
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Designing Integrated Strategies for Modularized Robotic Systems in Uncertain Environments

Permalink
https://escholarship.org/uc/item/7rc1t1b1

Author
Leu, Jessica En Shiuan

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rc1t1b1
https://escholarship.org
http://www.cdlib.org/


Designing Integrated Strategies for Modularized Robotic Systems in Uncertain
Environments

by

Jessica En Shiuan Leu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Professor Francesco Borrelli
Professor Claire Tomlin

Spring 2022



Designing Integrated Strategies for Modularized Robotic Systems in Uncertain
Environments

Copyright 2022
by

Jessica En Shiuan Leu



1

Abstract

Designing Integrated Strategies for Modularized Robotic Systems in Uncertain
Environments

by

Jessica En Shiuan Leu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Historically, robots have successfully performed various tasks in isolated areas by following
preprogrammed commands. However, more and more potential robotic applications require
robots to complete tasks alongside or in collaboration with other agents such as other robots
and human workers. Such robots need algorithms that enable flexible behaviors in crowded
and uncertain environments, e.g., to plan actions safely and efficiently in shared spaces where
other agents are present. Consequently, researchers have proposed modularized robotic sys-
tems, which typically consist of perception, prediction, planning, and control modules. How-
ever, most of these works only emphasize the design of a single module and use off-the-shelf
methods directly for other modules. Therefore, the improvements made by the re-designed
module may have limited value to the overall robotic system; the off-the-shelf methods may
not be able to provide adequate information or fully utilize the information provided by the
re-designed module. Robot modules should be designed for better performance individually
and collectively; thus, this dissertation aims to develop integrated designs and strategies for
modularized robotic systems in uncertain environments. Furthermore, the computational
efficiency of the robotic system is crucial to the robot’s performance in uncertain environ-
ments; we address the improvement of the computational speed of the most time-consuming
module, the planner.

This dissertation consists of two parts. Part I involves a fundamental exploration of robot
motion planners and proposes hybrid motion planners that combine and utilize different
planning methods for better computational speed and plan quality, such as travel distance.
Chapter 2 combines a sampling-based algorithm, RRT*, and an optimization-based algo-
rithm, the convex feasible set algorithm (CFS). Chapter 3 focuses on long-horizon planning
problems; it combines RRT*, CFS, the Interior Point OPTimizer, and segmented trajectory
optimization. Chapter 4 focuses on motion planning for articulated vehicles; it combines
a search-based algorithm, improved A-search guided tree, and utilizes results from rein-



2

forcement learning to guide the search. Simulation results demonstrate the advantage of
the proposed motion planners in terms of computational speed and plan quality in static
and deterministic environments cluttered with obstacles. Chapter 5 studies motion plan-
ning in dynamic environments and presents a hierarchical receding horizon control (HRHC)
framework. The HRHC coordinates a motion planner, such as the planners presented in
Chapters 2-4, with a safety controller to achieve safe and efficient robot motion in uncertain
environments in simulations and real-world experiments.

Part II presents application-oriented integrated robotic systems that coordinate the predictor
and the planner to make an effective and safe plan. Chapter 6 discusses the close relationship
between the prediction and planning modules and identifies several conditions for realizing
safe model predictive control in dynamic and uncertain environments; we present a predictor
designed for better closed-loop robot performance. Simulations and real-world experiments
that involve a robot working alongside a human worker are conducted; the robot can navigate
safely in the presence of unexpected human movements. In Chapter 7, simulations with a
computer assembly setting that involve a robot collaborating with a human worker are
conducted; the proposed robotic system coordinates the prediction and planning modules to
utilize human motion prediction and uncertainty estimation for robust task planning. The
robot can generate time-efficient task plans when the human worker performs inefficiently.
In Chapter 8, simulations involving an autonomous vehicle navigating in a parking lot while
avoiding collisions with static and moving obstacles are conducted; the proposed system
includes a hybrid environment predictor that makes short-term and long-term predictions of
the surroundings and a strategic motion planner that reacts to the environment according to
the predictions. The robot demonstrates the effectiveness of the proposed method in terms
of motion prediction, safe tracking, retreating in an emergency, and trajectory repairing.



i

To my family and friends



ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computational Efficiency and Robot Motion Planning . . . . . . . . . . . . . 3
1.3 Integrated Strategies of Modularized Robotic Systems . . . . . . . . . . . . . 5
1.4 Dissertation Contributions and Outline . . . . . . . . . . . . . . . . . . . . . 6

I Robot Motion Planning 12

2 Robot Motion Planning and Hybrid Motion Planning 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Problem Formulation and Related Works . . . . . . . . . . . . . . . . . . . . 15
2.3 The RRT*-CFS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Long-horizon Motion Planning 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Problem Formulation and Related Works . . . . . . . . . . . . . . . . . . . . 31
3.3 The RRT*-sOpt Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Search-based Motion Planning for Articulated Vehicles 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



iii

4.4 The Off-lattice Motion Planning Algorithm . . . . . . . . . . . . . . . . . . . 53
4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Motion Planning in Dynamic Environments 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Hierarchical Receding Horizon Control . . . . . . . . . . . . . . . . . . . . . 73
5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

II Integrated Strategies of Modularized Robotic Systems 82

6 Environment Prediction and Motion Planning 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Stability of MPC-based Planning . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Stability-enhanced Prediction and M -Convergence for Analysis . . . . . . . . 88
6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Application I: Human-Robot Collaboration for Assembly 100
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Robust Task Planning for HRC Applications . . . . . . . . . . . . . . . . . . 104
7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Application II: Autonomous Parking in Uncertain Environments 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3 Problem Statement and Proposed Architecture . . . . . . . . . . . . . . . . . 118
8.4 Prediction in Dynamic Parking Environments . . . . . . . . . . . . . . . . . 119
8.5 Strategic Motion Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Concluding Remarks and Suggested Future Works 131

Bibliography 134



iv

List of Figures

1.1 Applications of robotic systems in uncertain environments. A factory setting
(left) where the manipulators, mobile robots, and mobile manipulators need to
collaborate with human workers. A parking lot setting (right) where the ego
vehicle (blue car) needs to plan for parking while avoiding a moving obstacle
vehicle (gray car) and other static vehicles (white cars). The other moving agents’
intents and future motion plans are unknown to the ego robot in both settings.
To complete a task, the robot will need to perform safely and efficiently under
these uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Illustration of the modularized robotic system and the environment. . . . . . . . 6
1.3 Dissertation outline. In Part I, Chapters 2-4 focus on motion planner devel-

opments in static and deterministic environments. Chapter 5 moves to motion
planning strategies in uncertain environments. In Part II, Chapters 6-8 further
incorporate the prediction module and propose integrated strategies for modu-
larized robotic systems in uncertain environments, while Chapter 7 emphasizes
task planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A manipulator navigating through the obstacles. . . . . . . . . . . . . . . . . . . 14
2.2 A mobile robot (left) and a manipulator (right). . . . . . . . . . . . . . . . . . . 20
2.3 Illustration of the distance function. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Simulation results of a 2D motion planning. . . . . . . . . . . . . . . . . . . . . 24
2.5 A simulation result of motion planning in the narrow passage (close to y = 0.1)

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Planning results using RRT*-CFS in 5D manipulation planning problems. . . . 27

3.1 A manipulator navigating through a car frame in a factory. . . . . . . . . . . . . 30
3.2 The illustration of a segmented trajectory and the iterative optimization process. 34
3.3 An example of computation time reduced by segment merging in 2D planning.

(Notice that we hard-coded this merge to generate this plot for more precise
visualization. In the simulations, merging typically occurs in later iterations.) . 35

3.4 Illustration of segment merging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 A mobile manipulator (left) and the coordinate system of the mobile manipulator

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Path length reduction performance comparison between RRT* and RRT*-sOpt. 40



v

3.7 Simulation results of the 2D motion planning. . . . . . . . . . . . . . . . . . . . 41
3.8 Simulation results of the 5-Dof manipulator motion planning. . . . . . . . . . . 44
3.9 Simulation results of a mobile manipulator motion planning. . . . . . . . . . . . 47

4.1 Kinematics of a front-drive tractor with 3 trailers. (All trailers are on-axle, and
all angles representing the orientation of tractor and trailers (θi, i = 0, . . . , 3) are
w.r.t. the x-axis.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 (a) An example of the circular equilibrium configuration. (b) An example of a
motion primitive in the original state space X , but starts and ends at the plane
of the reduced-state space X̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Motion primitive generation: (a) an example of parallel parking maneuver, (b)
motion primitives from reversibility and symmetry. The lines indicate the trajec-
tories of the tractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Simplification of motion primitive by rotational symmetry. . . . . . . . . . . . . 56
4.5 A trailer driving “forward” (left) and “backward” (right) to the goal configuration

(marked in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 9 poses ofMoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Reachability analysis ofMon: (a) adjacency matrix ofMon (b) outdegree ofMon. 59
4.8 Reachability analysis ofMoff : (a) adjacency matrix ofMoff , and (b) outdegree

ofMoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 The critic net (left) and actor net (right). . . . . . . . . . . . . . . . . . . . . . 61
4.10 Example of the heuristic value for goal configuration at [0, 0, 0, 0, 0, 0]⊤ based on:

(b) Euclidean distance, (c) RS path, and (d) SAC value function. . . . . . . . . 62
4.11 Combining the local heuristic function and the global heuristic function. . . . . 63
4.12 Simulation results of case 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.13 Simulation results of case 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Distance function ϕm,ij(z(k)) and ϕp,j(z(k)). . . . . . . . . . . . . . . . . . . . . 73
5.2 Illustration of the slack variable. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 The overall control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 The hierarchical structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Results of collision avoidance in scenario I. . . . . . . . . . . . . . . . . . . . . . 78
5.6 Results of collision avoidance in scenario II. . . . . . . . . . . . . . . . . . . . . 79
5.7 Result of end-effector position keeping. . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Result of avoiding moving human worker. . . . . . . . . . . . . . . . . . . . . . 81

6.1 The execution structure of MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 The overall system control design. . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Illustration of M -convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Scenario that has oscillating moving obstacles. . . . . . . . . . . . . . . . . . . . 93
6.5 Comparison between MPC without stability-enhanced prediction and the pro-

posed MPC with stability-enhanced prediction. . . . . . . . . . . . . . . . . . . 94



vi

6.6 Path planned and implemented in the second scenario. . . . . . . . . . . . . . . 96
6.7 Path planned and implemented in the third scenario. . . . . . . . . . . . . . . . 97
6.8 Experimental result with mobile robot passing by another robot. . . . . . . . . . 98
6.9 Experimental result with mobile robot passing by a human worker that walks

away from the robot after leaving the working area. . . . . . . . . . . . . . . . . 98
6.10 Experimental result with mobile robot passing by a human worker that walks

along the same direction as the robot for a short period of time after leaving the
working area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 The sequential/parallel task model for a desktop assembly task. . . . . . . . . . 103
7.2 The overall system control design. . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 An illustration of a human worker and a robot performing an assembly task (left)

and the simulation setup for the computer assembly. The areas enclosed by the
dashed lines are the designated areas for the objects. The mouse controlled by
the human is indicated by the green circle (right). . . . . . . . . . . . . . . . . . 109

7.4 Experimental result of the robot with the baseline planner collaborating with an
efficient human worker. (Case 1.) . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Experimental result of the robot with the baseline planner (upper row) and the
robust task planner (lower row) collaborating with a lazy human worker. (Case 2.)111

7.6 Experimental results of the robot with the robust task planner collaborating with
a slacking human worker. (Case 3.) . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1 The simplified bicycle vehicle model. L is the distance between the axis of the
rear wheels and the axis of the front wheels. . . . . . . . . . . . . . . . . . . . . 118

8.2 The integrated prediction and planning system. . . . . . . . . . . . . . . . . . . 119
8.3 The architecture of the hybrid environment predictor. . . . . . . . . . . . . . . . 120
8.4 The architecture of the cascade motion estimator. . . . . . . . . . . . . . . . . . 120
8.5 There are 2 routes (black dashed lines) and 2 main modes (red for “cruising” and

blue for “maneuvering”) in this example, resulting in a total of 4 modes for the
OV: 1) cruise(exit) left; 2) maneuver left; 3) cruise(exit) right; 4) maneuver right. 122

8.6 The hybrid predictor predicts a short-term OV trajectory (green line) and use it
with mode prediction to generate the safety margins for h = 1 and h = H and
the safety bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.7 The ego AV following the retreating plans (blue star-lines). The light-blue lines
illustrate the original trajectory, the red dashed-lines combining the blue star-
lines will be the new reference Pref , and the collision field is illustrated by the
contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.8 The ego AV (red vehicle) following the repaired plan (green lines) that is calcu-
lated from the blocked original trajectory (light-blue lines). . . . . . . . . . . . . 126

8.9 Simulation results in one of the parking scenarios. (0.25 s/time step) . . . . . . 129
8.10 The simulation result of steering estimation, mode estimation, and safety margin. 130



vii

List of Tables

2.1 Simulation comparison of 2D planning. (Average of 100 trials.) . . . . . . . . . 23
2.2 Simulation comparison of 2D-narrow-passage planning. (Average of 20 trials.) . 23
2.3 Simulation comparison of 5D Motion planning. (Average of 20 trials.) . . . . . . 28

3.1 Simulation comparison of 2D planning with 5 to 20 obstacles. (The results are
the average of 25 trials. The notion “7 → 3.9” in # Segments in “auto-merge
segments” means that the RRT*-sOpt starting from 7 segments on average termi-
nates at 3.9 segments. The computation time standard deviation for RRT*-sOpt
only considered the time variation during the optimization stage.) . . . . . . . . 42

3.2 Simulation comparison of 5-Dof manipulator motion planning. (Average of 20
trials.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Simulation comparison of mobile manipulator motion planning. (Average of 10
trials.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Comparison of i-AGT performances with heuristic based on RS and SAC value
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 Task completion time for each case. . . . . . . . . . . . . . . . . . . . . . . . . . 109



viii

Acknowledgments

The past five years at UC Berkeley have been a fantastic journey. To begin with, I want
to express my deepest gratitude to my advisor, Professor Masayoshi Tomizuka, who has
tremendously supported me throughout my Ph.D. study. His scientific insights helped direct
my research pathway, and his enthusiasm for work shaped my attitudes as a student, a
researcher, and an engineer. Professor Tomizuka respected my research ideas and inspired
me to explore effective solutions for challenging problems. This dissertation would not have
been possible without his help and guidance.

I also want to thank Professor Francesco Borrelli and Professor Claire Tomlin for serving
on my dissertation committee. Meanwhile, I am thankful to Professor Kameshwar Poolla,
Professor Laurent El Ghaoui, Professor Mark Mueller, and Professor Hannah Stuart for
serving on my qualifying exam committee.

Special thanks go to National Science Foundation and Mitsubishi Electric Research Lab-
oratories (MERL), the sponsors for the work in this dissertation. The great collaborations
and valuable discussions with employees at MERL, including Dr. Yebin Wang and Dr. Ste-
fano Di Cairano, enhance this dissertation by having more diversified robot platforms and
more industrial perspectives.

I am extremely grateful to work with excellent graduate students in Mechanical Systems
Control (MSC) Laboratory. I would like to especially thank Changliu Liu and Liting Sun
for their helpful guidance and extraordinary research collaborations. I also want to express
my gratitude to Daisuke Kaneishi, Rachel Lim, Michael Wang, and Ge Zhang for the great
research collaborations. Many thanks to all the members that I have met at the MSC lab,
including Chen-Yu Chan, Xiaowen Yu, Yu Zhao, Shuyang Li, Te Tang, Hsien-Chung Lin,
Yongxiang Fan, Cheng Peng, Wei Zhan, Yu-Chu Huang, Zining Wang, Jianyu Chen, Kiwoo
Shin, Taohan Wang, Shiyu Jin, Yujiao Cheng, Chen Tang, Zhuo Xu, Yeping Hu, Jiachen Li,
Saman Fahandezhsaadi, Hengbo Ma, Changhao Wang, Xinghao Zhu, Ting Xu, Weiye Zhao,
Lingfeng Sun, Yiyang Zhou, Huidong Gao, Xiang Zhang, Zheng Wu, Wu-Te Yang, Jinning
Li, Catherine Weaver, Akio Kodaira, Chenfeng Xu, Ce Hao, Chenran Li, Ran Tian, Yichen
Xie, Qiyang Qian, Keita Kobashi, Jen-Wei Wang, Wei-Jer Chang, Chiara Talignani Landi,
Mayuko Mori, Daichi Kitagawa, Takanori Yamazaki, Motohiro Hirao, and all others.

Finally, I would like to express my deepest love to my parents, whose support and love
are with me all the time. I would also like to thank my friends that I met in Berkeley,
including friends in CalTTC, CFC Berkely Church, and BSF El Sobrante.



1

Chapter 1

Introduction

1.1 Background

Robotic systems have made a significant impact in our society in the last couple of
decades, for example, in industrial and autonomous driving applications [131, 104]. In
manufacturing, robotic automation has increased productivity by executing repetitive tasks
in designated areas without human workers. Control policies can be developed for these
applications that follow human-engineered, predetermined rules. However, these robotic
systems lack flexibility and generalizability to different settings; additionally, many real-
world tasks in factories and warehouses require robots to work safely alongside or collaborate
with other agents such as human workers and other robots. Autonomous vehicles share
similar challenges, where robotic systems must be aware of the environment to navigate
roads and parking lots safely. Ideally, we want to grant both human and robotic systems
maximum freedom in choosing their actions to achieve higher joint-flexibility in these complex
human-robot applications. However, such freedom introduces uncertainty to the environment
and collision risks to the agents involved. In particular, an environment is an uncertain
environment to a robot when there exist unobservable states of the surrounding agents,
which causes their unpredictable movements (Figure 1.1). For example, a robot cannot
directly observe a human worker’s intent if the person has the freedom of choosing actions
instead of executing an assigned action. A misunderstanding of the worker’s intent or wrong
prediction of the worker’s future movement may cause collisions when the robot follows an
unsafe plan due to the wrong predictions. Therefore, robotic applications in these uncertain
environments are generally challenging. In these uncertain environments, we need to develop
robotic systems that utilize their prior knowledge of the application and their observation of
the environment to appropriately analyze the unobservables, make predictions, and replan
while completing their tasks.

There are two main approaches to designing a robotic system in uncertain environments:
the modularized design approach [162, 76] and the end-to-end design approach [153, 25].
In the modularized design approach, the functions (or modules) that govern robot behav-



CHAPTER 1. INTRODUCTION 2

iors such as perception, prediction, planning, and control are individually designed. These
systems offer clear structures and explainable behaviors that can be easily targeted and
improved. On the other hand, end-to-end design approaches leverage advances in artificial
intelligence to learn the end-to-end robot policies, i.e., complex functions represented by
neural networks that receive sensor readings from the environment and output control com-
mands directly. However, it is difficult to identify how different environmental changes or
external agents’ behaviors (e.g., an interacting human agent) affect the end-to-end policy’s
decisions; it can be challenging to make safety guarantees or generalize the end-to-end policy
to other environments. Considering the trade-offs of these design approaches, modularized
design approaches are widely adopted in industry and academia for robotic systems in un-
certain environments with human interaction. This dissertation will focus on the design of
such modularized robotic systems.

Depending on the specific robotic application, what constitutes “good” performance may
vary; in this dissertation, we focus on three important aspects of the performance of modu-
larized robotic systems and their challenges.

• Computational efficiency: In uncertain environments, the robot must react quickly
to unexpected events, and hence the computational speed of each module is crucial.
Individual algorithms in each module should be designed to suit the application and
leverage parallel computing technology. In addition, the robot could use different
algorithms for different scenarios to handle environmental changes more efficiently.
Therefore, modules should have the ability to use different algorithms strategically.

• Safety: The ability to avoid collisions with static and dynamic obstacles directly links
to the safety of the robot and its surroundings. In uncertain environments where
motions of moving obstacles are hard to predict, safety is critical yet challenging. The
realization of safety is a combined effort of the robot modules. The perception and
prediction modules should be accurate, the planner should find a safe plan, and the
controller should execute the plan accurately. Theoretically, the planning result will
remain safe during execution if the perception and prediction are perfect. However,
perfect perception and prediction are rarely possible; therefore, dedicated designs and
strategies for modules to collaboratively ensure safety without perfect perception and
prediction are needed. For example, a predictor should provide the prediction result
with its prediction error history to the planner; the planner should account for the
predictor’s performance based on the prediction error history to avoid being overly
confident with the prediction result.

• Robot Motion Optimality: We desire robots to perform optimally according to
application-specific objectives. Task completion time, travel distance, energy consump-
tion, and travel area coverage are typical metrics that a robot minimizes to achieve
motion optimality. In static and deterministic environments, motion optimality relies
on the planner to find an optimal plan given the objectives and the controller to exe-
cute the plan precisely. However, in dynamic and uncertain environments, the optimal



CHAPTER 1. INTRODUCTION 3

Robot
Assistant

Robot-Robot
Collaboration

Human 
Worker

Automated Guided 
Vehicle (AGV)

Human-Robot
Collaboration

Figure 1.1: Applications of robotic systems in uncertain environments. A factory setting
(left) where the manipulators, mobile robots, and mobile manipulators need to collaborate
with human workers. A parking lot setting (right) where the ego vehicle (blue car) needs to
plan for parking while avoiding a moving obstacle vehicle (gray car) and other static vehicles
(white cars). The other moving agents’ intents and future motion plans are unknown to the
ego robot in both settings. To complete a task, the robot will need to perform safely and
efficiently under these uncertainties.

plan may no longer be optimal once the environment changes are different from the
prediction; a conservative planner may sometimes result in better robot motions than
a greedy planner that outputs the “optimal” solution by fully trusting the partially
incorrect predictions. In uncertain environments, the robot should be able to extract
information about the uncertainties from observations and consider it properly during
planning. Similar to ensuring safety, coordinated designs and strategies are needed for
modules to optimize robot motions collaboratively.

Since planning is often the most time-consuming module among all modules, this disser-
tation devotes much effort to the algorithm design for improving the planner’s computational
efficiency, which directly improves the computational efficiency of the robotic system. Fur-
thermore, we study the design and relationship between modules in the modularized robotic
system and develop strategies for multiple robotic applications in uncertain environments.
The proposed robotic systems and strategies aim to enable better safety and robot motion
optimality.

1.2 Computational Efficiency and Robot Motion

Planning

Since computational efficiency is important for robotic systems in uncertain environ-
ments, planners should be able to find feasible and locally-optimal solutions to various plan-
ning problems quickly. Hence, we evaluate the planner’s performance based on 1) computa-



CHAPTER 1. INTRODUCTION 4

tion time and 2) plan quality, i.e., plan optimality given the application-specific objective.
Naturally, there is a trade-off between the two performance metrics, i.e., a planner will need
more time to find a better solution. Therefore, we need to consider both of them when
we compare the overall performances of different planners. Three types of planning are
considered in this dissertation:

• Task Planning: A task-level planning problem refers to planning a sequence of ac-
tions, which are tuples of {motion, object}, to complete a task. For example, gluing
two pieces of paper together can be completed by executing five actions sequentially: 1)
{grab, paper1}, 2) {release at location A, paper1}, 3) {glue, paper1}, 4) {grab, paper2},
and 5) {release at location A, paper2}. A task planner often tries to minimize task com-
pletion time [55]. If the robot collaborates with other human workers, human fatigue
and mutual spatial interference are often considered [55, 107]. The specific motion
generation relies on other planners.

• Path Planning: Path planning and motion planning problems are action-level plan-
ning problems. A path is a sequence of robot configurations that connects the initial
configurations to the goal configurations. Without considering the full robot kinematic
models which often involve velocity and acceleration terms, path planning problems
can usually be solved quickly. It is a common strategy to first use a path planner to
generate some “waypoints” and form a path, then use a tracking controller to gen-
erate control commands for the robot to track the path [17, 174]. Path planning is
useful when there exists a tracking controller that can control the robot to follow the
generated path closely. Such controller exists when the robot kinematic model can
be approximated by simpler models such as a differential-drive, a bicycle model, or a
point mass [26]. However, path planning results for robots with complicated models
are sometimes useless because tracking these paths that do not consider the full robot
model can be hard or even impossible.

• Motion Planning: In this dissertation, a motion planning problem refers to the
problem of finding a sequence of robot input commands and its resulting trajectory
that brings the robot from its initial state to its goal state to achieve the desiredmotion.
The motion in the previous example contains many sub-motions. For example, grab
contains {reach, grasp, retrieve}. While grasp, or robot grasping, is itself a major
research field, in this dissertation, we focus on motion planning problems that target
“moving from A to B,” such as reach and retrieve. Unlike path planning, motion
planning considers both the robot input commands and the resulting trajectory, i.e.,
the full robot kinematic model; therefore, this planning method ensures that the robot
can follow the path by executing the planned commands. This guarantee is essential
when the system’s kinematics is complicated and developing a tracking controller is
not trivial [90].

Planning at task-level and at action-level are both critical. Nevertheless, we view action-
level planning as a more fundamental problem because all robot application requires action-



CHAPTER 1. INTRODUCTION 5

level planning while simple applications may not require task-level planning; therefore, we
put more effort into solving the action-level problem (Chapters 2-5) and discuss task-level
planning in Chapter 7. In particular, we focus on motion planning problems for the com-
pleteness of their planning results, i.e., planning results that consider both the robot input
commands and the resulting trajectory. Unlike path planning, we ensure that the motion
planning result is directly executable.

Motion planning becomes a challenging problem when: 1) the environment is cluttered
with many obstacles, 2) the planning horizon is long, and 3) the robot kinematics is compli-
cated. When solving these problems, planners often suffer a long computation time and a
low success rate. Therefore, we desire planners that overcome these problems while generat-
ing solutions that achieve a certain level of optimality according to the application-specific
objectives. This challenge motivates the development of motion planners presented in Chap-
ters 2-4. On the other hand, robots may fail to react to rapid environmental changes by
replanning with such planners only. Therefore, Chapter 5 introduces a hierarchical optimal
planning strategy that augments the planner with a safety controller to react to changes
in the environment. Furthermore, we note that different motion planning algorithms per-
form differently in different scenarios; therefore, a planner should not be restricted to a single
planning algorithm but switch between different planning algorithms to computationally effi-
ciently handle different situations. An example of such strategic motion planner is presented
in Chapter 8.

The following section discusses our approach to enable better performance in safety and
optimality for modularized robotic systems.

1.3 Integrated Strategies of Modularized Robotic

Systems

We first give a closer look at the robotic system’s structure. A modularized robot system
often has four main modules (Fig. 1.2): perception, prediction, planning, and control. The
perception module monitors the environment with sensors. It records the observable states
of the environment (e.g., the observable states such as the locations of the human workers or
robots nearby) and perform signal processing such as filtering. The prediction module takes
the processed signals and makes predictions of the environments, such as future movements
of the surrounding agents or estimations of the agents’ unobservable states, such as their
intentions. The planning module receives the prediction information and generates task-level
and action-level plans to guide the robot safely and efficiently in completing a task. Finally,
the control module executes control commands to carry out the plan.

The success of the robotic system depends on the modules’ performance individually and
collectively. However, most works in modularized robotic system design only emphasize the
design of a single module and use off-the-shelf methods directly for other modules. This
approach limits the collaboration between modules because the off-the-shelf methods may



CHAPTER 1. INTRODUCTION 6

Planning

Perception

Control

Prediction

Uncertain Environment
(Human and other agents)

Robot software

Robot hardware

Observation

Figure 1.2: Illustration of the modularized robotic system and the environment.

not be able to provide adequate information or fully utilize the information provided by
the re-designed module. While each module should calculate as quickly and accurately as
possible, it is also essential that the modules upstream provide the outputs with a bound on
how much the downstream modules should trust these outputs so that the robot can behave
safely and optimally. For example, when a robot is bypassing a non-stationary human worker,
if the predictor cannot accurately predict the worker’s movement, the planner should detour
the robot to make more space for the worker when the robot passes by; even though this
will cost the robot to spend more time to complete its task. In contrast, if the predictor is
certain about the human worker’s future movement, the planner only needs to leave a small
clearance away from the worker’s predicted future path. The term integrated strategies refers
to the communication, decision making, and planning that rely on multiple modules. This
dissertation focuses on the design and communication of two of the four modules: prediction
and planning. The main idea is to design a predictor that can estimate the uncertainty and
represent it in an interpretable way that the planner can utilize. Chapter 6 considers the
design of a predictor that facilitates the planner for better stability of the closed-loop robot
motion. Chapters 7 and 8 present modularized robotic systems and their integrated strategy
in an industrial setting and an autonomous parking setting, respectively.

1.4 Dissertation Contributions and Outline

This dissertation consists of two parts. Part I involves a fundamental exploration of
robot motion planners and proposes hybrid motion planners that combine and utilize the



CHAPTER 1. INTRODUCTION 7

Prediction

Static Environment

Uncertain Environment

Chapter 3 
Long-horizon Motion Planner

Motion 
Planning

Task 
Planning

Chapter 6
Stability Enhanced 

Prediction 

Chapter 2 
Hybrid Motion Planner

Chapter 4
A-search Guided Tree Planner

Chapter 5 Hierarchical Receding Horizon Control

Chapter 8
Application II: 

Autonomous Parking

Chapter 7
Application I:

Human-Robot Collaboration 
for Assembly

Robot Motion Planning (Part I)
Integrated Strategies of Modularized Robotic Systems (Part II)

Figure 1.3: Dissertation outline. In Part I, Chapters 2-4 focus on motion planner develop-
ments in static and deterministic environments. Chapter 5 moves to motion planning strate-
gies in uncertain environments. In Part II, Chapters 6-8 further incorporate the prediction
module and propose integrated strategies for modularized robotic systems in uncertain en-
vironments, while Chapter 7 emphasizes task planning.

strengths of different planner types to achieve better computational speed and plan quality.
Part II presents application-oriented integrated robotic systems that coordinate the predictor
and the planner in order achieve better performance in safety and robot motion optimality.
Figure 1.3 illustrates the outline of this dissertation.

1.4.1 Part I: Robot Motion Planning

Traditionally, motion planners generally fall into three types: Sampling-based, search-
based, and optimization-based methods. On the other hand, data-driven learning techniques



CHAPTER 1. INTRODUCTION 8

provide us with a different approach to generating robot motion. To better handle the afore-
mentioned challenges in Section 1.2, Part I studies these different types of motion planners
and then develops hybrid planners that combine and utilize the strength of existing methods.
Chapters 2∼4 present such planners that demonstrate better computational speed and plan
quality in static and deterministic environments. To extend robotic application to uncertain
and dynamic environments, Chapter 5 studies a realization of motion planning in dynamic
environments. Notice that the framework proposed in Chapter 5 can also utilize the planners
presented in Chapters 2-4 for robots in dynamic environments. Some of the work has been
published in [97, 101, 99].

Chapter 2 Robot Motion Planning and Hybrid Motion Planning

In environments full of obstacles, it is always challenging to find a collision-free and
dynamically-feasible trajectory between the robot’s initial state and goal state. While many
motion planning algorithms have been proposed in the past, each has its pros and cons. This
chapter presents a benchmark that implements and compares existing planning algorithms on
various problems with extensive simulation. Based on that, we also propose a hybrid planning
algorithm, an optimal rapidly-exploring random tree with the convex feasible set algorithm
(RRT*-CFS), that combines the merits of sampling-based planning and optimization-based
planning. The first layer, RRT*, quickly samples a semi-optimal path, and the second
layer, CFS, performs sequential convex optimization given the reference path from RRT*.
The proposed RRT*-CFS has feasibility and convergence guarantees. Simulation results
show that RRT*-CFS benefits from the hybrid structure and performs robustly in various
scenarios, including the narrow passage problems.

Chapter 3 Long-Horizon Motion Planning

Many robotic applications require robots to travel long distance, however, planning for a
long-horizon motion plan is challenging due to the unsatisfactory scaling ability of modern
motion planners. We propose a hybrid planner, RRT* with segmented trajectory optimiza-
tion (RRT*-sOpt), which can plan for long-horizon robot navigation in environments with
obstacles. Like RRT*-CFS, RRT*-sOpt combines the merits of sampling-based planning,
optimization-based planning, trajectory splitting to plan for a collision-free and dynamically-
feasible motion plan quickly. Given the semi-optimal reference path from the RRT* layer,
the sOpt layer splits the reference path and optimizes each segment. It then splits the
new trajectory again and repeats the process until the whole trajectory converges. We also
propose reducing the number of segments before convergence to reduce computation time
further. Simulation results show that RRT*-sOpt benefits from the hybrid structure with
trajectory splitting and performs robustly in various robot platforms and scenarios.



CHAPTER 1. INTRODUCTION 9

Chapter 4 Search-based Motion Planning for Articulated Vehicles

Planning for a robot with a complex kinematic system, e.g., a tractor-trailer system, is
challenging because the solution needs to satisfy the highly nonlinear kinematic equations.
This chapter presents a motion planning strategy that utilizes the improved A-search guided
tree to enable autonomous parking of a general 3-trailer with a car-like tractor. Unlike state-
of-the-art state-lattice-based methods where numerous motion primitives are necessary to
ensure successful planning, our work allows quick off-lattice exploration to find a solution.
Our treatment brings at least three advantages: fewer and lower design complexity of motion
primitives, improved success rate, and increased path quality. Unlike on-lattice exploration,
where the cost-to-go is obtained by querying a heuristic look-up table, off-lattice exploration
entails a well-defined heuristic function at off-lattice nodes. It is challenging to manually
design a heuristic that can capture the tractor-trailer kinematics and differentiate the dif-
ferent levels of maneuver difficulty given the tractor-trailer’s configuration. Therefore, we
exploit the power of the data-driven method and train a neural network through reinforce-
ment learning to model the maneuver costs of the trailer and use it to obtain the heuristic
value that approximates the cost-to-go. Simulations demonstrate the effectiveness of the
proposed method in terms of computation time and path length.

Chapter 5 Motion Planning in Dynamic Environments

Motion planners need to strike a balance between plan quality and computation time.
Computation time is safety-critical in dynamic environments where a motion planner needs
to replan quickly and react to moving obstacles. However, as mentioned in Chapter 4, motion
planning is naturally time-consuming when the robot model is complex, e.g., a mobile ma-
nipulator; therefore, solely putting efforts into reducing the computation time of the motion
planner may not be enough. This chapter presents a hierarchical receding horizon control
algorithm (HRHC) to ensure safety while reducing travel time and distance in robots sur-
rounded by dynamic environments. HRHC contains an optimization-based motion planning
module that utilize the robot’s kinematic redundancy for better motion optimality and a
low-level safety controller to deal with fast changes in the environment. With this method,
we verify the performance through experiments. The results show that HRHC increases
space efficiency and can guarantee local safety in dynamic and uncertain environments.

1.4.2 Part II: Integrated Strategies of Modularized Robotic
Systems

This dissertation focuses on human-induced uncertainties and their effects on the space-
domain and time-domain, which make both task-level planning and action-level planning
challenging. Chapters 6 and 8 address the uncertainty’s effect on space-domain with the fo-
cus on motion planning, while Chapter 8 addresses the uncertainty’s effect on time-domain
with the focus on task planning. When a robot is in a dynamic and uncertain environment,



CHAPTER 1. INTRODUCTION 10

its predictor makes predictions based on past observations and passes this information to
the planner so that the planner can plan for the future. Due to the uncertainties, a predic-
tor often needs to update its prediction as more observations come in. These updates can
propagate to the planner and cause the motion plans to change. Without carefully designing
the predictor-planner relationship, the robot motion’s optimality and safety may be compro-
mised. Chapter 6 discusses the relationship between prediction, motion planning, and the
resulting stability of the closed-loop robot motion. Furthermore, we demonstrate the collec-
tive designs of the prediction and planning modules to ensure that sufficient information is
passed from the predictor to the planner and that the planner will not plan “too greedily”
under large uncertainty. Chapters 7 and 8 target human-robot collaboration for computer as-
sembly and autonomous car parking, respectively. Both settings contain uncertainty caused
by surrounding agents. The key to developing the proposed modularized robotic systems is
to examine the uncertainties involved in the applications and model them properly so that
the predictor can estimate them and make effective predictions, and the planner can plan
appropriately according to the predictor’s outputs. We design such predictors and planners
to facilitate safe and optimal robot motion. Some of the work has been published in [98,
102, 100].

Chapter 6 Environment Prediction and Motion Planning

Real-time, safe, and stable motion planning in applications involving dynamic human-
robot interaction remains challenging due to the time-varying nature of the problem. One
of the biggest challenges is guaranteeing the planning algorithm’s closed-loop stability in
dynamic environments. Typically, this can be addressed if there exists a perfect predictor
that precisely predicts the future motions of the obstacles. Unfortunately, a perfect predic-
tor is rarely achievable. We discuss necessary conditions for the closed-loop stability of a
planning problem in uncertain environments using the framework of model predictive control
(MPC). It is concluded that the predictor needs to be able to detect the obstacles’ move-
ment mode change within a time delay allowance, and the MPC needs to have a sufficient
prediction horizon and a proper cost function. If these conditions are satisfied, the MPC can
ensure closed-loop stability, and it can still avoid collision when the obstacles’ mode suddenly
changes (i.e., when the mode change condition does not hold); therefore, safety is guaran-
teed. Also, the closed-loop performance is investigated using a notion of M -convergence,
which guarantees finite local convergence (at least M steps ahead) of the open-loop trajec-
tories toward the closed-loop trajectory. With this notion, we verify the performance of the
proposed MPC with prediction through simulations and experiments. With the proposed
method, the robot can better deal with dynamic environments and reduce the closed-loop
cost.



