1 gives summary statistics for open-close percentage returns. The mean of

returns on the announcement days is higher than that of non-announcement days.

Measured in both absolute value of the returns and square of the returns, the T-bond

futures market volatility is far higher on release dates than on non-release dates. Taking a

closer look at individual releases, we find that the mean of returns is higher only on PPI

release dates than on non-announcement days, while on CPI and unemployment release

dates, the mean is actually lower. Running an OLS regression on a dummy variable for
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announcement day reveals a positive but statistically insignificant effect of announcements

on expected open-close returns. Meanwhile, with no exception, volatility on all three kinds

of release dates is much higher. Neither the level of returns nor the volatility exhibits

positive autocorrelation in this dataset.

We turn next to simple OLS regressions for exploration of the relationship of

announcement dates and return volatility proxies as well as investigation of the day-of-the-

week effects on volatility. Table 2 documents the results. On announcement days,

volatility is higher than average and statistically significant; this confirms that disclosure of

news causes a shift in the fundamental asset values. If the full price implications of the

information take longer than one day for the market to incorporate, we should expect

consecutive shifts of the asset values, so days immediately following announcements

would exhibit higher than average volatility as well. Table 2a shows the evidence against

this hypothesis: post-release days actually have lower than average volatility, though not

significantly. Reports that financial markets are particularly quiet on the days prior to

these announcements are commonplace in such financial press as the Wall Street Journal.

This phenomenon, called “calm before the storm” effect by JLL, is evident in Table 2a.

Volume and the ratio of volume to the absolute value of return data cast further

light on market activity around announcements. On announcement days, we detect from

Table 1 that volume shoots up. However, the volume-absolute-return ratio, as a measure

of the information asymmetry, declines. The regression coefficients in Table 2a depict the

same picture. The heightened volume on announcement days, which is again manifest in

the coefficient of the dummy variable for announcement days in Table 2b, suggests that

the new equilibrium is not reached instantaneously - a violation of the assumption of
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MDH. The evidence presented here could be interpreted as the public announcement

helping to dampen but not eliminate the asymmetry of private views. Apparently in Table

1a, volume is strongly autocorrelated, and Table 2b confirms this finding. Nevertheless,

we find the persistence of volume is significantly lower after a macroeconomic

announcement, which is in contrast to SIM but in favor of the learning model.

Table 2a shows that for the days following releases, volume is significantly lower.

The volume-absolute-return ratio6 is higher but statistically insignificant, which could be

due to a few days with very low absolute returns. Judging from the median of the ratio

data, we find that the ratio is actually lower on post-release days than on average days.

On the pre-release days, volume declines insignificantly. In line with KV’s argument, the

ratio -- a measure of information asymmetry -- is significantly higher pre-release, which

could explain the “calm before the storm” effect.

We further check the market activity for days following those releases that contain

big shocks. A big shock is when the absolute value of the shocks is bigger than its

standard deviation. Contrary with findings on average post-release days, we notice from

Table 2a that on post-big-shock days there are small increases in terms of both absolute

value of return and squared return, though both are statistically insignificant. This hints

that volatility displays different behavior after a big shock, as suggested by KV. On days

following a big news surprise, there is still a big drop in volume and thus, a decrease,

though an insignificant one, in the volume-absolute-return ratio.

6 Days with zero Rt are deleted when calculate the ratio, announcement days have unproportionally low
share among them.
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The preliminary analysis so far suggests that the impact of disclosure is prevailing

but not dominant enough to drive all beliefs to convergence immediately. News arrival

clustering is unlikely to be the sole reason for the persistence of volatility in the T-bond

futures market. Meanwhile, the evidence so far is in contrast to SIM but in favor of the

KV model and the learning model.

Unlike the cash market, traders in the futures market take highly leveraged

positions. Hence, we may observe the leverage effects documented in previous literature--

bad news causes larger persistence of the increment in volatility. There could also be a

volatility-feedback effect: traders demand higher future returns due to the increase of

volatility, thus, price is pushed down and persistent high volatility is observed. KV’s work

also suggests asymmetry in volatility persistence corresponding to bad news vs. good

news. Bad news, defined as news that lowers the returns, lifts the consecutive days’

volatility, but with very small magnitude. However, there is distinct difference between

bad news and good news from announcement-days. Compared with average non-

announcement days, good news from news release days reduces successive days’

volatility, while bad news increase successive days’ volatility. We further examine

whether bigger news produces a greater difference. News corresponding with returns

lower than the 33% quantile (<0) is denoted as big negative news; news corresponding

with returns higher than the 67% quantile (>0) is denoted as big positive news. A greater

difference is shown for both open-close and close-close volatility data. For instance, the

mean and median for absolute close-close returns on days after big positive news are 0.27

and 0.20 respectively, while on days after big negative news are 0.42 and 0.37 respectively

and for average non-announcement days are 0.38 and 0.29. The volume-absolute-return
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ratio data shows that information asymmetry is slightly higher on days after bad news than

on days after good news, while the difference is much more prominent on days after

macroeconomic announcements.

Previous studies provide voluminous evidence for the day-of-the-week effects on

return volatility. A clear U-shaped curve over the week is not present in the Futures

market as it is in the cash market. Table 2c indicates that volatility is higher on Thursdays

and Fridays, compared with Mondays. We also run an OLS regression with the combined

set of independent variables from Table 2a and Table 2c. The coefficients on variables

appearing on Table 2a maintain the same signs and significance. However, Tuesday is no

longer significant and the coefficients for Thursday and Friday are both positive,

significant, and with similar size.

Compared with open-close return data, close-close return data shows similar

patterns in preliminary analysis. For the regression of close-close return volatility, the

coefficient for the dummy variable of days following announcements is negative, but

unlike the case of open-close returns, it is significant. Close-close returns are more subject

to influence from the quarterly switch from one future contract to another. Statistics

shows that on the switching days returns are lower while variances are higher.

V. MODELING CONDITIONAL VOLATILITY

A. GARCH models

The GARCH(1,1) model proposed by Bollerslev (1986) has been widely used to

model financial asset return volatility and has become a benchmark. We start this section

by estimating a univariate GARCH(1,1) model with results reported in Table 3. We then
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run modified GARCH(1,1) models by adding dummy variables for days around

announcements and also dummy variables for day-of-the-week effects linearly into the

variance equation. The modified GARCH(1,1) models could be expressed as follows:

(1) rt = c + εt , where )0(1 ttt ,h~NΦε −

(2) ht = ω+αεt-1
2+βht-1+δ1It+δ2It-1+δ3It+1+δ4D4+δ5D5

whereΦt-1 represents the information set available at the end of day t-1.D4 and D5 are

dummy variables for Thursday and Friday respectively;It denotes the dummy variables for

announcement days.It+1 indicates pre-announcement days, whileIt-1 represents post-

announcement days.

We first include a dummy variable for the announcement day. As reported in Table

3, announcement days appear to significantly increase the conditional volatility and the log

likelihood is considerably higher, however, the ARCH and GARCH effects become

insignificant. Inclusion of dummy variables for pre-announcement days and post-

announcement days produce another increase in log likelihood, while exhibiting significant

coefficients for all dummy variables along with positive and significant ARCH and

GARCH terms. Days prior to news disclosures show significantly lower conditional

variance. Though days following announcements also present a significantly negative sign,

the interpretation here is somewhat different. The negative sign here does not necessarily

mean that these days have lower than average conditional volatility. The more probable

reason for the negative sign is that a spike in the conditional variance on the

announcement day does not carry over to the next day, and the negative coefficient offsets

the persistent increment suggested by the significantly positive GARCH term. We further

put dummy variables for Thursday and Friday, all the other terms in the variance equation
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retain the same signs and change little in size. After controlling for announcement-day

effects, Thursdays appear to have significant positive effects on volatility while Fridays do

not. Due to the persistence found in both positive ARCH and GARCH terms, Thursdays’

heightened volatility and conditional volatility have been incorporated into and help to

push up the successive Fridays’ conditional volatility, so that Friday-effects may be

underestimated in this linear GARCH equation. If one does not control for

announcement-day effects, both Thursdays and Fridays push up conditional volatility,

however, the ARCH effect becomes insignificant while the GARCH effect is significantly

diminished.