CHAPTER 1. INTRODUCTION 11

Chapter 7 Application I: Human-Robot Collaboration for Assembly

In this chapter, we switch from action-level planning to task-level planning, which is
needed when the robot collaborates with others. Nevertheless, efficient and robust task
planning for a human-robot collaboration (HRC) system remains challenging. The human-
aware task planner needs to assign jobs to both robots and human workers so that they
can work collaboratively to achieve better time efficiency. However, the complexity of the
tasks and the stochastic nature of the human collaborators bring challenges to such task
planning. To reduce the complexity of the planning problem, we utilize the hierarchical task
model, which explicitly captures the sequential and parallel relationships of the task. We
model human movements with the sigma-lognormal functions to account for human-induced
uncertainties. A human action model adaptation scheme is applied during run-time, and it
provides a measure for modeling the human-induced uncertainties. We propose a sampling-
based method to estimate human job completion time uncertainties. Next, we propose
a robust task planner, which formulates the planning problem as a robust optimization
problem by considering the task structure and the uncertainties. We conduct simulations
of a robot arm collaborating with a human worker in an electronics assembly setting. The
results show that our proposed planner can reduce task completion time when human-induced
uncertainties occur compared to the baseline planner.

Chapter 8 Application II: Autonomous Parking in Uncertain Environments

This chapter presents an integrated motion planning system for autonomous vehicle park-
ing in the presence of other moving vehicles. The proposed system includes 1) a hybrid en-
vironment predictor that predicts the motions of the surrounding vehicles and 2) a strategic
motion planner that reacts to the predictions. The hybrid environment predictor performs
short-term predictions via an extended Kalman filter and an adaptive observer. It also com-
bines short-term predictions with a driver behavior cost-map to make long-term predictions,
which contain information of the prediction uncertainties. Unlike Part I, where we com-
bine different planning techniques to develop a hybrid planner, we focus on strategies for
switching between different types of planners to deal with different scenarios. The strategic
motion planner comprises 1) a model predictive control-based safety controller for trajectory
tracking; 2) a search-based retreat planner for finding an evasion path in an emergency;
3) an optimization-based repair planner for planning a new path when the original path is
invalidated. Simulation validation demonstrates the effectiveness of the proposed method in
terms of initial planning, motion prediction, safe tracking, retreating in an emergency, and
trajectory repairing.



12

Part I

Robot Motion Planning



13

Chapter 2

Robot Motion Planning and Hybrid
Motion Planning

2.1 Introduction

Motion planning is one of the key challenges in robotics. It refers to the problem of
finding a collision-free and dynamically-feasible trajectory between the initial configuration
and the goal configuration in environments full of obstacles. Existing motion planning algo-
rithms fall into two categories: planning-by-construction or planning-by-modification [112].
Search-based planning and sampling-based planning are two typical plan-by-construction al-
gorithms. Algorithms such as A* and D* search [63, 155] belong to search-based algorithms,
whereas rapidly-exploring random tree (RRT) [94] and probabilistic roadmap (PRM) [79]
belong to sampling-based planning. Planning-by-modification refers to the algorithms that
reshape a reference trajectory to obtain optimality regarding specific properties [111, 136,
97]. Optimization-based algorithms belong to this category.

Both types of motion planning algorithms have pros and cons. Planning-by-construction
algorithms are guaranteed to generate collision-free trajectories and require short computa-
tion time. However, the constructed trajectories often do not consider dynamic constraints
and are not smooth. Some modifications remedy these problems [166, 170], but require
more computational resource. On the other hand, optimization-based algorithms often start
with an initial trajectory that links the initial state and the goal state [111, 136]. Next, the
algorithms iteratively improve the trajectory to satisfy the constraints (e.g., collision-free
conditions) and minimize the cost. Note that the initial trajectory can be either feasible
or infeasible depending on the requirements of the algorithms. The trajectories generated
by optimization-based algorithms are usually smooth. However, optimization-based algo-
rithms often fail to find a feasible solution if initial trajectories are naively chosen (e.g., a
line segment from the initial to the goal in the configuration space). The reason is that most
optimization-based algorithms rely on local gradient information, so the final trajectories and
the computation time highly depend on the selection of the initial trajectory. This chapter



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 14

Figure 2.1: A manipulator navigating through the obstacles.

presents a benchmark that tests motion planning algorithms from different categories to see
the effects of these pros and cons when solving motion planning problems. To the best of
the authors knowledge, this is the first comprehensive benchmark that tests motion planning
algorithms from different categories.

In addition to the benchmark, this chapter also presents a hybrid planning algorithm,
RRT*-CFS, which combines the merits of planning-by-construction algorithms and planning-
by-modification algorithms. The algorithm has two layers. We first use RRT* [78] to generate
a feasible and semi-optimal path quickly. This path then serves as an initial trajectory for
the optimization layer that uses the convex feasible set algorithm (CFS) [111] to solve the
non-convex motion planning problem quickly. RRT*-CFS can find a globally-near-optimal
solution in complex environments, even in scenarios with narrow passages [140], and has
good performance in terms of optimality and computation time. The contributions of this
chapter are threefold as follows:

• A comprehensive benchmark that compares motion planning algorithms from different
categories is presented.

• The proposed RRT*-CFS algorithm can solve planning problems that cannot be solved
by many optimization-based algorithms alone, has a short computation time, and has
the lowest average cost of all algorithms we compare in this chapter.

• We implement RRT*-CFS and demonstrate its success with extensive simulation (video
is publicly available here).

https://jessicaleu24.github.io/ACC2021.html


CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 15

2.2 Problem Formulation and Related Works

2.2.1 Problem statement

In this section, we first introduce the general formulation of the motion planning problem
that we consider.

Problem 1. In many scenarios, robot motion planning can be performed by solving an
optimization problem with the following form:

min
x∈Γ

f(x), (2.1)

where x ∈ Rn and Γ defines the feasible set:

Γ =
⋂
j

Γj =
⋂
j

{x : hj(x) ≥ 0}. (2.2)

An example of x in 2D planning would be x = [x1, y1, x2, y2, · · · , xh, yh]
⊤, where (x, y)

contains the x and y coordinate of the robot’s location in 2-dimensional Cartesian space,
also referred as waypoints; and Γ would be the collision-free set in Rn. We assume that
the constraint function hj(x) is a semi-convex function [111]. For example, hj(x) can be
the distance between a robot and the jth obstacle. The cost function, f : Rn → R, is
strongly convex and smooth. Note that the motion planning problem is non-convex due
to the obstacles and the non-linear robot dynamics. Also, the dimension of the planning
problem, n, depends on both the robot’s state space and the number of points needed from
the initial state to the final state. The value of n is usually large in motion planning problems;
therefore, solving motion planning problems is generally hard.

2.2.2 Sampling-based motion planning

In general, sampling-based algorithms are fast algorithms that can quickly find a path
connecting the initial with the goal [94]. There are many sampling-based planning algo-
rithms, such as RRT*, variations of PRM [7], [15] and variations of RRT [170, 78, 86, 72].
These variations modify the original methods for better planning performances, e.g., han-
dling dynamic constraints, smoothing trajectories, short-cutting trajectories, etc. However,
these modifications often require more computation time and resource and the requirements
grow quickly as the robot system becomes more complex. As a result, these algorithms re-
quire longer computation time in complex systems. This weakens the computation advantage
of sampling-based methods. Since our goal is to construct a strong hybrid algorithm rather
than a strong stand-alone sampling-based algorithm, we value computation time highly and
choose RRT*, which can provide a feasible and semi-optimal [78, 72] path with the shortest
computation time.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 16

2.2.3 Search-based motion planning

Search-based algorithms are another type of planning-by-construction algorithm that will
solve for a deterministic result given the initial and the goal. Algorithms belonging to this
type typically require a search graph or tree in the state space that connects the initial state
and the goal state, then use search methods such as A* or D* search [63, 155] to find the
best solution. Resolution completeness and optimality are often guaranteed. However, the
construction of the graph can be time-consuming, and an effective heuristic can be hard to
find; therefore, they may not be directly applicable for robot planning when the environment
changes frequently.

2.2.4 Optimization-based motion planning

There are many optimization-based algorithms that can be used for motion planning such
as SQP [154], CHOMP [136], TrajOpt [146], and CFS [111]. SQP uses the Lagrangian of the
original problem to formulate a transformed problem that solves the Lagrange multipliers.
The solution of these Lagrange multipliers is then used to update the decision variables of
the original problem. CHOMP and TrajOpt formulate an unconstrained problem with a cost
function that penalizes the trajectory’s smoothness and proximity to the obstacles. However,
the two have different approaches to collision detection. In addition, TrajOpt uses SQP to
solve the problem, whereas CHOMP uses gradient descent.

Among these algorithms, CFS is a fast optimization-based motion planning algorithm
that can handle infeasible initialization under some assumptions. Here we give a brief review
of the CFS algorithm. We can rewrite the non-convex optimization problem as follows:

x∗ = argmax
x∈Γ⊂Rn

f(x). (2.3)

CFS solves the non-convex problem iteratively. The following information is required:

• Initialization: An initial value of the state x(0), which does not necessarily satisfy
x(0) ∈ Γ.

• Safety index and disjoint convex obstacles : Similar to (2.2), where hj(x) is the safety
index for the jth disjoint obstacle.

• Convex feasible set : The convex feasible set, χ(k) := χ(x(k)) ∈ Γ, is constructed corre-
sponding to previous states x(k).

The convex feasible set we consider is as follows:

χ(k) =
n⋂

j=1

χ
(k)
j ,

=
n⋂

j=1

{x : hj(x
(k)) +∇⊤hj(x

(k))(x− x(k)) ≥ 0}.
(2.4)



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 17

With CFS, a convex sub-optimization problem is formulated and solved for the optimal value
of x(k+1):

x(k+1) = argmax
x∈χ(k)

f(x). (2.5)

The algorithm solves the problem iteratively and results in a sequence of x(1),x(2), . . . ,x(k), . . . .
It is guaranteed in [111] that this sequence will converge to a local optimal, x∗.

Notice that SQP and TrajOpt rely on the second-order information of the original prob-
lem, while CHOMP and CFS rely on the gradient information. As mentioned previously,
optimization-based algorithms rely on local gradient information (or higher-order informa-
tion); therefore, the final trajectories and the computation time highly depend on the choice
of the initial trajectory.

2.2.5 Hybrid motion planners

There have been several works focusing on hybrid planners [112, 108, 129, 43]. Authors of
[112] used Lattice A* Search to generate initial trajectories for CFS and illustrated its perfor-
mance on a mobile robot. The sampling space of these experiments is 2D. Since the number
of points in the lattice grid grows exponentially as the dimension grows in the configuration
space, the effectiveness of this work for high dimensional applications (e.g., 6-DoF manip-
ulators) is highly doubtful. Authors of [108] adopted the Bidirectional Rapidly-exploring
Random Tree (BiRRT) [86] to generate an initial feasible guess for the TrajOpt trajectory
optimizer and demonstrated the success of their approach on the Atlas robot. However,
only a few testing scenarios were presented; the robots only needed to avoid no more than
two obstacles. Authors of [129] presented a planning algorithm that combined a roadmap
and TrajOpt. Besides generating a collision-free and dynamically-feasible trajectory, they fo-
cused on avoiding singularities in redundant manipulators and meeting Cartesian constraints.
However, the algorithm required a long planning time. Authors of [43] combined a sparse
roadmap with TrajOpt. However, their methods did not consider complex environments.

A key challenge in motion planning is the narrow passage problem, which refers to plan-
ning problems with a very narrow region between the initial and the goal in the feasible
configuration space. Motion planning algorithms often take too much time or even cannot
find a solution when encountering a narrow passage problem even though the solution does
exit [140, 173]. This type of problem is one of the target scenarios of this work, which was
not tested in [112, 108, 146, 129, 43].

2.3 The RRT*-CFS Algorithm

In this section, we introduce the proposed RRT*-CFS algorithm and its feasibility and
global convergence guarantees. The proposed RRT*-CFS inherits the merits and avoids



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 18

the shortcomings of each of the two algorithms. The RRT*-CFS algorithm solves the non-
convex motion planning problem first by quickly finding a feasible and semi-optimal path,
then iteratively refining the solution using CFS. The RRT*-CFS has three main features.

• First, the RRT* layer can be implemented with multi-thread computation, which allows
us to reduce the computation time significantly.

• Second, RRT*-CFS has stochasticity due to the random sampling process in RRT*.
This helps RRT*-CFS avoid bad local optima that optimization-based algorithms may
get stuck in.

• Finally, RRT*-CFS inherits the properties of CFS so that feasibility, smoothness, and
convergence of the final solution are guaranteed if the problem satisfies the description
in Section 2.2.1.

Denote the configuration of a d-degree-of-freedom (d-DoF) robot as θ ∈ Rd, the initial
configuration as θ0, the goal configuration as θgoal, the maximum number of samples in one
RRT* thread as nsamples, and the obstacles as O. The RRT*-CFS algorithm is summarized
as in Algorithm 1.

Algorithm 1: RRT*-CFS

1 input θ0, θgoal, nsamples,O
2 while ! ∃ θθθRRT ∗

do
3 θθθRRT ∗ ←Multi thread RRT∗(θ0, θgoal, nsamples,O)
4 x(0) ← generate reference(θθθRRT ∗

)
5 while Stop criterion is not satisfied do
6 χ(k) =

⋂n
j=1{x : hj(x

(k)) +∇⊤hj(x
(k))(x− x(k)) ≥ 0}

7 x(k+1) = argmin
x∈χ(k)

f(x)

8 return x(k+1)

As shown in Algorithm 1, given the inputs, θ0, θgoal, nsamples, and O, each thread of the
multi-thread RRT* starts to find a feasible path that connects the initial configuration and
the goal configuration. If more than one thread find a path, we choose the shortest path and
set it as θθθRRT ∗

. If no thread finds a solution, we repeat the multi-thread RRT* until we find
a path. By setting up the nsamples properly, we can find a solution in the first batch almost
every time. Let x ∈ Rn and the planning horizon be H, we generate the initial reference
x0 := [x0⊤

0 , x0⊤
1 , · · · , x0⊤

H ]⊤ for CFS using the sampled path θθθRRT ∗
. This process can be

done by feeding the θθθRRT ∗
to a motion generator (e.g., iLQR [159]) that outputs a motion

plan, x(0), which is a trajectory that follows the RRT* path. Then, the convex feasible set,
χ(k), is generated by linearizing the constraints at the reference point x(k) for k = 0, 1, . . . .
The algorithm terminates when the change of the cost at each iteration is smaller than a
threshold, i.e., ∥f(x(k+1))− f(x(k)))∥ ≤ ϵ.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 19

2.3.1 Theoretical analysis

Both the feasibility and the global convergence of RRT*-CFS rely on the fact that the
motion planning problem (Problem 1) satisfies the following assumption:

Assumption 1 (Problem formulation). The cost function f(x) is strongly convex and
smooth. The constraint function hj(x) is continuous, piece-wise smooth, and convex. The
state constraint Γ is non-convex and its complement is a collection of disjoint convex sets,
i.e., each of the obstacle-region is itself convex.

Let xr ∈ Rn be a feasible reference point, i.e., xr ∈ Γ.

Lemma 1 (Feasibility). If xr ∈ Γ, then xr ∈ χr and Int(χr) ̸= ∅, where Int(χr) is the
interior of the set χr.

Proof. When xr is feasible, xr ∈ χr
j for all j according to (2.4). Therefore, xr ∈ χr. [111]

proved that χ(0) has nonempty interior if the assumption is satisfied. The problems studied
in this chapter satisfy the assumption; therefore the proof holds true.

With Lemma 1, we obtain the following theorem:

Theorem 1 (Feasibility of RRT*-CFS). Under Algorithm 1, the sequence {x(k)} satisfies
x(k) ∈ Γ for k = 0, 1, 2, ....

Proof. RRT* generates x(0) such that x(0) ∈ Γ, i.e., feasibility holds when k = 0. According
to Lemma 1, χ(0) has nonempty interior, then x(1) ∈ Γ can be attained by solving the
convex optimization problem (2.5). By induction, we conclude that x(k) ∈ χ(k−1) ⊂ Γ for
k = 1, 2, 3....

The following shows the convergence of RRT*-CFS. Given Theorem 1, the remainder of
the proof is similar to that in [111], Theorem 4.1; therefore, we have the following corollary.

Corollary 1 (Global convergence of RRT*-CFS). Under Algorithm 1, the sequence {x(k)}
will always converge to some x∗ ∈ Γ. x∗ is a strong local optimum of (2.1) if the limit is
reached. x∗ is at least a weak local optimum of (2.1) if the limit is not reached.

2.4 Applications

2.4.1 Robot models

We used two different robot platforms (Figure 2.2) to test the RRT*-CFS and other
algorithms for comparison.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 20

Figure 2.2: A mobile robot (left) and a manipulator (right).

Mobile robot

We model the mobile robot as a point mass on a 2D-plan. Denote the states of the
mobile robot at time step t as zt = [xt, yt]

⊤, the input velocity as ut = [vx,t, vy,t]
⊤, and the

robot configuration as θ = [x, y]⊤. The linear kinematic model, is[
xt+1

yt+1

]
=

[
1 0
0 1

] [
xt

yt

]
+

[
Ts 0
0 Ts

] [
vx,t
vy,t

]
, (2.6)

where Ts is the sampling time.

Manipulator

Denote the states of a 5-Dof manipulator as zt = [θ1, θ2, θ3, θ4, θ5, ω1, ω2, ω3, ω4, ω5]
⊤
t ,

where θi and ωi, i ∈ {1, 2, 3, 4, 5} are the angle and the angular velocity of the ith joint,
respectively. The input contains the angular acceleration at each joint, denoted as ut =
[α1, α2, α3, α4, α5]

⊤
t . The robot configuration is θ = [θ1, θ2, θ3, θ4, θ5]

⊤. The linear kinematic
model is as follows:

zt+1 = A5zt +B5ut, (2.7)

where

A5 =

[
I5×5 TsI5×5

(0)5×5 I5×5

]
and B5 =

[
0.5T 2

s I5×5

TsI5×5

]
.

2.4.2 The motion planning problem

In this chapter, the goal of the motion planning problem is to plan the commands
that bring the robot to the goal state while avoiding obstacles. We first solve for a path



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 21

𝜙𝜙𝑖𝑖,𝑗𝑗 𝑧𝑧𝑡𝑡
𝑀𝑀𝑐𝑐

Figure 2.3: Illustration of the distance function.

using the multi-thread-RRT* with the configuration θ defined previously. After getting
the path θθθRRT ∗

, an optimization problem can be formulated. The decision variable for
each time step is ut, and the input vector that the algorithm optimizes is denoted as
u := [u⊤

0 , u
⊤
1 , · · · , u⊤

H ]
⊤, where H is the planning horizon. Similarly, the resulting state

vector is z := [z⊤1 , z
⊤
2 , · · · , z⊤H+1]

⊤. Given the initial state, z0, we obtain z = fki(z0,u) by
concatenating the kinematic function ((2.6) or (2.7)) throughout the planning horizon. For
simplicity, denote the kinematic function as fki,z0(u) := fki(z0,u).

Problem 2. In order to obtain the optimal solution u∗ given the constrained feasible set Γ
and the input constraint umax, the following optimization problem needs to be solved:

u∗ = argmin
u

fz0(u),

s.t. fki,z0(u) ∈ Γ,

− umax ≤ u ≤ umax,

zH+1 = zgoal.

(2.8)

The cost function is quadratic that has the form: fz0(u) = ∥fki,z0(u) − zgoal∥22 + λ∥u∥22,
which is convex and regular. The first term penalizes the deviation from the goal and the
second term penalizes the input.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 22

2.4.3 Implementation

CFS updates z(k) = fki,z0(u
(k−1)) at iteration k = 2, 3 . . . . Notice that z(1) is determined

by θθθRRT ∗
and u(0) is initialize with a motion generator that commands the robot to track

θθθRRT ∗
. In the optimization stage, a safety index function is needed. Here, the distance from

the robot to the obstacle is chosen as the safety index function. As shown in Figure 2.3,
each link of the manipulator and the obstacle can be captured with a capsule. (We enclose
the mobile robot in the same way.) Distances between the capsules can be calculated by
obtaining the distances between the center lines of the capsules ϕi,j(zt), where i represents
the ith manipulator link and j represents the jth obstacle. Thus, the safety index function
hj(zt) ≥ 0 is equivalent to the set of constraints {ϕi,j(zt)−Mc ≥ 0, i = 1, . . . ,# robot links}
and Mc is some safety margin. The convex feasible set, χ(k), is determined by z(k). Given
the feasible set Γ =

⋂
i,j,t{z : hj(zt) ≥ 0} (j numerates over obstacles and t numerates over

time steps), the results of the previous iteration (u(k−1) and z(k)), and the function fki,z0(u),
we can construct the convex feasible set as:

χ(k)
z0

=
⋂
j,t

{u : h′
j,t(u, z

(k)
t ,u(k−1)) ≥ 0}, (2.9)

where h′
j,t = hj(z

(k)
t ) +∇⊤hj(z

(k)
t )∇fki,z0,t(u(k−1))(u − u(k−1)). Therefore, the iterative sub-

problem is as follows:
u∗(k) = argmin

u
fz0(u),

s.t. u ∈ χ(k)
z0
(u(k−1), z(k)),

− umax ≤ u ≤ umax.

(2.10)

2.4.4 Simulation setup

We show the motion planning simulation results in the following sections. The simulation
is conducted in Matlab R2020a on a desktop computer with a 3.2GHz Intel Core i7-8700
CPU. The stopping criteria for optimization-based methods (i.e., CFS, SQP, CHOMP, the
SQP layer of RRT*-SQP, and the CFS layer of PRM-CFS and RRT*-CFS) are the same.
In other words, if either (1) the algorithm reaches the maximum number of iterations (i.e.,
40 iterations in this work) or (2) the change of the cost is smaller than the threshold (i.e.,
ϵ = 1× 10−3), the algorithm terminates.

2.4.5 2D motion planning benchmark

The 2D scenarios simulate general 2D motion planning scenes of mobile platforms. Notice
that the obstacles in these scenarios are convex, and the robot kinematics is simplified as a
point mass. Therefore, the motion planning problems satisfy the conditions mentioned in
Section 2.2.1. The benchmark has two categories: collision avoidance planning in multiple
obstacles and narrow passage scenes. In both cases, the planning horizons of optimization-
based algorithms are set to be H = 30.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 23

Table 2.1: Simulation comparison of 2D planning. (Average of 100 trials.)

# obstacles: 1
Sampling Optimization Hybrid

RRT* PRM CFS SQP CHOMP
PRM-
CFS

RRT*-
SQP

RRT*-
CFS

Time average [s] 0.01 1.19 0.04 1.73 0.05 1.26 1.00 0.04
Cost 1.27 1.36 1.01 1.01 1.10 1.01 1.00 1.00

# iterations N/A N/A 7.40 7.40 137.2 7.22 7.01 7.01
Success rate (%) 100 100 99 100 99 100 100 100

# obstacles: 4
Sampling Optimization Hybrid

RRT* PRM CFS SQP CHOMP
PRM-
CFS

RRT*-
SQP

RRT*-
CFS

Time average [s] 0.03 4.24 0.12 4.29 0.23 4.35 2.63 0.15
Cost 1.27 1.38 1.05 1.03 1.11 1.10 1.01 1.01

# iterations N/A N/A 12.63 12.80 199.42 11.04 10.58 10.58
Success rate (%) 100 100 99 100 99 100 100 100

# obstacles: 10
RRT* CFS RRT*-CFS

Time average [s] 0.04 0.70 0.51
Cost 1.27 1.11 1.06

# iterations N/A 14.46 12.69
Success rate (%) 100 87 100

Table 2.2: Simulation comparison of 2D-narrow-passage planning. (Average of 20 trials.)

Sampling Hybrid

RRT* PRM PRM-CFS
RRT*-
CFS

Time average [s] 0.27 20.05 20.64 0.43
Cost 1.22 1.22 1.02 1.01

# iterations N/A N/A 6.6 8.26



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 24

-0.1 0 0.1 0.2 0.3 0.4 0.5
x [m]

-0.1

0

0.1

y 
[m

]

Obstacles CHOMP CFS Initial
Goal PRM path PRM-CFS

(a) Planning result using CFS, CHOMP, and PRM-CFS.

-0.1 0 0.1 0.2 0.3 0.4 0.5
x [m]

-0.1

0

0.1

y 
[m

]

Obstacles RRT* samples RRT* path
RRT*-CFS Initial Goal

(b) Planning result using RRT*-CFS.

Figure 2.4: Simulation results of a 2D motion planning.

−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2
−0.1

0
0.1
0.2

x [m]

y
[m

]

Obstacles CHOMP SQP CFS
Initial Goal RRT* samples RRT* path
PRM-CFS RRT*-CFS

Figure 2.5: A simulation result of motion planning in the narrow passage (close to y = 0.1)
scenario.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 25

Multiple obstacles

One exemplar simulation environment is shown in Figure 2.4, where Figure 2.4(a) shows
the planning result of CHOMP (red-star-line), PRM-CFS (blue-circle), and CFS (blue-star-
line) and Figure 2.4(b) shows the planning result of RRT*-CFS (blue-line). By comparing
the two figures, we see that all four trajectories are smooth and can successfully bring the
robot to the goal (at (0, 0)). More importantly, RRT*-CFS converges to the global optimum,
while others are stuck in local optima. Table 2.1 shows the result averaging over 100 trials
(obstacles are randomly placed in each trial). Benefiting from the first layer, the proposed
RRT*-CFS has a success rate of 100% and requires fewer iterations to converge compared to
CFS, SQP, CHOMP, and PRM-CFS. RRT*-CFS also has the lowest average cost, which is
contributed by the semi-optimal initial path given by RRT* and the optimization process by
CFS. This also indicates that RRT*-CFS is more likely to converge to nearly-global optima.
Comparing RRT*-CFS and RRT*-SQP, we see that RRT*-CFS requires less computation
time. This is because CFS exploits the geometry of the motion planning problem. Also,
RRT*-CFS is faster than PRM-CFS because RRT* is faster than PRM in these motion
planning problems. Even though CFS is the quickest algorithm besides RRT* in both 4-
obstacle and 1-obstacle cases, RRT*-CFS is faster than CFS in the 10-obstacle complex
scenarios due to a better initialization and faster convergence rate. Also, CFS is more
vulnerable to being trapped in bad local optima; therefore, it struggles to find a trajectory
to reach the goal in complex scenarios. In contrast, RRT*-CFS can always find a trajectory
if one exists (the failure cases indicate the resulting solutions do not bring the robot to the
goal).

Narrow passages

We also test RRT*-CFS in the narrow passage scenario. The robot’s goal is again to
plan a trajectory to the goal point. However, the robot has to navigate through a narrow
pathway to reach the goal point. Figure 2.5 shows a planning result in one of these scenarios.
RRT*-CFS successfully explores the narrow passage and plans a feasible trajectory (blue-
circle-line). On the other hand, CFS, SQP, and CHOMP failed to find a solution. The CFS
trajectory (blue-star-line) and the SQP trajectory (gray-star-line, under the CFS trajectory)
stop in front of the wall while the CHOMP trajectory (red-star-line) directly penetrates the
wall. These two failures are due to the lack of local gradient information, which is crucial
for optimization-based methods that solve each iteration by calculating the gradient using
the result of the previous iteration. The 99% success rate in Table 2.1 for CFS and CHOMP
is due to the same reason, where the initial point and the goal point are both lying on
the symmetric axis of the obstacle. Even though using local higher-order information can
enable the algorithms to deal with some of these scenarios (e.g., SQP), solving the narrow
passage problem is still hard for optimization-based methods alone. In some cases, there
is no information in the higher-order terms (e.g., when facing the wall, the second-order
derivative of a line is zero). This observation again demonstrates the need for a sampling



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 26

mechanism in the motion planning algorithm so that the algorithm can explore beyond
the local gradient information. The simulation result of narrow passage environments is
summarized in Table 2.2. We see that RRT*-CFS improves the cost without sacrificing
too much computation time. Although PRM-CFS also finds a solution and requires fewer
iterations, its computation time is two magnitudes larger than RRT*-CFS.

2.4.6 5D motion planning for a manipulator

In 5D motion planning simulations, the manipulator’s goal is to reach the goal config-
uration from the initial configuration while avoiding obstacles. Table 2.3 shows the result
averaging over 20 trials. Similar to the trend in 2D cases, RRT*-CFS has a lower average
cost compared to CFS. CFS performs better in scenarios with one or two obstacles in terms
of computation time. RRT*-CFS shows its strength in complex environments and performs
better in scenarios with three or four obstacles. Benefiting from the first layer, the proposed
RRT*-CFS has a success rate higher than that of CFS. RRT*-CFS also requires fewer itera-
tions to converge compared to CFS. Notice that these planning problems do not satisfy the
descriptions in Section 2.2.1 due to the nonlinear transformation from the robot joint space
to the safety distance calculated in Cartesian space; nevertheless, RRT*-CFS still converges
well empirically. One of the simulation environments is shown in Figure 2.6, where the ma-
nipulator moves to the goal configuration without collision. Notice that CFS fails to plan a
trajectory that brings the manipulator to the goal configuration in this scenario. With the
initial path from RRT*, RRT*-CFS plans a smoother trajectory that navigates through the
complex environment compared to the original RRT* trajectory. In general, RRT* has 100%
success rate; however, the success rate of RRT*-CFS is 89%. This is due to the linearization
error of the collision avoidance constraints during the CFS stage, which causes the convex
feasible set to be an empty set in some iterations. Typically, the more obstacles the robot
needs to avoid, the more constraints the optimization stage needs to consider; therefore,
this problem will likely happen. Similarly, complicated robot kinematics can also increase
linearization error and cause the convex feasible set to be empty. In addition, robots in these
scenes require a longer plan, i.e., a plan that has a larger planning horizon. This problem
motivates the development of the planner presented in Chapter 3.

2.5 Chapter Summary

This chapter presented a comprehensive benchmark that compares motion planning al-
gorithms from different categories and introduced a fast motion planning algorithm, RRT*-
CFS, that combined the merits of sampling-based planning methods and optimization-based
planning methods. The RRT*-CFS quickly found a feasible and semi-optimal path using
RRT* and iteratively refined the solution using CFS. RRT*-CFS had feasibility and global
convergence guarantees inherited from CFS in scenarios where obstacles could be represented
by disjoint convex objects. Simulation results showed that RRT*-CFS benefited from the



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 27

(a) Top view of the planning result.

(b) Side view of the planning result.

Figure 2.6: Planning results using RRT*-CFS in 5D manipulation planning problems.



CHAPTER 2. ROBOT MOTION PLANNING AND HYBRID MOTION PLANNING 28

Table 2.3: Simulation comparison of 5D Motion planning. (Average of 20 trials.)

# obstacles: 1 or 2

RRT* CFS
RRT*-
CFS

Time average [s] 5.7 4.74 12.42
Cost N/A 1.94 1.66

# iterations N/A 20 15.56
Success rate (%) 100 95 99

# obstacles: 3 or 4

RRT* CFS
RRT*-
CFS

Time average [s] 8.45 114.10 59.67
Cost N/A 3.78 3.39

# iterations N/A 20 18.58
Success rate (%) 100 85 89

hybrid structure. Compared to RRT*, PRM, CFS, SQP, CHOMP, and PRM-CFS, RRT*-
CFS had the lowest cost and converged with less number of iterations. RRT*-CFS could also
solve planning problems in complex scenarios such as the narrow passage problem, in which
CHOMP, SQP, and CFS failed. Even though RRT*-CFS has two layers, the computation
time is still competitive in simple scenarios and outperforms other algorithms (except RRT*
in terms of time) in complex scenarios. We concluded that the hybrid structure indeed
brought strong performance.



29

Chapter 3

Long-horizon Motion Planning

3.1 Introduction

Motivated by the failure cases mentioned in Chapter 2, this chapter presents a hybrid
robot motion planner that generates long-horizon and collision-free robot motion plans.
Among the different planning problems, long-horizon motion planning is especially chal-
lenging in terms of finding a feasible solution and improving the quality of the solution in
environments full of obstacles (Figure 3.1). With only a naive initialization (e.g., a straight
line from the initial to the goal in the state space), optimization-based planners struggle to
find a solution that can travel long distances and make multiple big turns, which are often
needed in long-horizon motion planning [110]. On the other hand, search-based methods
require more memory space to store the pre-computed graph; and a well-designed heuristic
must be provided to guide the search. In this light, search-based methods face more sig-
nificant challenges when the robot has many degrees of freedom and when generating an
effective heuristic is difficult due to the cluttered environment [42]. Also, the pre-computed
graph and the heuristics are hard to reuse if the obstacle configuration in the environment
is changed.

A strong candidate for long-horizon path planning is RRT*, which is known for its efficient
and exploratory properties of finding a feasible and semi-optimal [78, 72] path in the shortest
time. Although RRT* can converge to the optimal solution given infinite computation time,
users often terminate the algorithm at a time limit, resulting in an unsmooth path. In
addition, the constructed path often does not consider the robot dynamics since deliberately
considering these constraints weakens the computation advantage. Most RRT* variations
proposed lately [142] remain to be “path planners” rather than “motion planners.” In
contrast, planning-by-modification methods are very efficient given a good initialization.
This motivates the development of hybrid motion planners [112, 108, 43, 129, 101], which use
planning-by-construction methods to generate a feasible reference path and use optimization-
based methods to polish the solution.

One of the computational bottlenecks of hybrid motion planners is the optimization stage.



CHAPTER 3. LONG-HORIZON MOTION PLANNING 30

Figure 3.1: A manipulator navigating through a car frame in a factory.

An optimization-based motion planner that does not exploit the structure of the planning
problem would typically scale in complexity with the cube or square of the planning horizon
H, i.e., O(H3) to O(H2) [126, 124]. This is especially costly when solving long-horizon
planning problems where the number H is large. To mitigate this problem, researchers
propose splitting the problem into several sub-problems and developing an iterative update
strategy to combine the distributed solutions and find the optimal trajectory [151, 152, 168].
This formulation also allows the solver to exploit parallel computation power.

This chapter incorporates the hybrid planner structure and proposes RRT*-sOpt, focus-
ing on long-horizon motion planning scenarios. We develop a segmented trajectory optimiza-
tion (sOpt) layer that segments the initial reference from the RRT* layer equally by time
and performs optimization iteratively and efficiently. We also notice that the optimal num-
ber of segments can vary as the optimization process continues. In other words, “merging”
segments can benefit the computation time because it enforces consensus between neighbor-
ing segments and may reduce the number of iterations needed for the overall trajectory to
converge. Therefore, we identify the conditions for merging segments and demonstrate its
effectiveness.

Compared to the previous work, RRT*-CFS [101], we improve the optimization layer to
exploit the parallel computation power. Simulation results show that RRT*-sOpt signifi-
cantly improves computation time and is more robust at successfully finding long-horizon
motion plans in complex environments. Our main contributions are threefold as follows:

• We develop a segmented trajectory optimization strategy (sOpt) with a segment merg-
ing scheme.

• The proposed RRT*-sOpt algorithm improves upon RRT*-CFS in computation time
and robustness.

• We implement RRT*-sOpt and demonstrate its success with extensive simulation on
multiple robot platforms (video is publicly available here).

https://jessicaleu24.github.io/ECC2022.html


CHAPTER 3. LONG-HORIZON MOTION PLANNING 31

3.2 Problem Formulation and Related Works

The baseline problem formulation of the motion planning problems in this chapter is
the same as that mentioned in Section 2.2.1. However, the dimension n is substantial in
long-horizon motion planning problems. On top of that, we include a mobile manipulator
as a testing platform, which has a state space nearly twice the size of a manipulator. This
makes n even larger. Therefore, solving these motion planning problems is more challenging
than solving those in Chapter 2.

3.2.1 Hybrid motion planning algorithms

Many works have focused on hybrid planners [112, 108, 43, 129, 101], as reviewed in
Section 2.2.5. Methods such as lattice A* search, bidirectional RRT [86], or roadmaps are
commonly used in the planning-by-construction stage; while methods such as SQP [154], CFS
[111], and TrajOpt [146] are often used to polish the solution. Hybrid planners have better
computation time efficiency than non-hybrid ones and can also solve harder problems, such
as the narrow passage problem [101]. Chapter 2 presented RRT*-CFS and demonstrated its
computational speed advantages over its counterparts. Although its performance is robust
with most of the test cases in the chapter, it wanes when applied to long trajectories and
higher-dimensional problems. This is also a common problem for most hybrid planners be-
cause the problem complexity normally scales with the cube or square of the planning horizon
and the robot state space. Therefore, we develop RRT*-sOpt to mitigate this problem.