An interesting question is why the once highly significant ARCH effect disappear

when we add in the linear dummy variable for announcement days or dummy variables for

Thursday and Friday. The announcement effects on days around the release and the day-

of-the-week effect cause structural breaks in conditional volatility. As pointed out by

Andersen and Bollerslev (1997), the standard GARCH models imply a geometric decay in

the volatility autocorrelation structure and cannotaccommodate strong regular cyclical

patterns. Hence, it will not be appropriate to use the benchmark GARCH (1,1) model to

describe day-of-the-week effects and the announcement effects around disclosure days.

We hypothesize that the volatility on announcement days has two components. One is

transitory due to the shift of beliefs caused by the disclosure; the other one is non-

transitory (persistent) due to the gradual convergence of beliefs supported by our findings

in volume data. If the transitory component dominates, we will not be able to find any

persistence with the standard GARCH framework. Without announcement clustering in

the market and without continuous substantial belief shifts, consecutive big price
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movements on the days after announcement are theoretically unlikely. Using tick data,

Ederington and Lee (1993) and Becker, Finnertyand Kopecky (1997) document that

major price shifts in the T-bond futures market occur within 15 minutes of the

announcement. Becker et al. go on to conclude that the price changes which occur later

on that day are independent of what happens within 15 minutes after the release. This,

along with the evidence in our preliminary study, supports our hypothesis. The standard

GARCH model does not suit our purpose of studying persistence of conditional volatility

after announcements, so that decomposition of the variance is thus required.

B. GARCH models with filters

An appropriately designed filter may take care of cyclical patterns of day-of-the-

week effects and announcement effects that we find here and may also remove the

transitory part in volatility on the announcement days. Then only the non-cyclical and non-

transitory part of volatility enters the GARCH equation.

Since preliminary analysis indicates asymmetry in volatility persistence from bad

news versus good news, we test the asymmetric effects in the model. Lettingrt denote the

daily open-close return, a filtered GARCH model can be expressed as follows:

(3) rt = c + F tεt, where )0(1 ttt ,h~NΦε −

(4) Ft = (1+ρ1It)(1+ρ2It-1)(1+ρ3It+1) (1+ρ4D4)(1+ρ5D5)

(5) 2
111

2
1 −

−
−−− +++= ttttt Ihh εγβαεϖ

where −
−1tI =1 if εt-1<0; −

−1tI =0, otherwise. The sign ofρ allows us to compare days of

interest directly with average days, and there will be no ambiguity in judging

announcement effects on the days following releases as well as the Friday effect. If the
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shift in traders’ beliefs is transitory, we will expect an insignificantρ2. Also, if there is

indeed asymmetry in volatility persistence, we will expect a significantγ.

Table 4 demonstrates results from this model.ρ2 is insignificantly negative, so

shifts in traders’ beliefs appear to be transitory. Strong asymmetric effects are found.

Nonetheless, ARCH effect is insignificant and enters with a negative sign; GARCH effect

is positive and significant7. Announcement days give a large lift to conditional volatility,

while pre-release days display smaller than average conditional volatility. Controlling for

the announcement effects does not eliminate day-of-the-week effects, and vice versa.

C. GARCH models with filters and heterogeneous persistence

C.A. With asymmetric effects

Being able to control the shift in beliefs by decomposing conditional variance into

transitory and non-transitory parts, we then focus on how the market reacts to news.

Preliminary analysis indicates that public news reduces information asymmetry after

disclosure. Features of macroeconomic news would make the “learning” process shorter

than private information or information with poorer quality that characterize non-

announcement days. Thus, persistence of volatility and conditional volatility from

announcement days should be smaller than that from non-announcement days.

Let Xt include the exogenous variablesZt and the variablesYt-1∈σ-algebra�t-1.

f(Xt) andλj(Xt) stand for some functions ofXt. Allowing for heterogeneous persistence, we

express the autocorrelation of conditional variance (ht) as:

(6) 2

1
jt

j
jtt ελ)f(Xh −

=
�+=
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When 1−= j
j αβλ , then the equation (6) reduces to GARCH(1,1). To allow for different

volatility persistence on announcement and non-announcement days, we let

1
, ),( −

− =• j
AAAjtj βαIλ , if It-j,A = 1; 1

, ),( −
− =• j

NNNjtj βαIλ , if It-j,N = 1. Equation (6) becomes

(7) t-j,Njt
j

j-
NNt-j,Ajt

j

j-
AAtt IεβαIεβαXfh 2
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12

1

1)( −
=

−
=

�� ++=

WhereIt-j,A is the dummy variable for announcement on day t-j; andIt-j,A = 1 - It-j,A is the

dummy variable for no announcement on day t-j. Introducing heterogeneity to asymmetric

effects into equation (7), and simplifyingf(Xt) to be constant, we can rewrite (7) to be8
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N
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Table 5 reports the results. GARCH terms are smaller on announcement days than on

non-announcement days, indicating announcement-day shocks have smaller persistence.

The ARCH coefficient on non-announcement days is insignificantly different from zero,

and the one on announcement day is –0.115 and significant9. With the log likelihood ratio

test being significant at 1% critical level, the asymmetric effect is noteworthy here.

Consistent with preliminary analysis, the asymmetric effects from announcement days are

far more prominent than those from non-announcement days. On the post-announcement

days, good news from releases reduces the conditional volatility; bad news increases the

conditional volatility. With large ARCH coefficient (–0.115) and asymmetric coefficient

7 without including the asymmetric effect, ARCH and GARCH effects are positive and significant.
8 For details see Appendix 1.
9 Without the asymmetric effects,αA would be insignificant, whileαN would be 0.022 and statistically
significant.
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(0.277), shocks from announcement days generate great impacts on near-term future

volatility. However, if we do not distinguish negative shocks from positive shocks,

announcement-day volatility would appear not to persist at all and thus to have no impact

on volatility forecasts. There is slightly stronger persistence after bad news, because of

the leverage effect, volatility feedback effect, or a slower process for traders to

comprehend the true information content in the release.

C.B. A test for a macroeconomic risk premium and big-shock effects

Another interesting question remains: do T-bond futures earn positive risk premia

on those days when they are exposed to macroeconomic risk? Preliminary analysis

indicates “no” to this question. We further assess the question by adding ARCH-in-mean

terms associated with announcements days into equation (3), which can be expressed as:

(3’) rt = c + ηIt,Aht+Ftεt

We also test for different effects on volatility persistence brought by big shocks, as

suggested in the preliminary analysis. We conduct this test by allowing big shocks to have

different ARCH effects on announcement days. Thus equation (8a) and (8b) turn into:
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whereIt,B=1, if the absolute value of the shock is greater than its standard deviation; =0,

otherwise.

From Table 6a, we findϕ positive and significant. Also we observe an

improvement in the log likelihood with the likelihood ratio test being significant at the 1%

confidence level. The results hint that market participants take a longer time to achieve

convergence facing a large shock. However, as long as the shock is non-negative, the
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news that reveals a big shock still seems to push down information asymmetry. The

insignificant suggests no macroeconomic risk premium and also casts doubt on the

volatility-feedback effect as the reason for the asymmetric effects.