3.2.2 Segmented trajectory optimization algorithms

In recent years, researchers have proposed to develop planners that enable the exploitation
of parallel computing with multi-core CPUs/GPUs. Many have utilized the alternating
direction method of multipliers (ADMM) [18] to solve a highly non-linear and non-convex
problem in a distributed manner. Authors of [151] proposed to split the problem into two
subproblems that consider dynamic and collision avoidance constraints, respectively, and
combine the two solutions with a consensus update. Nevertheless, these methods gained
little speed-up since the number of waypoints (i.e., time steps) in the subproblems remained
the same. In addition, this splitting method may not split the complexity evenly, which
results in wait-time for the more complex process to finish [168]. Authors of [152] achieved
a distributed structure by decomposing the mobile-manipulator trajectory optimization into
a sequence of convex QPs. However, this work did not demonstrate collision avoidance.
Authors of [168] proposed a similar distributed formulation for robot motion planning with
collision avoidance. Yet, these works do not consider scenarios requiring long-horizon motion
planning and may still suffer from naive initialization. In this work, we leverage the hybrid
structure to obtain an initial reference and focus on exploiting parallel computation power
using sOpt for long-horizon motion planning with collision avoidance.



CHAPTER 3. LONG-HORIZON MOTION PLANNING 32

3.3 The RRT*-sOpt Algorithm

The proposed RRT*-sOpt inherits the merits of hybrid planners and segmented trajectory
optimization. The RRT*-sOpt algorithm solves the non-convex motion planning problem
by quickly finding a feasible and semi-optimal path and then iteratively refining the solution
using sOpt. The RRT*-sOpt has three main features.

• RRT*-sOpt has stochasticity due to the random sampling process in RRT*. This helps
RRT*-sOpt find a feasible path and avoid bad local optima that optimization-based
algorithms may suffer.

• Both the RRT* layer and the sOpt layer can be implemented with parallel computation,
which allows us to reduce the computation time significantly.

• sOpt leverages parallel computation to mitigate the high dimensionality of long-horizon
planning problems and implements a segment merging strategy to reduce computation
time further.

The RRT*-sOpt algorithm is summarized in Algorithm 2. We introduce the details of the
proposed method in the following sections.

3.3.1 The parallel RRT*

The parallel RRT* works in the same way as mentioned in Section 2.3, which results in
a reference trajectory x(0) that can serve as initialization in the optimization stage. In the
following, we will introduce the segmented trajectory optimization process.

3.3.2 The segmented trajectory optimization

The second part of the algorithm is the sOpt layer, which solves the planning subproblems
iteratively.

Trajectory segmentation

An illustration of the terminology for sOpt is shown in Figure 3.2(a). We denote a split
of the H-horizon-trajectory as xj (the purple line in Figure 3.2(a)). Given an integer number
N , a trajectory with 2N splits is x := [x1, . . . ,xj, . . . ,x2N ], each containing (H − 1)/2N +1
waypoints. The indices of the split-points, i.e., the indices of the starting and ending point
of each split are stored in a set W = {w1, w2, . . . , wj, . . . , w2N+1} where wj ∈ {0, 1, . . . , H}.
A segment (the green line in Figure 3.2(a)) contains two splits, denoted as x[i,i+(H−1)/N ].
To ensure connectivity between segments, the end point of the previous segment is set to
be the same as the first point of the succeeding segment. As shown in Figure 3.2(b), in
the odd iterations, i.e. kth iteration where k = 1, 3, . . . , all the segments start with index
in the odd entries of W, i.e., Wodd. In the even iterations, segments start with index in



CHAPTER 3. LONG-HORIZON MOTION PLANNING 33

Algorithm 2: RRT*-sOpt

1 input θ0, θgoal, nsamples,O, Nsegments

2 while ! ∃ θθθRRT ∗
do

3 θθθRRT ∗ ← parallel RRT∗(θ0, θgoal, nsamples,O)
4 x(0) ← generate reference(θθθRRT ∗

)

5 W(0) ← split reference(x(0), Nsegments)
6 while termination conditions not met do
7 mode← odd or even()

8 for w
(k)
j ∈W(k),mode do

9 χ
(k)
[wj ,wj+2]

← Obs select(x
(k)
[wj ,wj+2]

,O)
10 x

(k+1)
[wj ,wj+2]

← OPT(x
(k)
[wj ,wj+2]

, χ
(k)
[wj ,wj+2]

)

11 for w
(k+1)
j ∈W(k),mode do

12 d← iter prog(x
(k)
[wj ,wj+4]

,x
(k+1)
[wj ,wj+4]

)

13 if d ≤ 2ϵH
Nseg

then

14 Remove w
(k)
j+2 from W(k)

15 x(k+1) ← resample traj(x(k+1))

16 W(k+1) ← split reference(x(k+1),W(k))
17 k ← k + 1

18 return x(k)

the even entries of W, i.e., Weven. For example, if N = 3, the first set of segments are
{x[w1,w3],x[w3,w5],x[w5,w7]}; then, it becomes {x[w2,w4],x[w4,w6],xw1 ,xw6} in the next iteration.
The last two elements are the splits at the beginning and the tail.

Algorithm 3: Obstacle selection

1 input x
(k)
[wj ,wj+2]

,O
2 Obs getID(·)← Watershed(O)
3 for xi ∈ x

(k)
[wj ,wj+2]

do

4 idi ← Obs getID(xi)

5 χ
(k)
[wj ,wj+2]

=
⋂

id{x : hid(x
(k)
j ) +∇⊤hid(x

(k)
j )(x− x

(k)
j ) ≥ 0}

6 return χ
(k)
[wj ,wj+2]



CHAPTER 3. LONG-HORIZON MOTION PLANNING 34

𝑥𝑥𝑤𝑤𝑗𝑗

𝑥𝑥1

𝑥𝑥𝑤𝑤𝑗𝑗+2

𝑥𝑥(𝑤𝑤3=4)

𝐱𝐱[𝑤𝑤𝑗𝑗,𝑤𝑤𝑗𝑗+2]

(segment)
𝑥𝑥𝑤𝑤𝑗𝑗+1

𝑥𝑥(𝑤𝑤1=0) 𝑥𝑥(𝑤𝑤2=2)

𝑥𝑥3
𝐱𝐱𝑤𝑤2 (split)

split-points

Start

Goal

(a) The illustration of a segmented trajectory.

𝑥𝑥𝑤𝑤𝑗𝑗

𝑥𝑥𝑤𝑤𝑗𝑗+2

𝑥𝑥(𝑤𝑤3=4)

𝐱𝐱[𝑤𝑤𝑗𝑗,𝑤𝑤𝑗𝑗+2] 𝑥𝑥𝑤𝑤𝑗𝑗+1

𝑥𝑥(𝑤𝑤1=0) 𝑥(𝑤2=2)

𝑥𝑥𝑤𝑤𝑗𝑗
𝑥𝑥𝑤𝑤𝑗𝑗−1
𝑥𝑥(𝑤𝑤3=4)

𝐱𝐱[𝑤𝑤𝑗𝑗−1,𝑤𝑤𝑗𝑗+1] 𝑥𝑥𝑤𝑤𝑗𝑗+1

𝑥𝑥(𝑤𝑤1=0)

𝑥𝑥𝑤𝑤𝑗𝑗

𝑥𝑥𝑤𝑤𝑗𝑗+1

𝑥𝑥𝑤𝑤𝑗𝑗+2
𝑥𝑥𝑤𝑤𝑗𝑗+4

𝐱𝐱[𝑤𝑤𝑗𝑗,𝑤𝑤𝑗𝑗+2]

iteration 2 iteration 3iteration 1

 𝑥(𝑤3=4) 
𝑥(𝑤2=2)𝑥(𝑤2=2)𝑥𝑥(𝑤𝑤1=0)

(b) illustrations of the segment selection for the first three iterations during sOpt (the other tree figures
on the right).

Figure 3.2: The illustration of a segmented trajectory and the iterative optimization process.

Segmented trajectory optimization

The obstacle avoidance constraints of the planning problem are also distributed to each
segment. As shown in Algorithm 3, in the kth iteration, we utilize the function watershed

from MATLAB to select nearby obstacles for each segment. The safety functions associated
with these obstacles are linearized at the reference segment, x

(k)
[wj ,wj+2]

, to formulate the

constraints as a convex feasible set, χ
(k)
[wj ,wj+2]

[111]. The planning subproblem optimizes

each segment according to a cost function that has the form: f(·) = ∥x− xgoal∥2Q + λ∥x∥2R.
By fixing the initial and the goal waypoints to stay at xwj

and xwj+2
respectively, we formulate



CHAPTER 3. LONG-HORIZON MOTION PLANNING 35

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

30

32

34

36

38
C

os
t

9 segments
5 segments
9->5 segments

Optimal cost

Time reduced

Figure 3.3: An example of computation time reduced by segment merging in 2D planning.
(Notice that we hard-coded this merge to generate this plot for more precise visualization.
In the simulations, merging typically occurs in later iterations.)

the subproblem as follows:

x
(k+1)
[wj ,wj+2]

= argmin
x

f(x),

s.t. fki(x) ∈ χ
(k)
[wj ,wj+2]

,

x0 = xwj
,

x(H−1)/N = xwj+2
,

(3.1)

where fki(·) is the robot kinematic model. Note that the selection of the starting and ending
points alternates in each iteration so that the waypoints fixed in the present iteration will be
optimized in the next iteration. Ultimately, the full trajectory can be optimized iteratively.

Merging segments

We observe that performances of sOpt with different numbers of segments are different
at different stages. As shown in Figure 3.3, a sOpt with more segments reduces the cost
quickly at the beginning but converges slowly later on (blue line) compared to a sOpt with
fewer segments, which performs oppositely (orange line). Therefore, we propose to merge
neighboring segments in later iterations when quick convergence is desired (Figure 3.4).
As shown in Algorithm 2 line 11 to 14, the function iter prog calculates the cost of two
neighboring segments and compares it with the cost of the previous iteration to quantify the
progress made by the optimization in that iteration, i.e.,

iter prog = ∥f(x(k)
[wj ,wj+4]

)− f(x
(k+1)
[wj ,wj+4]

)∥. (3.2)

By selecting a threshold ϵ, merging happens when iter prog ≤ 2ϵH/N .



CHAPTER 3. LONG-HORIZON MOTION PLANNING 36

𝑥𝑥(𝑤𝑤1=0)

𝑥𝑥𝑤𝑤𝑗𝑗+1 

𝑥𝑥𝑤𝑤𝑗𝑗

                  𝑥(𝑤3=4) 
𝑥(𝑤2=2)

𝑥𝑥𝑤𝑤𝑗𝑗+2

𝑥𝑥𝑤𝑤𝑗𝑗+4

𝑥𝑥(𝑤𝑤1=0)

𝑥(𝑤3=4)
𝑥(𝑤2=2)

𝑥𝑥𝑤𝑤𝑗𝑗

𝑥𝑥𝑤𝑤𝑗𝑗+1

𝑥𝑥𝑤𝑤𝑗𝑗+2
𝑥𝑥𝑤𝑤𝑗𝑗+4

Figure 3.4: Illustration of segment merging.

Trajectory resampling

Since the path length will be reduced after every iteration, we use resample traj to find
the new planning horizon H(k) according to the desired robot operating speed. We record
the new set of split-point indices with split reference.

Termination conditions

The algorithm terminates if: (1) the algorithm reaches the maximum number of iterations
(i.e., 20 iterations) or (2) the cost of the entire trajectory between iterations is less than the
threshold ϵ, i.e., ∥f(x(k))− f(x(k+1))∥ ≤ ϵ.

3.4 Applications

We use three different robot platforms to test RRT*-sOpt: a mobile robot (Figure 2.2
(left)), a manipulator (Figure 2.2 (right)), and a mobile manipulator (Figure 3.5). The
kinematic models of the mobile robot and the manipulator are the same as (2.6) and (2.7),
respectively. Here, we introduce the kinematic model of the mobile manipulator.

3.4.1 The mobile manipulator model

The mobile manipulator used in this work, TurtleBot3 with OpenManipulator (TB3O),
is composed by a 2-DoF mobile platform, TurtleBot3, and a 4-DoF manipulator, OpenMa-
nipulator, which are developed by ROBOTIS. As shown in Figure 3.5 (right), the world
frame is defined as Fw − XwYwZw. Each link, linki, has an associated body-fixed frame
Fi − XiYiZi, i ∈ {1, 2, 3, 4, 5}. In addition to the original four joints of the manipulator,
we added a virtual link, link1, to the system for the convenience of constructing the motion
planning optimization problem.



CHAPTER 3. LONG-HORIZON MOTION PLANNING 37

Virtual link 

𝑋𝑋1

𝑌𝑌1
𝑍𝑍1

𝑋𝑋2𝑌𝑌2

𝑍𝑍2

𝑋𝑋3

𝑌𝑌3

𝑍𝑍3

𝑋𝑋4
𝑌𝑌4

𝑍𝑍4

𝑋𝑋5

𝑌𝑌5

𝑍𝑍5

𝑋𝑋𝑊𝑊

𝑍𝑍𝑊𝑊
𝑌𝑌𝑊𝑊

Figure 3.5: A mobile manipulator (left) and the coordinate system of the mobile manipulator
(right).

To establish the kinematic model of the mobile manipulator, we first examine the non-
holonomic mobile platform and the manipulator separately.

Model of the mobile platform

Denote the states of the mobile platform as zp,k = [xk, yk, θp,k, vk, ωp,k]
⊤, where (xk, yk)

and vk are the location and speed of the origin of the body-fixed frame F1−X1Y1Z1 relative
to the world frame Fw − XwYwZw, respectively. θp,k and ωp,k are the angle and angular
velocity between Xw (the x-axis of the frame Fw−XwYwZw) and X1 (the x-axis of the frame
F1 − X1Y1Z1), respectively. The inputs are the linear and angular acceleration denoted as
up,k = [ap,k, αp,k]

⊤. k denotes time. The nonlinear kinematic model is:
xk+1

yk+1

θp,k+1

vk+1

ωp,k+1

 =


xk

yk
θp,k
vk
ωp,k

+


vkTs cos(θp,k + 0.5Tsωp,k)
vkTs sin(θp,k + 0.5Tsωp,k)

Tsωp,k

Tsap,k
Tsαp,k

 , (3.3)

where Ts is the sampling time.

Model of the manipulator

Denote the states of the manipulator as zm,k = [θ1, θ2, θ3, θ4, θ5, ω1, ω2, ω3, ω4, ω5]
⊤
k , where

θi and ωi, i ∈ {1, 2, 3, 4, 5}, are the angle position and the angular velocity of ith joint,



CHAPTER 3. LONG-HORIZON MOTION PLANNING 38

respectively. The inputs are the angular acceleration at each joint, denoted as um,k =
[α1, α2, α3, α4, α5]

⊤
k .

The homogeneous transformation matrix of the frame F1 −X1Y1Z1 with respect to the
frame Fw −XwYwZw at the time step k is describe as:

Fw
F1
Tk =

[
Fw
F1
Rx(γ1)

Fw
F1
Rz(θ1,k) o1,k

01×3 1

]
, (3.4)

where,

Fw
F1
Rx(γ1) =

1 0 0
0 cos(γ1) − sin(γ1)
0 sin(γ1) cos(γ1)

 ,

Fw
F1
Rz(θ1,k) =

cos(θ1,k) − sin(θ1,k) 0
sin(θ1,k) cos(θ1,k) 0

0 0 1

 ,

γ1 = 0, and o1,k = [x1,k, y1,k, z1,k]
⊤, which is the origin of the frame F1−X1Y1Z1 with respect

to the world frame. The homogeneous transformation matrix of Fi−XiYiZi with respect to
Fi−1 −Xi−1Yi−1Zi−1 for i ∈ {2, 3, 4, 5} is:

Fi−1

Fi
Tk =

[
Fi−1

Fi
Rx(γi)

Fi−1

Fi
Rz(θi,k) oi,k

01×3 1

]
, (3.5)

where [γ2, γ3, γ4, γ5] = [0,−0.5π, 0, 0], and oi,k is the origin of the coordinate Fi−XiYiZi with
respect to Fi−1 −Xi−1Yi−1Zi−1. The derivation of the transformation matrices is important
to find the relationship between the robot state and the robot end-effector’s position and
orientation, i.e., end-effector pose. In real-world applications, one can either set the goal to
be a tuple of the end-effector pose and the mobile base pose. However, this will introduce
more nonlinear equality constraints due to these transformations. Instead, one can use
inverse-kinematics to first find the target joint angles and base pose, then conduct planning
in the joint space. When working in the joint space, the kinematic model of the manipulator
is a linear system that is the same as (2.7) with slight changes on the subscript:

zm,k+1 = Amzm,k +Bmum,k. (3.6)

Connection of the platform and the manipulator

The two systems, the mobile platform and the manipulator, are connected with three
equality constraints, θp,k = θ1,k, ωp,k = ω1,k, and αp,k = α1,k. The full state of the mobile
manipulator is denoted as zk = [z⊤p,k, z

⊤
m,k]

⊤, and the input is denoted as uk = [u⊤
p,k, u

⊤
m,k]

⊤.
The full model is a non-linear model:

zt+1 = g(zt, ut). (3.7)



CHAPTER 3. LONG-HORIZON MOTION PLANNING 39

3.4.2 The motion planning problem

Given the initial state, z0, we obtain z = fki(z0,u) by concatenating the kinematic
function ((2.6) or (2.7) or (3.7)) throughout the planning horizon. The motion planning
problem has the same form as Problem 2. Note that the dimensions of x and u are much
larger in this chapter.

3.4.3 Implementation of sOpt

We denote the segment that starts at split-point zwj
as z

(k)
[wj ,wj+2]

, the associating input

vector as u
(k−1)
[wj ,wj+2]

, and the convex feasible set as χ
(k)
[wj ,wj+2]

. For simplicity, we drop the

subscript in this section. For each segment in each iteration, we update z(k) = fki,zwj
(u(k−1))

at iteration k = 2, 3 . . . . The states z(1) and the inputs u(0) are initialized in the same way
as in Section 2.4.3. The convex feasible set, χ

(k)
[wj ,wj+2]

, is determined by z
(k)
[wj ,wj+2]

. Given

the feasible set Γ =
⋂

j̄,t{z : hj̄(zt) ≥ 0} (j̄ numerates over obstacles and t numerates over

time steps in a segment, i.e., t = 1, . . . , H̄. The function hj̄(zt) if defined similarly to hj(zt)
in Section 2.4.3.), the results of the previous iteration (u(k−1) and z(k)), and the function
fki,zwj

(u), we can construct the convex feasible set as:

χ
(k)
[wj ,wj+2]

=
⋂
j̄,t

{u : h′
j̄,t(u, z

(k)
t ,u(k−1)) ≥ 0}, (3.8)

where h′
j̄,t = hj̄(z

(k)
t ) + ∇⊤hj̄(z

(k)
t )∇fki,zwj ,t

(u(k−1))(u − u(k−1)). Therefore, the iterative
sub-problem for each segment with full notation is as follows:

u
∗(k)
[wj ,wj+2]

= argmin
u

fzwj
(u),

s.t. u ∈ χ(k)(u
(k−1)
[wj ,wj+2]

, z
(k)
[wj ,wj+2]

),

zH̄ = zwj+2
,

(3.9)

where fzwj
(u) = ∥fki,zwj

(u)− zwj+2
∥2Q + λ∥u∥2R.

3.4.4 Simulation setup

We show the simulation results in the following sections. The simulation is conducted in
Matlab R2021a on a desktop with a 3.7 GHz Intel Core i9-10900K CPU. Parallel computa-
tion can be realized by using the function parfor. The stopping criteria for sOpt are the
same. The threshold is set at ϵ = H × 10−3. Obstacles in these scenarios are either convex
or wrapped around with convex geometries.



CHAPTER 3. LONG-HORIZON MOTION PLANNING 40

2 4 6 8 10 12 14

Time [s]

18

20

22

24

P
at

h
 l

en
g
th

 [
m

]

RRT*

RRT*-sOpt

Figure 3.6: Path length reduction performance comparison between RRT* and RRT*-sOpt.

3.4.5 Simulation results

Concept verification

One may argue that RRT* alone can also find a near-optimal solution in a short amount
of time. Note that RRT* can optimize against different costs. We choose “path length”
as the cost, the most straightforward cost function in 2D planning. To justify the need for
having the two-stage strategy, we run RRT* for roughly 13 seconds and compare its path
length reduction performance with RRT*-sOpt. As shown in Fig. 3.6, RRT* converges slowly
while RRT*-sOpt, using the first returned RRT* solution for initialization, converges quickly
to a better local optimal. This confirms the effectiveness of having an optimization solver to
improve the solution when the global optimality guarantee isn’t necessary. Instead of RRT*,
an RRT solution can also serve as an initialization; however, we notice that RRT* can
better utilize the samples by rewiring the path without increasing much computation time.
Therefore, we adopt RRT* and terminate it once a solution is found. The “optimization” of
RRT* only happens while RRT* is sampling for the first solution.

2D motion planning

The scenarios here are designed to simulate mobile platforms’ long-distance 2D motion
planning scenes. Some of the planning results are shown in Figure 3.7. Note that most of the
test cases require the robot to travel a long distance, i.e., more than 100 waypoints are needed
for a motion plan. The performance comparison of RRT*-sOpt with different numbers of
segments is shown in Table 3.1. (The computation time for RRT*-sOpt includes both the
time spent during the RRT* and optimization stages. The sOpt time can be obtained by
subtracting the RRT* time from the total time.) First, we observe that all RRT*-sOpt can
smooth the RRT* reference and achieve similar final costs, which are noticeably smaller
than the costs of the original RRT* solutions. This empirically shows that the algorithm
can converge to a local optimum given the RRT* reference. Second, all of the RRT*-sOpt
are much quicker than RRT*-Opt. This verifies our claim that trajectory splitting reduces
computation time by leveraging parallel computation power. Without merging, s = 7 has the



CHAPTER 3. LONG-HORIZON MOTION PLANNING 41

0 2 4 6 8 10
x [m]

0

1

2

3

4

5

6

7

8

9

10

y 
[m

  ] 
  

0 2 4 6 8 10
x [m]

0

1

2

3

4

5

6

7

8

9

10

y 
[m

    
 

RRT* path
RRT*-sOpt

]    
 

0 2 4 6 8 10
x [m]

0

1

2

3

4

5

6

7

8

9

10

y 
[m

]

0 2 4 6 8 10
x [m]

0

1

2

3

4

5

6

7

8

9

10

y 
[m

]

Figure 3.7: Simulation results of the 2D motion planning.



CHAPTER 3. LONG-HORIZON MOTION PLANNING 42

T
ab

le
3.
1:

S
im

u
la
ti
on

co
m
p
ar
is
on

of
2D

p
la
n
n
in
g
w
it
h
5
to

20
ob

st
ac
le
s.

(T
h
e
re
su
lt
s
ar
e
th
e
av
er
ag
e
of

25
tr
ia
ls
.
T
h
e

n
ot
io
n
“7
→

3.
9”

in
#

S
e
g
m
e
n
ts

in
“a
u
to
-m

er
ge

se
gm

en
ts
”
m
ea
n
s
th
at

th
e
R
R
T
*-
sO

p
t
st
ar
ti
n
g
fr
om

7
se
gm

en
ts

on
av
er
ag
e
te
rm

in
at
es

at
3.
9
se
gm

en
ts
.
T
h
e
co
m
p
u
ta
ti
on

ti
m
e
st
an

d
ar
d
d
ev
ia
ti
on

fo
r
R
R
T
*-
sO

p
t
on

ly
co
n
si
d
er
ed

th
e

ti
m
e
va
ri
at
io
n
d
u
ri
n
g
th
e
op

ti
m
iz
at
io
n
st
ag
e.
)

R
R
T
*

R
R
T
*-
sO

p
t

#
S
eg
m
en
ts

fi
x
ed

au
to
-m

er
ge

se
gm

en
ts

#
S
e
g
m
e
n
ts

1
3

5
7

9
7
→

3.
9

9
→

5.
8

C
o
m
p
u
ta
ti
o
n

ti
m
e

a
v
e
ra

g
e
[s
]

19
.8
2

80
.3
2

22
.3
2

21
.6
3

21
.4
3

22
.0
1

2
1
.4
2

21
.8
1

C
o
m
p
u
ta
ti
o
n

ti
m
e

st
a
n
d
a
rd

d
e
v
ia
ti
o
n

[s
]

36
.9
3

1.
39

1.
01

0.
98

1.
18

0.
93

1.
03

C
o
st

37
.6
9

31
.2
4

31
.1
0

30
.8
2

31
.0
8

30
.9
3

31
.1
0

31
.1
6

#
it
e
ra

ti
o
n
s

13
.8

6.
5

5.
9

5.
5

7.
7

5.
5

7.
1

S
u
cc

e
ss

ra
te

(%
)

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0



CHAPTER 3. LONG-HORIZON MOTION PLANNING 43

shortest computation time and number of iterations. On the other hand, the computation
time is further reduced when merging is allowed. (The notion 7 → 3.9 means that the
RRT*-sOpt starting from 7 segments on average terminates at 3.9 segments.)

Motion planning for a 5-Dof manipulator

The scenarios here are designed to simulate general 3D motion planning scenes of ma-
nipulators operating in factories. Two categories of settings are created: one with only
two obstacles; the other with 7 to 9 obstacles. Some of the planning results are shown in
Figure 3.8. The performance comparison is shown in Table 3.2. Similar to the 2D case,
RRT*-sOpt is much quicker than RRT*-Opt. Note that RRT*-Opt fails in some of the
test cases with two obstacles and fails in most cases with more obstacles. This is mainly
due to the linearization and accumulating approximation errors when solving optimization
problems. Without segmenting the trajectory, the optimization solver will need to handle
all the constraints at once, resulting in a larger chance of failure. On the other hand, RRT*-
sOpt mitigates the problem caused by accumulating linearization errors by distributing the
environment (safety) constraints to multiple segments. Also, the computation time of RRT*-
sOpt is less sensitive to the number of obstacles than that of RRT*-Opt, i.e., RRT*-sOpt
performs more robustly against different configurations of the environment. The reduction in
computation time due to merging is more evident in manipulator motion planning problems,
especially in the second category of settings. In the cases with s going from 7 → 4.7 (on
average), the computation speed is 12% faster than the fastest RRT*-sOpt without merging
in the optimization stage.

Motion planning for a mobile manipulator

The scenarios here are designed to simulate 3D motion planning scenes of mobile ma-
nipulators traveling through hallways while moving the arm to avoid obstacles. One of
the planning results is shown in Figure 3.9. The performance comparison is shown in Ta-
ble 3.3. Since the mobile manipulator kinematic model is more complicated, we formulate
the non-linear constraints and use an open-source solver, CasADi [8] with IPOPT [167], to

solve the nonlinear planning problem directly. In other words, we use Γ
(k)
[wj ,wj+2]

=
⋂

j̄,t{u :

hj̄,t(u, z
(k)
t ,u(k−1)) ≥ 0} directly instead of (3.8). Nevertheless, RRT*-Opt still fails in most

cases because CasADi also requires approximations during the solving process. The solver
is still likely to fail when too many constraints are included in one optimization problem.
On the other hand, this problem can be mitigated with segmentation. The computation
advantage increases as the number of segments increases, similar to what we observe in the
2D and manipulator cases. This also indicates that sOpt can reduce computation time when
working with other solvers. Notice that, in this case, RRT*-sOpt with merging does not
reduce the computation time. This is mainly due to the overhead required to set up CasADi
when merging occurs. In the future, we will improve the implementation (by choosing a



CHAPTER 3. LONG-HORIZON MOTION PLANNING 44

Figure 3.8: Simulation results of the 5-Dof manipulator motion planning.



CHAPTER 3. LONG-HORIZON MOTION PLANNING 45

T
ab

le
3.
2:

S
im

u
la
ti
on

co
m
p
ar
is
on

of
5-
D
of

m
an

ip
u
la
to
r
m
ot
io
n
p
la
n
n
in
g.

(A
ve
ra
ge

of
20

tr
ia
ls
.)

#
ob

st
ac
le
s:

2

R
R
T
*

R
R
T
*-
sO

p
t

#
S
eg
m
en
ts

fi
x
ed

A
u
to
-m

er
ge

se
gm

en
ts

#
S
e
g
m
e
n
ts

1
3

5
7

9
5
→

3.
6

7
→

6.
2

9
→

8.
4

C
o
m
p
u
ta
ti
o
n

ti
m
e

a
v
e
ra

g
e
[s
]

1.
49

98
.8
7

4.
66

4.
16

3.
80

3.
65

4.
14

3.
78

3
.5
7

C
o
m
p
u
ta
ti
o
n

ti
m
e

st
a
n
d
a
rd

d
e
v
ia
ti
o
n

[s
]

84
.2
3

1.
29

0.
90

0.
93

0.
76

1.
06

0.
76

1.
10

C
o
st

8.
40

10
.4

7.
76

7.
76

7.
73

7.
77

7.
75

7.
74

7.
77

#
it
e
ra

ti
o
n
s

6.
2

5.
6

6.
4

7.
2

6
6.
4

6.
8

6
S
u
cc

e
ss

ra
te

(%
)

10
0

60
10
0

10
0

10
0

10
0

10
0

10
0

10
0

#
ob

st
ac
le
s:

7
to

9

R
R
T
*

R
R
T
*-
sO

p
t

#
S
eg
m
en
ts

fi
x
ed

A
u
to
-m

er
ge

se
gm

en
ts

#
S
e
g
m
e
n
ts

1
3

5
7

9
5
→

3
7
→

4.
7

9
→

6.
3

C
o
m
p
u
ta
ti
o
n

ti
m
e

a
v
e
ra

g
e
[s
]

23
.2
6

17
0.
61

28
.4
2

27
.4
8

26
.5
6

26
.1
1

25
.7
7

2
5
.7
6

25
.7
9

C
o
m
p
u
ta
ti
o
n

ti
m
e

st
a
n
d
a
rd

d
e
v
ia
ti
o
n

[s
]

48
.5
1

2.
23

1.
04

0.
56

0.
12

0.
59

0.
10

1.
00

C
o
st

9.
35

7.
80

7.
86

7.
57

7.
58

7.
53

7.
69

7.
66

7.
63

#
it
e
ra

ti
o
n
s

6.
4

6
7.
9

7.
3

7.
6

6.
3

7
7.
2

S
u
cc

e
ss

ra
te

(%
)

10
0

10
10
0

10
0

10
0

10
0

10
0

10
0

10
0



CHAPTER 3. LONG-HORIZON MOTION PLANNING 46

T
ab

le
3.
3:

S
im

u
la
ti
on

co
m
p
ar
is
on

of
m
ob

il
e
m
an

ip
u
la
to
r
m
ot
io
n
p
la
n
n
in
g.

(A
ve
ra
ge

of
10

tr
ia
ls
.)

R
R
T
*

R
R
T
*-
sO

p
t

#
S
eg
m
en
ts

fi
x
ed

A
u
to
-m

er
ge

#
S
e
g
m
e
n
ts

3
5

7
9

7
→

4
C
o
m
p
u
ta
ti
o
n

ti
m
e

a
v
e
ra

g
e
[s
]

16
.4
5

32
.3
2

22
.6
4

2
1
.6
7

21
.8
4

24
.1
6

C
o
m
p
u
ta
ti
o
n

ti
m
e

st
a
n
d
a
rd

d
e
v
ia
ti
o
n

[s
]

3.
73

2.
01

1.
71

1.
99

3.
37

C
o
st

39
.7
3

34
.9
1

22
.2
7

22
.6
5

23
.1
4

22
.4
6

#
it
e
ra

ti
o
n
s

9
7.
8

8
9.
2

7.
6

S
u
cc

e
ss

ra
te

(%
)

10
0

60
10
0

10
0

10
0

10
0



CHAPTER 3. LONG-HORIZON MOTION PLANNING 47

Figure 3.9: Simulation results of a mobile manipulator motion planning.

different optimization solver or coding language) to verify the performance of RRT*-sOpt
with merging.

In summary, simulation results show that RRT*-sOpt can successfully plan long-horizon
motion plans for mobile robots, manipulators, and mobile manipulators. With the trajectory
segmentation, the computation time is significantly reduced and is relatively robust to the
different number of obstacles. The novel idea of segment merging is also tested in these
settings and has demonstrated the potential to reduce the computation time further. Based
on the results of the three models, we suggest using auto-merge-segment RRT*-sOpt for 2D
and manipulator planning and fixed-segment RRT*-sOpt for mobile manipulator planning.
(The number of segments can be determined based on the planning horizon. Empirically, we
suggest that each segment should not handle more than 30 time steps.) The computation
time standard deviation of RRT*-sOpt is also small compared to RRT*-Opt. It is worth
noticing that the setups with a short average time also tend to have a smaller standard
deviation.

3.4.6 Discussion and suggested future works

Though the current implementation of RRT*-sOpt has shortened the computation time
substantially, some areas remain to be addressed.

• A method of selecting the initial number of segments is required. One way of de-
termining such a number is to choose a horizon for the initial segments. Then, by
calculating the path length of the RRT* reference, we can determine the number of
segments needed. However, this selection method does not consider the configuration



CHAPTER 3. LONG-HORIZON MOTION PLANNING 48

of the environment (e.g., obstacles’ relative locations). In the future, we aim to develop
a method that determines the initial number of segments based on both the reference
path length and the environment configuration.

• The merging condition can be improved. The current implementation uses the cost
reduction trend to determine when the merging occurs. However, we observed that the
optimization problem with tight space usually converges in fewer iterations. This indi-
cates that the environment configuration should be taken into account when designing
the merging conditions.

• Although the algorithm converges empirically, the theoretical properties of RRT*-sOpt
can be further investigated.

3.5 Chapter Summary

This chapter presented a fast long-horizon motion planning algorithm, RRT*-sOpt, that
inherits the computation advantages of its predecessor, RRT*-CFS, and further improves
it by incorporating the idea of segmented trajectory optimization. The RRT*-sOpt quickly
found a feasible and semi-optimal path using RRT* and iteratively refined the solution using
sOpt. Simulation results showed that RRT*-sOpt benefits from the hybrid structure and the
ability to distribute the problem complexity to leverage the power of parallel computation.
RRT*-sOpt can solve problems that are extremely challenging to stand-alone optimization-
based planners, has better final cost than pure sampling-based planners, and has significantly
shorter computation time than previous hybrid planners. The novel idea of segment merging
was also tested and has shown the potential to reduce the computation time further. We
concluded that the hybrid structure with trajectory segmentation had brought the strong
performance to RRT*-sOpt for general long-horizon robot motion planning problems.



49

Chapter 4

Search-based Motion Planning for
Articulated Vehicles

4.1 Introduction

In Chapter 2 and 3, we explored methods that only rely on online computation for
motion planning. However, as computation power and memory storage improve, search-
based motion planners become more popular for robot motion planning because of their
ability to utilize off-line computation results, especially for robots with complicated kinematic
or dynamic models. This chapter presents a motion planning strategy that utilizes the
improved A-search guided tree and data-driven methods to enable autonomous parking of a
general 3-trailer with a car-like tractor.

Autonomous tractor-trailer systems have attracted strong interest from industry and
academia due to their high cargo transportation efficiency. However, their complicated kine-
matics pose significant challenges in both control and planning, particularly when reversing
maneuvers and collision avoidance are needed.

Early works proposed flatness-based trajectory generation for unconstrained environ-
ments [123, 163], while others proposed hierarchical motion planners [148, 91] that first plan
a collision-free holonomic path and then iteratively modify it to a kinematically feasible
trajectory. Recent works resorted to the state-lattice framework to accomplish kinodynamic
planning [37, 35, 115], where the dynamic feasibility and collision avoidance are addressed
simultaneously. These algorithms search a graph, where the vertices are discrete states and
the edges are from a set of pre-computed motion primitives (MPs). Since the MPs can be
generated offline by solving optimal control problems (OCP), the difficulty incurred by the
complex kinematics is handled offline. These state-lattice-based planners guarantee resolu-
tion optimality and completeness.

A major limitation with state-lattice-based methods is the curse of dimensionality. Works
[115, 164] proposed to restrict the MPs to those admitting transition between circular equilib-
rium configurations. This lowers the dimension of the search space that planning algorithms



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 50

explore. However, a large amount of MPs is necessary. The trade-off between the number
of MPs and planning success rate/planning accuracy needs to be managed carefully so that
the planner can find a path that ends close to the goal within a reasonable time period. A
well-informed heuristic function that correctly approximates the true cost-to-go from a state
to the goal state is needed to maintain real-time performance [37, 114]. Work [114] combines
Euclidean distance and a free-space heuristic look-up table (HLUT) to calculate the heuristic
value. Nevertheless, the memory burden of storing the HLUT may be of concern for certain
applications.