C.C. An explicit test of the volatility persistence

For an explicit test of the difference of coefficients of ARCH and GARCH terms

on announcement days vs. non-announcement days, we modify equation (8a’) & (8b’) to:

(8a”) ])[(])()[( 1
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In Table 6b, we findθ1 andθ2 both negative and significant. We reject the hypothesis that

persistence from announcement days vs. from non-announcement days is the same. This

lends support to our hypothesis that the market learns more quickly about the price

implications from the announcement data, and suggests that there is a tendency toward

convergence among traders after news disclosure.

C.D. Tests of unemployment effect

Some researchers call the unemployment release the “king of announcements”. If

the unemployment data is of special significance, we may see more substantial price

movement and stronger convergence of private beliefs after its announcement. From Table

1, we find that volatility measured in terms of both absolute value and the squared value of

return is higher on unemployment announcement days compared with that on CPI and PPI

announcement days. Friday effects may contribute to part of the higher volatility. We test

whether the unemployment report brings higher conditional volatility by modifying the

filter equation (4) to:

(4’) Ft = (1+ρ1D4)(1+ρ2D5)(1+ρ3It)(1+ρ4It+1)(1+ρ5It-1)(1+ρ6It,uem)



22

whereIt,uemrepresents a dummy variable for days with unemployment news. We then run

regressions based on equations (3), (4’), (8a”), (8b”) and (8c). Table 7a displays the

results.ρ6 is found to be positive but insignificant.

We proceed to test whether volatility from unemployment days has different

persistence. This is done with equations (8a”’) and (8b”’):
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Table 7b gives out the result.κ is negative but again insignificant.

Evidence from Tables 7a and 7b shows that the unemployment report makes larger

price movements and drives private views to further convergence. However, neither effect

is significant. Similar tests are made on CPI and PPI, no report-specific effects are found.

C.E. Modeling with close-close return data

Studying close-close return data with our modified GARCH models will give us

further understanding of how the market reacts to the news. Moreover, it will provide a

robustness test for our modeling. Preliminary analysis shows that on the switching days

returns are lower while variances are higher. Correspondingly, we include a dummy

variable (Ich) representing a switching day into equation (3). Since the variance effect is

purely transitory, we thus add the dummy variable to equation (4). Hence equation (3)

and (4) become:

(3'') rt = c + λIch+ Ftεt

(4'') Ft = (1+ρ1D4)(1+ρ2D5)(1+ρ3It)(1+ρ4It+1) (1+ρ5It-1)(1+ρ7Ich)

Both λ andρ7 are found to be significant and carry the expected signs.
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Similar to the results from open-close returns, we find both ARCH and GARCH

terms are smaller on announcement days; when we test explicitly, we reject the hypothesis

that the persistence of announcement vs. non-announcement days is the same. Also, we

are unable to reject the hypothesis that big shocks have different effects on volatility

persistence. No evidence for unemployment effects is shown, and we reject the hypothesis

that T-bond futures earn an extra risk premium on announcement days. Once again, a

significant asymmetric effect is demonstrated, and it is stronger on the announcement

days. Consistent with our preliminary analysis, we findρ5 is negative and significant. Table

8 reports the results for the regression using (3”), (4”), (8a’), (8b’) and (8c).

D. Properties of the model

In this section, we evaluate the properties of the model by analysis of the impulse response

function of shocks on forecasted volatility. Denoting the τ-step forecasted volatility

as ,τt-H 1 , we can write it as ,τt-H 1 = )( 111
N

,τt
A

,τtτt- hhF −−+ ++⋅ ϖ ,τt-τt- hF 11 ⋅≡ + . The one step

forecasts for A
,th 11− and N

,th 11− are simply A
th and N

th respectively, as in the previous sections.

Based on the information set of t-1, we can write theτ-step forecast as:
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In the equations above, 0.5 comes from the percentage of negative shocks out of all

shocks, and 0.322 is the percentage of big shocks out of all announcement-day shocks
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over the sample period of November 9, 1988 to December 31, 1996. We employ the

coefficients from equations (3”), (4”), (8a’), (8b’) and (8c) with close-close return data for

the sample period. Graph 1 depicts the impulse response function for the average impact

of a one-unit increase of |εt-1| on ht-1,τ , over the sample with 2069 observations. Graph 2

presents the impulse response of a positive shock, while Graph 3 displays that of a

negative shock. It is evident from Graphs 2 & 3 that negative shocks have higher impacts

on forecasted volatility.

In Graphs 1 to 3, the portrayed impulse response is an average for impacts of

shocks from both announcement-days and non-announcement-days. Notice that the

percentage of announcement days out of the whole sample is only14%, thus, the impacts

of announcement-day shocks may be underrepresented byA
th τ, ; therefore, we further

demonstrate the impulse response for shocks from announcement days and non-

announcement days separately. The one-step forecast from an announcement-day is:
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The one-step forecast from a non-announcement-day is:
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Apparently from Graph 4 and Graph 5, announcement-day shocks have smaller

persistence but larger impacts on short-horizon volatility forecasts than non-announcement

shocks. Graph 6 shows the curve of news impact on the one-step forecast, where

announcement-day shocks manifest their significance. The pattern shown is consistent
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with the preliminary findings of announcement-day shocks: bad news presents a larger

distinction from good news when the magnitude is larger.

VI. FORECAST

Market participants do not expect volatility to be constant over time but instead

anticipate volatility to vary. Since the timing, though not the content of scheduled

macroeconomic announcements, is known a priori, rational expectation of market

uncertainty should compound the anticipated impact of important releases on price

volatility. As important news releases heighten volatility significantly, correctly forecasted

volatility should decline when the uncertainty from news disclosure is resolved.

Implied volatility (IMV) is a widely used measure of investors’ volatility

expectations. Ederington and Lee (1996) examine the impact of macroeconomic news

disclosures on market uncertainty as measured by the implied standard deviation from the

interest rate option markets. Their evidence indicates that IMV tends to fall on days with

important scheduled news. However, we have to keep in mind that IMV is not a precise

measure of market expectations. First, since it is a solution to nonlinear equations, IMV

will not be an unbiased measure (Butler and Schachter (1986)). Second, since the IMV is

obtained by solving the Black-Scholes model for observed option and future prices, it will

reflect any factors that affect option prices but are not incorporated in the Black model

(Canina and Figlewski (1993)). Third, price discreteness and bid-ask spreads will

introduce error (Jorion (1995)). Our forecasted volatility should not be taken as a perfect

measure of volatility expectation either. Nevertheless, if our modeling correctly

incorporates the understanding of the impacts of news releases, we should be able to see
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similar patterns in our forecasted volatility. In this section we compare the behavior of our

forecasted volatility with that of the implied volatility and the realized volatility.

Let 2
tσ represent the mean of anticipated daily volatility from day t+1 to day t+T.

In Ederington and Lee (1996), they have T as time to expiration of the option contract

with the median being 38 trading days. For a better comparison, we calculate2
1−tσ from

our model as mathematical mean of one-step to 38-step (trading-day based) forecasted

volatility, based on information available on day t-1. Similar to Ederington and Lee

(1996), we obtained implied volatility (IMV) data from daily option closing prices for our

comparison. IMV used here is a weighted average of IMV calculated for the most heavily

traded contracts - the two nearest-the-money calls and the two nearest-the-money puts.

A. In-sample forecast10

Consistent with the findings of Ederington and Lee, the forward-looking implied

volatility drop on announcement days for the sample period spanning from November 9,

1988 to December 31, 1996. The subsequently realized volatility also declines on news-

release days. We expect our forecasts to show the same pattern, i.e.

0)1(
,

2
1
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Att-t IσσE .

Theτ-1 step from time t forecast can be written in a version similar to (9a)-(9c):
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10 For further details, see Appendix 2.
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If our one-step forecastht is unbiased, we will have A
,t-h 21 equal to A

t,h 1 ( A
th 1+ ) on average.

Similarly N
t

N
t EhEh 1,2,1 =− , and thus 1,2,1 tt EhEh =− . Applying the equalities recursively, we

will have A
,t-h τ1 equal to A

t,h 1−τ on average. The same results apply toN ,τt-h 1 and N
t,h 1−τ , ht-1,τ and
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In Table 9a we test the hypothesis thatht is an unbiased estimate of2tε , evidence

indicates that the hypothesis can not be rejected. Since our estimatedρ1 is >0,

tAtt EFIFE >= )1(
,

, thus, .)1( , tAtt EHIHE >= Since there is little effect onHt,38, we

will have 0)1(
,

2
1

2 <=−
Att-t IσσE . Table 9b reported evidence to confirm this hypothesis

in terms of both mean and median. The finding is actually in line with the findings of the

realized data and the implied volatility. Conversely,2tσ tend to rise on days with no

important macroeconomic announcements. We find support for it in terms of the mean but

not in terms of the median.

Since ρ5<0,
tAtt EFIFE <=

−
)1(

,1
. With NNAA γ.αφ.γ.α 50322050 +≈++ , and

comparing (10a) and (10n), we will have )()( ,1 tAtt hEIhE ≈− , thus )()( ,1 tAtt HEIHE <−

and 0)1(
,1

2
1

2 >=−
− Att-t IσσE . We expect the forecasted volatility to rise on days following

scheduled announcements. Supporting evidence from both mean and median statistics is

reported in Table 9b; the realized data also presents the same pattern. However, we fail to

find this pattern for the implied volatility data.
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Due to the day-of-the-week effect and the fact that macroeconomic

announcements are clustered on Fridays and the weekly money supply figures are released

after the markets close on Thursdays, the correctly anticipated2
tσ should decrease on

Fridays. Ederington and Lee (1996) find that the implied volatility tends to decline on

Fridays. The subsequent realized volatility data exhibits the same tendency.

Since
t5 )1( EFDFE t >= (�ρ2>0 and ρ3>0), we predict similar findings,

i.e. 0)1( 5
2
1

2 <=− DσσE t-t
, for the forecasted volatility. Indeed, we find the evidence for

this Friday effect.

Table 9c presents the analysis from OLS regressions. All of the realized data, our

forecasted volatility and the implied volatility decline on announcement days and on

Fridays, while both the GARCH forecast and the realized volatility rise on days following

announcements.

Examination of the term structure of the annualized forecasted standard deviation

provides additional insights into forecasting properties. The term structure is constructed

as �
=

k

tH
k 1

,

252

τ
τ . Graph 7 shows that it picks up pre-release, and returns towards the

average level on release days. Graph 8 illustrates close co-movements between the

GARCH forecasts and implied volatility.

B. Out-of-sample forecast

As with the in-sample forecasts, the out-of-sample forecasts present a clear pattern

around announcements. They decline on announcement days and on Fridays.
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One particularly popular evaluation of the volatility forecast in the literature is

obtained via the ex-post squared return regression:

(11) ttt bHar µ++= − 1,1
2

If the model for the conditional volatility is correctly specified, it follows that, in

population,a andb are equal to zero and unity, respectively. Our out-of-sample forecast

window starts from January 1, 1997 and ends November 8, 1997, spanning 216 trading

days. We estimate the coefficients in equations (3”), (4”), (8a’), (8b’) and (8c) recursively

and obtain a one-step-ahead volatility forecast for close-close returns. Applying equation

(10), we test for the joint hypothesis thata=0 andb=1. From theF-statistics and theχ2

statistics reported in Table 10, we fail to reject the null.

The coefficient of multiple determination,R2 of the regression, provides a direct

assessment of the variability in theex-postvolatility being explained by the particular

estimates. Therefore,R2 is often interpreted as a simple measure of the degree of

predictability in the volatility, and a guide to theaccuracy of the volatility for ecasts. The

R2 from the regression in (10) for the one-step forecast is 0.062. The seemingly lowR2 is

in line with the evidence in the extant literature for other speculative returns with daily or

lower frequency. Nonetheless, Andersen and Bollerslev (1997) point out that the use ofR2

as a diagnostic for potential misspecification is problematic, since financial applications

focus on the future volatility and not on the subsequent realized squared returns. Under

the null hypothesis that the estimation constitutes a correct specification,R2 simply

measures the extent of idiosyncratic noise in squared returns relative to the mean which is

given by the (true) conditional return variance. LowR2’s are not an anomaly but rather a

direct implication of volatility models.



30

Use of the observed squared returns is justified to the extent that they provide an

unbiased estimator of the underlying latent volatility. However, the realized squared

returns are poor estimators of the day-by-day movements in volatility due to the large

idiosyncratic component of daily returns. Implied volatility provides an alternative estimate

of the latent volatility factors11. We compute 2
tσ recursively in the same way as we do for

the in-sample forecasts.R2 is considerably higher and it accounts for more than fifty

percent of the variability in the latent volatility as measured by the implied volatility.

Graph 9 reveals the close co-movements of the implied volatility and our forecasted

volatility, and the correlation between them is very high at 0.72. Nevertheless, we should

bear in mind that IMV is not a precise measure for the latent volatility either, for the same

reasons we discussed earlier in this section. The mean of IMV is higher than that of

historic realized squared return. One may also acknowledge from Graph 7 that the mean

of IMV is higher than the mean of our forecasted volatility. Thus it is no surprise that we

reject the joint hypothesis that we have an unbiased forecast for the implied volatility.

In estimation of the level of returns, the asymmetric effects are found to be

significant. We are interested in comparing the performance of forecasts with and without

asymmetric effects. We estimate recursively equations (3”), (4”), (8a’), (8b’) and (8c) with

the restriction thatγA = γN = 0, and then calculate 2
tσ . The correlation between 2

tσ and

IMV is much lower (0.48), the co-movements are less manifest, and theR2 is smaller.

Through a comparison with the realized squared returns and implied volatility, we

evaluate our in-sample and out-of-sample forecasts, and find the evidence indicating that

11 see the recent work of Canina and Figlewski(1993), Jorin (1995) and Lamoureux and Lastrapes(1993).
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our GARCH model correctly incorporated the available information concerning news

release into our forecasts.

VII. CONCLUSIONS AND FUTURE RESEARCH

Understanding the determinants of asset prices and understanding the way that

markets process new information about these determinants, are central questions in

finance. In this paper, we follow JLL to focus on the study of a subset of asset price

movements associated with observable announcements of identifiable types of risk, instead

of trying to find ex-post explanations for all asset price movements.

We do not find statistically significant increase in expected open-close returns,i.e.

macroeconomic risk premium, on the announcements days. Heightened volume on

release-day indicates that news arrival clustering is not the sole reason for volatility

persistence. Supporting the learning view, evidence on conditional volatility and volume

shows that the market processes the information from scheduled news more quickly than

nonscheduled news. Information asymmetry is decreased after news disclosure,

nevertheless, convergence in beliefs does not happen instantaneously. A prominent finding

is the strong asymmetric effects in the T-bond futures market where negative shocks

increase conditional volatility on consecutive days. Furthermore, bad news from

scheduled announcements brings stronger asymmetric effects than its counterpart from

unscheduled announcements. This stylized fact calls for future exploration of the

underlying microstructure theory. Interestingly, we find evidence that market participants

take a longer time to arrive at convergence when facing a large shock. We do not,

however, find evidence of heterogeneous effects on volatility persistence brought by
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different types of announcements. Close-close returns show similar patterns to open-close

returns12. Our study shows support of KV’s view that anticipation of a news release

affects the market reaction to that announcement.