A remedy to lattice-based limitations is an improved A-search guided tree (i-AGT) [169],
which is constructed on-the-fly and accepts off-lattice exploration. This work adopts and
extends i-AGT to tractor-trailer systems since moving away from state-lattice-based methods
enables using a smaller set of MPs with a similar planning success rate and yields better
path quality. We propose a construction process to generate the set of MPs for off-lattice
use and analyze its connectivity to achieve good performance. On top of these advantages,
i-AGT groups MPs into various modes with their associated priorities, allowing a mode
selection process to improve the computation efficiency of node expansion. Unlike lattice-
based methods where the HLUT can readily construct the cost-to-go, i-AGT with off-lattice
nodes requires a more sophisticated design to estimate the cost-to-go. We reckon that the
cost-to-go often largely depends on the “level of maneuver difficulty.” In this light, we learn
the maneuver costs of the complicated trailer kinematics by reinforcement learning and use
the learned value function to obtain the heuristic value.

Thus, this work presents a motion planning method that utilizes i-AGT with a data-
driven heuristic to plan for autonomous tractor-trailer systems. The main contributions
are:

• A simple set of MPs is generated for i-AGT with reachability guarantees.

• A data-driven heuristic is proposed to increase the search efficiency of i-AGT.

• Extensive simulation is performed to show the effectiveness of the proposed system
(video is publicly available here).

4.2 Related Works

Here we review works related to trailer planning. There are two main methodologies.

4.2.1 Optimization-based algorithms

Works in this category usually seek a numerical solution of an OCP [106, 127, 105],
which requires a non-trivial initialization to converge, especially in cluttered environments
[135, 175, 13, 101]. Sampling-based planners with simplified vehicle models [175, 101] have
been used to provide an initial path for the OCP. This treatment still does not guarantee the

https://jessicaleu24.github.io/IROS2022.html


CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 51

feasibility of the OCP because 1) the initial path may not be homotopic to the true solution
of the OCP [157]; 2) the objective function in the sampling stage may not represent that in
the optimization stage [14].

4.2.2 Search-based and state-lattice-based algorithms

Search-based planning is another popular method for tractor-trailer systems, which ab-
stracts the configuration space as a graph with nodes and edges [34, 115]. Search operations
are often done by A* [62, 71, 35]. State-lattice-based planners are deterministic planners
which use a finite set of pre-computed MPs online to find a resolution-optimal solution [132,
114]. However, due to the discretized search space, the graph resolution will affect the
optimality [14].

4.3 Preliminaries

4.3.1 Problem statement

This chapter considers the motion planning problem as finding a trajectory that connects
the initial state to the goal state. Consider a system with the following dynamics

Ẋ = f(X) + g(X, u), (4.1)

where X ∈ X ⊂ Rnx is the state, u ∈ U ⊂ Rm is the control input, f and g are smooth
vector fields. A configuration of system (4.1) is a complete specification of the position of
every points of that system. The configuration space C ⊂ Rnc is a compact set representing
all possible configurations; and Cfree denotes a collision-free configuration space. This work
assumes C = X and the motion planning problem as follows:

Problem 3. Given an initial state XI ∈ Cfree, a goal state XG ∈ Cfree, and system (4.1),
find a feasible trajectory Pt which

(I) starts at XI and ends at XG, while satisfying (4.1); and

(II) lies in the collision-free configuration space Pt ⊂ Cfree.

Although optimality is not directly considered in the problem formulation, as opposed
to the formulation in Section 2.2.1, the search method still results in a solution with some
level of optimality. The optimality is directly related to the definition of the arrival cost and
the heuristic function used during the search.

4.3.2 Trailer modeling

Consider a front-wheel drive standard trailer system [141, 5] as shown in Figure 4.1,
where [x, y]⊤ are the coordinates of the midpoint of the tractor’s rear-wheel axis, θ0 is the



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 52

𝐿𝐿

𝛿𝛿
𝜃𝜃0

𝑣𝑣𝑓𝑓

𝜃𝜃1

𝑑𝑑1

𝜃𝜃3

𝑑𝑑3

𝑑𝑑2

(𝑥𝑥,𝑦𝑦)

Figure 4.1: Kinematics of a front-drive tractor with 3 trailers. (All trailers are on-axle, and
all angles representing the orientation of tractor and trailers (θi, i = 0, . . . , 3) are w.r.t. the
x-axis.)

tractor orientation, θ1, θ2, θ3 are the orientations of trailers, vf is the front-wheel velocity
of the tractor, δ is the steering angle of the tractor, and L is the distance between (x, y)
and the midpoint of the front wheel axis. The control inputs are vf and δ. A mechanical
constraint |δ| ≤ δmax limits the minimum turning radius R of a path. Provided that vf
and δ can be independently controlled, we introduce new control variables: u = [v, s]⊤ =

[cos(δ)vf ,
tan(δ)

tan(δmax)
]⊤, where tan(δmax) =

L
R
, and s ∈ [−1, 1] is the normalized steering angle.

It is beneficial to represent the kinematic model in the coordinates ξ = [x, y, θ0, θ1− θ0, θ2−
θ1, θ3 − θ2]

⊤, where:

ẋ = cos(θ0)v,

ẏ = sin(θ0)v,

θ̇0 =
vs

R
,

ξ̇4 = −v
d1s+ sin(ξ4)R

Rd1
,

ξ̇5 = −v
d1 cos(ξ4) sin(ξ5)− d2 sin(ξ4)

d1d2
,

ξ̇6 = −v cos(ξ4)
d2 cos(ξ5) sin(ξ6)− d3 sin(ξ5)

d2d3
.

(4.2)

In ξ-coordinates, the constraints to prevent a jack-knife configuration are

|ξi| ≤ ξmax, 4 ≤ i ≤ 6, (4.3)

where ξmax must be less than π
2
. The trailer system is subject to additional state and control

constraints:
0 ≤ θ0 < 2π, |v| ≤ vmax, |s| ≤ 1. (4.4)

Remark 2. Although this work is demonstrated on a standard trailer system, the proposed
method can be readily generalized to other trailer systems.



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 53

4.3.3 i-AGT algorithm

i-AGT constructs a tree T , with a root node Xinit ∈ {XI , XG} and a goal Xgoal ∈
{XI , XG}\{Xinit}, which reaches a neighbor Bϵ(Xgoal) ≜ {X ∈ X |d(X,Xgoal) ≤ ϵ}. Specifi-
cally, d(·, ·) is a distance function, i.e., a weighted 2-norm: ∥Xi −Xj∥P = ((Xi−Xj)

⊤P (Xi−
Xj))

1/2, Xi, Xj ∈ C. Similar to A*, each node X is assigned an F -value calculated as follows:

F (X) = g(Xinit, X) + h(X,Xgoal), (4.5)

where g(Xinit, X) represents the cost-to-come, or the arrival cost, from Xinit to X, and
h(X,Xgoal) denotes the estimated cost-to-go, or the heuristic value, from X to Xgoal. i-AGT
maintains a priority queue Q, which contains nodes to be expanded. All nodes in Q are
ordered according to their F -values.

The trade-off between planning time and maneuver resolution, i.e., the cardinality of the
set of MPs M, has to be made when a search algorithm is involved [14]. i-AGT pivots
on a concept ‘mode’ which divides M into m unique subsets of motion primitives Mi ⊂
M, i = 1, . . . ,m. During node expansion of the best candidate node Xbest, a current mode
Mc, which has the highest priority among untried modes, is determined. Then, Xbest is
expanded by applying primitives in Mc one by one. Applying each MP gives a new node Xk

and the connecting trajectory Pk from Xbest to Xk. If Xk is δ-distant away from T and Pk

is collision free, then the algorithm

(I) updates priority PMc
Xbest

according to F (Xbest) and F (Xk);

(II) copies the mode priorities of Xbest to Xk;

(III) adds node Xk and edge E(Xbest, Xk) to T ;

(IV) inserts node Xk into Q.

Details of i-AGT can be found in [169].

4.4 The Off-lattice Motion Planning Algorithm

i-AGT entails three components: the MPs that govern node expansion, the mode priority
that governs mode selection, and the heuristics that govern node selection. A naive approach
is to directly apply the i-AGT used in [169] to the trailer planning setting, i.e., use the
same heuristics and mode definition while defining the MPs as a tuple of constant velocity
and constant steering angle over a certain period. In Case 7 (Figure 4.13(a)), the i-AGT
constructs a tree with 2617 nodes using 7 sec. However, it undergoes heavy computation
because the MPs result in exploring the 6-dim state space and land too many collision-free
but kinematically undesirable nodes. With the state space being 6-dimensional, the number
of elements in the state-lattice covering a compact set of the state space could be large,
yielding an explosive number of motion primitives - known as the curse of dimensionality.



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 54

The following sections introduce the proposed methods to enable trailer planning using
i-AGT, mainly the construction of the MPs set and obtaining informative heuristics for a
trailer system.

4.4.1 Dimension reduction

To find a better set of MPs, we follow the well-established idea in [5, 114] to circumvent
the curse of dimensionality by restricting X to meet the condition that the tractor and
all trailers move in circles (trailers and tractor have the same yaw rate C), as shown in
Figure 4.2(a). Note that given v, the yaw rate of the tractor and the headings of all trailers
are uniquely determined by the steering action s. Particularly, for tractor θ̇0 = vs/R = C(s),
whereas the headings of trailers can be uniquely determined from

ξ̇k = 0, k = {4, 5, 6},

which admit the solutions

ξ4(s) = − arcsin(
sd1
R

),

ξ5(s) = − arcsin(
sd2
Rc1

),

ξ6(s) = − arcsin(
sd3

Rc1c2
),

(4.6)

where c1 =
√

1− (sd1/R)2, c2 =
√

1− (sd2/(Rc1))2. We use gc(ξ4, ξ5, ξ6) = 0 to sim-
plify (4.6). As a result, planning is carried out over the 4-dim space X̄ ⊂ R4 (also called
the reduced-state space) with X̄ = [x, y, θ0, s]

⊤ ∈ X̄ , i.e., the tree has 4-dim nodes. Note
that the trailer system state still evolves in X ⊂ R6 during the transition between nodes, as
shown in Figure 4.2(b).

4.4.2 Motion primitives

An MP can be viewed as a function mp(·) that transforms a node X̄i to a new node X̄j,
i.e., X̄j = mp(X̄i). To ensure all nodes in i-AGT remains in the 4-dim space X̄ , one should
design M so that X̄ is M-invariant, while satisfying (4.2). That is mp(X̄) ∈ X̄ ,∀X̄ ∈
X̄ ,mp ∈ M. Below illustrates how to obtain such M for on-lattice exploration and for
off-lattice exploration, respectively, by solving a multitude of steering problems.

The steering problem

Steering refers to connecting two states with a kinematically or dynamically feasible
trajectory. It can be posed as an open-loop OCP. We denote the initial state as X0, the
target state as Xf , an admissible control set as U , an objective function as c(X, u), the
control input as u, and final time as tf . If the final time is free, the steering problem is cast



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 55

(a)

�𝑋𝑋: {𝑋𝑋|𝑔𝑔𝑐𝑐 𝜉𝜉4, 𝜉𝜉5, 𝜉𝜉6 = 0}

(b)

Figure 4.2: (a) An example of the circular equilibrium configuration. (b) An example of
a motion primitive in the original state space X , but starts and ends at the plane of the
reduced-state space X̄ .

into a fixed final time OCP via time-scale transformation γ = t
tf
. The time-scaled OCP has

a final time 1:
where t̄f is the upper bound of tf . The OCPs (4.7) are formulated and solved by using

CasADi [8] and IPOPT [167].

min
u,tf

c(X, u),

s.t.
∂X

∂γ
= tff(X, u) & (4.3) & (4.4),

X(0) = X0, X(1) = Xf , u ∈ U , tf ∈ [0, t̄f ].

(4.7)

When solving (4.7) numerically in ξ-coordinates, we choose 50 time steps over [0, 1], and the
bounds

|x| ≤ 10, |y| ≤ 10, |θ0| ≤ 2π,

|ξi| ≤
π

2
, 4 ≤ i ≤ 6,

|v| ≤ vmax = 5R, |s| ≤ 1.

(4.8)

Figure 4.3(a) exemplifies a parallel parking MP which goes from X0 = [0, 0, 0, 0, 0, 0]⊤ to
Xf = [8, 1, 0, 0, 0, 0]⊤. The key of constructing M is to determine what are the MPs we
need and design the state-lattice accordingly, so that we can obtain the underlying MPs by
solving the steering OCPs from one state-lattice node to the other.

State-lattice and simplification

The main concern when designing the state-lattice is to ensure discrepancy and dispersion
of the underlying MPs. Here we employ uniform discretization of a compact set: D0 ≜



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 56

-5 0 5 10

-6

-4

-2

0

2

4

6

8

(a)

-10 -5 0 5 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Figure 4.3: Motion primitive generation: (a) an example of parallel parking maneuver, (b)
motion primitives from reversibility and symmetry. The lines indicate the trajectories of the
tractor.

MP2 = Rot(π
2
)MP1

θ0(0) ∈ [π
2
,π)

MP3 = Rot(π)MP1

θ0(0) ∈ [π, 3π

2
)

MP4 = Rot(−π

2
)MP1

θ0(0) ∈ [ 3π
2
, 2π)

MP1(X0, Xf ),
θ0(0) ∈ [0, π

2
)

Figure 4.4: Simplification of motion primitive by rotational symmetry.

[−Lx, Lx] × [−Ly, Ly] × [−π, π] × [−1, 1] ⊂ X̄ . Denote the lattice set S. Steering problems
are defined with (X̄0, X̄f ) ∈ S × S.

The number of elements in S could be huge. For example, with Lx = Ly = 2m and the
size of the state-lattice being ∆x = ∆y = 1m,∆θ = π/8, and ∆s = 0.5, we obtain a total
of 2125 state-lattice nodes. Solving steering problems by trying all possible combinations of
(X̄0, X̄f ) will lead to solving millions of steering problems, which could be computationally
prohibitive. We simplify the MP generation process by exploiting the properties of the
steering problems: invariance w.r.t. (x, y), symmetry against x-axis, π/2 rotation, and
reversibility over time. In the following, we treat the x, y positions, the heading θ, and
steering s as functions of time duration within the MP, i.e., [x(t), y(t), θ0(t), s(t)]

⊤, t ∈ [0, 1].



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 57

• Simplify by invariance w.r.t. (x, y): Consider the steering problem from X̄0 =
[x(0), y(0), θ0(0), s(0)]

⊤ to X̄1 = [x(1), y(1), θ0((1), s(1)]
⊤ and assume the solution tra-

jectory is a function of time duration, i.e., X̄(t), t ∈ [0, 1]. One can construct the
steering solution trajectory from X̄i = [x(0) + lx, y(0) + ly, θ0(0), s(0)]

⊤ to X̄j =
[x(t)+ lx, y(t)+ ly, θ0((1), s(1)]

⊤ as X̄(t)+[lx, ly, 0, 0]
⊤. Hence, we only need to consider

X̄0 with x(0) = y(0) = 0.

• Simplify by symmetry against x-axis: If there exists a steering solution be-
tween X̄0 = [0, 0, θ0(0), s(0)]

⊤ and X̄1 = [x(1), y(1), θ0(1), s(1)]
⊤, e.g., the blue solid

in Figure 4.3(b), so does the solution between X̄i = [0, 0,−θ0(0),−s(0)]⊤ and X̄j =
[x(1),−y(1),−θ0(1),−s(1)]⊤, the dash blue line in Figure 4.3(b). Hence one only needs
to solve the steering problems θ0 ∈ [0, π), i.e., X̄0 ∈ {0} × {0} × [0, π)× [−1, 1].

• Simplify by π/2 rotation: Next we exploit the symmetry w.r.t. to rotations with
angles k(π/2), k ∈ Z. That is if there exists a solution from X̄0 to X̄1, so does the
solution from X̄i = [0, 0, θ0(0) + π/2, s(0)]⊤ and X̄j = [Rot(π/2)(x(1), y(1)), θ0((1) +
π/2, s(1)]⊤, where Rot(π/2) ∈ SO(2) with the angle π/2. That is to say: we only need
to solve steering problems with X̄0 ∈ D2 ≜ {0} × {0} × [0, π/2) × [−1, 1] to obtain
MP1, and the MP with θ0 ∈ [π

2
, 2π) can be constructed from MP1, see Figure 4.4.

• Simplify by reversibility over time: Reversibility over time [114] means that a
solution from X̄0 to X̄1 (the solid blue in Figure 4.3(b)) implies the solution from X̄1

to X̄0 (the solid red line in Figure 4.3(b)), by reversing time. Combining reversibility
with the assumption that forward and backward MPs lead to X̄f with xf ≥ 0 and
xf < 0, respectively, one only needs solving steering problems with xf ∈ [0, Lx] for
forward MPs, and then constructing backward MPs by reversing forward MPs.

Remark 3. The idea “forward” and “backward” is relative to the trailer’s heading that we
try to keep roughly in the same direction, if possible. Therefore, forward MPs and backward
MPs are associated with X̄f located in the right half-plane (RHP) and the left half-plane
(LHP), respectively. Note that driving “forward” to the LHP is essentially making a U-turn
(Figure 4.5(left)), which is not preferred because it is hard to perform in environments full
of obstacles.

Solving steering problems from X̄0 ∈ D2 → X̄f ∈ D0 gives a group of MPs: Mon.
Similar to [132, 37, 114], one can categorize all MPs according to X̄0, i.e., each class of MPs
is associated with a unique 2-dim pose q = [θ0, s]. During node expansion, one first performs
mod (θ0,

π
2
) to map X̄ into D2, then retrieves the corresponding MPs asMon,q, and finally

appliesMon,q at X̄. In such a way, all nodes explored during planning remains on lattice.

Off-lattice motion primitives

Applying MPs in an on-lattice manner is beneficial to maintaining the tree sparsity
and high computational efficiency. However, restricting all nodes to the lattice introduces



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 58

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑥𝑥

Figure 4.5: A trailer driving “forward” (left) and “backward” (right) to the goal configuration
(marked in red).

significant limitations that bring various detrimental impacts: compromised feasibility in
tight environments and often unsatisfactory planning quality, such as unnecessarily long path
length. One can remedy these shortcomings by adopting many MPs for better resolution
completeness and potentially better planning quality. However, ensuring the quality and
connectivity of the MPs requires an even more complicated process.

To overcome the curse of dimensionality, the planner should plan over a 4-dim space, not
over the 4-dim lattice. MPs should be classified and applied so that off-lattice nodes can
be generated. This is readily achievable by grouping MPs according to steering s: given X̄,
one fetches and applies the MPs beginning with s at X̄. In this case, each class of MPs
should associate with a unique 1-dim pose q = s. We constructMoff fromMon by merging
all MPs beginning with the same s to one class, and pruning MPs that ends close. In this
work, we pick Lx = Ly = 8m, ∆x = ∆y = 1m,∆θ = π/12, and ∆s = 0.25, and follow the
above process to obtainMon containing 2904 MPs andMoff containing 594 MPs. Figure
4.6 illustrates the 9 poses used inMoff . In the following section we will show the analysis
of these, particularly to show thatMoff contains enough MPs.

Remark 4. Generating Moff from Mon does not alleviate the computation complexity of
MP generation. However, the off-lattice application allows us to apply MPs generated with
θ0 = 0 to other configurations with the same pose. Therefore, one can directly solve much
less steering problems by further restricting X̄0 to the set: {0} × {0} × {0} × [−1, 1].

Remark 5. To keep the element in Moff simple enough to be followed by the underlying
control system, we remove the MPs that contain cusps.

Analysis

BothMon andMoff have to meet specific criteria for reasonable planning performance.
We analyze them in the graph framework. Given an MP setM, one can construct a directed



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 59

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

Figure 4.6: 9 poses ofMoff .

(a) (b)

Figure 4.7: Reachability analysis of Mon: (a) adjacency matrix of Mon (b) outdegree of
Mon.

graph G(V , E) where the node-set V represents all possible poses q of X̄0. E is a collection
of directed edges from qi to qj. Each represents the existence of an MP, allowing the uni-
directional transition from qi to qj.

The graph G constructed fromM shall satisfy the following properties: 1) the graph is
connected, meaning the trailer can transform from one pose to another pose in finite steps;
2) all nodes have similar in-degree and out-degree, meaning the transformation from pose
to pose can potentially be done easily; and 3) all q have a similar amount of backward and
forward MPs, meaning the trailer can potentially move easily in 2D space. We construct
Gon,Goff fromMon,Moff , respectively. Figure 4.7 shows the analysis results, when θ0 and
s are discretized over [−π

2
, π
2
] and [−1, 1] with resolution π

12
and 1

4
, respectively. As a result,



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 60

(a) (b)

Figure 4.8: Reachability analysis ofMoff : (a) adjacency matrix ofMoff , and (b) outdegree
ofMoff .

Mon ends up with 99 2-dim poses q, and Moff contains 9 1-dim poses. Figure 4.7(a) and
4.8(a) plot the adjacency matrices of Mon and Moff , respectively where yellow in (i,j)
means the transition from qi to qj exists. We can see that the yellow area in Figure 4.8(a)
covers almost the full matrix, meaning that without considering obstacles, the trailer can
transform from one pose to another pose by applying at most two MPs. One easily confirms
the connectivity ofMon,Moff by checking the indegree and outdegree of all nodes. Figure
4.8(b) and 4.7(b) show the outdegree of Mon and Moff , respectively, where Mon exhibits
much more non-uniformity than Moff . It is noteworthy that Moff is better in the sense
that it is fully connected with much fewer (5x) MPs.

4.4.3 Mode and estimated cost-to-go

The planning efficiency of i-AGT is highly dependent on the mode definition/selection to
find the proper subset of MPs and the estimation accuracy of the cost-to-go to find the right
node to apply these MPs. In this work, we use the idea in [169] and classify the MPs into two
modes: forward mode and backward mode. A child node generated following 4.3.3 is likely to
explore the forward MPs if the parent node was also exploring forward so that the planner
won’t easily “undo” its previous exploration. A more involved mode definition/selection can
be developed, which may be future work. On the other hand, constructing a heuristic func-
tion to approximate the cost-to-go for trailers is much more challenging and time-consuming
than for cars because the steering problem does not admit an analytical solution.

Estimating the cost-to-go function is based on the realization that h(X,Xgoal) is ex-
actly the same as h(Tgoal(X),Tgoal(Xgoal)), where Tgoal is an SE transformation such that
Tgoal(Xgoal) has the tractor configuration being [x, y, θ0]

⊤ = [0, 0, 0]⊤ and the trailer config-
uration [ξ4, ξ5, ξ6]

⊤ remains unchanged and Tgoal(X) has the tractor configuration being the



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 61

Std

Mean

FC(256)

ReLU

Observation Action

FC(128)

Add

FC(128)

FC(128)

ReLU

ReLU

Value

FC(256)

ReLU

Observation

FC(128)

FC(128)

ReLU

Action

ReLU

FC(2)

FC(128)

ReLU

FC(2)

softplus

concat

FC(1)

Figure 4.9: The critic net (left) and actor net (right).

value relative to Xgoal and the trailer configuration remains unchanged. Particularly, the SE
transformation is uniquely defined as follows

Tgoal(X) =


x cos θ0,goal + y sin θ0,goal − xgoal

−x sin θ0,goal + y cos θ0,goal − ygoal
θ0 − θ0,goal

ξ4,goal
ξ5,goal
ξ6,goal

 .

We propose to learn h(X,Xgoal) by learning the navigation policy and value function in
free space with the soft actor-critic (SAC) algorithm [60], which is a model-free, online, off-
policy, actor-critic reinforcement learning method. Previous works have considered learning
policies for similar systems with deep deterministic policy gradient (DDPG) [11] or deep
Q-Network (DQN) [64]. Since our goal is to obtain a value function to approximate the
cost-to-go, we favor the exploration property and the continuous action space and choose
SAC over DDPG or DQN.

To train the SAC agent, we initialize the trailer state randomly in X . The network
structure is shown in Figure 4.9, where observation refers to the state X and action refers
to the input u. “FC(n)” refers to a fully connected layer with output size n. “Add” refers



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 62

-20 -15 -10 -5 0 5 10 15 20

x [m]

-20

-15

-10

-5

0

5

10

15

20
y
 [
m

]

(a) (b)

(c) (d)

Figure 4.10: Example of the heuristic value for goal configuration at [0, 0, 0, 0, 0, 0]⊤ based
on: (b) Euclidean distance, (c) RS path, and (d) SAC value function.

to an addition layer, which adds inputs from multiple neural network layers element-wise.
The “softplus” layer applies the softplus activation function q = log(1 + ep), p, q ∈ R, which
ensures the positiveness of outputs. The “concat” refers to the concatenation layer, which
takes inputs and concatenates them along a specified dimension. Since the zero heading and
steering configuration is often a preferred trailer parking pose, a reward is given when the
trailer is closed to Xtrain,goal = [0, 0, 0, 0, 0, 0]⊤. Each episode terminates when the maximum
steps per episode MaxSteps is reached when the trailer goes out of a 35[m]x35[m] window
centered at the goal, or when the trailer runs into a jackknife configuration. The design of
the reward function and the training process is crucial to the performance of the trained
policy. The two objectives of the reward function are:

• encouraging the trailer to go to Xtrain,goal as quickly as possible;

• not discouraging exploration of the complicated trailer kinematics and the control



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 63

Merge

Weight

Figure 4.11: Combining the local heuristic function and the global heuristic function.

policy.

We design a sparse reward function. While MaxSteps is not reached, the reward at time k
with observation Xk is:

r(Xk) =

{
1 if ∥Xk −Xtrain,goal∥W1 ≤ ϵ

0 otherwise
, (4.9)

where W1 = diag([4.83, 4.25, 0.33, 0.15, 0.07, 0.03]) is a weight matrix and ϵ determines the
size of the “goal region.” Since the reward is sparse, it is hard to receive a reward at the
beginning if ϵ is too small. Therefore, we start the training with ϵ = 1 until the average
reward converges, then shrink ϵ to half of its previous value, and repeat the process until
ϵ = 0.25.

To obtain the approximated cost-to-go from the learned critic value function, we use a zero
vector for the action input and use the resulting critic value function as the heuristic value.
We compare the proposed heuristic with heuristic functions based on Euclidean distance
and Reeds-Shepp (RS) path [139]. Figure 4.10(b), (c), and (d) show the heuristic value to
reach Xtrain,goal = [0, 0, 0, 0, 0, 0]⊤ starting from X = [x(0), y(0), 0, 0, 0, 0]⊤ as an example.
The color indicates the heuristic value, where the locations with lower cost-to-go are colored
in blue and higher cost-to-go are colored towards yellow. The heuristic value provided by
Euclidean distance is shown in Figure 4.10(b), where the value change is the same in all
directions from the origin. This indicates that this heuristic cannot reflect the different
levels of difficulty in maneuvering tasks when the trailer heading and steering angles are
different. The heuristic value provided by RS path length is shown in Figure 4.10(c), which
has smaller values along the x-axis and larger values with locations close to y-axis. This
reflects the difficulty in steering for a car model and similarly for the trailer. However, this
heuristic cannot represent the steering angle, which largely affects the maneuvering difficulty.
The heuristic based on the value function learned by SAC is shown in Figure 4.10(d), which
has lower values along the x-axis because the trailer only needs to drive straight to the



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 64

goal. It also captures the fact that the trailer may need a larger space for maneuvers
even though the Euclidean distance to the goal and the RS path length are small. This is
reflected, for example, by the fact that (x, y) = (−20,−5) has a smaller value than (0,−5)
in Figure 4.10(d), which is not captured by the other two heuristics. We conclude that
the learned value function can reflect the true cost-to-goal more accurately. Note that the
learned heuristic also has a higher value when the trailer needs to go backward. Although
there is no preference between forward and backward motions during planning, in reality,
forward motions are preferred because they are easier to execute.

Since the data-driven value function generally only works with states visited during the
training process, it is only considered a local heuristic function. To get the global heuristic
function, we combine the local and global heuristic functions. As shown in Figure 4.11, the
final heuristic function is a weighted sum of the local heuristic function and global heuristic
function given the weight.

4.5 Applications

Simulations benchmark the i-AGT with the proposed heuristic (i-AGT-NN) against the
baseline i-AGTs that use RS as a heuristic, one with on-lattice (i-AGT-RS-on) MPs and
the other with off-lattice (i-AGT-RS-off) MPs. The simulation environments mimic tracker-
trailers moving materials in a large factory area where it needs to navigate through narrow
aisles and park in narrow spaces. This section presents several of the simulation results as
examples. The tractor-trailer parameters used L = 2.396[m] and d1 = d2 = d3 = 2[m]. The
MPs are processed following the proposed method, which leads us to an Mon containing
2904 MPs and anMoff containing 594 MPs. Simulation is conducted on a 10-core Intel i9
3.7GHz desktop with Matlab R2021a. Figure 4.12, 4.13 shows the simulation results with
i-AGT-NN in 11 cases, where the initial position of the trailer is colored in green, and the
goal position is in red. The blue line indicates the trajectory of the tractor. Table 4.1 shows
the detailed planner performance.

We first compare i-AGT-NN and i-AGT-RS-off to verify the effectiveness of the proposed
heuristic. Figure 4.12(a)-(e) show the cases for trailer parking where several narrow parking
spots are in the bottom right, and an open space is on the top right allowing for maneuvering.
Cases 1 and 2 require the trailer to perform a right turn parking and parallel parking,
respectively. In both cases, i-AGT-NN outperforms i-AGT-RS-off in planning time and
requires less node exploration with similar resulting path lengths. Case 3 moves the trailer
from one parking spot to another. To change the heading angle by 180 degrees, the trailer
must utilize the open space, which makes the planning problem very challenging because
moving the trailer to the upper boundary for successful planning is against the direction
suggested by the heuristic of both heuristics. It takes both i-AGT-NN and i-AGT-RS-off a
longer time to solve the problem than in other test cases. However, i-AGT-NN requires 50%
less time than i-AGT-RS-off. Cases 4 and 5 show the importance of having a heuristic that
accurately captures the system kinematics. Both cases require similar navigation skills as



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 65

T
ab

le
4.
1:

C
om

p
ar
is
on

of
i-
A
G
T

p
er
fo
rm

an
ce
s
w
it
h
h
eu
ri
st
ic

b
as
ed

on
R
S
an

d
S
A
C

va
lu
e
fu
n
ct
io
n
s.

C
as
e

N
o.

i-
A
G
T
-R

S
-o
n

i-
A
G
T
-R

S
-o
ff

i-
A
G
T
-N

N

P
la
n
n
in
g

T
im

e
[s
]

#
of

N
o
d
es

E
x
p
lo
re
d

P
at
h

le
n
gt
h

[m
]

P
la
n
n
in
g

T
im

e
[s
]

#
of

N
o
d
es

E
x
p
lo
re
d

P
at
h

le
n
gt
h

[m
]

P
la
n
n
in
g

T
im

e
[s
]

#
of

N
o
d
es

E
x
p
lo
re
d

P
at
h

le
n
gt
h

[m
]

1
N
/A

*
N
/A

N
/A

14
.4
4

20
94

(1
84
75
)

35
.6
7

2.
02

31
9
(9
72
)

38
.6
5

2
0.
50

67
(4
10
)

37
.6
8

4.
08

58
5
(6
66
6)

29
.3
7

0.
63

79
(3
17
)

33
.0
3

3
N
/A

N
/A

N
/A

27
4.
22

17
38
1

(5
14
13
7)

71
.6
2

13
0.
42

94
00

(2
65
62
2)

78
.0
0

4
2.
44

27
4

(5
71
4)

36
.2
7

10
3.
88

76
25

(1
98
42
3)

58
.3
3

0.
53

68
(3
35
)

28
.7
9

5
2.
98

17
9

(4
81
2)

90
.2
7

32
4.
78

19
55
1

(6
23
08
3)

68
.5
8

2.
02
8

30
0
(9
12
)

47
.3
2

6
2.
80

16
6

(5
72
2)

88
.1
5

5.
49

38
3
(8
59
8)

40
.9
3

8.
31

58
1

(1
35
88
)

69
.7
1

7
1.
54

98
(2
53
6)

57
.1
9

5.
57

41
3
(5
77
0)

45
.1
9

2.
46

18
2

(2
23
9)

45
.1
9

8
N
/A

N
/A

N
/A

49
.6
7

22
85

(9
32
92
)

71
.0
3

14
.7
1

10
43

(1
95
28
)

75
.0
0

9
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

66
.5
2

28
59

(1
34
78
7)

79
.0
5

10
2.
89

20
94

(4
81
2)

90
.2
7

2.
49

17
2
(2
53
1)

52
.0
9

4.
54

32
5

(4
73
9)

52
.0
9

11
N
/A

N
/A

N
/A

6.
78

46
6
(8
28
5)

69
.5
2

1.
59

12
4

(1
88
3)

61
.8
7

*
S
ol
ve
r
fa
il
ed

or
ti
m
e
ou

t.
T
h
e
m
ax

im
u
m

co
m
p
u
ta
ti
o
n
ti
m
e
is

3
5
0
se
co
n
d
s.



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 66

cases 2 and 1, respectively. While i-AGT-NN performs similarly to cases 2 and 1, i-AGT-
RS-off suffers a longer planning time and path length because the heuristic cannot capture
the steering error. In previous cases 1 and 2, the narrow space around the goal forced the
steering to be closed to zero. However, when the goal is in relatively free space, the results
of cases 4 and 5 show that it is important to have an accurate heuristic to guide the search
efficiently. Figure 4.13(a)-(f) show the cases of a trailer navigating around narrow aisles.
All planners perform similarly in cases 6, 7, 10, and 11, while the planning time is largely
decreased by i-AGT-NN in cases 8 and 9. The path length from both planners is also similar
in cases 7-11.

i-AGT-RS-on has a short planning time in the successful cases, but it fails to find a
solution in nearly half of the cases due to insufficient resolution and results in long paths
in cases 5,7,10. Using the NN heuristic may help reduce path length but will not improve
the success rate. Note thatMoff is derived fromMon, and these results show that allowing
off-lattice exploration indeed requires fewer MPs to reach the same level of (or even improve)
planning success rate. In summary, i-AGT-NN outperforms i-AGT-RS-off in terms of average
planning time while keeping the path length at the same level, and it outperforms i-AGT-
RS-on in terms of success rate and path length.

4.6 Chapter Summary

This chapter presented a motion planning strategy that utilized an improved A-Search
Guided Tree to enable autonomous parking of a standard 3-trailer system with a car-like
tractor. While exploiting the well-established lattice idea to circumvent the curse of dimen-
sionality, we proposed to perform planning over a 4-dim space instead of planning over a
4-dim lattice by allowing the planner to explore outside of the lattice. We constructed motion
primitives dependent only on the steering angle, which drastically lowers the complexity in
the generation and selection of motion primitives, leads to a better success rate, and typically
results in improved paths. To further increase search efficiency, we described a data-driven
heuristic modeling the maneuver cost of the trailer to capture the cost-to-go by training a
neural network through reinforcement learning. Simulations demonstrated the effectiveness
of the proposed method in terms of success rate, planning speed, and path length.



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 67

-5 0 5 10 15 20 25 30 35 40

x [m]

0

5

10

15

20

25

30

35

40

y
 [
m

]

(a) Case 1.

-5 0 5 10 15 20 25 30 35 40

x [m]

0

5

10

15

20

25

30

35

40

y
 [
m

]

(b) Case 2.

-5 0 5 10 15 20 25 30 35 40

x [m]

0

5

10

15

20

25

30

35

40

y
 [
m

]

(c) Case 3.

-5 0 5 10 15 20 25 30 35 40

x [m]

0

5

10

15

20

25

30

35

40
y
 [
m

]

(d) Case 4.

-5 0 5 10 15 20 25 30 35 40

x [m]

0

5

10

15

20

25

30

35

40

y
 [
m

]

(e) Case 5.

Figure 4.12: Simulation results of case 1-5.



CHAPTER 4. SEARCH-BASED MOTION PLANNING FOR ARTICULATED
VEHICLES 68

-5 0 5 10 15 20 25 30 35

x [m]

0

5

10

15

20

25

30

35

y
 [
m

]

(a) Case 6.

-5 0 5 10 15 20 25 30 35

x [m]

0

5

10

15

20

25

30

35

y
 [
m

]

(b) Case 7.

-5 0 5 10 15 20 25 30 35

x [m]

0

5

10

15

20

25

30

35

y
 [
m

]

(c) Case 8.

-5 0 5 10 15 20 25 30 35

x [m]

0

5

10

15

20

25

30

35
y
 [
m

]

(d) Case 9.

-5 0 5 10 15 20 25 30 35

x [m]

0

5

10

15

20

25

30

35

y
 [
m

]

(e) Case 10.

-5 0 5 10 15 20 25 30 35

x [m]

0

5

10

15

20

25

30

35

y
 [
m

]

(f) Case 11.

Figure 4.13: Simulation results of case 6-11.