Conducting in-sample and out-of-sample forecasts helps us to evaluate this model.

Comparing the GARCH volatility forecast with the realized data and implied volatility, we

find evidence that our model correctly incorporated the available information concerning

news release into our forecasts. Hence, our model answers the critique that ARCH

models base expected volatility solely on recent historical volatility. However, neither the

observed squared returns nor the implied volatility is the ideal candidate for extracting

information about the future latent volatility factor. Andersen (1996) and Gallant, Rossi

and Tauchen (1992), suggest that information provided by the joint distribution of returns

and trading volume would be a good source from which to extract information. Andersen

and Bollerslev (1997) propose the use of intra-day data to help evaluate one-step

forecasts. It would also be of interest to investigate evaluation criteria for the forecast

horizon beyond one day. We leave these possibilities for future research.

Our empirical findings are quite different from those of JLL in two prominent

aspects. First, we do not find a higher and statistically significant risk premium on

announcement days. Second, the announcement-day volatility is important in forming

conditional volatility. This raises an interesting issue for the possible difference between

treasury bonds cash and future markets. There is evidence that the short and the long end

of the yield curve behave somewhat differently (Duffie (1996)). To compare reactions to

the news of T-bond futures with those of T-bill futures could be interesting as well.

12 Replicating empirical tests using returns in excess of the Treasury bill rate, similar results are found.
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Although this study utilizes Treasury futures to analyze the heterogeneous

persistence from scheduled announcements vs. non-scheduled announcements, we believe

the approach provided here has a more general application. For example, the scheduled

release of a company’s quarterly reports or dividend earnings has large and varied effects

than nonscheduled news on the company’s stock returns. Therefore, when forecasting the

conditional volatility of individual stocks, one could improve the forecast by incorporating

the known timing and allowing for heterogeneity of scheduled announcements vs. non-

scheduled announcements. Heterogeneous persistence could also exist among different

kinds of scheduled announcements. For the study of T-bonds, it might exist between

periodically scheduled macroeconomic announcements vs. other scheduled news such as

the public auction of T-bonds; for the study of individual stocks, heterogeneous

persistence might exist among the scheduled reports of a firm vs. the scheduled reports of

companies relevant to that firm. We believe it would also be beneficial and important to

allow heterogeneity of differentiated impacts among scheduled announcements. However,

we leave this for future research.
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where g is a function ofXt. When g reduces to constant, it is indeed GARCH(1,1).

Simplifying f(Xt) to be constantϖ, let •= −
−−− ,,,, ,, jtNjtAjttt IIIZX , j = 1, 2, 3,..., and let

1)( −= j
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NN βα , if It-j,N = 1. WhereIt-j,A is the dummy variable for

announcement on day t-j; andIt-j,A = 1 - It-j,A is the dummy variable for no announcement

on day t-j. −
−1tI =1 if εt-1>0; −
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(8b) where 1
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The above can be best illustrated by a diagram. LetDA,j, DA,k
-, DA,l denote announcement

daysj, k, l days before dayt, respectively;DN,i
-, DN,m, DN,n denote for non-announcement

days i, m, n days before dayt, respectively. Among these days,DA,k
- and DN,I

- are days

with negative returns. The graph below depicts how the memory of past squared returns

enter the construction ofht .
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Based onΦt-1, the two step forecast ofA
th 2,1− could be expressed as:
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If th is an unbiased estimate of2tε , i.e. 2
tt EEh ε= , then we will have A

tEh 2,1− as:
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So that A
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t EhEh 1,2,1 =− . Similarly N
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The three-step forecast ofAth 3,1− and the two-step forecast ofAth 2, are as following:
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and thus 2,3,1 tt EhEh =− . Doing it recursively, we will have 1,,1 −− = ττ tt EhEh , and hence,
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Table 1: Summary Statistics for Treasury Bond Futures Open-close Returns 1

(1a)

Statistics Full Sample(2069)(11/9/88-12/31/96)
Rt |Rt | Rt

2 Volume Vl/|Rt | Rt |Rt | Rt
2 Volume Vl/|Rt | Rt |Rt | Rt

2 Volume Vl/|Rt |

Mean 0.02407 0.414562 0.30679 313022 1650151.1 0.037787 0.643025 0.643372 429676 1442433 0.021975 0.377021 0.251482 293861 1684972

Median 0.030351 0.315458 0.099514 302650 847172.4 0.073403 0.545791 0.297888 424045 722284.8 0.029852 0.284394 0.08088 282770 872182.2

Max 2.490299 2.666053 7.107839 760890 19582417 2.294157 2.666053 7.107839 760890 16610896 2.490299 2.490299 6.201589 721620 19582417

Min -2.66653 0 0 5308 15455.75 -2.66653 0 0 182730 121385.9 -2.481799 0 0 5308 15455.75

Std. Dev. 0.553491 0.367415 0.573981 126996.2 2257237 0.80259 0.480293 0.95705 113110.7 2017147 0.501139 0.330755 0.460277 118661.4 2293724

Skewness -0.170189 1.601763 4.952546 0.430987 3.50066 -0.302608 1.164315 3.366066 0.346582 3.705018 -0.085537 1.544251 4.969004 0.45973 3.46434

Kurtosis 4.532168 6.756635 41.07717 2.991733 17.90224 3.252168 4.804123 18.52269 2.910719 19.87162 4.365717 6.462705 44.41824 3.115473 17.55403

Autocorrelation(1) 0 -0.028 -0.021 0.318** 0.081 -0.036 -0.064 0.346** -0.036 0.02 0.011 0.419**

(1b)

Statistics CPI Announcement Days(97)
Rt |Rt | Rt

2 Volume Vl/|Rt | Rt |Rt | Rt
2 Volume Vl/|Rt | Rt |Rt | Rt

2 Volume Vl/|Rt |

Mean 0.001176 0.561262 0.466651 411635 1588888 0.1153539 0.578471 0.535253 416011 1472126 -0.004157 0.79006 0.929327 461377 1266285

Median -8.34E-05 0.527329 0.278075 407820 754401.7 0.175091 0.474651 0.22535 420110 823435.5 0.078053 0.70012 0.490167 447360 677778.6

Max 1.518391 1.520941 2.313262 760890 10155578 2.294157 2.294157 5.263156 704440 11026845 1.702372 2.666053 -7.107839 737070 16610896

Min -1.5202941 8.34E-05 6.96E-09 205590 278882.3 -1.894548 0 0 182730 246029.4 -2.666053 0 0 229850 121385.9

Std. Dev. 0.68666 0.391427 0.537322 108191.4 1985620 0.726144 0.450215 0.837533 111707.9 1899405 0.969015 0.555334 1.285638 113723.1 2165170

Skewness 0.046582 0.475944 1.513924 0.327889 2.63424 -0.121389 1.28172 3.116425 0.279121 3.126439 -0.43635 1.0696 2.732658 0.410068 4.950265

Kurtosis 2.287999 2.334604 5.031262 3.21079 10.01113 3.488767 4.87234 14.64 2.646218 13.32097 2.85676 4.187223 12.0083 2.669469 31.13582

Autocorrelation(1) -0.071 -0.03 -0.068 0.19* -0.017 0.16 0.207* 0.147 0.186* 0.225* 0.241* 0.245**

Note1: Rt is the daily continuously compounded return of the Treasury futures expressed in percent. * denotes significance at 10% for Q-stat, while ** denotes significance at 5%.

Vl/|Rt| denotes for the ratio of volume to the absolute value of return. Days with zero Rt have been deleted, announcement days have unproportionally low share among them.