69

Chapter 5

Motion Planning in Dynamic
Environments

5.1 Introduction

To prepare the robots for industrial application in future factories, where human workers
and robots work collaboratively, we move from planning in static environments to dynamic
environments in this chapter. In modern factories, robots are already playing increasingly
essential roles [131]. While most industrial robots are either fixed base robotic arms or
mobile platforms [70], future factories can employ robots that have agile manipulation and
mobility. Mobile manipulators (Figure 3.9) are typically composed of a mobile platform and
one or more manipulators. The mobility from the platform and agility of the manipulators
enlarge reachable space and capability to assist human workers on the factory floor [69]. It
is crucial to have real-time, safe, and reactive motion planning for mobile manipulators in
dynamic environments to utilize these advantages of a mobile manipulator. For example,
an autonomous mobile manipulator in industrial human-robot interaction (HRI) system [69]
needs to detect changes in the environment and re-plan in real-time to bypass multiple human
workers and a set of obstacles to approach its target efficiently and safely [32, 130]. These
planning problems are different from those mentioned in Chapter 3 because the planner needs
to be able to react to environmental changes. Thus, the re-plan rate has to be higher. In
industrial settings, the surrounding agents, such as human workers or other robots, normally
will not move faster than 3 m/s; therefore, a robot system with a re-plan rate 5 to 10 Hz
will be sufficient.

Mobile manipulators have high degrees of freedom and kinematic redundancy, making it
hard to plan motions for the platform and the manipulator simultaneously, i.e., coordinated
motion planning. In [142], an extensive review of motion planning methods for mobile robots
is given. Motion planning algorithms can be classified to three categories: graph-search based
algorithm [39], sampling-based algorithm [93, 51], and optimization-based algorithm [4, 54].
In [39], ARA* search is used to solve a planning problem for a mobile manipulator in cluttered



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 70

spaces. In [51], a sampling-based method, adaptive simulated annealing combined with
torque minimization, is used to solve the motion planning problem and guarantees global
optimality. In [77], a stochastic optimization method is used to solve a motion planning
problem for mobile manipulators in static cluttered environments. In [161], the authors
proposed a sampling-based method that first samples for the mobile base, then sample for
the arm. Although these motion planning methods show promising results in static testing
environments, they cannot be directly used in time-varying environments.

The time-varying environment requires the robot to re-plan and adapt its motion in
reacting to the changes in the surroundings. This usually is difficult for graph-search-based
algorithms and sampling-based algorithms due to the high dimensionality of the mobile
manipulator that requires considerable computation time with these methods. Thus, some
prior knowledge of motion primitives and limitations is often needed [38, 20] to shorten
the computation time. However, it is challenging to ensure that the prior knowledge is
always suitable or sufficient for the time-varying environment. In addition, these “planning-
by-construction” planners often require an optimizer to convert the path plan to a motion
plan. Thus, additional computation time is needed. Therefore, these methods may not be
the best choice to solve a motion planning problem for a mobile manipulator in a dynamic
time-varying environment. On the other hand, optimization methods can be solved within a
relatively short period if appropriately formulated. Therefore, they may have more potential
in solving these time-varying motion planning problems.

As mentioned previously, optimization methods need to be properly formulated to have
a shorter computation time. Motion planning problems are often non-convex due to the
nonlinear robot model and the obstacles in the environment. Solving these non-convex op-
timization problems is challenging. The feasible set that satisfies the constraints of the
planning problem needs to be constructed carefully so that the planning result will not be
over-conservative. Previous works proposed optimization-based planners but have restric-
tions on the range of scenarios that planners can handle. In [54], the authors propose a
method using constrained sequential linear quadratic optimal control in a receding horizon
control framework and claim that it allows a planning rate up to 100Hz. However, the motion
planning controller can only deal with convex optimization problems and relies on reference
trajectory generated beforehand. In [177], covariant hamiltonian optimization is presented
with promising results avoiding dynamic obstacles, but it requires offline pre-computation
of the distance field. In [4], a motion planning method for collaborative omnidirectional
multi-robot manipulation is presented. While the update rate is shown to be at the order of
10Hz and can deal with non-convex state constraints, the constraints are overly simplified,
making the motion plan conservative. Also, the time horizon is assumed to be short. Simi-
lar limitations are also in [9, 145], where short time horizon (horizon= 6) and conservative
problem formulation appear, respectively.

The work in this chapter is motivated to achieve two objectives: make the computation
time for planning small to achieve a higher update rate of planning and broaden the range
of scenarios that the method can handle. The convex feasible set (CFS) algorithm [111]
has been proposed to solve non-convex motion planning problems and obtain safe open-loop



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 71

trajectories in cluttered scenarios. In [113], a parallel planning-and-control architecture is
introduced to solve motion planning problems for manipulators in dynamic environments
while assuring safety. Inspired by these methods, this work presents an effective control
strategy for mobile manipulators.

The proposed method, hierarchical receding horizon control (HRHC), solves the mo-
tion planning problem for mobile manipulators in time-varying dynamic environments. A
high-level motion planning module utilizes the environment information and solves the non-
convex motion planning problem for the mobile manipulator. In addition, a low-level safety
controller running at a higher sampling rate detects rapid changes in the environment and
modifies the commands to assure safety locally. The main contributions are:

• The HRHC is proposed for mobile manipulator planning in dynamic environments.

• Experiments are conducted to verify the performance of the proposed control method
(video is publicly available here).

5.2 Problem Formulation

5.2.1 Kinematic system modeling

The model of the mobile manipulator is similar to (3.7). However, to solve the planning
problem quickly, we further linearize the model (3.3) and obtain:

zp,k+1 = Ap,kzp,k +Bp,kup,k. (5.1)

By connecting (5.1) and (3.6), the linearlized mobile manipulator model is obtained:

zk = gk(uk, z(k)). (5.2)

5.2.2 Formulation of the motion planning optimization problem

In this work, motion planning is done by solving an optimization problem. The planning
problem is similar to Problem 2, except that now we plan in every time step. At time step
k, current states are recorded in z(k), the decision variables for each time step is uk and the
input vector that the problem optimizes is denoted as uk := [u⊤

k , u
⊤
k+1, u

⊤
k+2, · · · , u⊤

k+H−1]
⊤,

where H is the prediction horizon. The state vector is zk+1 := [z⊤k+1, z
⊤
k+2, · · · , z⊤k+H ]

⊤.
Denote the kinematic relation zk+1 = fk(uk, z(k)) by concatenating the kinematic function
(5.2) throughout the planning horizon. The following problem needs to be solved.

min
uk

J(uk, z(k)),

s.t. fk(uk, z(k)) ∈ Γk,

− umax ≤ uk ≤ umax.

(5.3)

https://jessicaleu24.github.io/ACC2020.html


CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 72

The planning horizon is usually no more than 30 time steps to ensure the computation speed.
Notice that the main differences between this problem and Problem 2 are that the last state
z⊤k+H in the plans during early stages may not reach the goal due to the velocity limit; a
well-constructed initialization such as the one provided by RRT ∗ in Chapter 2 and 3 may
not be provided; thus, the cost functions are also different. There are two assumptions in
this formulation:

Assumption 2 (Cost). The cost function is convex and regular, and has the following form:

J(uk, z(k)) = C1∥Duk − d∥22 + C2∥Vuk − vref∥22 + C3∥Auk∥22. (5.4)

Here, C1, the coefficient of the first term, penalizes the robot’s deviation from the desired
path and the desired manipulator pose so that the robot output trajectory is not too irregular.
Matrix D is a transformation matrix that converts the decision variables, uk, to the states
zk+1. Vector d contains the desired states of the mobile manipulator, i.e., the goal state
vector. C2, the coefficient of the second term, penalizes the speed profile of the planned
trajectory relative to a constant speed reference vref so that the robot will reach the goal
close to the desired timing. Vuk is the velocity vector. C3, the coefficient of the third term,
penalizes the acceleration and angular acceleration of the mobile platform and the joints’
angular acceleration so that the motion will be smooth. Auk is the acceleration/angular
acceleration vector.

Assumption 3 (Constraint). The state constraint Γk is non-convex and its complement is
a collection of disjoint convex sets, i.e., each of the obstacle-region is itself convex.

In order to solve this non-convex problem fast enough for real-time implementation, the
CFS algorithm [111] will be used.

5.2.3 Constraints formulation

To enable collision avoidance with human workers, we need an obstacle representation
that satisfies Assumption 3. As shown in Figure 5.1, each link of the manipulator, as well
as the links of the human worker, can be captured with a capsule. The function ϕm,ij(z(k))
calculates the distance between ith manipulator link and the jth obstacle link. A disk
captures the mobile platform and the obstacle projection area (starting from 10 cm away
from the floor) on the floor. Therefore the distance ϕp,j(z(k)) can be measured by calculating
the distance between the center of the robot to the center of the jth obstacle projection. In
this work, two cases are considered, collision avoidance and end-effector position keeping.

In collision avoidance, the convex feasible set corresponding to the jth obstacle-region
during time step k at the rth iteration is:

Fj(u
(r)
k ) =

{
u : ϕj(u

(r)
k ) +∇ϕj(u

(r)
k )(u− u

(r)
k ) ≥Mc

}
. (5.5)



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 73

𝜙𝜙𝑚𝑚,𝑖𝑖𝑖𝑖

𝜙𝜙𝑝𝑝,𝑗𝑗

Figure 5.1: Distance function ϕm,ij(z(k)) and ϕp,j(z(k)).

The inequality constraints prevent collision and require the mobile manipulator to keep a
margin, Mc, away from the obstacle.

On the other hand, for end-effector position keeping, obstacle-region is instead named as
“lingering-target” and set corresponding to the lingering-target:

F (u
(r)
k ) =

{
u : 0 ≤ ϕ(u

(r)
k ) +∇ϕ(u(r)

k )(u− u
(r)
k ) ≤Ml

}
. (5.6)

The inequality constraints keeps the end-effector in the lingering-target within a margin Ml.

5.3 Hierarchical Receding Horizon Control

The following section introduces soft constraints in the motion planning problem and a
low-level safety controller to realize closed-loop control for the mobile manipulator.

5.3.1 Soft constraints for implementation

The planning problem is solved in a receding horizon control (RHC) framework, and the
robot implements the results accordingly. Although the planned trajectory from RHC is
feasible, tracking errors will occur in real-world experiments, causing the robot to violate
the margin boundary of the obstacles. The robot will then re-plan and try to immediately
move away from the obstacle to maintain the margin, which results in a violent motion [26].
In order to avoid such problem, we introduce Sk = [sk+1, sk+2, . . . , sk+H ], the slack variable
vector (Figure 5.2). Introducing slack variables allows the states to violate the original
constraint, i.e., the margin boundary. However, these slack variables are also added to the
cost function to penalize the violation. The new problem is shown in the following:



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 74

margin

obstacle

𝐴𝑥 = 𝑏

𝐴𝑥 < 𝑏

𝐴𝑥 − 𝑠 < 𝑏

Figure 5.2: Illustration of the slack variable.

Motion 
Planning
Module

Safety 
controller

Mobile 
manipulatorReference 

command 𝐮𝐮𝑘𝑘. Control input 𝑢𝑢𝑡𝑡.

Current state 𝑧𝑧(𝑘𝑘).
State space Γ.

Updated every Δ𝑡𝑡.

Updated every Δ𝑡𝑡.Updated every 𝑇𝑇𝑠𝑠.

Current state 𝑧𝑧(𝑘𝑘).
State space Γ𝑠𝑠.

Figure 5.3: The overall control system.

Problem 4. (Optimization problem with soft constraints):

min
uk,Sk

J(uk, z(k)) + ∥Sk∥22,

s.t. fk(uk, z(k)) ∈ Γk(S
k),

g1(uk) = 0.

(5.7)

5.3.2 Low-level safety controller

As mentioned in the introduction section, we should enable the motion planning algorithm
to cope with many scenarios while maintaining a sufficient sampling rate. Here we introduce
a low-level safety controller, which runs at a higher sampling rate, in the proposed HRHC.

The proposed overall control system is as shown in Figure 5.3. The low-level safety
controller utilizes the reference command given by the motion planning module every Ts.
The environmental detection, i.e., obstacle detection and prediction, and the current states,
z(t), are updated every ∆t. Here, Ts = c∆t and c is an even number. We consider the case
where there is only one obstacle and it is moving at constant speed. The safety controller



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 75

𝐮𝐮1
Motion 
planning 
module 𝐮𝐮2

𝐮𝐮3

. . .

. . .

Low-level
safety 
controller

𝑇𝑇𝑠𝑠

∆𝑡𝑡

𝑢𝑢𝑡𝑡𝑡

𝑘𝑘𝑘 𝑘𝑘′ + 𝑇𝑇𝑠𝑠

𝐮𝐮1,𝑟𝑟𝑒𝑒𝑒𝑒
𝐮𝐮2,𝑟𝑟𝑒𝑒𝑒𝑒

𝑡𝑡𝑡

𝐮𝐮𝑡𝑡𝑡

𝐮𝐮3,𝑟𝑟𝑒𝑒𝑒𝑒

Figure 5.4: The hierarchical structure.

considers possible collisions in the future 1.5Ts time duration by checking the distances, ϕp(t),
between future mobile manipulator positions and future obstacle positions. At a specific time
step, t = t′ and k′ ≤ t′ ≤ k′+Ts, the inputs during t′ to t′+1.5Ts is denoted as ut′ (Fig 5.4).

While the motion planning module aims for safety and efficiency, the low-level controller
mainly focuses on safety. Therefore, to lower computation time, the low-level controller
simplifies the problem and treats the mobile manipulator as a single capsule covering the
whole robot. Thus, the entire system can have a higher sampling rate of the environment. At
every ∆t, the safety controller examines the original plan from the motion planning module
given the new change in the environment. If the original plan is invalidated, the safety
controller modifies the trajectory of the mobile platform by solving an optimization problem
as stated below:

Problem 5. (Optimization problem for the safety controller):

argmin
ut′

∥ut′ − ut′,ref∥22,

s.t. fs,t′(ut′) ∈ Γs,t′ ,
(5.8)

where ut′,ref is the original command, fs,t′ is the kinematic function, and the collision-free
set is

Γs,t′ = {ui : Cifp,i(ui)− di ≥Ms∀i = 0, . . . , 1.5c− 1} . (5.9)

Here, Ms is a margin and Cifp,i(ui) = di is the hyperplane tangent to the obstacle that
is the closest to the mobile manipulator at time t′ + i. The optimization problem solves
for a series of local commands to push the mobile manipulator into the collision-free set.
With HRHC, as long as the collision-free set is reachable to the robot hardware, the mobile
manipulator can always react to dynamic changes in the environment locally; thus, safety is
guaranteed.



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 76

5.4 Applications

5.4.1 Experimental setup

To verify the performance, the HRHC (with H = 15) controller is tested on TB3O.
The HRHC controller runs in MATLAB and python on a separate laptop with a 2.8 GHz
Intel Core i7-7700HQ. An iterative LQR (ILQR) controller [159] is used for better tracking
performance.

5.4.2 Experimental results

Four experimental setups are selected to verify the performance of the proposed HRHC
controller. Experimental results are shown in Figure 5.5-5.8.

In the first and second scenarios, the mobile manipulator is expected to move along a line,
y = 0, toward the positive x-axis direction while maintaining a neutral pose and constant
speed (75% of the suggested maximum speed), which also points along the positive x-axis.
The initial reference trajectory is a line segment in the state space. In the first scenario,
the mobile manipulator tries to achieve the goal while avoiding an obstacle on the floor.
In the second scenario, the mobile manipulator avoids obstacles both on the ground and
hanging from above. In Figure 5.5(c) and Figure 5.6(c), the mobile manipulator avoids the
obstacles successfully in both scenarios. In Figure 5.5(a) and Figure 5.6(a), the gray lines
are the planned open-loop trajectories at each time step (colored from light to dark as time
goes on). Although the open-loop trajectories may be different from each other, the overall
trajectory is still smooth. Output angles are shown in Figure 5.5(b) and Figure 5.6(b),
respectively.

In the third scenario, a mobile manipulator is holding an object in place. However, a
human worker is pushing a chair down the aisle while the mobile manipulator’s platform
appears to block the way. Because the worker has higher priority, the mobile manipulator
should move to avoid collisions. Note that the mobile manipulator is expected to maintain
its end-effector to stay close to a certain location. In Figure 5.7(c), it is shown that the
mobile manipulator can keep the end-effector position within a small range and move the
platform away from the aisle. Figure 5.7(b) shows the performance of end-effector position
keeping.

The fourth and first scenarios are similar, except the obstacle here is a human worker
standing on a ladder. In the beginning, the mobile manipulator can only see the ladder and
plans to avoid it. When the worker comes down to the floor and walks away, it appears
to the mobile manipulator that there is another obstacle appearing close to itself suddenly.
The low-level safety controller will react to the change while bypassing the worker. In Fig-
ure 5.8(c), it is shown that the mobile manipulator performed successfully and can deal with
the dynamic environment. The performance of the safety controller is shown in Figure 5.8(b).
Around time step k = 20, it is shown that the platform angles changes (k = 21) before the
manipulator starts to react (k = 23) to the new obstacle because the safety controller has



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 77

kicked in (k = 21) to make the platform avoid the worker. And after the planning module
solves the new plan (k = 23), the manipulator will also retract to avoid the worker. With
the safety controller, the overall system is sampling and reacting at 10Hz.

5.5 Chapter Summary

This chapter presented a motion planning method, HRHC (hierarchical receding hori-
zon control), for mobile manipulators to handle time-varying and uncertain environments in
industrial HRI systems. A high-level motion planning module considered the environment
information and the mobile manipulator kinematic redundancy to better utilize the shared
space and achieve higher efficiency. Combined with a low-level safety controller that modi-
fied commands locally, HRHC was developed to perform coordinated motion planning and
guarantee safe maneuvers for mobile manipulators in dynamic environments. Experiments
were conducted to evaluate HRHC. The results showed that the HRHC enabled the mobile
manipulator to perform collision avoidance while completing its tasks successfully in both
static and dynamic environments.



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 78

(a) Open-loop plans and the closed-loop result (scenario I).

0 10 20 30 40 50

Time step

-2

-1

0

1

A
n
g
le

[r
a
d
]

Platform angle

2

3

4

5

(b) Output angles of the platform and each joint (scenario I).

(c) Experimental result with mobile manipulator performing collision
avoidance with an obstacle on the floor in the front.

Figure 5.5: Results of collision avoidance in scenario I.



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 79

(a) Open-loop plans and the closed-loop result (scenario II).

0 10 20 30 40

Time steps

-2

0

2

A
n

g
le

[r
ad

]

Platform angle

2

3

4

5

(b) Output angles of the platform and each joint (scenario II).

(c) Experimental result with mobile manipulator performing collision
avoidance with one obstacle on the floor and one hanging from above.

Figure 5.6: Results of collision avoidance in scenario II.



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 80

(a) Closed-loop result.

0 5 10 15

Time step

-2

0

2

A
n

g
le

[r
ad

]

Platform angle

2

3

4

5

(b) Output angles of the platform and each joint.

(c) Experimental result with mobile manipulator performing collision
avoidance while keeping the end-effector position in the Cartesian space.

Figure 5.7: Result of end-effector position keeping.



CHAPTER 5. MOTION PLANNING IN DYNAMIC ENVIRONMENTS 81

(a) Open-loop plans (gray-star lines) and the closed-loop result
(red lines).

0 10 20 30 40 50

Time step

-2

-1

0

1

A
n

g
le

[r
ad

]

Platform angle

2

3

4

5

(b) Output angles of the platform and each joint.

(c) Experimental results with mobile manipulator avoiding a moving
human worker.

Figure 5.8: Result of avoiding moving human worker.



82

Part II

Integrated Strategies of Modularized
Robotic Systems



83

Chapter 6

Environment Prediction and Motion
Planning

6.1 Introduction

The second part of this dissertation moves from motion planning to a broader scope that
considers the prediction module, the planning module, and their interactions. Looking from
a motion planner point of view, we develop a predictor that can facilitate the motion planner
for better robot performance in this chapter.

This chapter focuses on motion planners that are based on model predictive control
(MPC) [137], an optimization-based algorithm that belongs to the category of receding
horizon control. The fact that MPC observes the environment every time before solving
the optimization problem allows the system to adjust and re-plan according to the changes
in the environment; thus, it is a popular method for addressing robot motion planning
problems. A typical MPC approach involves a sequence of receding horizon optimization.
The sequential nature of such MPC formulation introduces a closed-loop with respect to the
performance index for optimization, i.e., the cost function of the optimization problem. The
closed-loop stability problem is a major issue when the environment, including the motions
of obstacles, is dynamic. If the MPC problem is convex and has time-invariant constraints,
the stability of the closed loop system can be guaranteed by modifying planning horizon,
adding terminal cost, adding terminal equality constraints, or using terminal set constraints
instead [118]. These methods ensure that the calculated commands and the resulting states
are bounded in the presence of bounded disturbances. One common application of motion
planning MPC problems is autonomous vehicles [16], where stability can be guaranteed
by setting stability boundary for the control system, i.e., stability is quantified at several
vehicle speeds. Another common application is industrial robots [58], where stability can
be guaranteed by using Lyapunov-like functions and the terminal-state controller when the
state space is convex.

However, two natures of motion planning in dynamic environments have contaminated



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 84

the stability properties of MPC. First, the existence of obstacles in the environment in-
troduces non-convex state constraints, which result in time-varying and non-convex MPC
problems. This makes the closed-loop stability of MPC hard to analyze. Second, environ-
mental changes induce changes of the constraints of the optimization problem. The fact that
optimization problems are sensitive to the constraints makes the accuracy of the prediction
extremely crucial because the prediction determines the state constraints of the problem.
Commonly seen assumptions in MPC, such as obstacles are moving in constant velocity or
acceleration (the method used in Chapter 5), may not suit the environment well and cause
the open-loop trajectories at each time step to vary largely. This might result in dynamically
unreasonable closed-loop trajectories. Dynamically unreasonable closed-loop trajectories will
cause the robot to execute violent or zigzagging movements that harm the robot’s motors
and scare other workers in the environment. Fortunately, with some assumptions, it is pos-
sible to consider the uncertainties in the MPC problem properly. Some works have been
focusing on dealing with uncertainties in MPC problems [33, 89]. In these works, systems
under persistent disturbance can be controlled by robust MPC. However, a more common
scenario in motion planning problems is to have uncertainties in the environment, e.g., an
environment with obstacles moving at varying speeds. Therefore, a probabilistic model of
the obstacles’ future movement is needed. In [120], stochastic MPC deals with probability
constraints to handle uncertainties. Another approach is to directly predict the object’s fu-
ture motion to achieve even higher efficiency. In [56, 85], the authors focus on the industrial
HRI environment, where human workers usually cause uncertainties in the environment. It
is clear that although the workers do not explicitly reveal their intention, it is still possible
to predict their future movements based on past observations [30, 21]. In [87], a Bayesian
filter is used for motion prediction given observations in the past and the state transition
model.

To achieve better robot performance, we identify conditions for the predictor and the
MPC so that closed-loop stability is guaranteed when the environment satisfies some as-
sumptions, and collision avoidance can be achieved even though the assumptions are not
satisfied. With the conditions, we proposed an example of MPC with stability-enhanced
prediction, which utilizes the past and current observations of the environment to predict a
worker’s intention and construct the state space for the optimization problem at each MPC
time step. It is assured that the proposed method is stable theoretically in the sense of
Lyapunov in a set of common factory scenarios that satisfies the assumptions. The proposed
method can also better deal with environment uncertainties which addresses the limitation of
MPC without stability-enhanced prediction, i.e., MPC that only uses current observations
and always assumes constant velocity or constant acceleration. The contributions of this
chapter are:

• We discuss and identify the conditions to enable closed-loop stability.

• We provide an example of a motion planning method with a closed-loop stability-
enhanced predictor in an MPC framework.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 85

𝑧𝑧43 𝑧𝑧3+𝐻𝐻3

𝑧𝑧32 𝑧𝑧2+𝐻𝐻2

𝑧𝑧21 𝑧𝑧1+𝑖𝑖1 𝑧𝑧1+𝐻𝐻1

𝑧𝑧33

𝑧𝑧22

𝑧𝑧11

𝐳𝐳3

𝐳𝐳2

𝐳𝐳1

Figure 6.1: The execution structure of MPC.

• A new notion of open-loop prediction convergence property called M -convergence is
proposed serves as an indicator of the closed-loop performance.

• Simulation studies and experiments are carried out to verify the proposed method
(video is publicly available here).

6.2 Stability of MPC-based Planning

6.2.1 Traditional non-convex MPC and notations

In MPC (Figure 6.1), at each time step t, a future trajectory will be planned by solving
an optimization problem. This trajectory is denoted as zk := [zk, zk+1, zk+2, · · · , zk+H ] where
the state, zk, is called the kth action location. H is the planning horizon. In this chapter,
zk = [x(k), y(k)]⊤ contains the x and y coordinate of the robot’s location in 2-dimensional
Cartesian space at time step t = k. Note that zk corresponds to the current position, denoted
as z0(t = k) = (x, y)|t=k. The trajectory will then be executed and the robot will go to zk+1,
the k+1th action location. The sampling time between two time steps is a constant, denoted
as ∆t. After reaching the next action location, the robot will again solve the optimization
problem and plan a new trajectory and repeat the process. To avoid confusion, the current
time step can also be marked as superscript in some cases , e.g., zkk+1 means the planned
action location zk+1 at time step t = k.

At time step t = k, given the current state, the following optimization needs to be solved
to obtain zk,

min
zk

J(zk),

s.t. zk ∈ Γk
m(z0(k),O

k
m).

(6.1)

This optimization is performed at every MPC time step k as time evolves. There are two
assumptions in this formulation:

https://jessicaleu24.github.io/DSCC2019.html


CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 86

Assumption 4 (Cost). The cost function, containing both the stage cost and the terminal
cost, is convex, regular, and time-invariant, and has the following form

J(zk) = C1∥Dzk − zref∥22 + C2∥Vzk − vref∥22 + C3∥Azk∥22. (6.2)

Similar to Assumption 2, C1, C2, and C3 are the coefficients. The first term penalizes
the robot’s deviation from a reference line. Matrix D is a projection matrix that extract
all y’s from zk. The second term penalizes the speed profile of the planned trajectory with
regard to a constant speed that goes along the positive x-axis. The third term penalizes the
acceleration of the output trajectory. Azk is the acceleration vector.

Assumption 5 (Constraint). The state constraint Γ is non-convex and its complement, O,
is a collection of disjoint convex sets.

Based on the current observation, assuming that the obstacles are moving in constant
speed (indicated by the subscript m), the obstacle region, Ok

m, can be obtained. The set
of state constraints, Γk

m, satisfies Assumption 5. The current state, z0(k), is measured and
assigned to the first entry of zk. The final trajectory is [zkk , z

k+1
k+1 , . . .], which is equivalent to

[zk−1
k , zkk+1, . . .] (Figure 6.1) if the tracking controller is perfect.

6.2.2 Closed-loop stability of MPC-based planning problems

As discussed previously, uncertainties in the environment are usually caused by human
workers or other robots. Here, we identify the necessary conditions that enable closed-
loop stability. First, the scenario where the worker’s motion is predictable needs to be
identified. Assuming that the worker’s movements can be captured by a predictor with
finite modes, m ∈ {m1,m2, . . . ,md,mup}, where mi, i = 1, . . . , d are the modes where the
worker’s movements are predictable andmup captures all the other unpredictable movements.
An assumption is made in the predictable modes:

Assumption 6 (Obstacle motion). Assuming that the acceleration and velocity of the ob-
stacle are bounded, the velocity, vobs, of the obstacle during mi mode is also bounded, i.e.,
∥vobs∥ ≤ vumi

.

Therefore, we can define the predictable mode as the following:

Definition 1 (Predictable mode). During predictable mode mi, there exists an obstacle
region Ok

i that covers the obstacle movements for the coming Tci time duration, and thus,
the movements in this mode are predictable. Here, Tci is called the time delay allowance.

With the Definition 1, we can define closed-loop stability of MPC in time-varying envi-
ronments when the obstacle’s movement mode is predictable as the following:

Definition 2 (Closed-loop stability of MPC). Let J∗(k) be the optimal cost at time step
k. MPC is stable in closed-loop if the optimal cost function is a Lyapunov function, i.e.,
0 ≤ J∗(k) ≤ J∗(k − 1) for all k during predictable mode mi.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 87

Denote ks to be the time when the obstacle movement switches in between different
modes, and kps to be the time when the predictor detects that change. Denote Td to be the
time delay between ks and kps, i.e., Td = kps − ks. With Assumption 6, the first condition
for the overall system to be stable and safe is:

Condition 1 (Condition for the predictor). The time delay, Td, needs to satisfy Td < Tci

for all i = 1, . . . , d.

This is important for safety reason especially when the worker is switching from pre-
dictable modes to unpredictable mode. This condition guarantees that the obstacle region
can cover the worker’s movements even though the predictor hasn’t detected the mode
change. Therefore, the motion planner can still plan for a solution that avoids collision. A
predictor that can recognise mode defined in Definition 1 and satisfies Condition 1 is called
a stability-enhanced predictor. With the above assumptions and condition, we have the first
main result:

Main result 1 (Convergence of the state constraints). A series of obstacle region, Ok
i , can

be chosen by the predictor and Ok
i satisfies the relationship Ok

i ⊆ Ok−1
i during predictable

mode mi. The set of state constraints, Γk
i , is the complement of Ok

i such that zk ∈ Γk
i and

Γk−1
i ⊆ Γk

i during mode mi.

The MPC problem during mode mi is:

z∗k = argmin
zk

J(zk),

s.t. zk ∈ Γk
i (z0(k),O

k
i ).

(6.3)

Here, Γk
i also satisfies Assumption 5. Denote J∗(k) = J(z∗k).

A condition on the MPC controller is also needed to guarantee a sufficient knowledge of
the obstacle size in the planning problem:

Condition 2 (Planning horizon and terminal cost). Both the planning horizon H and the
penalty on the terminal cost are sufficient that during mode mi, the open-loop problem always
solves for a solution that can bring the robot to completely pass by the obstacle.

With Assumption 4, the cost function is time-invariant and quadratic. With Condition 2
and Main result 1, the number of future way points affected by the obstacle is non-increasing.
Therefore, Γk−1

i ⊆ Γk
i implies that the open-loop planning problem is finding a solution in a

larger and larger space throughout time with regard to a time-invariant cost function during
mode mi.

Main result 2 (Closed-loop stability of MPC). The cost of the optimal open-loop trajectory
follows 0 ≤ J∗(k) ≤ J∗(k − 1) when Assumption 4 to 6 and Condition 1 and 2 are satisfied
during mode mi. Therefore, the proposed MPC with stability-enhanced prediction is stable
in the sense of Lyapunov during mode mi before encountering a new obstacle or the worker
begins to leave the obstacle region, i.e., m switches back to mup.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 88

Regarding the closed-loop stability, the main results may seem to be relatively straight
forward to obtain under the assumptions. However, it is important that with Condition 1,
the proposed method can react to situations when the condition of a Lyapunov function is
violated, i.e., collision is avoided and thus, safety is guaranteed at all times.

6.3 Stability-enhanced Prediction and

M-Convergence for Analysis

6.3.1 An example of a stability-enhanced predictor

The following example presents a preliminary closed-loop stability-enhanced predictor,
which provides needed information to improve closed-loop stability. First, the scenario where
the workers’ motions are predictable needs to be identified. In a factory setting, human
workers and mobile robots usually move toward a place and stop to complete some tasks.
Typically, they will stay in an area for an amount of time which is likely to be long enough for
the ego robot to consider them static objects with margins. The robot can then plan a path
to go around them so that the shared space is better utilized, i.e., space efficiency is increased.
We divided the worker’s movement into two modes, moving mode and working (stop) mode.
Denote the mode as m ∈ {moving, working}. Here moving is the unpredictable mode and
working is the predictable mode. Therefore, it is important to know whether the worker
is going to stop, i.e., switching to predictable mode. To do such prediction, denote the
past position of the obstacle at time t = k be zobs(k), the past path of the obstacle is
hk
obs = [zobs(0), zobs(1), . . . , zobs(k)]

⊤. Denote the probability for the obstacle to continue
moving and to stop be pgo(k) and pstop(k), respectively (pgo(k) + pstop(k) = 1). Let r1 and
r2 be the update rates (r1 > 1 and 0 < r2 < 1) and b be the bias term. Notice that Td is
determined by the choices of these constants. We have the probability-update algorithm as
shown in Algorithm 4.

Although the worker/robot has stopped, it is still possible that he/she will have some
movements within the working area (i.e., obstacle region). Therefore, the ego robot needs
to know potentially how big the area is by observing the movements of the worker/robot
so that its motion will be less affected by their movement uncertainty. A naive Bayesian
filtering-based method is presented to track the obstacle (e.g., other moving robot or human
worker) and give a safety margin according to the past movements that the robot should
keep away from the obstacle.

Each past position has an associated weight p(zobs(k)), and the weight vector for hk
obs is

pk
obs = [p(zobs(0)), p(zobs(1)), . . . , p(zobs(k))]

⊤. In each MPC time step, pk
obs is updated:

p̂k
obs =

[
[ γpk−1

obs ]
⊤ 1

]⊤
,

pk
obs =

p̂k
obs

∥p̂k
obs∥1

,
(6.4)



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 89

Algorithm 4: The probability-update algorithm.

1 input hk
obs, pgo(k − 1), pstop(k − 1)

2 Acc←getAcc(hk
obs)

3 endV el←PredictEndVel(Acc)
4 if abs(endV el) ≥ threshold then
5 wgo ← r1pgo(k − 1)
6 wstop ← r2pstop(k − 1) + b

7 else
8 wgo ← r2pgo(k − 1) + b
9 wstop ← r1pstop(k − 1)

10 pgo(k), pstop(k)←normalize(wgo, wstop)
11 return pgo(k), pstop(k)

where γ is the discount constant (0 < γ < 1). Let h′k
obs and p′k

obs be the last l elements of
hk
obs and pk

obs, respectively. To determine the obstacle region in the motion planning problem
at each MPC time step, denote the space uncertainty index as σ(k) = std(p′k

obs ◦ h′k
obs),

where ◦ denotes the entry-wise multiplication. A robot that travels a larger distance in the
last several time steps will result in larger σ(k), which serves as an indicator of position
uncertainty in the future under the assumption that the future movement of the obstacle is
related to the current and past movements.

6.3.2 State space formulation and stability

As denoted previously, kps is the time when the predictor detects that the worker/robot
has switched to working mode (m = working), i.e., pgo(kps) ≤ cpstop(kps) with some c ∈
(0, 1). In the following, we construct the state space during working mode (k > kps) with the
information presented in the previous section. Denote the high-dimensional obstacle region
in the trajectory space at each MPC time step as Ok

w(σ(k),h
′k
obs). We consider the scenario

where there is an obstacle coming into the scene and staying within a working area (obstacle
region) while moving back and forth to complete a task in the area.

With Assumption 6, it can be shown that σ(k) has an upper bound, σ(k) ≤ O(l2vuworking),
where l = 10 in this work case. Therefore, the motion is predictable and it is possible to find
Ok

w that can cover the obstacle movements as stated in Definition 1. With a proper choice
of the update rates, the Condition 1 holds and Main result 1 can be applied.

Again, the set of state constraints, Γk
w, is the complement of Ok

w and satisfies Assump-
tion 5. The MPC problem during mode working is:

z∗k = argmin
zk

J(zk),

s.t. zk ∈ Γk
w(z0(k),O

k
w).

(6.5)



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 90

CFS
Trajectory planning

LQR
Tracking controller

Obstacle movement 
prediction and tracking

Planned trajectory 𝐳𝐳𝑘𝑘.

Control input 𝑣𝑣
𝜔𝜔 𝑘𝑘

.

Current state 𝑧𝑧0(𝑘𝑘).
State space Γ𝑘𝑘.
Predicted mode 𝑚𝑚.

U
pdate every Δ𝑡𝑡.

Mobile robot

Figure 6.2: The overall system control design.

Denote J∗(k) = J(z∗k). The cost of the optimal open-loop trajectory follows 0 ≤ J∗(k) ≤
J∗(k − 1) when Assumption 4 to 6 and Condition 1 and 2 are satisfied. Therefore, the
proposed MPC with stability-enhanced prediction is stable in the sense of Lyapunov for all
k during mode working.

6.3.3 Overall system

The overall system is shown in Figure 6.2. Similar to Section 5.3.1, we introduce the
slack variable vector Sk = [skk+1, s

k
k+2, . . . , s

k
k+H ] and modifies the cost function accordingly

for better real-time robot performance. The new problem is shown in the following:

minzk J(zk) + ∥Sk∥22, (6.6)

s.t. zk ∈ Γk, (6.7)

where Γk is:

Γk =

{
Γk
w(z0(k),O

k
w,S

k), if m = working

Γk
m(z0(k),O

k
m,S

k), otherwise
. (6.8)

An iterative LQR (ILQR) controller [159] is used for a better tracking performance, which
outputs the control commands [v, ω]⊤k . The overall system goes through a process as shown
in Algorithm 5 at ever MPC time step.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 91

Algorithm 5: The overall algorithm.

1 input Mmap,Mroute, Xgoal

2 while MPC do
3 GetInformation()
4 Predictor()
5 if pgo(kw) ≤ cpstop(kw) then
6 m = working

7 else
8 m = moving

9 zk ←CFS(z0(k),Γ
k,m)

10 [v, ω]⊤k ←ILQR(zk)
11 ego robot executes the control commands

6.3.4 M-Convergence for analyzing closed-loop performance

In this chapter, we propose a new notion, M -convergence, to analyze the transient of the
planned open-loop trajectory from one planning instance to the next.

Definition 3 (M -convergence). We say that an action location, zk, is M-converging if for
k −M < t ≤ k, the last M predictions for zk satisfy: (i) ∥ztk − zt−1

k ∥ ≤ ∥z
t−1
k − zt−2

k ∥, or
(ii)

∣∣∥ztk − zt−1
k ∥− ∥z

t−1
k − zt−2

k ∥
∣∣ ≤ δ, when ∥ztk − zt−1

k ∥ ≤ ϵ, or both. Here δ and ϵ are small
thresholds.

In Figure 6.3, the pink-orange-color circles are the action location zk planned at different
time steps that are tested for M -convergence of zk. The conditions imply that the planned
state zk would have smaller and smaller change (i) or sufficiently small change (ii) on the
predicted action location between consecutive time steps after time step k−M . This notion
allows us to examine the local convergence property of the open-loop trajectories to the
closed-loop trajectory at each action location.

Having such property benefits the robot’s performance. M -convergence guarantees that
the action location will not change much from plan to plan, therefore, guaranteeing smooth-
ness of the output trajectory. If M is sufficiently large, the robot system will not experience
sudden changes. Moreover, since the planned trajectory is usually tracked by a low-level
tracking controller, the larger the M is, the smoother the control command would be, which
is important for the longevity of the robot hardware. We use M -convergence as one of the
metrics to evaluate the robot’s closed-loop performance.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 92

𝑧𝑧𝑘𝑘+1𝑘𝑘 𝑧𝑧𝑘𝑘+𝐻𝐻𝑘𝑘

𝑧𝑧𝑘𝑘𝑘𝑘−1 𝑧𝑧𝑘𝑘−1+𝐻𝐻𝑘𝑘−1

𝑧𝑧𝑘𝑘𝑘𝑘−2 𝑧𝑧𝑘𝑘−2+𝐻𝐻𝑘𝑘−2

𝑧𝑧𝑘𝑘𝑘𝑘

𝑧𝑧𝑘𝑘−1𝑘𝑘−1

𝑧𝑧𝑘𝑘−2𝑘𝑘−2

𝑧𝑧𝑘𝑘𝑘𝑘−𝑀𝑀+1𝑧𝑧𝑘𝑘−𝑀𝑀+1𝑘𝑘−2

𝑧𝑧𝑘𝑘−𝑀𝑀+𝐻𝐻𝑘𝑘−𝑀𝑀𝑧𝑧𝑘𝑘−𝑀𝑀𝑘𝑘−𝑀𝑀

𝑡𝑡 = 𝑘𝑘

𝑡𝑡 = 𝑘𝑘 − 1

𝑡𝑡 = 𝑘𝑘 − 2

𝑧𝑧𝑘𝑘−1 𝑧𝑧𝑘𝑘 𝑧𝑧𝑘𝑘+1

𝑡𝑡 = 𝑘𝑘 − 𝑀𝑀 + 1

𝑡𝑡 = 𝑘𝑘 −𝑀𝑀 𝑧𝑧𝑘𝑘𝑘𝑘−𝑀𝑀

Figure 6.3: Illustration of M -convergence.

6.4 Applications

6.4.1 Results and discussion

The simulation scenario replicates factory settings that involve mobile robot operations.
To test the proposed algorithm and see the improvement of the proposed method, a typical
industrial environment with a human-robot shared space is considered. The goal for the
robot is to move along y = 0, while maintaining a constant speed that points along the
positive x-axis.

Simulation Results of The Scenario With shared Working Area

At the beginning of the simulation, the human worker walks (moving mode) in constant
acceleration and stops in front of the ego robot. The worker then starts to work in the area
and moves back and forth in a small range (working mode). The robot needs to determine the
size of the working area and not overreact to the worker’s small but inconsistent movements
while bypassing the working area.

Simulation results are shown in Figure 6.4(a) and Figure 6.4(b), where the blue blocks
represent the worker’s positions, and the gray star-lines represent the planned trajectories
at each time step (darker colors represent time steps that are closer to the current). Here,
kps = 31, i.e., the worker switches from moving mode to working mode at time step 31.
We can see that the proposed method has a smooth closed-loop trajectory, while MPC
without stability-enhanced prediction experiences oscillation on the open-loop prediction
due to the worker’s small movements in the working mode. Correspondingly, Figure 6.5(a)



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 93

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.2

0

0.2

x [m]

y
[m

]

Obstacle Path planned at each time step

Path implemented

(a) Simulation result of the proposed MPC with stability-
enhanced prediction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.4

−0.2

0

0.2

x [m]

y
[m

]

(b) Simulation result of MPC without stability-enhanced pre-
diction.

Figure 6.4: Scenario that has oscillating moving obstacles.

and Figure 6.5(b) also show that the proposed method recovers faster in M -convergence
after the worker switches to working mode. As shown in Figure 6.5(c), the proposed method
can plan safely around the worker while not overreacting to the worker’s small movements.
On the other hand, the red peaks indicate that MPC without stability-enhanced prediction
reacts strongly to the speed change and results in open-loop trajectories with high cost.
In Figure 6.5(d), the cost with the proposed method is the same as MPC without stability-
enhanced prediction in the first 12 steps. However, it is noticeably smaller afterward because
the proposed method can better utilize the share-space and has better space efficiency and
overall performance.

Discussion

The proposed method is also tested in similar scenarios with different factors, e.g., the
worker’s acceleration and range of movement during the working mode. It is shown that
the ego robot can always complete its task without colliding with an obstacle. We also
observed that the performance depends on the parameters of the predictor. Thus, a better
stability-enhanced predictor can improve the robot’s performance. The preliminary predictor



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 94

0 10 20 30 40 50 60
0
5
10
15
20

kth action location

M
-c
o
n
ve
rg
en
ce

(a) M -convergence for simulation result of the proposed
MPC with stability-enhanced prediction.

0 10 20 30 40 50 60
0
5
10
15
20

kth action location

M
-c
o
n
ve
rg
en
ce

(b) M -convergence for simulation result of MPC without
stability-enhanced prediction .

0 20 40 60
0
5
10
15
20

kth action location

C
o
st

J
*
(z

0
(k
))

MPC
with SEP

MPC
without SEP

(c) Comparison for open-loop cost of MPC with/without
stability-enhanced prediction.

0 10 20 30 40

18

19

20

kth action location

C
os
t
in

cl
os
ed
-l
o
op

MPC
with SEP

MPC
without SEP

(d) Comparison for closed-loop cost of MPC with/without
stability-enhanced prediction.

Figure 6.5: Comparison between MPC without stability-enhanced prediction and the pro-
posed MPC with stability-enhanced prediction.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 95

introduced can be replaced by more advanced ones in the future.

6.4.2 Experimental results

To verify the performance, the proposed MPC (with H = 20) controller with stability-
enhanced prediction is tested on TurtleBot3 (Figure 3.5). The MPC controller runs in
MATLAB on a separate laptop with a 2.8GHz Intel Core i7-7700HQ and communicates
with the TurtleBot3 through ROS. Three experiments are conducted.

The first scenario is similar to the simulation scenario. The ego robot runs the pro-
posed MPC with stability-enhanced prediction, and another remote-controlled robot (ob-
stacle robot) represents a worker. The experimental result is shown in Figure 6.8, where
the robot successfully avoids the obstacle and merges back to the original route without
overreacting to the other robot’s movements in the working area.

In the second scenario (Figure 6.9), a human worker, having a higher priority, i.e., doesn’t
need to yield to the robot, comes toward the table to perform some tasks and leaves the
working area in the opposite direction of the robot after finishing the tasks. The robot
running the proposed MPC with stability-enhanced prediction avoids the human worker
while tracking a straight line. From Figure 6.6(a), we can see that at the beginning, the robot
detects the worker’s movement, and the prediction assumes constant speed. After the worker
switches to the working mode, the robot predicts the working area and plans accordingly
(Figure 6.6(b)). Finally, after the worker leaves the working area and starts to walk away
from the robot, the robot detects that movement, switches m back to m = moving, and
merges back to the line y = 0 before the turning points of the old plan when m = working.
Figure 6.6(c) shows that the gray lines turn earlier and earlier compared to the blue line in
Figure 6.6(b) as the worker leaves.

The third and the second scenarios are similar, except that the worker leaves from the
other side of the table. Therefore, the worker walks in the same direction as the robot for
a short period after leaving the working area. This experiment shows that the proposed
method can react and avoid collisions in situations when the worker is switching back to
unpredictable mode. In other words, safety is still maintained even though the cost of
the optimal open-loop is no longer a Lyapunov function. From Figure 6.7(a), the robot
behaves the same as in scenario 2 shown in Figure 6.6(b). After the worker switches back to
moving mode, the robot detects that movement, switches m back to m = moving, and can
successfully re-plan and continue to avoid collision (Figure 6.7(b)) instead of merging back
to y = 0 as planned previously (Figure 6.7(a)). Also, because the working area is sufficient
to capture the obstacle movement when the predictor is detecting the change, which fulfills
Condition 1, the path implemented is smooth even though there is a change in the worker’s
mode. Finally, after the worker starts to leave the scene along the positive y direction, the
robot begins to merge back to the line y = 0 (Figure 6.7(c)). The experimental results show
that with the proposed method, the prediction and the motion planning modules can work
collaboratively so that the robot can deal with a time-varying environment and efficiently
utilize the shared working space.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 96

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

x [m]

y
[m

]

Past plans Path implemented Current plan Obstacle or
Working area

(a) Experimental result when m = moving.

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

x [m]

y
[m

]

(b) Experimental result when m = working.

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

x [m]

y
[m

]

(c) Experimental result when m is switched back to m =
moving (obstacle is moving away from the robot).

Figure 6.6: Path planned and implemented in the second scenario.

6.5 Chapter Summary

This chapter extended our focus from the motion planning module to the prediction mod-
ule and the interaction between the two. We discussed the conditions to enable closed-loop
stability of a motion planning MPC that handles common time-varying scenarios in co-robot
systems involving dynamic HRI. Under the listed assumptions, the predictor needed to de-
tect the workers’ movement mode change within a time delay allowance to guarantee such
property. The MPC needed to have a sufficient planning horizon and a proper cost function.
An example of an MPC with a closed-loop stability-enhanced predictor was presented. Sat-
isfying the conditions, the proposed MPC with stability-enhanced prediction observed the
environment and constructed proper state constraints for the optimization problem. This
guaranteed the robot to have closed-loop stability theoretically when all assumptions were
satisfied. The conditions also allowed the proposed method to avoid collisions even though
the environment did not satisfy all the assumptions. To evaluate the proposed method’s



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 97

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

x [m]

y
[m

]

Past path Path implemented Current plan Obstacle or
Working area

(a) Experimental result when m = working.

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

x [m]

y
[m

]

(b) Experimental result right after m is switched back to m =
moving.

0 0.5 1 1.5 2 2.5 3
−0.4
−0.2

0
0.2
0.4

x [m]

y
[m

]

(c) Experimental result when the worker leaves the scene.

Figure 6.7: Path planned and implemented in the third scenario.

performance in practice, a new notion, M -convergence, was used, and simulation results
showed that a robot with the proposed method could deal with dynamic environments, had
a better convergence property, and thus, resulted in a smooth closed-loop trajectory. The
results showed that the cost was reduced sufficiently for both open-loop and closed-loop
costs. Finally, experiments on Turtlebot3 showed that the proposed method performed well
in time-varying environments.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 98

Figure 6.8: Experimental result with mobile robot passing by another robot.

Figure 6.9: Experimental result with mobile robot passing by a human worker that walks
away from the robot after leaving the working area.



CHAPTER 6. ENVIRONMENT PREDICTION AND MOTION PLANNING 99

Figure 6.10: Experimental result with mobile robot passing by a human worker that walks
along the same direction as the robot for a short period of time after leaving the working
area.



100

Chapter 7

Application I: Human-Robot
Collaboration for Assembly

7.1 Introduction

In previous chapters, we focused on robot “maneuvering” tasks, which can be easily de-
fined by specifying the robot’s goal. However, we also want to enable the robots to perform
more complicated tasks or collaborate with human workers. Therefore, efficient, reactive,
and robust task planning in dynamic environments is essential to developing intelligent in-
dustrial robots. For example, task planners for human-robot collaboration (HRC) systems
in assembly lines [125, 41] need to decide in real-time how to assign different jobs to both
human workers and robots to minimize task completion time. These HRC applications, how-
ever, raise three challenges for robotic systems: 1) predicting humans’ actions and intentions
[30, 98, 31], 2) taking humans’ actions into account in the planning problem [28], and 3)
designing a computationally efficient planner. While we mainly focus on motion planning
with collision avoidance in the presence of space-uncertainties caused by the surrounding
agents in previous chapters, here, we move to task planning and design a predictor to cope
with the time-uncertainty and facilitate the task planner.

It is important to predict the duration of human actions in HRC environments to make a
collaborative task plan. We use the sigma-lognormal function to model the human worker’s
movements [29]. According to the new observations, an online adaptation process adapts the
human action model. This method enables us to predict the human trajectory and estimate
the duration of the human’s current and future actions. More importantly, we reckon that the
adaptation process provides us with information to estimate the uncertainty of the duration
prediction. Intuitively, the more the human action model needs to be adapted, the less we
can trust the duration prediction before the adaptation converges to a new human action
model. We propose a sampling process to estimate the human action duration uncertainty.

The goal of the human-aware task planning is to assign the robot action from all possible
actions to minimize the collaborative costs, including factors such as completion time [55],



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 101

human fatigue [107], and spatial interfaces [55]. To plan efficiently, these planners require
some task knowledge for constructing the task model. The two popular task models include
flat models, such as a plan network [103], or hierarchical models, such as and/or graphs [82,
19]. Hierarchical models have shown superiority over flat models when used for predicting
human actions and planning predictable actions for the robot. In this work, we adopt
the sequential/parallel task model to facilitate task-level prediction and optimization-based
planning [28]. This framework also allows us to incorporate human-induced uncertainties
into the planning problem.

Previous works on HRC task planning mainly address uncertainties for safety considera-
tions [75, 117]. However, one should not overlook the importance of accounting for human
motion uncertainties for the time efficiency of the task plan. With the task model and the
duration uncertainty estimation, we proposed a robust optimization-based formulation, in
which the objective is to minimize the completion time of the planning horizon. This prob-
lem can be formulated as a mixed-integer linear programming problem, which can be solved
efficiently. Simulations of a computer assembly task with different human behaviors are con-
ducted to verify the effectiveness of the proposed robust task planner, and the performance
is compared with that of the baseline planner. The key contributions of this work are:

• We propose a sampling-based estimator that utilizes information from the human ac-
tion model adaptation process to estimate human action duration uncertainty.

• We formulate the robust task planning problem as a robust optimization problem.

• Simulations are conducted to verify the performance of the robust task planner.

7.2 Related Works

The goal of the online task planner considered in this work is to allocate actions to both
robots and human workers. Many previous works address these problems by constructing
either a tree [28, 36] or a graph [103, 75] and use search-based methods to find the best plan
according to the given objectives. Human observations are often used to prune unpromising
edges in the tree or graph for better planning efficiency and quality [36, 103, 53]. Some other
works formulate the task planning problem as a multi-agent planning problem and apply
reinforcement learning to learn a cooperative policy [84, 52]. While human motion is taken
into account for safety and ensuring plan validation, to the best of the authors knowledge,
previous works have not explicitly considered the effect of uncertainty in human action
duration and effect on task completion time. Previously, most works treat the estimated
human action duration, or human action completion time, of each individual action as a given
constant [36, 53, 75]. However, the original plan based on the estimated time information
may no longer be time-optimal due to the varying human action completion time during
execution. Since the objective of most task planners is to minimize task completion time,



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 102

we claim that it is important to address the uncertainty in human action duration in the
planning, which is the main focus of this work.

7.3 Preliminaries

7.3.1 Hierarchical task model

In this work, we target the computer assembly task [28]. Figure 7.1 shows an example
of the sequential/parallel task model for the target task. The root node represents the task,
the leaf nodes (colored in gray) are actions, and all the other nodes represents subtasks. The
indicators below the root and the subtasks nodes indicates the relationship among their child
nodes. The three types of relationships are:
Sequential nodes: their child nodes must be executed in the order from left to right, which
is denoted by the operator →. For example, the subtask assemble main body is a sequential
node, and its child install motherboard must be done before close hood.
Parallel nodes: their child nodes can be executed in parallel, which is denoted by ∥. For
example, the subtask install motherboard is a parallel node, its children install CPU fan,
install memory, and install memory can be executed simultaneously.
Independent nodes: their child nodes can be executed in any orders, which is denoted
by ⊥. Parallel nodes are special case of independent nodes. For example, root node is
an independent node but not a parallel node. Its child nodes applying labels to hood and
assemble main body have no fixed order, but they cannot be executed in parallel if close hood
is in progress.

Following [28], actions can be defined as a = [{motion, object}, attribute], where motion
indicates the types of the movement, object indicates the object of interaction, and attribute
contains information such as completion time and energy consumption, which are useful in
the planning process.

7.3.2 Sigma-lognormal model

Sigma–lognormal model can explain most of the fundamental phenomena of human motor
control [133] and can be used to model human motions in the assembly setting [29]. The
human action model takes the following form:

ˆ⃗v(t) =
N∑
i=1

ˆ⃗vi(t) =
N∑
i=1

D⃗i(t)Λi(t; t0i, µi, σ
2
i ),

Λi(t; t0i, µi, σ
2
i ) =

1

σi

√
2π(t− t0i)

exp(
−(ln(t− t0i)− µi)

2

2σ2
),

(7.1)

where ˆ⃗v(t) is the velocity of the human hand at time t, Λ(t, t0, µ, σ
2) is a lognormal dis-

tribution with the time shift t0, µ is the expected value of the t’s natural logarithm, and



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 103

Task: desktop assembly

Subtask: assemble main body Apply label 
to hood

Install fan Install 
memory

Tape cables

Subtask: install motherboard Close hood

Figure 7.1: The sequential/parallel task model for a desktop assembly task.

σ is the standard deviation of the t’s natural logarithm. The velocity ˆ⃗v(t) is composed of

N lognormal distributions Λi, each scaled by variable D⃗i, i = 1, ..., N . Each action in the
task can be modeled by its own sigma-lognormal human action model. In this work, we use
N = 2 to capture motions in 2D space, i.e., i ∈ x, y.

To obtain the parameters α⃗i = {D⃗i, t0i, µi, σ
2
i }, i = 1, ..., N , of the nominal human action

model, we collect training data of similar action motions and use the Levenberg–Marquardt
algorithm [147] to solve the following problem: given a set of m data points (tp,j, v⃗p,j) from
the p-th collected trajectory, find α⃗ such that the sum of the squares of the deviations for
all q collected trajectories S(α⃗) is minimized:

α⃗∗ = argmin
α⃗

S(α⃗) = argmin
α⃗

q∑
p=1

m∑
j=1

||v⃗j,p − ˆ⃗v(tj,p, α⃗)||22. (7.2)

7.3.3 Human action model adaptation

It is necessary to adapt the offline learned human action models to accommodate different
human motion styles during action executions. Authors of [171] proposed to adapt the human
action model by time scaling and shifting, i.e., modifying µi and t0i in (7.1) through scaling
factor St,i and st,i. In addition, [29] proposed to scale Di with SD,i to account for more
variations.

t0s,i = St,it0i + st,i,

µs,i = µi + ln(St,i),

Ds,i = SD,iDi.

(7.3)

Therefore, the sigma-lognormal human action model becomes ˆ⃗v(t; α⃗∗, β⃗), where

β⃗i = {St,i, st,i, SD,i}, i = 1, ..., N . To adapt β⃗ when a new data point is available, the human



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 104

action model is first updated by using Levenberg–Marquardt algorithm that minimizes the
prediction error, which gives the update rule:

β⃗i = β⃗i − (v̂i,tk − vi,tk)∇β⃗i
v̂i,tk ./((∇β⃗i

v̂i,tk)
.2 + λ⃗i), i = 1, . . . , N, (7.4)

where vi,tk is the measurement and v̂i,tk is the model predictions on either the x or the y

direction at time tk. ∇β⃗i
v̂x,tk is the gradients of v̂x,tk with respect to β⃗i, and λ⃗i is the non-

negative damping factors. Note that the operator “.” indicates the element-wise operation.
After this model update process, the zero-crossing time will be used as the estimated final
time t̂f , also called the human action duration or the human action completion time. Second,

to take advantage of the scene information, β⃗ is updated to minimize an objective function
with three terms: 1) the difference between the current distance to the goal and the predicted
travel distance to the goal; 2) the prediction error at the current time tk; 3) velocity at the
final time t̂f . Therefore, to optimize the objective functions, the two ends of the future
velocity profile are fixed, and the velocities are modified in between to best fit the scene
information. The objective function is a weighted sum of the three terms: K(t̂f , β⃗) =

γ1J1(t̂f , β⃗) + γ2J2(β⃗) + γ3J3(t̂f , β⃗), and the update rule is:

β⃗i = β⃗i +K(t̂f , β⃗)∇βi
K./((∇βi

K).2 + λ⃗′
i), i = 1, . . . , N. (7.5)

The parameter β⃗ can be viewed as the characteristics of the human worker, such as the
worker’s tendency to execute every action quickly or slowly. Assuming that the worker
carries the same characteristics when performing all the actions, we can directly apply β⃗
from one model to scale the other models for a potentially more accurate prediction of those
action completion times, as suggested in [29]. In this work, we proposed a sampling based
method that utilizes the adaptation terms

δv̂,i = (v̂i,tk − vi,tk)∇β⃗i
v̂i,tk ./((∇β⃗i

v̂i,tk)
.2 + λ⃗i), i = 1, . . . , N,

δK,i = K(t̂f , β⃗)∇βi
K./((∇βi

K).2 + λ⃗′
i), i = 1, . . . , N,

(7.6)

to estimate the human-induced uncertainty.

7.4 Robust Task Planning for HRC Applications

7.4.1 Baseline problem formulation

The human-aware robot task planning problem considers action allocation problems for a
robot and a human worker in this work. Notice that the proposed formulation and methods
can be easily extended to the multi-robot case. The number of actions considered in one
planning problem is determined by the number of the remaining actions parallel to the
human’s current action. Thus, the planning horizon k is part of the remaining actions,
and it varies as the task proceeds. During run-time, the planner identifies the human’s



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 105

current action, then finds the parallel actions according to the hierarchical task model. The
planning problem can then be formulated for assigning those parallel actions to the human
and the robot such that the completion time for the planning horizon t is minimized. Denote
the k-dimensional action assignment vectors xr, xh ∈ {1, 0}k for the robot and the human,
respectively, where the entries are either 0 (not assigned) or 1 (assigned). For example,
xr = [1, 0, 1]⊤ and xh = [0, 1, 0]⊤ together means that there are three actions in the planning
horizon. The first and third actions are assigned to the robot while the second action is
assigned to the human worker. The inputs of the algorithm are T,C,Cr, Ch, t0, tr, and th,
where T is the sequential/parallel task model, C = {1, . . . , k} is the set of action indices, Ch

and Cr are the action indices that human worker and the robot are capable of executing,
respectively, to ∈ Z+ is the remaining time before the human’s current action is completed,
and th, tr ∈ Zk

+ are the empirical completion time of a human and a robot for each action,
respectively. If tr, t0, and th are time invariant, the optimization problem is formulated as
follows:

min
xh,xr,t

t,

s.t. x⊤
h th + to ≤ t, x⊤

r tr ≤ t,

xh + xr = 1, xh,i, xr,i ∈ {0, 1}, i = 1, . . . , k,

xh,{C−Ch} = 0, xr,{C−Cr} = 0.

(7.7)

Decision variables xh and xr ∈ {0, 1}k are binary vectors for the assignment of actions, where
k is the number of actions in the planning horizon. The objective function t is the completion
time for the planning horizon, which is the upper bound of the human’s completion time
and the robot’s completion time. {C − Ch} and {C − Cr} denote the indices of the actions
that the human and the robot are unable to do, respectively. During run-time, the planner
optimizes the planning problem, sends the selected action with the shortest completion time
among all actions assigned to the robot to the controller for execution, then plans repeatedly.

The optimality of the plan holds only when t0 and th are the true action completion
time. However, this is seldom the case. Since action completion time of a group of workers
often stay in a range, one can use the time upper bound for solving all planning problems.
However, the planner could be unnecessarily conservative while still cannot account for
abnormal human behaviors, leading to a task completion time far longer than the time truly
needed. Therefore, we propose to include such human uncertainty into the planning problem
by extracting the human uncertainty information during the human action model adaptation
process, then incorporating the completion time uncertainty into the planning problem.

7.4.2 Task planning with human-induced uncertainties

Human-induced uncertainties affect HRC systems mainly from the safety and time effi-
ciency aspects. While many works have addressed these uncertainties for safety [30, 98, 97],
few have attempted to address the impacts on time efficiency caused by these uncertainties.
To address this problem, we first reckon that human-induced uncertainty mainly affects t0



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 106

and th. In this light, the task planning problem should be rewritten as:

min
xh,xr,t

t,

s.t. x⊤
h th + to ≤ t, x⊤

r tr ≤ t,

xh + xr = 1, xh,i, xr,i ∈ {0, 1}, i = 1, . . . , k,

xh,{C−Ch} = 0, xr,{C−Cr} = 0,

t0 = t̄0 + u0, u0 ∈ U0,
th = t̄h + u1, u1 ∈ U1,

(7.8)

where t̄0 and t̄h are the originally proposed action completion time; uo and u1 are added to
account for the uncertainty on human action completion time; U0 and U1 are the uncertainty
sets. A more solvable form of the problem is needed to solve this optimization problem
efficiently. Two questions are to be addressed:

1. To what extent should the plan be immune to the uncertainty?

2. What form should U0 and U1 take to model the action completion time uncertainties?

To answer the first question, as mentioned in the literature [12], it is sufficient to find a
solution plan that is immune to all disturbances from U so that it is also immune to “nearly”
all real-world disturbances, i.e., up to (1− ϵ) of the total probability mass, where ϵ is a small
number. This can be achieved by finding a solution of a chance constraint problem, in which
we need to choose U as a computationally tractable convex set that “(1 − ϵ)-supports” all
real-world disturbances. In other words, we answer the first question by formulating the
first constraint as a chance constrain, i.e., Prob(x⊤

h th + to ≤ t) ≥ (1− ϵ) and choose a small
ϵ = 0.005, so that we can say the solution plan guarantees that the completion time for the
planning horizon will be smaller or equal to t for 99.5% of the time. The second question
can be answered by following the robust optimization formulation described in [12], which
requires an estimate of the human-induced uncertainty to construct the uncertainty set.

7.4.3 Human-induced uncertainty estimation

This section proposed a sampling-based method to estimate human-induced uncertainty.
While human-induced uncertainty may be an abstract concept, we can focus on the “cor-
rectness” of the current human action model and use it to construct the uncertainty set. The
basic idea behind the proposed method is that the less correct the action model is, the more
adaptation it needs since it deviates from the observation and the task scene. Therefore, the
less we should trust the human action model and the initially proposed action completion
time t̄0 and t̄h. In other words, larger uncertainty sets should be applied to t̄0 and t̄h when
the action model is adapting. Recall that in section 7.3.3, a parameter update process based
on adaptation information δv̂,i and δK,i is introduced. We propose using this adaptation
information to model the “human action model parameter uncertainty,” where we assume



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 107

that the true action model parameter lies in a parameter distribution β⃗i ∼ N (
ˆ⃗
βi, C). Here,

ˆ⃗
βi is the current action model parameter and C = diag(w⊤abs(δv̂,i + δK,i)) where w is a
weighting vector.

To estimate the action completion time, we draw n samples of β⃗i from the distribution

β⃗i ∼ N (
ˆ⃗
βi, C) and calculate n human completion time for each action according to these

sampled parameters. This gives us a distribution of the predicted completion time and
allows us to calculate the standard deviation σt0 and σth of the sampled completion time.
We assume that the human action completion time can be described by a normal distribution,
i.e., t0 ∼ N (t̄0, σt0) and th ∼ N (t̄h, σth). Since the 3-sigma bound covers most uncertainty
mass, it is acceptable to model t0 and th as random variables taking values in the range
[t̄0 − 3σt0 , t̄0 + 3σt0 ] and [t̄h − 3σth , t̄h + 3σth ], respectively.

To construct the uncertainty set, we first considered the budget uncertainty [12]:

Z = {ξ ∈ RL : −1 ≤ ξl ≤ 1, l = 1, . . . , L,
L∑
l=1

|ξl| ≤ γ}, (7.9)

where γ =
√

2ln(1/ϵ)L. Notice that L in this work equals to one plus the number of parallel
actions that the human worker can execute, i.e., L = 1+|Ch| where |·| denotes the cardinality
of a set. Let σ0 = 3σt0 and σh = 3σth , we can rewrite the human action completion time t0
and th in (7.8) as t0 = t̄0 + σ0ξ1 and th,i = t̄h,i + σh,iξi+1, i = 1, . . . , k, respectively, where
ξ ∈ Z.

7.4.4 Robust task planning

With the new representation of the human action completion time, we can formulate the
following robust optimization problem [12] by introducing additional variables z, w ∈ RL.

min
xh,xr,t,z,w

t,

s.t. x⊤
r tr ≤ t,

L∑
l

|zl|+ γmax
l
|wl|+ x⊤

h t̄h + t̄0 ≤ t,

z1 + w1 = σ0,

zi+1 + wi+1 = −σh,ixh,i, i = 1, . . . , |Ch|,
xh + xr = 1, xh,i, xr,i ∈ {0, 1}, i = 1, . . . , k,

xh,{C−Ch} = 0, xr,{C−Cr} = 0.

(7.10)

Notice that this optimization problem is a mixed-integer linear programming problem that
can be solved efficiently by commercial solvers, e.g., intlinprog from MATLAB, which gives
the proposed method a computational advantage. As opposed to search-based task planning



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 108

Human 
action 

recognition

Hierarchical 
task model EnvironmentRobust task 

planner

Parallel 
tasks

Human uncertainty 
estimation

First 
action

Observation of human movements

Figure 7.2: The overall system control design.

methods, the optimization formulation allows the solver to approximate the problem as
a standard linear programming (LP) problem and only resort to enumerating all possible
combinations when the approximation fails. During the simulation experiments, the solver
can always solve the problem by solving the approximated LP problems in 0.01 seconds on
average, without enumerating all possible combinations. The computational efficiency shows
another advantage of such a robust task planning formulation.

The overall system is shown in Figure 7.2. During run-time, the robot first collects human
motion observations and then conducts human action recognition. Given the human’s current
action, the hierarchical task model finds the parallel actions and sends them to the robust
task planner. On the other hand, the human uncertainty estimation module, containing
the off-line trained human action models, monitors the human uncertainty and updates its
models as well as σ0 and σh in the planner. After the plan is generated, the action that has
the shortest completion time among all actions assigned to the robot will be executed. This
process repeats every time the robot completes its action until there is no remaining action
that the robot can execute.

7.5 Applications

The simulation scenario in this work is similar to that of a human and a robot collabo-
rating on a computer assembly task. We test the proposed algorithm on a simulator built-in
MATLAB. Human subjects manipulate the objects using the computer mouse to drag and re-
lease the objects. Complex actions such as inserting and wrapping in the desktop assembly
scenario are simplified by the release. As shown in Figure 7.3(left), five actions are needed
to move the fan, the memory, the tape, the label, and the hood to their designated areas.
The capability of both the human and the robot is set to the whole action space except that
only the human can close the hood. The simulation is conducted in Matlab R2020a on a
desktop with a 3.2GHz Intel Core i7-8700 CPU. Three case studies with different human
worker behaviors are presented in the following sections. Two task planners are considered,
the proposed robust task planner and the baseline task planner that treats human action



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 109

-1 -0.5 0 0.5 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

desktop computer assembly task

hood

Fan memory tape label

computer case

fan

memory

tape
label

human starts here

Figure 7.3: An illustration of a human worker and a robot performing an assembly task (left)
and the simulation setup for the computer assembly. The areas enclosed by the dashed lines
are the designated areas for the objects. The mouse controlled by the human is indicated
by the green circle (right).

Table 7.1: Task completion time for each case.

Planner Case 1 Case 1 Case 2
Robust task planner 7.88 [s] 16.81 [s] 17.06 [s]
Baseline planner 7.94 [s] 21.52 [s] 19.52 [s]

completion time as constants [28]. During run-time, the task operation time is shown on
the top right. The indicator on top of each object indicates the planner’s assignment for the
object, where “h” means that the associated action is assigned to the human worker and
“r” indicates that the associated action is assigned to the robot (Figures 7.4-7.6). The task
completion time for each case is shown in Table 7.1.

7.5.1 Case 1: collaborating with an efficient human worker

The word “efficient” means that the worker performs each action using the amount of
time similar to the prior knowledge that the planner was given. As shown in Figure 7.4,
once the planner detects the human’s current action, the planning is conducted using the
given human completion time. The resulting plan lets the human worker place the memory
and the tape while assigning the robot to place the label. After the robot finishes putting
the label, the planner replans and realizes that the robot should move the tape since the



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 110

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
2.

52
   

   
   

   
h 

   
   

   
h 

   
   

   
r

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
3.

39
   

   
   

   
h 

   
   

   
r 

   
   

   
 

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
6.

2
   

   
   

   
   

   
   

   
   

   
   

  

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe

la
be

l

hu
m

an
 s

ta
rt

s 
he

re

t =
7.

88
   

   
   

   
   

   
   

   
   

   
   

  

F
ig
u
re

7.
4:

E
x
p
er
im

en
ta
l
re
su
lt

of
th
e
ro
b
ot

w
it
h
th
e
b
as
el
in
e
p
la
n
n
er

co
ll
ab

or
at
in
g
w
it
h
an

effi
ci
en
t
h
u
m
an

w
or
ke
r.

(C
as
e
1.
)



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 111

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
1.

48
  h

   
   

   
h 

   
   

   
h 

   
   

   
r

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
4.

34
  h

   
   

   
h 

   
   

   
r 

   
   

   
 

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
11

.2
7

   
   

   
   

h 
   

   
   

   
   

   
   

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
16

.8
6

   
   

   
   

   
   

   
   

   
   

   
  

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
1.

51
  h

   
   

   
h 

   
   

   
h 

   
   

   
r

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
3.

93
  h

   
   

   
r 

   
   

   
r 

   
   

   
 

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
9.

44
   

   
   

   
   

   
   

  r
   

   
   

  

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe

la
be

l

hu
m

an
 s

ta
rt

s 
he

re

t =
14

.6
8

   
   

   
   

   
   

   
   

   
   

   
  

F
ig
u
re

7.
5:

E
x
p
er
im

en
ta
l
re
su
lt
of

th
e
ro
b
ot

w
it
h
th
e
b
as
el
in
e
p
la
n
n
er

(u
p
p
er

ro
w
)
an

d
th
e
ro
b
u
st

ta
sk

p
la
n
n
er

(l
ow

er
ro
w
)
co
ll
ab

or
at
in
g
w
it
h
a
la
zy

h
u
m
an

w
or
ke
r.

(C
as
e
2.
)



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 112

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
3.

33
   

   
   

   
h 

   
   

   
h 

   
   

   
r

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
4.

49
   

   
   

   
h 

   
   

   
r 

   
   

   
 

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
7.

61
   

   
   

   
r 

   
   

   
   

   
   

   

-1
-0

.5
0

0.
5

1
-1

.2-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

d
es

kt
o

p
 c

o
m

p
u

te
r 

as
se

m
b

ly
 t

as
k

ho
od

F
an

m
em

or
y

ta
pe

la
be

l

co
m

pu
te

r 
ca

se

fa
n

m
em

or
yta

pe
la

be
l

hu
m

an
 s

ta
rt

s 
he

re

t =
15

.0
9

   
   

   
   

   
   

   
   

   
   

   
  

F
ig
u
re

7.
6:

E
x
p
er
im

en
ta
l
re
su
lt
s
of

th
e
ro
b
ot

w
it
h
th
e
ro
b
u
st

ta
sk

p
la
n
n
er

co
ll
ab

or
at
in
g
w
it
h
a
sl
ac
k
in
g
h
u
m
an

w
or
ke
r.

(C
as
e
3.
)



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 113

human has just started to move the memory. In the end, the human worker closes the hood
and finishes the task. We can see that the baseline planner collaborated with the worker
efficiently. Similar behaviors can be seen when the robot runs the proposed robust task
planner.

7.5.2 Case 2: collaborating with a lazy human worker

The word “lazy” means that the worker performs each action using 2x to 3x the amount
of time compared to the prior knowledge that the planner was given. The upper row in
Figure 7.5 shows the result of the robot running with the baseline planner. Since the com-
pletion time is treated as a constant, the planner continues to assign the memory to the
human because it believes the human worker can complete that task quicker than the robot.
This causes the robot to idle while the human slowly completes the current action, then
completes the memory placement. On the other hand, the proposed method detects the de-
viation of the human movements from the model; therefore, it replans and assigns both the
tape and the memory to the robot, as shown in the lower row in Figure 7.5. This indicates
that the proposed planner can account for human-induced uncertainties and, as a result,
reduce the damage of these uncertainties in terms of task completion time.