Announcement Days(292) Non-announcement Days(1777)

PPI Announcement Days (98) Unemployment Announcement(97)



|Rt | -0.032174 0.266004** -0.069034** -0.047643** 0.0102

(-1.387086) (11.84521) (-2.981167) (-2.052155) (0.26234)

Rt
2 -0.023878 0.39189** -0.108263** -0.064736* 0.0013

(-0.658719) (11.12892) (-2.992753) (-1.784485) (0.021709)

Volume -34555.25** 135766.6** -6275.633 -4846.516 -41384

(-4.327445) (18.23684) (-0.782494) (-0.603399) (-3.09327)**

Vl/|Rt|

It lag1 It-1*lag1 lag2 lag3 lag4 lag6 lag7 lag9 lag10 lag11

Volume3
56.938** 0.3318** -0.2402** 0.0796** 0.0824** 0.0817** 0.0378* 0.06** 0.0562** -0.0637** 0.0871**

(2.734731) (14.3733) (-5.044097) (3.686723) (3.822812) (3.870038) (1.782825) (2.827356) (2.680983) (-2.952095) (15.13307)

Note2: It denotes dummy variable for announcement days, It-1 denotes that for days following announcements.

Note3: volume is deseasonalized by day of the week and month of the year liquidity effects.

Tuesday Wednesday Thursday Friday

|Rt | 0.050866** -0.002172 0.086169** 0.207897**

(2.015765) (-0.086069) (3.400971) (8.238725)

Rt
2 0.048241 -0.014056 0.104433** 0.286077**

(1.218603) (-0.355071) (2.627352) (7.226466)

Notea: t-statistics shown in parentheses, * denotes significance at 10%, ** denotes significance at 5%.

(2c)

(2b)2

release (It)

(2a)1

Note1: the coefficients are corresponding to β in the two-variable regressions yt=α+βxt. For Vl/|Rt|, a few outliers due to extremely low
absolute value of returns have been dismissed.

post-release (It-1) pre-release (It+1) 2-day-prior-to-relese (It+2) post-big shock (It-1,B)

-295898.3

Table 2. Analysis from OLS Regressions a

11385.7

(0.07897)

-189021*

(-1.814756)

234500.3** 151102.1

(1.435216) (-1.434068)(2.255416)



Table 3. Benchmark GARCH(1,1) model a

Quasi-maximum likelihood estimates of the model

, where

C 0.022125* 0.023048** 0.025862** 0.030239** 0.029582**
(1.857597) (-1.995537) (2.29031) (2.72645) (2.558983)

ω 0.006463** 0.252309** 0.216741** -0.011754** 0.094073**
(2.24157) (17.01438) (4.050868) (-1.987922) (2.623256)

α 0.012683** 0.005359 0.012768** 0.016092** 0.017463
(2.988117) (0.483575) (3.443631) (3.29473) (1.407261)

β 0.965789** -0.010011 0.972745** 0.949748** 0.441693**
(164.8616) (-0.272653) (102.5614) (64.95862) (4.149666)

δ2 -0.383243** -0.352339**
(-7.670261) (-7.539449)

δ1 0.392024** 0.416918** 0.427245**
(7.713809) (7.870078) (8.230607)

δ3 -0.049665** -0.081358**
(-2.868078) (-4.602952)

δ4 0.119981** 0.145911**
(7.276816) (5.799321)

δ5 -0.005293 0.196889**
(-0.223261) (8.110582)

log likelihood -1701.127 -1642.853 -1626.689 -1612.417 -1663.713

Notea: t-statistics shown in parentheses, * denotes significance at 10%, ** denotes significance at 5%.

Mean Equation

Variance Equation

where R t is the daily continuously compounded return of the Treasury futures expressed in percent, Φt-1

is information set available at the end of day t-1. I t represents the dummy variables of the announcement
days. I t +1 denotes for days prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday respectively.
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Quasi-maximum likelihood estimates of the model

, where

coefficient robust t-stat

C 0.02885613 -1.03602

ω 0.007708239 1.79951*
α -0.007460403 -0.99625
β 0.952661858 40.27074**
γ=

1 0.041822092 2.8743**

ρ 1 0.451748334 6.98756**
ρ 2 -0.001569903 -0.0198
ρ 3 -0.136226622 -2.55578**
ρ 4 0.167830677 2.63963**
ρ 5 0.167238093 3.44749**

Residuals Sum of squares: 632.1377
R**2 : 0.003429
Ljung-Box(15): 12.0196
log likelihood: -1601.967044

Note1: log-likelihood ratio test for asymmetric effects is 10.2, 1% significant with
α,=β would otherwise be 0.018, 0.961 respectively, both significant.

Notea: ** denotes significance at 5%, * denotes significance at 10%.

Filter Equation

Table 4. Filtered GARCH Model with Leverage Effects a

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I t

represents the dummy variables of the announcement days. I t +1 denotes for days
prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday

respectively. I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise.

Mean Equation

Variance Equation
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Quasi-maximum likelihood estimates of the model

, where

coefficient robust t-stat

C 0.030340802 1.27312

Variance Equation

ω 0.160495831 5.82303**
α Α -0.11476149 -8.14895**

α Ν -0.004852544 -0.664

β Α 0.555454111 2.86141**

β Ν 0.962453707 59.25967**

γ Α =

1 0.277252373 2.22938**

γ Ν =

1 0.034753985 2.78168**

ρ 1 0.462712923 7.2393**
ρ 2 -0.033618735 -0.48311

ρ 3 -0.173372335 -4.8209**
ρ 4 0.19767383 2.99063**
ρ 5 0.144745834 3.01068**

Residuals Sum of squares: 632.1556
R**2 : 0.003371
Ljung-Box(15): 11.7948
log likelihood: -1598.438988

Note1: likelihood ratio test for asymmetric effects are 14.3, 1% significant with χ2(2).
============αA would otherwise be insignificant; αN would be 0.022, significant.

Notea: ** denotes significance at 5%, * denotes significance at 10%.

Table 5. Filtered GARCH with Heterogeneous Persistence a

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I t

represents the dummy variables of the announcement days. I t +1 denotes for days
prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday

respectively. I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,A is the dummy variable for
announcement on day t-1, I t-1,N =1-I t-1,A.

Mean Equation

Filter Equation
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Quasi-maximum likelihood estimates of the model

coefficient robust t-stat

C 0.02316893 2.03719**

η 0.048466608 0.51737

ω 0.166289902 6.05573**
α Α -0.191135516 -3.60635**

α Ν -0.005939494 -0.82778

β Α 0.561742709 3.33368**

β Ν 0.965316541 61.37579**

γ Α =

1 0.322663668 2.47496**

γ Ν =

1 0.032498408 2.81889**

ϕ==

2 0.096385012 1.82607*

ρ 1 0.469785081 7.30347**
ρ 2 -0.027565009 -0.39494

ρ 3 -0.177910218 -3.78899**
ρ 4 0.207893337 3.07932**
ρ 5 0.140208444 2.89423**

Residuals Sum of squares: 633.3117
R**2 : 0.0025

Ljung-Box(15): 10.5777
log likelihood: -1593.146077

Note1: likelihood ratio test for asymmetric effects are 14.3, 1% significant with χ2(2).
============αA would otherwise be insignificant; αN would be 0.021, significant.

Note2: likelihood ratio test for big shocks is 10.6, 1% significant with χ2(1).
Notea: ** denotes significance at 5%, * denotes significance at 10%.

Filter Equation

Table 6a. Filtered GARCH with Big Shocks a

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I t

represents the dummy variables of the announcement days. I t +1 denotes for days
prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday

respectively. I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings
big shock on day t-1; I t-1,B=0, otherwise. I t-1,A is the dummy variable for
announcement on day t-1, I t-1,N =1-I t-1,A.