7.5.3 Case 3: collaborating with a slacking human worker

The word “slacking” means that the worker stops doing the task for some time in the
middle. The worker can either be an efficient worker or a lazy worker. As shown Figure 7.6,
the mouse idles around the bottom area of the interaction window for sometime (t = 4 to
13s). When using the baseline planner, similar to case 2, the planner continues to assign the
memory to the human worker after the fan, tape, and label placements are completed. With
the proposed planner, the robot will complete the memory placement instead to achieve a
shorter execution time. Figure 7.6 shows the result where the human worker works “effi-
ciently” most of the time but slacks off sometimes during the task. Since the human moves
fast (completes the fan placement in 3 seconds), the planner assigns memory placement to
the human when the robot is placing the tape. However, later on, the planner assigns this
action to the robot because the human worker is idling and causes larger human uncertain-
ties. This demonstrates the ability of the proposed task planner to handle abnormal human
behaviors.

In summary, the proposed robust task planner can take in the human uncertainty es-
timation and replan accordingly, resulting in a shorter task completion time when human
action deviates from the prior knowledge.



CHAPTER 7. APPLICATION I: HUMAN-ROBOT COLLABORATION FOR
ASSEMBLY 114

7.6 Chapter Summary

This chapter presented a robust task planner for assembly lines with human-robot in-
teraction. Based on the adaptation process of the off-line-learned human action models, we
sampled the model parameters and estimated the distribution of the human action comple-
tion time to quantify the human-induced uncertainty. The robust task planner took in this
information alongside the hierarchical task model and solved the task planning problem as
a robust optimization problem. Simulation results showed that the proposed robust task
planner could handle the human uncertainty and replan accordingly, resulting in a shorter
task completion time than the baseline planner when human action deviated from prior
knowledge.



115

Chapter 8

Application II: Autonomous Parking
in Uncertain Environments

8.1 Introduction

Aside from industrial applications, autonomous cars also demand integrated strategies
to drive on roads or perform parking while reacting to the environment. Fully autonomous
parking [40, 121] remains challenging, especially in a dynamic and uncertain environment
with multiple independent agents. A parking task requires autonomous vehicles (AVs) to
plan in a tight space and intelligently react to the surrounding vehicles, i.e., obstacle vehicles
(OVs). In contrast to driving on roads or highways, vehicle motions in parking areas do not
have a clear set of rules to follow and largely depend on the driver’s intention or even
skill level. Hence an autonomous parking system that integrates prediction and planning
is possibly necessary. In this chapter, we develop an integrated strategy and demo the
modularized robotic system with autonomous parking in dynamic.

Motion prediction is crucial because it determines the safety constraints of the planning
modules and thus the feasibility and smoothness of the motion plan [98]. In particular,
an accurate short-term motion prediction enables the AV to plan and react safely to the
OVs, whereas long-term plan/mode prediction allows the AV to plan more efficiently and
smoothly. This work proposes a model-based hybrid predictor to perform both short-term
motion and long-term mode predictions by observing the poses of OVs. A major challenge
in short-term prediction is to estimate the OV’s steering angle. We use an extended Kalman
filter (EKF) to reconstruct OV’s velocity and then resort to an adaptive observer for the
steering estimation. Despite the difficulty in predicting exact long-term motions, we observe
that a driver generally follows some routes due to driving conventions (e.g., cars should stay
on their left-hand side in Japan). Also, vehicles’ motion throughout parking/leaving can
be captured by several “modes” (e.g., maneuvering into/out of tight spaces and cruising on
aisles). Based on these two priors, we use a cost-map [49, 67] to capture these routes, combine
the short-term predictions to determine OVs’ modes, and make long-term predictions.



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 116

Motion planning for AVs is another challenge in parking scenarios. General motion
planning algorithms [48, 119, 116, 71, 2, 27] are not directly suitable for parking in the
presence of OVs, which requires rapid replanning for complicated driving maneuvers. On the
other hand, motion planners specializing in autonomous parking either fail to integrate short-
horizon planning with long-horizon planning or cannot incorporate online path repairing
upon new obstacles in uncertain environments [68, 88, 61, 121, 81, 160].

A scenario-aware planner that implements multiple strategies can be effective in com-
putation time, leading to a high replanning rate, and possibly safety guarantees. In this
work, we first generate a long-term motion reference with Bi-Directional A-Search Guided
Tree (BIAGT) [169]. Then, a strategic motion planner, based on the results of the hybrid
environment predictor, implements three strategies: 1) model predictive control (MPC)-
based safety controller [138] for trajectory tracking if the reference remains valid regarding
the environment, 2) search-based retreat-planning that quickly finds an evasion path in an
emergency, and 3) optimization-based repair-planning when the reference is invalidated.

This chapter presents an integrated system that combines the hybrid environment pre-
dictor and the strategic motion planner for autonomous vehicle parking in dynamic and
uncertain environments. Simulation evaluation of the proposed system on a variety of park-
ing tasks demonstrates its advantages in terms of initial planning, motion prediction, safe
tracking, retreating in an emergency, and trajectory repairing. Main contributions are three-
fold as follows:

• A model-based hybrid environment predictor predicts short-term motions and long-
term modes.

• A strategic motion planner is presented to plan under different situations efficiently.

• Simulation is performed to show the effectiveness of the proposed system (video is
publicly available here).

8.2 Related Works

8.2.1 Predictor

Research in vehicle motion prediction has attracted a lot of interests, and results in
numerous contributions, e.g., short-term motion prediction methods [144, 66, 6] and long-
term plans/modes prediction methods [66, 6, 149, 143, 150, 44, 92] with different types
of observation (e.g. car pose, RGBD-camera, Lidar) were proposed. It is arguably true
that most research in this area is related to road driving. Interested readers are referred
to an extensive survey in [96]. In contrast, vehicle motion prediction in parking is less
explored. In [74], an interacting multiple model (IMM) filter is used to predict short-term
trajectories in parking. Focusing on long-term prediction, [57] first trains a trajectory cluster
classifier, and then acquires the mean-value trajectory of the classified cluster. In [150], the

https://jessicaleu24.github.io/ICRA2022.html


CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 117

classified driver’s intent and the vehicle’s pose history are used to generate short-term motion
predictions with a Long Short-Term Memory network. Purely data driven methods are not
desirable for two reasons: 1) the lack of guarantees; 2) their performance depends largely
on the training data set, and they may present a larger prediction error if the data set
is chosen poorly. Prediction network over fitting may also be a concern. To the best of
our knowledge, there are not extensive studies on a predictor fusing both short-term and
long-term predictions for parking.

8.2.2 Planning

Prevailing motion planning approaches fall into three categories: search-based [63, 156,
109], sampling-based [79, 95, 78] and optimization-based [177, 146, 59, 175]. Sampling-based
planners could raise concerns in risk-sensitive tasks due to their non-deterministic nature,
while optimization-based planners are only locally optimal and often need to work with
global planners [176, 172, 43, 175, 101]. Various search-based motion planners are widely
adopted by autonomous vehicles for their computation efficiency with well-chosen motion
primitives and heuristics [165, 48, 122, 47, 23, 3, 24, 80].

If the parking environment changes, the initial long-term trajectory may need to be re-
paired. Real-time trajectory repairing methods include online heuristic update [83, 158,
128], pruning and reconnecting sampling-based search structures [50, 22, 1, 134], and spline-
based kinodynamic search [46, 45]. The heuristic update method is not directly applicable
to the tree-based search structure in BIAGT, and pruning is less efficient for parking sce-
narios. Spline-based kinodynamic search is relatively efficient, but the original trajectory
is not utilized. On the other hand, we observe that alternative feasible solutions in the
repairing scenarios are often in the same homotopy class as the original trajectory. There-
fore, optimization-based methods [174, 146, 46] become suitable candidates for repairing an
existing path.

8.2.3 Parking system

As for system-level strategies for AV parking, [174] and [73] present autonomous parking
systems to park in static environments. In [74], IMM is used for prediction with a sampling-
based method for planning. The method in [149] first predicts the strategy of OVs and then
selects the navigation strategy of the ego AV. However, the AV only traverses the roads of the
parking lot but does not perform parking maneuvers. Instead, this work aims at the more
complete approach of an integrated parking system that makes short-term and long-term
predictions of the environment and utilizes them in the planning for parking.



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 118

𝜃𝜃

𝑦𝑦

𝑥𝑥0

𝛿𝛿

𝐿𝐿

𝑣𝑣

Figure 8.1: The simplified bicycle vehicle model. L is the distance between the axis of the
rear wheels and the axis of the front wheels.

8.3 Problem Statement and Proposed Architecture

Consider the planning problem with vehicle dynamics:

Ẋ = f(X) + g(X,u), (8.1)

where X = [x, y, θ]⊤ denotes the 2D coordinates and the vehicle heading, and u = [δ, v]⊤

is the control input that includes longitudinal velocity and steering angle. A collision-free
configuration space Cfree ⊂ Rnc is the set of configurations at which the vehicle has no
intersection with the obstacles. The motion planning problem considered in this chapter is
the same as Problem 3.

We use the bicycle model, illustrated by Figure 8.1, to represent the vehicle motion. The
discrete-time model is obtained through Euler discretization as follows:xk+1

yk+1

θk+1

 =

xkyk
θk

+

vkTs cos(θk)
vkTs sin(θk)

vkTs
tan δk

L

 , (8.2)

where Ts is the sampling time.
Figure 8.2 shows the architecture of the proposed system. The two main modules are the

hybrid environment predictor (Section 8.4) and the strategic motion planner (Section 8.5).
The information generated by the predictor is designed to better facilitate the planning
module, which receives this information and conducts planning. During run-time, the central
control first processes the parking lot mapMmap and generates an initial long-term trajectory
Pref . We use BIAGT since it is guaranteed to plan a trajectory that brings the ego AV
precisely to the goal, a vital feature for parking in a tight space. Note that the planners
presented in Chapters 3 and 4 can also provide such an initial long-term trajectory. The
hybrid environment predictor monitors the environment and predicts the movements of the
OVs. The strategic motion planner first checks if the ego AV is violating the safety margin
based on the prediction. If not, it checks if Pref needs to be repaired due to the OV. If any of



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 119

Strategic
motion planner

Path  
planner 
(BIAGT)

Reference path

Parking lot 
map

Hybrid
environment

prediction

Command (steering, velocity)

Yes

Ego Vehicle
Parking lot

Observation

Replan?

Retreat 
planner

(AGT)

𝒫𝒫𝑟𝑟𝑟𝑟𝑟𝑟

Safety 
violation?

Repair 
planner

(Opt)

Update Update
Repair Failed

No

Initialize

Central control

Replan?

No

Yes

Yes

Safety 
Controller

(MPC)

Figure 8.2: The integrated prediction and planning system.

these situations occur, Pref will be updated. Finally, an MPC-based safety controller plans
a collision-free motion that tracks the latest Pref in the uncertain environment. If the repair
planner cannot succeed, it requests the central control to update the map and regenerate a
reference trajectory.

8.4 Prediction in Dynamic Parking Environments

The hybrid environment predictor (illustrated in Figure 8.3 and summarized in Algo-
rithm 6) contains three main parts: motion estimation, motion prediction, and mode esti-
mation of OVs.

8.4.1 Cascaded motion estimation

Many previous works studied motion estimation[150, 74], which reconstructed the stateX
from the measurement of (x, y) based on the unicycle model. Such a treatment is insufficient
for vehicle parking, where vehicles frequently change their moving direction and steering
actions. To accurately predict the short-term motion of the OV, it is advantageous to
reconstruct the control input u. One can either pose it as an unknown input estimation



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 120

System
 and M

ethod for Parking an A
utonom

ous E
go-Vehicle in a D

ynam
ic 

E
nvironm

ent of a Parking A
rea

Inventor(s): W
ang et al.                           A

ttorney D
ocket: M

ER
L-3454

1
of 22 D

raw
ing Sheets

Motion 
estimator

Motion 
predictor

Long-term 
mode predictor Safety constraint

Predicted trajectory

Estimated 
state

Predicted 
mode

Observation

Safety margins and 
Safety bounds

Figure 8.3: The architecture of the hybrid environment predictor.

EKF

Observation 
𝑥𝑥,𝑦𝑦,𝜃𝜃 ⊤ Adaptive 

observer

𝑋𝑋𝑐𝑐𝑐𝑐=
�𝑥𝑥, �𝑦𝑦, �𝜃𝜃, 𝛿̂𝛿, �𝑣𝑣

⊤
𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸=

�𝑥𝑥, �𝑦𝑦, �𝜃𝜃, �𝑣𝑣, �𝜔𝜔 ⊤

Figure 8.4: The architecture of the cascade motion estimator.

problem [65] or augment the OV’s system state with the control input and solve a state
estimation problem. Assume that the OV motion evolves according to the model (8.2). We
obtain the augmented model of the OV by assuming that control input (δ, v) are piecewise
constant, and estimate the augment state [x, y, θ, δ, v]⊤.

Given the nonlinear augmented model, it is natural to apply well-established nonlinear
state estimators such as EKF or particle filter for state estimation. We observe that it is
not straightforward to tune EKF to estimate the steering angle accurately due to the term
v tan(δ), which involves the multiplication of unmeasured states. Meanwhile, the heavy
computation presents a hurdle for adopting particle filter. However, estimating steering is
crucial to short-term and long-term predictions. Therefore, a cascaded motion estimator
(Figure 8.4) is proposed to estimate the OV motion. The velocity estimation resorts to EKF
and is based on the following discrete-time model:

xk+1

yk+1

θk+1

vk+1

ωk+1

 =


xk + vkTs cos(θk)
yk + vkTs sin(θk)

θk + Tsωk

vk
ωk

+ qk, qk ∼ N (0, Q),

zk = XOV,k + rk,

(8.3)

where ω is the yaw rate, q is the disturbance, zk = [zx,k, zy,k, zθ,k]
⊤ is the measurement,

XOV,k = [xk, yk, θk]
⊤, and rk ∼ N (0, R). The EKF outputs XEKF,k = [x̂k, ŷk, θ̂k, v̂k, ω̂k]

⊤.



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 121

The estimation of the steering action is based on the following model

ω = vs, zθ = θ, (8.4)

where zθ is the measurement and s = tan δ
L

. We construct an adaptive observer as follows:

Mk+1 = Mk − Ts(gMk + v̂k),

ŝk+1 = ŝk + Ts(λMk(zθ − θ̂a,k)),

θ̂a,k+1 = θ̂a,k + Ts(ŝkv̂k + g(zθ − θ̂a,k) +Mk(λMk(zθ − θ̂a,k)),

(8.5)

whereM is an auxiliary signal, g, λ ∈ R are observer gains, θ̂a is the estimated heading angle,
and v̂ is the velocity estimated by EKF. The estimated steering angle can be calculated with
ŝ, i.e., δ̂ = tan−1(ŝL). It is not hard to verify that as long as v̂ → v and v is non-zero, the
steering angle estimate is guaranteed to converge to its true value as t→∞. The output of
the cascade motion estimator is denoted as Xcc,k = [x̂k, ŷk, θ̂k, δ̂k, v̂k]

⊤.

8.4.2 Short-term motion prediction

For the sake of computation efficiency, we assume the short-term motion of an OV is
fully captured by the mean value of the state Xcc and its covariance. For the mean value,
we propagate the estimated states Xcc,k forward and obtain a short-term prediction XH,k =
[X⊤

1,k, . . . , X
⊤
H,k]

⊤ for the future H steps of the time horizon. Similarly, forward propagation
is carried out to obtain the covariance matrices PmH,k = {Pmk+1, . . . , Pmk+H} according
to EKF’s forward prediction formula. These information will facilitate long-term prediction
and be used to determine the safety margin for each future time step.

8.4.3 Long-term mode prediction

OV’s long-term motion is dependent on the history of its state, the dynamic model, and its
relative movement against the environment, where the first two factors are captured to some
extent by the short-term motion prediction. The OV’s relative movement to the environment
is important for long-term prediction. To exploit the relative movement against the environ-
ment, [49] and [67] introduced a cost map to capture an OV’s possible long-term movements.
We adopt the same idea and construct a cost map, Mroute using a route planner [42], where
the cost map contains possible routes that the OV will take (8.6). Also, we recognize that a
vehicle in the parking lot normally runs in two modes, “maneuvering” and “cruising.” Vehi-
cles in maneuvering mode change the steering frequently and deviate from the routes (black
dashed line in Figure 8.5) in the cost map to park or leave the narrow parking spot. Vehicles
in cruising mode have small or steady steering angles and generally follow one of the routes.
Vehicles are in this mode when they first enter the parking lot and are approaching a parking
spot or when they get out of the parking spot and are leaving the parking lot. Including
the route information, an OV that has n routes to follow will have 2n possible modes (Fig-
ure 8.5). To determine the mode m at time step k, i.e., mk, Bayesian framework is employed



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 122

Figure 8.5: There are 2 routes (black dashed lines) and 2 main modes (red for “cruising”
and blue for “maneuvering”) in this example, resulting in a total of 4 modes for the OV: 1)
cruise(exit) left; 2) maneuver left; 3) cruise(exit) right; 4) maneuver right.

to keep track of the belief of each mode, i.e., b(mk). The process is described in Algorithm 6,
lines 5-8. We perform the prior believe update p(mk) = Tbb(mk−1) based on the previous
belief, b(mk−1). The posterior p(mk|Xcc,k,XH,k) is proportional to the prior multiplied with
the conditional probability of the motion estimation and prediction given the mode, i.e.,
p(mk)p(Xcc,k,XH,k|mk). The Boltzmann policy is one common way to design this condi-
tional probability [10], i.e., p(Xcc,k,XH,k|mk) ∝ exp(−Mroute(mk, Xcc,k,XH,k))f(mk, Xcc,k).
The functionMroute(mk, Xcc,k,XH,k) compares the OV states and predictions with the routes:

Mroute(mk, Xcc,k,XH,k) =min
i
∥Xmk,i −Xcc,k∥2W1

+
∑
h

min
i
∥Xmk,i −Xh,k∥2W2

,
(8.6)

where Xmk,i is the ith waypoint of the route in mode mk = m, m ∈ {1, . . . , 2n}, ∥v∥2W =
v⊤Wv, and W1 and W2 are weighting matrices. The function f(mk, Xcc,k) is proportional to
the magnitude of the OV’s steering angle and the deviation of the OV’s heading angle from
the final heading angle of the route. Finally, we normalize p(mk|Xcc,k,XH,k) to obtain b(mk)
and take the value of mk with the largest belief to be m̂k.

8.4.4 Safety margin and safety bound

When the OV is in cruising mode, the predictor calculates the safety margins sH,k =
[s⊤k+1, . . . , s

⊤
k+H ]

⊤ (red areas in Figure 8.6) according to Algorithm 6, lines 9 and 10. The
safety margin of the hth future time step is an ellipsoid and the length of the principal
semi-axes sk+h (h = 1, . . . , H) are proportional to the differential entropy of the mode
belief and the covariance from the motion estimation, i.e., sk+h ∝ (buncertaintyC

⊤Pmk+hC).



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 123

Predicted 
trajectory (𝑿𝑿𝐻𝐻,𝑘𝑘)

Safety margin (𝑠𝑠ℎ)

Safety bound 
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘)

Figure 8.6: The hybrid predictor predicts a short-term OV trajectory (green line) and use
it with mode prediction to generate the safety margins for h = 1 and h = H and the safety
bound.

The movements of the OV in maneuver mode (colored in blue in Figure 8.5) are hard to
predict precisely and thus causing uncertainty in the prediction result. To handle such
uncertainty, the predictor generates a safety bound (the bound of a convex hall of the OV’s
pose history, orange lines in Figure 8.6) to enclose the area that may be affected by the motion
uncertainties. To comply with the safety bound, the planner behaves more conservatively
and keeps the ego AV away from the hardly predictable OVs. This design is inspired by the
work presented in Chapter 6, which is to encourage or force conservative behaviors when
uncertainty occurs by enlarging the infeasible area. Notice that the safety margin and safety
bound can also be applied to other moving obstacles such as pedestrians or motorbikes, given
their kinematic models and routes information.

8.5 Strategic Motion Planner

With the reference trajectory Pref , the strategic motion planner runs the main module,
the MPC-based safety controller, and two supporting modules: the retreat planner and the
repair planner (Figure 8.2). These planners are activated if the ego AV’s current location
and reference trajectory is invalidated by the OV’s movements, respectively. The strategic
motion planner is summarized in Algorithm 7.

8.5.1 MPC-based safety controller

The safety controller is designed similarly to that in Chapter 5, which tracks the refer-
ence trajectory Pref given the safety margin and the safety bound. With Pref , we use an



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 124

Algorithm 6: Hybrid Environment Predictor

1 input zk,Mroute

2 XEKF,k ← EKFunicycle(zk)
3 Xcc,k ← steeringEST(XEKF,k, zk)
4 XH,k, PmH ← propagate(Xcc,k)
5 p(mk)← Tpb(mk−1)
6 p(mk|Xcc,k,XH,k) ∝ p(Xcc,k,XH,k|mk)p(mk)
7 b(mk)← normalize(p(mk|Xcc,k,XH,k))
8 m̂k ← argmaxmk

b(mk)
9 buncertainty ∝ −

∑
(b(mk) log(b(mk)))

10 sH,k ← getSafetyMargin(buncertainty, PmH,k)
11 if m is maneuver then
12 boundk ← getConvexHall(Xcc,k, boundk−1)

13 return Xcc,k,XH,k, sH,k, b(mk), m̂k, boundk

optimization-based planner to compute tracking motions in an MPC framework. Let Xref,k

be the segment of Pref to track at time step k. Xref,k is selected and trimmed so that it will
not violate the safety margin (in all modes) nor the safety bound (in “maneuver” modes).
The trajectory tracking problem is formulated as follows:

Problem 6. Given the planning horizon H, the vehicle model (8.2), and the reference seg-
ment Xref,k, the optimization planner solves the problem

u∗
k = argmin

uk

∥F (Xk) +G(Xk,Xk,uk)−Xref,k∥2W3
,

s.t. Xk = F (Xk) +G(Xk,Xk,uk),

(Xk,uk) ∈ Γk,

(8.7)

where Xk = [X⊤
k+1, X

⊤
k+2, . . . , X

⊤
k+H ]

⊤, uk = [u⊤
k , u

⊤
k+2, . . . , u

⊤
k+H−1]

⊤, and Γk defines the
feasible set, Γk = {(Xk,uk) : Xk+h ∈ Cfree,k, uk+h−1 ∈ [−umax, umax],∀h = 1, . . . , H}.

Problem 6 can be readily formulated as a non-convex optimization problem using vari-
ous software tools, e.g., CasADi [8], and solved using nonlinear programming solvers, e.g.,
IPOPT. With the reference path serving as a warm start, the average solving time is around
0.06 second. Details are omitted here.

8.5.2 Retreat planner

The retreat planner deals with scenarios when stopping or staying on the original reference
is deemed unsafe. This can happen when the OV drives toward the ego AV, and its motion
vastly differs from the previous prediction - possibly violating the safety margin and causing
a safety threat. Therefore, the ego AV needs to find a path and retreat from the emergency.



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 125

0 5 10 15 20 25 30

x-position [m]

0

5

10

15

20

y-
po

si
tio

n 
[m

]

Retreating (TPP)Simulation time step: 44

0 5 10 15 20 25 30

x-position [m]

0

5

10

15

20

y-
po

si
tio

n 
[m

]

Retreating (TPP)Simulation time step: 83

Figure 8.7: The ego AV following the retreating plans (blue star-lines). The light-blue lines
illustrate the original trajectory, the red dashed-lines combining the blue star-lines will be
the new reference Pref , and the collision field is illustrated by the contours.

The retreating movement is not a standard navigation problem because the ego AV hasn’t
had a safe goal. Instead, it needs to explore the environment to find the best goal, and
thus we propose a search-based retreat planner which explores the space and quickly finds
a retreating trajectory. It also allows us to represent the environment without too many
relaxations that optimization planners often require.

The retreat planning algorithm is similar to that presented in Chapter 4 but simplified
for the simpler car kinematics, allowing it to serve as a real-time planner for safety-critical
scenarios. As a variant of A*-based algorithms, the retreat planner constructs a tree T =
(V , E) composed of a node set V ⊂ Cfree and an edge set E , where E(Xi, Xj) ∈ E represents
a feasible short path between Xi and Xj. Cfree is implicitly obtained by checking collisions
with obstacles in the parking lot map Mmap. LetM denote a finite set of motion primitives
pre-computed through available control actions, and Vmax denotes the maximum number of
nodes allowed. The retreat planner constructs a tree T from Xk (the configuration when
the retreat planning starts) and expands it according to a cost function F(·) which sums up
the heuristic value h(·) and the arrival cost g(·). The heuristic (8.8) is calculated based on a
collision field as shown in Figure 8.7. The field is a weighted sum of Gaussian distributions
centered at waypoints of both the predicted trajectory XH,k, i.e., Xh,k, and the routes on
the cost map, i.e., Xmk,i, and

h(X) =
∑
mk,i

b(mk)e
−∥X−Xmk,i∥2W4 +

∑
h

ce
−∥X−Xh,k∥2W5 , (8.8)

where c is a weighting constant. The planning is completed if the ego AV finds a trajectory
that keeps it away from the OV at a safe clearance. If the number of nodes in T reaches
Vmax, the trajectory giving the maximum clearance is chosen.

8.5.3 Trajectory repair planner

OV’s movements could invalidate the ego AV’s reference trajectory. Figure 8.8 illustrates
one such case, where an OV, represented by the blue box, stops on the AV’s reference
trajectory, represented as the light-blue line. The safety controller will command the ego
AV to stop on the reference trajectory when the area in front is infeasible. Unless receiving



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 126

0 5 10 15 20 25 30

x-position [m]

0

5

10

15

20

y-
po

si
tio

n 
[m

]

Simulation time step: 173 Path tracking.

0 5 10 15 20 25 30

x-position [m]

0

5

10

15

20

y-
po

si
tio

n 
[m

]

Path tracking.Simulation time step: 388

Figure 8.8: The ego AV (red vehicle) following the repaired plan (green lines) that is calcu-
lated from the blocked original trajectory (light-blue lines).

a new reference trajectory, the safety controller will stop the ego AV and wait for the OV to
clear - not efficient if the OV stops for a long time. It is reasonable to update Pref , so that
the safety planner can command the ego AV to go around the OV and merge back to the
original path. The repaired trajectory usually lies in the same homotopy class as the original
one, which makes an optimization-based repairing strategy a viable solution. To obtain a
repaired path quickly, we conduct repair path planning over 2D space, i.e., Xrepair = [x, y]⊤,
and modify the constraints accordingly. It is understood that the resultant path, despite
being collision-free, cannot always be followed accurately, causing the AV to collide into
obstacles. We, therefore, verify the path and accept the repaired trajectory (as shown in
Figure 8.8) only if it passes the kinematic feasibility check. If the repairing fails, the central
control will be notified to take over the repairing task.

8.6 Applications

The proposed system is tested by simulation conducted on a 6-core Intel i7 3.7GHz
desktop with Matlab R2020a. The prediction horizon is 10, i.e., H = 10. The integrated
system is set to run at a rate of 4 Hz (all calculation in each time step is finished within 0.1
seconds). This section presents one of the simulation results as an example. More simulation
results can be found in the video available here.

As shown in Figure 8.9(a), the ego AV (red box) first performs parking by tracking the
reference trajectory Pref (light-blue line) while avoiding collision with the OV (blue box).
The safety margins are illustrated by red shaded areas, where the one with the black edge
is for the current time step and the one without the edge is for the Hth future time step
(the value is shown in Figure 8.10). As the OV comes out from its parking spot, it moves
towards the ego AV. The ego AV needs to retreat temporarily to make space for the OV
(Figure 8.9(b)-(d)). Although the ego AV might be able to avoid collision by backing up
along the original reference, this movement may be dangerous since that is the direction
where the OV is heading and will potentially block the OV. This showcases the importance
of considering the long-term mode to construct a collision field (as shown in Figure 8.7)
of the OV in retreat planning. In Figure 8.9(b)-8.9(c), the retreat planner is activated to
update the Pref . When violation happens again (Figure 8.9(d)), the retreat planner updates
Pref once more. As the OV completely leaves the parking spot, the estimator detects the

https://jessicaleu24.github.io/ICRA2022.html


CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 127

Algorithm 7: The Strategic Motion Planner

1 input Mmap,Mroute, Xgoal

2 RequestCentralPathPlanning(Xgoal)
3 while Xgoal not reached do
4 if ReceiveCentralMsg then
5 Pref ← Update(Pref )

6 zk ← GetMeasurements

7 Xcc,k,XH,k, sH,k, b(mk), m̂k, boundk ← ENVPredict(zk,Mroute)
8 flagretreat ← SafetyCheck(Xcc,k, sk, boundk, m̂k)
9 if flagretreat then

10 Pref ← PlanRetreat(Mmap,Mroute, Xcc,k,XH,k, b(mk))

11 XOV,history ← OV MotionHistory(Xcc,k)
12 flagrepair ← BlockerCheck(XOV,history,Pref )
13 if flagrepair then
14 Pref , f lagfail ← PlanRepair(Pref , Xcc,k)

15 if flagfail then
16 RequestCentralPathPlanning(Xgoal, Xcc,k)

17 Xref,k ← setXref(Pref ,XH,k, sH,k, m̂k, boundk)
18 uk ← SafetyController(Xref,k,XH,k, sH,k)

19 return uk

mode switch (from ”maneuver left” to ”cruise (exit) left” in Figure 8.10), therefore the safety
bound is removed (Figure 8.9(e)) and the safety controller continues to follow the reference
path (Figure 8.9(e)-8.9(f)). Later, the OV stops at the road entrance and blocks the original
reference trajectory of the ego AV. Therefore, the ego AV tries repairing the trajectory
(Figure 8.9(g)). However, the repairing fails (the solver converges to an infeasible red path).
Because of the narrow space, cusps are required in the maneuver, which is generally hard
for an optimization-based planner to generate. Therefore, a new trajectory from the central
control is needed. Once the updated trajectory Pref (Figure 8.9(h)) is received, the safety
controller will start following it until the ego AV reaches the goal. In the video, we show
a successful path repair in demo 1 and the effectiveness of the safety bound (so that the
retreat planner won’t be triggered unnecessarily) in demo 3.

8.7 Chapter Summary

This chapter presented an integrated motion planning strategy for an AV to park in un-
certain environments. A hybrid environment predictor incorporated the model-based short-
term motion prediction and a driver behavior cost-map to make long-term predictions of an



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 128

OV. A strategic motion planner was composed of an MPC-based safety controller, a search-
based retreat planner, and an optimization-based repair planner. It struck a good balance
between safety, plan feasibility, and smooth maneuver by leveraging optimization-based and
search-based methods. The strategic motion planner generated safe and smooth trajectories
based on the predictor’s results and brought the AV to the target directly or through an
intermediate safe spot to yield to the OV. Simulation results demonstrated that the proposed
integrated robotic system and strategies enabled the ego AV to plan safely and smoothly in
complicated dynamic parking environments.



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 129

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 3

5
P

ar
ki

ng
. (

M
P

C
)

(a
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 4

3
R

et
re

at
in

g.

(b
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 6

4
P

ar
ki

ng
. (

M
P

C
)

(c
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 8

6
R

et
re

at
in

g.

(d
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 9

3
P

ar
ki

ng
. (

M
P

C
)

(e
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 1

10
P

ar
ki

ng
. (

M
P

C
)

(f
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 1

20
P

at
h 

re
pa

iri
ng

(g
)

0
5

10
15

20
25

30

x-
po

si
tio

n 
[m

]

05101520 y-position [m]

S
im

. t
im

e 
st

ep
: 2

33
P

ar
ki

ng
. (

M
P

C
)

(h
)

F
ig
u
re

8.
9:

S
im

u
la
ti
on

re
su
lt
s
in

on
e
of

th
e
p
ar
k
in
g
sc
en
ar
io
s.

(0
.2
5
s/
ti
m
e
st
ep
)



CHAPTER 8. APPLICATION II: AUTONOMOUS PARKING IN UNCERTAIN
ENVIRONMENTS 130

0 20 40 60 80 100 120
-0.4
-0.2

0
0.2
0.4

St
ee

ri
ng

 a
ng

le
 [

ra
d]

Ground truth
Estimation

0 20 40 60 80 100 120

Time steps (0.25 [s/step])

0

1

2 Safety margin (h=1)
Safety margin (h=H)
b(m=Left

cruise (exit)
)

b(m=Left
nevigate

)

b(m=Right
cruise (exit)

)

b(m=Right
nevigate

)

Figure 8.10: The simulation result of steering estimation, mode estimation, and safety mar-
gin.



131

Chapter 9

Concluding Remarks and Suggested
Future Works

This dissertation explored the methods of designing integrated strategies for modularized
robotic systems in uncertain environments. Integrated systems that featured the prediction
module, the planning module, and the collaboration of the two were presented in Chap-
ters 7 and 8. In Chapter 7, simulations with a computer assembly setting that involved a
robot collaborating with one human worker were conducted; the proposed robotic system
coordinated the prediction and planning modules to utilize human motion prediction and
uncertainty estimation for robust task planning. The robot could generate time-efficient task
plans when the human worker performed inefficiently. In Chapter 8, simulations involving
an autonomous vehicle navigating in a parking lot while avoiding collision with static and
moving obstacles were conducted; the proposed system included a hybrid environment pre-
dictor that made short-term and long-term predictions of the surrounding vehicles and a
strategic motion planner that reacted to the environment according to the predictions. The
robot demonstrated the effectiveness of the proposed method in terms of motion prediction,
safe tracking, retreating in an emergency, and trajectory repairing. Chapter 6 discussed
the close relationship between the prediction and planning modules and identified several
conditions for realizing safe MPC in dynamic and uncertain environments; we presented
a predictor designed for better closed-loop robot performance. Simulations and real-world
experiments that involved a robot working alongside a human worker were conducted; the
robot could navigate safely in the presence of unexpected human movements. The proposed
systems in Chapters 6-8 utilized human-identified, application-specific knowledge to estimate
the uncertainties, i.e., the predefined modes and human actions. Similar knowledge is re-
quired when extending these systems to different applications, e.g., applications in domestic
environments.

Chapters 2-5 discussed the design of the motion planners for maneuvering tasks. Their
performances were validated in simulation. Planners presented in Chapters 2-4 focused on
combining different planning methods to develop hybrid planners for static and determin-
istic environments cluttered with obstacles. Chapter 2 combined RRT* and CFS to plan



CHAPTER 9. CONCLUDING REMARKS AND SUGGESTED FUTURE WORKS 132

for robots in cluttered environments. Chapter 3 focused on long-horizon planning prob-
lems; the proposed RRT*-sOpt combined RRT*, CFS, IPOPT, and segmented trajectory
optimization. Simulation results with various environment settings and robot platforms
demonstrated the advantage of the proposed motion planners in terms of computational
speed. Chapter 4 focused on motion planning for articulated vehicles; it combined i-AGT
and a SAC reinforcement learning agent and demonstrated its advantages in computational
speed and plan quality. Chapter 5 targeted dynamic and uncertain environments and pre-
sented a hierarchical planning and control framework, HRHC. The HRHC demonstrated its
ability to coordinate a motion planner, such as the planners presented in Chapters 2-4, with
a safety controller to achieve safe and efficient robot motion in uncertain environments in
simulations and real-world experiments.

In summary, the works presented in Part I provided better motion planning tools for
robot applications to systems such as factories, warehouses, and autonomous vehicles; the
works presented in Part II served as examples of applying modularized robotic systems in
uncertain environments. There are many directions for future works, which are listed below.

Develop an integrated system with prediction, task planning, and motion
planning

We presented an integrated system that combined prediction and task planning in Chap-
ter 7 and an integrated system that combined prediction and motion planning in Chapter 8.
While the autonomous parking application may not require a task planner, in the assembly
task presented in Chapter 7, considering the influence of the robot’s motion on the spatial
interference will benefit the task planner’s performance. For example, without considering
its motion, a robot may execute an action that forces the workers to deviate from their
original plan to avoid collisions, thus causing a longer action completion time. With the
motion planning knowledge, the robot may plan for another action for the human workers
or for itself so that they can have less spatial interference.

Further investigation on agents’ modes

Human workers’ and drivers’ modes have been introduced in Chapters 6 and 8, respec-
tively. Unlike short-term motion predictions that predict states of the surrounding agents,
these modes are identified to predict the behavior types of the agent. Identifying these modes
enabled us to make better long-term predictions and planning. In Chapter 4, modes can
also help the search-based planner plan more efficiently. In this dissertation, we empiri-
cally selected the modes of the agents. Note that an intelligent agent will choose its mode
based on its characteristics, the geometry of the surroundings, and other agents’ character-
istics and motions. It will be a promising approach to use data-driven methods and develop
standardized approaches for identifying the agents’ modes.



CHAPTER 9. CONCLUDING REMARKS AND SUGGESTED FUTURE WORKS 133

Environment uncertainty modeling

While Chapters 6-8 introduced different ways to estimate the uncertainties in the en-
vironment, environment uncertainty modeling remains challenging. In these chapters, we
focused on uncertainties introduced by other agents. On the other hand, a robot that has
physical contact with the environment, for example, a robot pushing open a door, can also
experience uncertainties induced by the unknown physical properties of the objects in con-
tact, for example, the weight of the door. It will be a promising approach to develop a
generalizable environment uncertainty model so that the robot can plan an effective plan
even in the presence of different kinds of uncertainties.