Mean Equation

Variance Equation

Rt = c + ηIt,Aht+Ftεt , where ),h~N(Φε ttt 01−
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Quasi-maximum likelihood estimates of the model

coefficient robust t-stat

C 0.024471697 2.23184**

Variance Equation

ω 0.166044224 6.02263**
θ 1 -0.180995517 -3.75748**

α Ν -0.005822975 -0.80961

θ 2 -0.4020016 -2.3856**

β Ν 0.965401002 61.42687**

γ Α=

0.325734032 2.43863**

γ Ν=

0.03228159 2.80504**

ϕ 0.092186358 1.83998*

ρ 1 0.477931673 7.43115**
ρ 2 -0.027110577 -0.38649

ρ 3 -0.17669006 -3.76044**
ρ 4 0.206615636 3.06432**
ρ 5 0.135599234 2.80902**

Residuals Sum of squares: 633.5362
R**2 : 0.001952
Ljung-Box(15): 10.4233
log likelihood: -1593.5462

Notea: ** denotes significance at 5%, * denotes significance at 10%.

Table 6b. Filtered GARCH with Big Shocks a

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I t

represents the dummy variables of the announcement days. I t +1 denotes for days
prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday

respectively. I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement
brings big shock on day t-1; I t-1,B=0, otherwise. I t-1,A is the dummy variable for
announcement on day t-1, I t-1,N =1-I t-1,A.

Mean Equation

Filter Equation
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Quasi-maximum likelihood estimates of the model

coefficient robust t-stat

C 0.024502091 2.23283**

ω 0.16792935 6.11585**
α Α -0.174599984 -3.27811**

α Ν -0.006107231 -0.82167

β Α 0.548363055 3.01668**

β Ν 0.963810537 57.9055**

γ Α=

0.313463293 2.30893**

γ Ν=

0.033118642 2.78592**

ϕ 0.090642222 1.67556*

ρ 1 0.43235066 6.09007**
ρ 2 -0.027967113 -0.3931

ρ 3 -0.175541164 -3.71973**
ρ 4 0.209575858 3.10021**
ρ 5 0.13051766 2.57673**

ρ 6 0.097326037 1.00665
Residuals Sum of squares: 633.5357
R**2 : 0.001957

Ljung-Box(15): 10.152
log likelihood: -1592.840735

Notea: ** denotes significance at 5%, * denotes significance at 10%.

Filter Equation

Table 7a. Test for Heterogeneity of Unemployment in Filter a

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I t

represents the dummy variables of the announcement days. I t +1 denotes for
days prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday
respectively. I t,uem denotes the dummy variable for days with unemployment

news. I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings
big shock on day t-1; I t-1,B=0, otherwise. I t-1,A is the dummy variable for
announcement on day t-1, I t-1,N =1-I t-1,A.

Mean Equation

Variance Equation

Rt = c + F tεt , where ),h~N(Φε ttt 01−
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Quasi-maximum likelihood estimates of the model

coefficient robust t-stat

C 0.024917922 2.2685**

ω 0.16452463 5.94598**
α Α -0.167175834 -2.53695**

α Ν -0.00558966 -0.77022

β Α 0.512323681 3.03106**

β Ν 0.964917286 60.82589**

γ Α=

0.351512216 2.49836**

γ Ν=

0.032609418 2.77975**

ϕ 0.084023671 1.49949

κ -0.041542192 -0.74501

ρ 1 0.472539568 7.36339**
ρ 2 -0.023885692 -0.33301

ρ 3 -0.175227709 -3.7181**
ρ 4 0.201846738 3.04638**
ρ 5 0.135585756 2.85335**

Residuals Sum of squares: 633.5371
R**2 : 0.002024
Ljung-Box(15): 10.6373
log likelihood: 1593.240911

Notea: ** denotes significance at 5%, * denotes significance at 10%.

Filter Equation

Table 7b. Test for Heterogeneity Persistence of Unemployment a

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I t

represents the dummy variables of the announcement days. I t +1 denotes for days prior
to the announcements, while I t-1 for days immediately following the announcements.
D 4 and D 5 stand for dummy variables of Thursday and Friday respectively. I t,uem

denotes the dummy variable for days with unemployment news. I t-1
-=1 if ε t-1<0; I t-1

-=0,
otherwise. I t-1,B=1, if the announcement brings big shock on day t-1; I t-1,B=0,
otherwise. I t-1,A is the dummy variable for announcement on day t-1, I t-1,N =1-I t-1,A.

Mean Equation

Variance Equation
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Quasi-maximum likelihood estimates of the model

coefficient rob.tst

C 0.017043882 1.51588

λ -0.567754126 -3.67252**

ω 0.182644893 6.74652**
α Α -0.205159 -5.79377**

α Ν -0.002203247 -0.26626

β Α 0.542508882 4.64492**

β Ν 0.953163642 44.52611**

γ Α =

1 0.341824651 2.58365**

γ Ν =

1 0.031350474 2.34844**

ϕ== 0.180675005 2.22382**

ρ 1 0.472731621 7.31562**
ρ 2 -0.10155739 -1.59472

ρ 3 -0.139347731 -2.43957**
ρ 4 0.150123399 2.25695**
ρ 5 0.11130336 2.34446**

ρ 6 0.388551508 2.12313**
Residuals Sum of squares: 669.0185
R**2 : 0.011631

Ljung-Box(15): 17.6939
log likelihood: 1656.458284

Note1: likelihood ratio test for asymmetric effects are 23.8, 1% significant with χ2(2).
============αA would otherwise be insignificant; αN would be 0.024, significant.

Notea: ** denotes significance at 5%, * denotes significance at 10%.

Filter Equation

where R t is the daily continuously compounded return of the Treasury futures
expressed in percent, Φt-1 is information set available at the end of day t-1. I ch

indicates the dummy variable for the quarterly switches in futures contracts. I t

represents the dummy variables of the announcement days. I t +1 denotes for days
prior to the announcements, while I t-1 for days immediately following the
announcements. D 4 and D 5 stand for dummy variables of Thursday and Friday

respectively. I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings
big shock on day t-1; I t-1,B=0, otherwise. I t-1,A is the dummy variable for
announcement on day t-1, I t-1,N =1-I t-1,A.

Table 8. GARCH with heterogeneity for Close-close Returns a

Mean Equation

Variance Equation
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Test for H 0: a =0, b =1 in the OLS regression:

Where is the squared return for the daily close-close returns, and H t-1,1 is the one-step forecast.

variable coefficient t-stat F-test F-test(joint) χ 2 test (joint) R 2 Durbin-Watson
a 0.013195 0.482337 0.232649 0.127076 0.254152 0.075437 2.139247
b 0.963366 0.493835 0.243873

Statistics

GARCH Implied Realized GARCH Implied Realized GARCH Implied Realized GARCH Implied Realized

Mean -0.000127 -0.00016 -0.00010 -0.015824 -0.01654 -0.01298 0.002456 0.002551 0.002018 0.003426 -0.00101 0.00558

Std. 0.015746 0.034676 0.032425 0.014981 0.038316 0.046372 0.014307 0.033282 0.031816 0.020175 0.041178 0.034668

t-stat -0.363487 -0.20145 -0.14316 -17.89437 -7.31301 -4.74271 7.736326 3.454268 2.85845 2.876834 -0.41347 2.726757

Median -0.00207 0 -1.84E-05 -0.016029 -0.0117 -0.00434 -0.000961 0 0.00041 0.001572 0 0.001037

39.54% 41.31% 49.31% 8.71% 22.61% 32.06% 44.67% 44.40% 52.12% 57.84% 42.86% 56.79%

Sign test2 -9.408294 -7.76498 -0.59911 -13.93064 -9.15435 -6.02087 -4.429947 -4.61347 1.795924 2.715294 -2.39046 2.361125

Note1: notice that the median for implied volatility is 0 except for announcement days. This causes < .
Note2: sign test= , where N denotes number of observations, n denotes number of positive observations.