Improve the modules of the robotic system

The computation efficiency of the algorithms in each module is crucial to the overall
robot performance, and improvements can be made by better algorithm implementation. On
the other hand, a strategic planner, such as the one presented in Chapter 8, uses different
algorithms for different scenarios to improve computational efficiency. It is suggested to
extend this strategic idea to other modules.

Analysis and evaluation of the integrated robotic systems

While Chapter 6 introduced M -convergence to evaluate the closed-loop system perfor-
mance, and Chapter 7 evaluated the system with task completion time, the analysis of
robot systems in uncertain environments remains challenging. Standardized platforms and
benchmarks are crucial for system evaluation. One of the major challenges is to unify the
input/output of each module across different robotic systems. For example, we need to have
the same type of input (e.g., RGB images) and output (e.g., motor angular velocity com-
mand) to compare the performances of different robotic systems and each individual module.
Developing such standardized evaluation platforms for modularized robotic systems is essen-
tial so that researchers from different groups can better compare, combine, and improve their
designs for modularized robotic systems.

With the unstopping improvement of technology and the continuing determination of
researchers, achieving safe and efficient robotic system in uncertain environments to enable
more robotic applications in our society is no longer just a dream but a future to pursue
with hope and excitement.



134

Bibliography

[1] Olzhas Adiyatov and Huseyin Atakan Varol. “A novel RRT*-based algorithm for
motion planning in Dynamic environments”. In: 2017 IEEE International Conference
on Mechatronics and Automation (ICMA). IEEE. 2017, pp. 1416–1421.

[2] Sandip Aine et al. “Multi-heuristic a”. In: The International Journal of Robotics
Research 35.1-3 (2016), pp. 224–243.

[3] Zlatan Ajanovic et al. “Search-based optimal motion planning for automated driv-
ing”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 4523–4530.

[4] Javier Alonso-Mora et al. “Local motion planning for collaborative multi-robot manip-
ulation of deformable objects”. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2015, pp. 5495–5502.

[5] Claudio Altafini, Alberto Speranzon, and Bo Wahlberg. “A feedback control scheme
for reversing a truck and trailer vehicle”. In: IEEE Transactions on robotics and
automation 17.6 (2001), pp. 915–922.

[6] Matthias Althoff, Olaf Stursberg, and Martin Buss. “Model-based probabilistic colli-
sion detection in autonomous driving”. In: IEEE Transactions on Intelligent Trans-
portation Systems 10.2 (2009), pp. 299–310.

[7] Nancy M Amato et al. “OBPRM: An obstacle-based PRM for 3D workspaces”. In:
Robotics: The Algorithmic Perspective: 1998 Workshop on the Algorithmic Founda-
tions of Robotics. 1998, pp. 155–168.

[8] Joel A E Andersson et al. “CasADi – A software framework for nonlinear optimization
and optimal control”. In:Mathematical Programming Computation 11.1 (2019), pp. 1–
36. doi: 10.1007/s12532-018-0139-4.

[9] Giovanni Buizza Avanzini, Andrea Maria Zanchettin, and Paolo Rocco. “Constraint-
based model predictive control for holonomic mobile manipulators”. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2015,
pp. 1473–1479.

[10] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. “Action understanding as
inverse planning”. In: Cognition 113.3 (2009), pp. 329–349.

https://doi.org/10.1007/s12532-018-0139-4


BIBLIOGRAPHY 135

[11] Eduardo Bejar and Antonio Moran. “A preview neuro-fuzzy controller based on deep
reinforcement learning for backing up a truck-trailer vehicle”. In: 2019 IEEE Cana-
dian Conference of Electrical and Computer Engineering (CCECE). IEEE. 2019,
pp. 1–4.

[12] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Princeton university press, 2009.

[13] Kristoffer Bergman and Daniel Axehill. “Combining homotopy methods and numer-
ical optimal control to solve motion planning problems”. In: 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2018, pp. 347–354.

[14] Kristoffer Bergman, Oskar Ljungqvist, and Daniel Axehill. “Improved path planning
by tightly combining lattice-based path planning and optimal control”. In: IEEE
Transactions on Intelligent Vehicles 6.1 (2020), pp. 57–66.

[15] Robert Bohlin and Lydia E Kavraki. “Path planning using lazy PRM”. In: Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1. IEEE. 2000,
pp. 521–528.

[16] Francesco Borrelli et al. “MPC-based approach to active steering for autonomous
vehicle systems”. In: International Journal of Vehicle Autonomous Systems 3.2-4
(2005), pp. 265–291.

[17] Scott A Bortoff. “Path planning for UAVs”. In: Proceedings of the 2000 Ameri-
can Control Conference. ACC (IEEE Cat. No. 00CH36334). Vol. 1. 6. IEEE. 2000,
pp. 364–368.

[18] Stephen Boyd et al. “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers”. In: Foundations and Trends® in Machine
learning 3.1 (2011), pp. 1–122.

[19] Taylor Boyd et al. “Hierarchical Task Learning Through Human Demonstration”. In:
(2019).

[20] Felix Burget, Maren Bennewitz, and Wolfram Burgard. “BI 2 RRT*: An efficient
sampling-based path planning framework for task-constrained mobile manipulation”.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2016, pp. 3714–3721.

[21] Judith Bütepage, Hedvig Kjellström, and Danica Kragic. “Anticipating many futures:
Online human motion prediction and synthesis for human-robot collaboration”. In:
arXiv preprint arXiv:1702.08212 (2017).

[22] Bryant Chandler and Michael A Goodrich. “Online RRT* and online FMT*: Rapid
replanning with dynamic cost”. In: 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2017, pp. 6313–6318.



BIBLIOGRAPHY 136

[23] Chao Chen, Markus Rickert, and Alois Knoll. “Kinodynamic motion planning with
space-time exploration guided heuristic search for car-like robots in dynamic envi-
ronments”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2015, pp. 2666–2671.

[24] Chao Chen, Markus Rickert, and Alois Knoll. “Path planning with orientation-aware
space exploration guided heuristic search for autonomous parking and maneuvering”.
In: 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2015, pp. 1148–1153.

[25] Jianyu Chen, Shengbo Eben Li, and Masayoshi Tomizuka. “Interpretable end-to-
end urban autonomous driving with latent deep reinforcement learning”. In: IEEE
Transactions on Intelligent Transportation Systems (2021).

[26] Jianyu Chen, Changliu Liu, and Masayoshi Tomizuka. “Foad: Fast optimization-based
autonomous driving motion planner”. In: 2018 Annual American Control Conference
(ACC). IEEE. 2018, pp. 4725–4732.

[27] Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. “Constrained iterative lqr for
on-road autonomous driving motion planning”. In: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE. 2017, pp. 1–7.

[28] Yujiao Cheng, Liting Sun, and Masayoshi Tomizuka. “Human-Aware Robot Task
Planning Based on a Hierarchical Task Model”. In: IEEE Robotics and Automation
Letters 6.2 (2021), pp. 1136–1143.

[29] Yujiao Cheng and Masayoshi Tomizuka. “Long-Term Trajectory Prediction of the
Human Hand and Duration Estimation of the Human Action”. In: IEEE Robotics
and Automation Letters 7.1 (2021), pp. 247–254.

[30] Yujiao Cheng et al. “Human motion prediction using semi-adaptable neural net-
works”. In: 2019 American Control Conference (ACC). IEEE. 2019, pp. 4884–4890.

[31] Yujiao Cheng et al. “Towards Efficient Human-Robot Collaboration With Robust
Plan Recognition and Trajectory Prediction”. In: IEEE Robotics and Automation
Letters 5.2 (2020), pp. 2602–2609.

[32] T Chettibi et al. “Minimum cost trajectory planning for industrial robots”. In: Eu-
ropean Journal of Mechanics-A/Solids 23.4 (2004), pp. 703–715.

[33] Luigi Chisci, J Anthony Rossiter, and Giovanni Zappa. “Systems with persistent dis-
turbances: predictive control with restricted constraints”. In: Automatica 37.7 (2001),
pp. 1019–1028.

[34] Ji-wung Choi and Kalevi Huhtala. “Constrained global path optimization for articu-
lated steering vehicles”. In: IEEE Transactions on Vehicular Technology 65.4 (2015),
pp. 1868–1879.

[35] Marcello Cirillo. “From videogames to autonomous trucks: A new algorithm for
lattice-based motion planning”. In: 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE. 2017, pp. 148–153.



BIBLIOGRAPHY 137

[36] Marcello Cirillo, Lars Karlsson, and Alessandro Saffiotti. “Human-aware task plan-
ning for mobile robots”. In: 2009 International Conference on Advanced Robotics.
IEEE. 2009, pp. 1–7.

[37] Marcello Cirillo, Tansel Uras, and Sven Koenig. “A lattice-based approach to multi-
robot motion planning for non-holonomic vehicles”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2014, pp. 232–239.

[38] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. “Single-and dual-arm motion
planning with heuristic search”. In: The International Journal of Robotics Research
33.2 (2014), pp. 305–320.

[39] Benjamin J Cohen, Sachin Chitta, and Maxim Likhachev. “Search-based planning for
manipulation with motion primitives”. In: 2010 IEEE International Conference on
Robotics and Automation. IEEE. 2010, pp. 2902–2908.

[40] David C Conner et al. “Valet parking without a valet”. In: 2007 IEEE/RSJ interna-
tional conference on intelligent robots and systems. IEEE. 2007, pp. 572–577.

[41] Eva Coupeté, Fabien Moutarde, and Sotiris Manitsaris. “Gesture recognition using a
depth camera for human robot collaboration on assembly line”. In: Procedia Manu-
facturing 3 (2015), pp. 518–525.

[42] Siyu Dai and Yebin Wang. “Long-Horizon Motion Planning for Autonomous Vehicle
Parking Incorporating Incomplete Map Information”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 8135–8142.

[43] Siyu Dai et al. “Improving trajectory optimization using a roadmap framework”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2018, pp. 8674–8681.

[44] Nachiket Deo, Akshay Rangesh, and Mohan M Trivedi. “How would surround vehicles
move? a unified framework for maneuver classification and motion prediction”. In:
IEEE Transactions on Intelligent Vehicles 3.2 (2018), pp. 129–140.

[45] Wenchao Ding et al. “An efficient b-spline-based kinodynamic replanning framework
for quadrotors”. In: IEEE Transactions on Robotics 35.6 (2019), pp. 1287–1306.

[46] Wenchao Ding et al. “Trajectory replanning for quadrotors using kinodynamic search
and elastic optimization”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2018, pp. 7595–7602.

[47] Dmitri Dolgov et al. “Path planning for autonomous vehicles in unknown semi-
structured environments”. In: The International Journal of Robotics Research 29.5
(2010), pp. 485–501.

[48] Dmitri Dolgov et al. “Practical search techniques in path planning for autonomous
driving”. In: Ann Arbor 1001.48105 (2008), pp. 18–80.



BIBLIOGRAPHY 138

[49] Dave Ferguson, Thomas M. Howard, and Maxim Likhachev. “Motion planning in
urban environments: Part II”. In: 2008 IEEE/RSJ International Conference on In-
telligent Robots and Systems. 2008, pp. 1070–1076. doi: 10.1109/IROS.2008.4651124.

[50] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. “Replanning with rrts”. In: Pro-
ceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. IEEE. 2006, pp. 1243–1248.

[51] Devendra P Garg and Manish Kumar. “Optimization techniques applied to multiple
manipulators for path planning and torque minimization”. In: Engineering applica-
tions of artificial intelligence 15.3-4 (2002), pp. 241–252.

[52] Ali Ghadirzadeh et al. “Human-centered collaborative robots with deep reinforcement
learning”. In: IEEE Robotics and Automation Letters 6.2 (2020), pp. 566–571.

[53] Tinka RA Giele et al. “Dynamic Task Allocation for Human-robot Teams.” In:
ICAART (1) 1 (2015), pp. 117–124.

[54] Markus Giftthaler et al. “Efficient kinematic planning for mobile manipulators with
non-holonomic constraints using optimal control”. In: 2017 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2017, pp. 3411–3417.

[55] Matthew C Gombolay, Ronald J Wilcox, and Julie A Shah. “Fast scheduling of robot
teams performing tasks with temporospatial constraints”. In: IEEE Transactions on
Robotics 34.1 (2018), pp. 220–239.

[56] Michael A Goodrich, Alan C Schultz, et al. “Human–robot interaction: a survey”. In:
Foundations and Trends® in Human–Computer Interaction 1.3 (2008), pp. 203–275.

[57] Dizan Alejandro Vasquez Govea et al. “Moving Obstacles’ Motion Prediction for Au-
tonomous Navigation”. In: Proc. of the Int. Conf. on Control, Automation, Robotics
and Vision. 2004.

[58] Dongbing Gu and Huosheng Hu. “A stabilizing receding horizon regulator for non-
holonomic mobile robots”. In: IEEE Transactions on Robotics 21.5 (2005), pp. 1022–
1028.

[59] Benjamin Gutjahr, Lutz Gröll, and Moritz Werling. “Lateral vehicle trajectory op-
timization using constrained linear time-varying MPC”. In: IEEE Transactions on
Intelligent Transportation Systems 18.6 (2016), pp. 1586–1595.

[60] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv
preprint arXiv:1812.05905 (2018).

[61] Long Han, Quoc Huy Do, and Seiichi Mita. “Unified path planner for parking an
autonomous vehicle based on RRT”. In: 2011 IEEE International Conference on
Robotics and Automation. IEEE. 2011, pp. 5622–5627.

[62] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107.

https://doi.org/10.1109/IROS.2008.4651124


BIBLIOGRAPHY 139

[63] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic
determination of minimum cost paths”. In: IEEE transactions on Systems Science
and Cybernetics 4.2 (1968), pp. 100–107.

[64] Carl-Johan Hoel, Krister Wolff, and Leo Laine. “Automated speed and lane change
decision making using deep reinforcement learning”. In: 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC). IEEE. 2018, pp. 2148–2155.

[65] Ming Hou and Ron J Patton. “Input observability and input reconstruction”. In:
Automatica 34.6 (1998), pp. 789–794.

[66] Adam Houenou et al. “Vehicle trajectory prediction based on motion model and
maneuver recognition”. In: 2013 IEEE/RSJ international conference on intelligent
robots and systems. IEEE. 2013, pp. 4363–4369.

[67] Thomas Howard et al. “Model-Predictive Motion Planning: Several Key Develop-
ments for Autonomous Mobile Robots”. In: IEEE Robotics Automation Magazine
21.1 (2014), pp. 64–73. doi: 10.1109/MRA.2013.2294914.

[68] Ming Feng Hsieh and Umit Ozguner. “A parking algorithm for an autonomous vehi-
cle”. In: 2008 IEEE Intelligent Vehicles Symposium. IEEE. 2008, pp. 1155–1160.

[69] Mads Hvilshøj et al. “Autonomous industrial mobile manipulation (AIMM): past,
present and future”. In: Industrial Robot: An International Journal 39.2 (2012),
pp. 120–135.

[70] Mads Hvilshøj et al. “Calibration techniques for industrial mobile manipulators: Theo-
retical configurations and best practices”. In: Robotics (ISR), 2010 41st International
Symposium on and 2010 6th German Conference on Robotics (ROBOTIK). VDE.
2010, pp. 1–7.

[71] Fahad Islam, Venkatraman Narayanan, and Maxim Likhachev. “A*-connect: Bounded
suboptimal bidirectional heuristic search”. In: 2016 IEEE International Conference
On Robotics and Automation (ICRA). IEEE. 2016, pp. 2752–2758.

[72] Fahad Islam et al. “Rrt*-smart: Rapid convergence implementation of rrt* towards
optimal solution”. In: 2012 IEEE International Conference on Mechatronics and Au-
tomation. IEEE. 2012, pp. 1651–1656.

[73] Chulhoon Jang et al. “Re-plannable automated parking system with a standalone
around view monitor for narrow parking lots”. In: IEEE Transactions on Intelligent
Transportation Systems 21.2 (2019), pp. 777–790.

[74] Yonghwan Jeong et al. “Sampling Based Vehicle Motion Planning for Autonomous
Valet Parking with Moving Obstacles”. In: International Journal of Automotive En-
gineering 9.4 (2018), pp. 215–222.

[75] Lars Johannsmeier and Sami Haddadin. “A hierarchical human-robot interaction-
planning framework for task allocation in collaborative industrial assembly processes”.
In: IEEE Robotics and Automation Letters 2.1 (2016), pp. 41–48.

https://doi.org/10.1109/MRA.2013.2294914


BIBLIOGRAPHY 140

[76] Matthew Johnson et al. “Team IHMC’s lessons learned from the DARPA robotics
challenge trials”. In: Journal of Field Robotics 32.2 (2015), pp. 192–208.

[77] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for motion
planning”. In: 2011 IEEE international conference on robotics and automation. IEEE.
2011, pp. 4569–4574.

[78] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: The international journal of robotics research 30.7 (2011), pp. 846–894.

[79] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE transactions on Robotics and Automation 12.4 (1996),
pp. 566–580.

[80] Sebastian Klaudt, Adrian Zlocki, and Lutz Eckstein. “A-priori map information and
path planning for automated valet-parking”. In: 2017 IEEE Intelligent Vehicles Sym-
posium (IV). IEEE. 2017, pp. 1770–1775.

[81] Sebastian Klemm et al. “Autonomous multi-story navigation for valet parking”. In:
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).
IEEE. 2016, pp. 1126–1133.

[82] Ross A Knepper et al. “Distributed assembly with and/or graphs”. In: Workshop on
AI Robotics at the Int. Conf. on Intelligent Robots and Systems (IROS). 2014.

[83] Sven Koenig and Maxim Likhachev. “Dˆ* lite”. In: AAAI 15 (2002).

[84] Hema S Koppula, Ashesh Jain, and Ashutosh Saxena. “Anticipatory planning for
human-robot teams”. In: Experimental Robotics. Springer. 2016, pp. 453–470.

[85] Thibault Kruse et al. “Human-aware robot navigation: A survey”. In: Robotics and
Autonomous Systems 61.12 (2013), pp. 1726–1743.

[86] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–1001.

[87] Puneet Kumar et al. “Learning-based approach for online lane change intention pre-
diction”. In: Intelligent Vehicles Symposium (IV), 2013 IEEE. IEEE. 2013, pp. 797–
802.

[88] Rainer Kummerle et al. “Autonomous driving in a multi-level parking structure”.
In: 2009 IEEE International Conference on Robotics and Automation. IEEE. 2009,
pp. 3395–3400.

[89] Yoshiaki Kuwata et al. “Distributed robust receding horizon control for multivehi-
cle guidance”. In: IEEE Transactions on Control Systems Technology 15.4 (2007),
pp. 627–641.

[90] Steven M La Valle. “Motion planning”. In: IEEE Robotics & Automation Magazine
18.2 (2011), pp. 108–118.



BIBLIOGRAPHY 141

[91] Florent Lamiraux, Sepanta Sekhavat, and J-P Laumond. “Motion planning and con-
trol for Hilare pulling a trailer”. In: IEEE Transactions on robotics and automation
15.4 (1999), pp. 640–652.

[92] Christian Laugier et al. “Probabilistic analysis of dynamic scenes and collision risks
assessment to improve driving safety”. In: IEEE Intelligent Transportation Systems
Magazine 3.4 (2011), pp. 4–19.

[93] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[94] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for path plan-
ning”. In: (1998).

[95] Steven M LaValle and James J Kuffner Jr. “Randomized kinodynamic planning”. In:
The international journal of robotics research 20.5 (2001), pp. 378–400.

[96] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. “A survey on motion pre-
diction and risk assessment for intelligent vehicles”. In: ROBOMECH journal 1.1
(2014), pp. 1–14.

[97] Jessica Leu, Rachel Lim, and Masayoshi Tomizuka. “Safe and Coordinated Hierarchi-
cal Receding Horizon Control for Mobile Manipulators”. In: 2020 American Control
Conference (ACC). IEEE. 2020, pp. 2143–2149.

[98] Jessica Leu and Masayoshi Tomizuka. “Motion Planning for Industrial Mobile Robots
With Closed-Loop Stability Enhanced Prediction”. In: Dynamic Systems and Control
Conference. Vol. 59162. American Society of Mechanical Engineers. 2019, V003T19A009.

[99] Jessica Leu, Michael Wang, and Masayoshi Tomizuka. Long-Horizon Motion Plan-
ning via Sampling and Segmented Trajectory Optimization. 2022. arXiv: 2204.07939
[cs.RO].

[100] Jessica Leu et al. Autonomous Vehicle Parking in Dynamic Environments: An Inte-
grated System with Prediction and Motion Planning. 2022. doi: 10.48550/ARXIV.
2204.10383. url: https://arxiv.org/abs/2204.10383.

[101] Jessica Leu et al. “Efficient Robot Motion Planning via Sampling and Optimization”.
In: 2021 American Control Conference (ACC). IEEE. 2021, pp. 4196–4202.

[102] Jessica Leu et al. Robust Task Planning for Assembly Lines with Human-Robot Col-
laboration. 2022. arXiv: 2204.07936 [cs.RO].

[103] Steven James Levine and Brian Charles Williams. “Concurrent plan recognition and
execution for human-robot teams”. In: Twenty-Fourth International Conference on
Automated Planning and Scheduling. 2014.

[104] Jesse Levinson et al. “Towards fully autonomous driving: Systems and algorithms”.
In: 2011 IEEE intelligent vehicles symposium (IV). IEEE. 2011, pp. 163–168.

[105] Bai Li et al. “Optimization-based maneuver planning for a tractor-trailer vehicle in
a curvy tunnel: A weak reliance on sampling and search”. In: IEEE Robotics and
Automation Letters 7.2 (2021), pp. 706–713.

https://arxiv.org/abs/2204.07939
https://arxiv.org/abs/2204.07939
https://doi.org/10.48550/ARXIV.2204.10383
https://doi.org/10.48550/ARXIV.2204.10383
https://arxiv.org/abs/2204.10383
https://arxiv.org/abs/2204.07936


BIBLIOGRAPHY 142

[106] Bai Li et al. “Trajectory planning for a tractor with multiple trailers in extremely
narrow environments: A unified approach”. In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 8557–8562.

[107] Kai Li et al. “Sequence planning considering human fatigue for human-robot collab-
oration in disassembly”. In: Procedia CIRP 83 (2019), pp. 95–104.

[108] Lening Li, Xianchao Long, and Michael A Gennert. “BiRRTOpt: A combined sam-
pling and optimizing motion planner for humanoid robots”. In: 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE. 2016, pp. 469–
476.

[109] M. Likhachev et al. “Anytime Dynamic A*: An Anytime, Replanning Algorithm”.
In: Proc. 2005 ICAPS. 2005, pp. 262–271.

[110] Maxim Likhachev and Dave Ferguson. “Planning long dynamically feasible maneuvers
for autonomous vehicles”. In: The International Journal of Robotics Research 28.8
(2009), pp. 933–945.

[111] Changliu Liu, Chung-Yen Lin, and Masayoshi Tomizuka. “The convex feasible set al-
gorithm for real time optimization in motion planning”. In: SIAM Journal on Control
and Optimization 56.4 (2018), pp. 2712–2733.

[112] Changliu Liu et al. “Convex feasible set algorithm for constrained trajectory smooth-
ing”. In: 2017 American Control Conference (ACC). IEEE. 2017, pp. 4177–4182.

[113] Changliu Liu et al. “Serocs: Safe and efficient robot collaborative systems for next gen-
eration intelligent industrial co-robots”. In: arXiv preprint arXiv:1809.08215 (2018).

[114] Oskar Ljungqvist et al. “A path planning and path-following control framework for
a general 2-trailer with a car-like tractor”. In: Journal of field robotics 36.8 (2019),
pp. 1345–1377.

[115] Oskar Ljungqvist et al. “Lattice-based motion planning for a general 2-trailer system”.
In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2017, pp. 819–824.

[116] Liang Ma et al. “Efficient sampling-based motion planning for on-road autonomous
driving”. In: IEEE Transactions on Intelligent Transportation Systems 16.4 (2015),
pp. 1961–1976.

[117] Jim Mainprice and Dmitry Berenson. “Human-robot collaborative manipulation plan-
ning using early prediction of human motion”. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 299–306.

[118] David Q Mayne et al. “Constrained model predictive control: Stability and optimal-
ity”. In: Automatica 36.6 (2000), pp. 789–814.

[119] Matthew McNaughton et al. “Motion planning for autonomous driving with a con-
formal spatiotemporal lattice”. In: 2011 IEEE International Conference on Robotics
and Automation. IEEE. 2011, pp. 4889–4895.



BIBLIOGRAPHY 143

[120] Ali Mesbah. “Stochastic model predictive control: An overview and perspectives for
future research”. In: IEEE Control Systems Magazine 36.6 (2016), pp. 30–44.

[121] Kyoung-Wook Min and Jeong-Dan Choi. “Design and implementation of autonomous
vehicle valet parking system”. In: 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013). IEEE. 2013, pp. 2082–2087.

[122] Michael Montemerlo et al. “Junior: The stanford entry in the urban challenge”. In:
Journal of field Robotics 25.9 (2008), pp. 569–597.

[123] Richard M Murray and S Shankar Sastry. “Steering nonholonomic systems in chained
form”. In: (1991).

[124] Isak Nielsen and Daniel Axehill. “A parallel structure exploiting factorization algo-
rithm with applications to model predictive control”. In: 2015 54th IEEE Conference
on Decision and Control (CDC). IEEE. 2015, pp. 3932–3938.

[125] Stefanos Nikolaidis and Julie Shah. “Human-robot teaming using shared mental mod-
els”. In: ACM/IEEE HRI (2012).

[126] Brendan O’Donoghue, Giorgos Stathopoulos, and Stephen Boyd. “A splitting method
for optimal control”. In: IEEE Transactions on Control Systems Technology 21.6
(2013), pp. 2432–2442.

[127] Rui Oliveira et al. “Optimization-based on-road path planning for articulated vehi-
cles”. In: IFAC-PapersOnLine 53.2 (2020), pp. 15572–15579.

[128] Tugcem Oral and Faruk Polat. “MOD* Lite: an incremental path planning algorithm
taking care of multiple objectives”. In: IEEE Transactions on Cybernetics 46.1 (2015),
pp. 245–257.

[129] Chonhyon Park et al. “Parallel cartesian planning in dynamic environments using
constrained trajectory planning”. In: 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Humanoids). IEEE. 2015, pp. 983–990.

[130] Mikkel Rath Pedersen et al. “Robot skills for manufacturing: From concept to indus-
trial deployment”. In: Robotics and Computer-Integrated Manufacturing 37 (2016),
pp. 282–291.

[131] J Norberto Pires. Industrial robots programming: building applications for the factories
of the future. Springer Science & Business Media, 2007.

[132] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. “Differentially constrained
mobile robot motion planning in state lattices”. In: Journal of Field Robotics 26.3
(2009), pp. 308–333.

[133] Rejean Plamondon, Chunhua Feng, and Anna Woch. “A kinematic theory of rapid
human movement. Part IV: a formal mathematical proof and new insights”. In: Bio-
logical cybernetics 89.2 (2003), pp. 126–138.



BIBLIOGRAPHY 144

[134] Jie Qi, Hui Yang, and Haixin Sun. “MOD-RRT*: A Sampling-based algorithm for
robot path planning in dynamic environment”. In: IEEE Transactions on Industrial
Electronics (2020).

[135] Anil V Rao. “A survey of numerical methods for optimal control”. In: Advances in
the Astronautical Sciences 135.1 (2009), pp. 497–528.

[136] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient motion
planning”. In: 2009 IEEE International Conference on Robotics and Automation.
IEEE. 2009, pp. 489–494.

[137] James B Rawlings. “Tutorial: Model predictive control technology”. In: American
Control Conference, 1999. Proceedings of the 1999. Vol. 1. IEEE. 1999, pp. 662–676.

[138] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control:
theory, computation, and design. Vol. 2. Nob Hill Publishing Madison, WI, 2017.

[139] James Reeds and Lawrence Shepp. “Optimal paths for a car that goes both forwards
and backwards”. In: Pacific journal of mathematics 145.2 (1990), pp. 367–393.

[140] S. Rodŕıguez et al. “An obstacle-based rapidly-exploring random tree”. In: Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
(2006), pp. 895–900.

[141] Pierre Rouchon et al. “Flatness and motion planning: the car with n trailers”. In:
Proc. ECC’93, Groningen. 1993, pp. 1518–1522.

[142] Thushara Sandakalum and Marcelo H Ang Jr. “Motion Planning for Mobile Manip-
ulators—A Systematic Review”. In: Machines 10.2 (2022), p. 97.

[143] Julian Schlechtriemen et al. “When will it change the lane? A probabilistic regression
approach for rarely occurring events”. In: 2015 IEEE Intelligent Vehicles Symposium
(IV). IEEE. 2015, pp. 1373–1379.

[144] Robin Schubert, Eric Richter, and Gerd Wanielik. “Comparison and evaluation of
advanced motion models for vehicle tracking”. In: 2008 11th international conference
on information fusion. IEEE. 2008, pp. 1–6.

[145] John Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories with Se-
quential Convex Optimization.” In: Robotics: science and systems. Vol. 9. 1. Citeseer.
2013, pp. 1–10.

[146] John Schulman et al. “Motion planning with sequential convex optimization and
convex collision checking”. In: The International Journal of Robotics Research 33.9
(2014), pp. 1251–1270.

[147] George AF Seber and Christopher John Wild. “Nonlinear regression. hoboken”. In:
New Jersey: John Wiley & Sons 62 (2003), p. 63.

[148] Sepanta Sekhavat et al. “Multilevel path planning for nonholonomic robots using
semiholonomic subsystems”. In: The international journal of robotics research 17.8
(1998), pp. 840–857.



BIBLIOGRAPHY 145

[149] Xu Shen et al. “Collision avoidance in tightly-constrained environments without co-
ordination: a hierarchical control approach”. In: arXiv preprint arXiv:2011.00413
(2020).

[150] Xu Shen et al. “Parkpredict: Motion and intent prediction of vehicles in parking lots”.
In: 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2020, pp. 1170–1175.

[151] Vikas Sindhwani, Rebecca Roelofs, and Mrinal Kalakrishnan. “Sequential operator
splitting for constrained nonlinear optimal control”. In: 2017 American Control Con-
ference (ACC). IEEE. 2017, pp. 4864–4871.

[152] Arun Kumar Singh et al. Inducing Multi-Convexity in Path Constrained Trajectory
Optimization for Mobile Manipulators. 2019. arXiv: 1904.09780 [cs.RO].

[153] Avi Singh et al. “End-to-end robotic reinforcement learning without reward engineer-
ing”. In: arXiv preprint arXiv:1904.07854 (2019).

[154] P. Spellucci. “A new technique for inconsistent QP problems in the SQP method”.
In: Mathematical Methods of Operations Research 47 (1998), pp. 355–400.

[155] Anthony Stentz. “Optimal and Efficient Path Planning for Partially-Known Environ-
ments”. In: IN PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE
ON ROBOTICS AND AUTOMATION. 1994, pp. 3310–3317.

[156] Anthony Stentz. Optimal and efficient path planning for unknown and dynamic envi-
ronments. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS
INST, 1993.

[157] Samantha Stoneman and Roberto Lampariello. “Embedding nonlinear optimization
in RRT* for optimal kinodynamic planning”. In: 53rd IEEE Conference on Decision
and Control. IEEE. 2014, pp. 3737–3744.

[158] Xiaoxun Sun, William Yeoh, and Sven Koenig. “Moving target D* lite”. In: Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1. 2010, pp. 67–74.

[159] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization”. In: Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012, pp. 4906–
4913.

[160] Yuichi Tazaki, Hiroyuki Okuda, and Tatsuya Suzuki. “Parking trajectory planning
using multiresolution state roadmaps”. In: IEEE Transactions on Intelligent Vehicles
2.4 (2017), pp. 298–307.

[161] Shantanu Thakar et al. “Accelerating bi-directional sampling-based search for motion
planning of non-holonomic mobile manipulators”. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 6711–6717.

[162] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand Challenge”.
In: Journal of field Robotics 23.9 (2006), pp. 661–692.

https://arxiv.org/abs/1904.09780


BIBLIOGRAPHY 146

[163] Dawn Tilbury, Richard M Murray, and S Shankar Sastry. “Trajectory generation
for the n-trailer problem using Goursat normal form”. In: IEEE Transactions on
Automatic Control 40.5 (1995), pp. 802–819.

[164] Philipp Töws and Dieter Zöbel. “Reversing General 2-Trailer Vehicles Using a 2D
Steering Function Model and a Novel Mesh Search Algorithm”. In: 2021 IEEE Intel-
ligent Vehicles Symposium (IV). IEEE. 2021, pp. 1274–1281.

[165] Chris Urmson et al. “Autonomous driving in urban environments: Boss and the urban
challenge”. In: Journal of field Robotics 25.8 (2008), pp. 425–466.

[166] Jur Van Den Berg and Mark Overmars. “Kinodynamic motion planning on roadmaps
in dynamic environments”. In: 2007 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE. 2007, pp. 4253–4258.

[167] Andreas Wachter. “An interior point algorithm for large-scale nonlinear optimization
with applications in process engineering”. PhD thesis. Carnegie Mellon University,
2002.

[168] Changhao Wang, Jeffrey Bingham, and Masayoshi Tomizuka. Trajectory Splitting: A
Distributed Formulation for Collision Avoiding Trajectory Optimization. 2021. arXiv:
2111.01899 [cs.RO].

[169] Yebin Wang. “Improved A-search guided tree construction for kinodynamic plan-
ning”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE.
2019, pp. 5530–5536.

[170] Dustin J Webb and Jur Van Den Berg. “Kinodynamic RRT*: Asymptotically opti-
mal motion planning for robots with linear dynamics”. In: 2013 IEEE International
Conference on Robotics and Automation. IEEE. 2013, pp. 5054–5061.

[171] AWoch, R Plamondon, and C O’Reilly. “Kinematic characteristics of successful move-
ment primitives in young and older subjects: a delta-lognormal comparison”. In: Hum.
Mov. Sci 30.1 (2011), pp. 1–17.

[172] Wenda Xu et al. “A real-time motion planner with trajectory optimization for au-
tonomous vehicles”. In: 2012 IEEE International Conference on Robotics and Au-
tomation. IEEE. 2012, pp. 2061–2067.

[173] Liangjun Zhang and Dinesh Manocha. “An efficient retraction-based RRT planner”.
In: 2008 IEEE International Conference on Robotics and Automation. IEEE. 2008,
pp. 3743–3750.

[174] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. “Optimization-based col-
lision avoidance”. In: IEEE Transactions on Control Systems Technology 29.3 (2020),
pp. 972–983.

[175] Xiaojing Zhang et al. “Autonomous parking using optimization-based collision avoid-
ance”. In: 2018 IEEE Conference on Decision and Control (CDC). IEEE. 2018,
pp. 4327–4332.

https://arxiv.org/abs/2111.01899


BIBLIOGRAPHY 147

[176] Matt Zucker et al. “An optimization approach to rough terrain locomotion”. In: 2010
IEEE International Conference on Robotics and Automation. IEEE. 2010, pp. 3589–
3595.

[177] Matt Zucker et al. “Chomp: Covariant hamiltonian optimization for motion plan-
ning”. In: The International Journal of Robotics Research 32.9-10 (2013), pp. 1164–
1193.


	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Computational Efficiency and Robot Motion Planning
	Integrated Strategies of Modularized Robotic Systems
	Dissertation Contributions and Outline

	Robot Motion Planning
	Robot Motion Planning and Hybrid Motion Planning
	Introduction
	Problem Formulation and Related Works
	The RRT*-CFS Algorithm
	Applications
	Chapter Summary

	Long-horizon Motion Planning
	Introduction
	Problem Formulation and Related Works
	The RRT*-sOpt Algorithm
	Applications
	Chapter Summary

	Search-based Motion Planning for Articulated Vehicles
	Introduction
	Related Works
	Preliminaries
	The Off-lattice Motion Planning Algorithm
	Applications
	Chapter Summary

	Motion Planning in Dynamic Environments
	Introduction
	Problem Formulation
	Hierarchical Receding Horizon Control
	Applications
	Chapter Summary


	Integrated Strategies of Modularized Robotic Systems
	Environment Prediction and Motion Planning
	Introduction
	Stability of MPC-based Planning
	Stability-enhanced Prediction and M-Convergence for Analysis
	Applications
	Chapter Summary

	Application I: Human-Robot Collaboration for Assembly
	Introduction
	Related Works
	Preliminaries
	Robust Task Planning for HRC Applications
	Applications
	Chapter Summary

	Application II: Autonomous Parking in Uncertain Environments
	Introduction
	Related Works
	Problem Statement and Proposed Architecture
	Prediction in Dynamic Parking Environments
	Strategic Motion Planner
	Applications
	Chapter Summary

	Concluding Remarks and Suggested Future Works
	Bibliography