Constant 0.00246** -0.00071* 0.00185** 0.00202** -0.001039 0.00107 0.002551** -1.59E-05 0.002651**
(7.12046) (-1.8955) (5.057604) (2.45970) (-1.25455) (1.22551) (3.102502) (-0.018955) (3.024547)

Anno -0.01828** -0.01832** -0.0150** -0.01507** -0.019091** -0.019081**
(-19.9225) (-19.9225) (-6.87558) (-6.92049) (-8.740887) (-8.733569)

Anno(-1) 0.00414** 0.00432** 0.00662** 0.00677** -0.000989 -0.000726
(4.14165) (4.7322) (3.00570) (3.10818) (-0.442512) (-0.330816)

Constant 0.00232** 0.00198** 0.00201**
(6.22015) (2.31713) (2.3352)

Friday -0.01202** (-0.01025)** (-0.01074)**
(-14.5505) (-5.4041) (-5,59742)

Note3: Anno denotes dummy variable for announcement days, Anno(-1) denotes dummy for days following annoucements.
t-statistics shown in parentheses, * denotes significance at 10%, ** denotes significance at 5%.

Note4: volatility data is in terms of annualized (multiplying by the square root of 252 - the approximate number of trading days in one year) standard deviation.

Table 9a. Unbiased test for one-step in-sample forecast

RealizedGARCH Implied
Table 9c. Anal ysis from OLS Re gression 3,4

Table 9b. Basic Statistics for Lo g Difference of Forward Estimated, Im plied and Realized Volatilit y1,4

All days Announcement days Days without announcements Days following announcements
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OLS estimates of the model
Where is the squared return for the daily close-close returns, and H t-1,1 is the one-step forecast
H 0: a =0, b =1

variable coefficient t-statistics F-test F-test(joint) χ2==test (joint) R2 Durbin-Watson
a 0.011138 0.168075 0.028249 1.488965 2.97793 0.66177 2.05762
b 0.802512 0.933381 0.871201

OLS estimates of the model

a -5.559194** -4.513466** -3.264638** -3.177181** -1.916818** 0.61574**
(-6.138501) (-4.232337) (-2.687821) (-2.199088) (-1.221566) (0.3631)

b 1.765648** 1.638627** 1.486493** 1.589419** 1.42465** 1.092919**
(16.06283) (12.661) -10.08364 (8.416623) (6.946588) (4.930657)

ma(1) 0.574052** 0.660782** 0.661428** 0.779414**
(10.31) (10.62026) (12.95511) (13.2172)

ma(2) 0.363148** 0.461118**
(5.842262) (7.867141)

R2 0.544318 0.698676 0.732321 0.246966 0.580509 0.659244
D-W stat 0.677071 1.667546 1.906378 0.445242 1.450461 1.783782

Note1: * denotes significance at 10%, ** denotes significance at 5%.
Note2: t-statistics shown in parentheses.

Table 10a. Unbiased test for one-step out-of-sample forecast 1

Forecasts with asymmetric effects Forecasts without asymmetric effects

Table 10b. Implied volatility and multi-step out-of-sample forecast 1, 2

Where σ IMV is the annualized square root of implied volatility, and σ GARCH is the annualized
square root of the mathematical mean of one-step to 38 step (trading-day based) forecasted
volatility.
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, where

For τ>1, then the forecast equation could be expressed as the following:

, where

, .

Note: this graph depicts the average impulse response of one-unit of |ε t| on the τ -step volatility forecast of the
datset with 2069 observations. The 1-step forecast equation could be expressed as the following:

In the equations above, I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings big shock on day t-
1; I t-1,B=0, otherwise. I t,A is the dummy variable for announcement on day t, I t,N =1-I t,A. Notice that the impact

on hA (ha in the graph) is low due to the small percentage of announcement days out of the whole sample (14%)
and that of the big-announcement days out of the announcement days (32%).

Graph 1: impulse response of shocks over
futures volatility
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, where

For τ>1, then the forecast equation could be expressed as the following:

, where

, .

Note: this graph depicts the impulse response of one-unit increase of |ε t| on the τ -step volatility forecast, when
ε t is positive. The average impulse response of 2069 observations in the dataset is calculated. The one-step
forecast equation could be expressed as the following:

In the equations above, I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings big shock on day
t-1; I t-1,B=0, otherwise. I t,A is the dummy variable for announcement on day t, I t,N =1-I t,A. Notice that if not for
the small percentage (14%) of announcement days out of the whole sample and that (32%) of the big-

announcement days out of the announcement days, the impact on hA (ha in the graph) would be higher.
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Graph 2: impulse response of positive
shocks over futures volatility
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, where

For τ>1, then the forecast equation could be expressed as the following:

, where

, .

Note: this graph depicts the impulse response of one-unit increase of |ε t| on the τ -step volatility forecast, when
ε t is negative. The average impulse response of 2069 observations in the dataset is calculated. The one-step
forecast equation could be expressed as the following:

In the equations above, I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings big shock on day
t-1; I t-1,B=0, otherwise. I t,A is the dummy variable for announcement on day t, I t,N =1-I t,A. Notice that if not for
the small percentage (14%) of announcement days out of the whole sample and that (32%) of the big-

announcement days out of the announcement days, the impact on hA (ha in the graph) would be higher.
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Graph 3: Impulse response of negative
shocks over futures volatility
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where

and

In our sample,

For τ>1, then the forecast equation could be expressed as the following:

, where

, .

Note: this graph depicts the time profie of one-unit increase of |ε t| from announcement days on the τ -step
volatility forecast, where (-) indicates a negative shock while (+) indicates a positive shock. The 1-step forecast
equation could be expressed as the following:

In the equations above, I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t-1,B=1, if the announcement brings big shock on day
t-1; I t-1,B=0, otherwise. I t,A is the dummy variable for announcement on day t, I t,N =1-I t,A. The percentage of
I t+ τ - 1,A =1 is 14% out of our sample.
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Graph 4. Impulse response for shocks from
announcement days
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where

and

For τ>1, then the forecast equation could be expressed as the following:

, where

, .

Note: this graph depicts the impulse response of one-unit of |ε t| from non-announcement days on the τ -step
volatility forecast (h). Where h(-) indicates impulse response from a negative shock while h(+) indicates that
from a positive shock. The one-step forecast equation could be expressed as the following:

In the equations above, I t-1
-=1 if ε t-1<0; I t-1

-=0, otherwise. I t,N is the dummy variable for non-announcement on

day t, I t,N =1-I t,A. The percentage of I t+ τ - 1,N =1 is 86% out of our sample. Since αN=0 for our sample, we find
the impulse response for h(+) on the x axis.
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Note: this graph depicts news impact on the one-step forecast, the estimates with close-close return data for the
sample period of Nov. 9, 1988 to Dec. 31, 1996 are used here.

Graph 6. News impact curve
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Note: implied deviation denotes the annualized square root of implied volatility, and GARCH forecasts are the annualized square root of the
mathematical mean of one-step to 38-step (trading-day based) forecasted volatility from the model.

Graph 8. in-sample GARCH forecasts and implied
volatility
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Note: implied deviation denotes the annualized square root of implied volatility, and GARCH(1) and GARCH(2) are the annualized square root of the
mathematical mean of one-step to 38-step (trading-day based) forecasted volatility from the models with and withoout asymmetric effect, repectively.

Graph 9: out-of-sample GARCH forecasts
and implied volatility
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